A Note on New Semi-Regular Divisible Difference Sets

James A. Davis
University of Richmond, jdavis@richmond.edu
Jonathan Jedwab

Follow this and additional works at: http:// scholarship.richmond.edu/mathcs-faculty-publications
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Davis, James A., and Jonathan Jedwab. "A Note on New Semi-Regular Divisible Difference Sets." Designs, Codes, and Cryptography 3, no. 4 (October 1993): 379-81. doi: 10.1007/BF01418532.

A Note on New Semi-Regular Divisible Difference Sets

JAMES A. DAVIS*
Department of Mathematics, University of Richmond, Richmond, VA 23173
JONATHAN JEDWAB
Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BSI2 6QZ, U.K.
Communicated by D. Jungnickel
Received October 12, 1992; Revised

Abstract

We give a construction for new families of semi-regular divisible difference sets. The construction is a variation of McFarland's scheme [5] for noncyclic difference sets.

Let G be a group of order $m n$ and N a subgroup of G of order n. If D is a k-subset of G then D is a ($m, n, k, \lambda_{1}, \lambda_{2}$) divisible difference set in G relative to N provided that the differences $d d^{\prime-1}$ for $d, d^{\prime} \in D, d \neq d^{\prime}$, contain every nonidentity element of N exactly λ_{1} times and every element of $G \backslash N$ exactly λ_{2} times. If $k>\lambda_{1}$ and $k^{2}=m n \lambda_{2}$, then the divisible difference set is called semi-regular. Families of semi-regular divisible difference sets with $\lambda_{1} \neq 0$ are rare, as mentioned in [4]. If $\lambda_{1}=\lambda_{2}$ then D is a $\left(m n, k, \lambda_{1}\right)$ difference set in G.
One way to check if a subset of a group is a divisible difference set is to use the group ring equation. If we abuse notation by writing $D=\Sigma_{d \in D} d$ and $D^{(-1)}=\Sigma_{d \in D} d^{-1}$ then the definition of a divisible difference set is equivalent to the equation $D D^{(-1)}=k+\lambda_{1}(N$ $-1)+\lambda_{2}(G-N)$ in the group ring $Z[G]$ (see [2], [3] for examples of this technique).
In this paper, we will construct semi-regular divisible difference sets with new sets of parameters. The construction is similar to those found in [1], [2], [3]. We start with the group $E=E A\left(q^{d+1}\right)$, the elementary Abelian group with q^{d+1} elements, where q is a prime power. We will view E as a vector space of dimension $d+1$ over $G F(q)$. A hyperplane of E is a subspace of dimension d; a standard counting argument shows that E contains $\left(q^{d+1}-1\right) /(q-1)$ hyperplanes. Label these hyperplanes H_{i} for $i=1, \ldots,\left(q^{d+1}-1\right) /$ ($q-1$) and note that $E / H_{i} \cong E A(q)$ for each i. Suppose $E A(q)$ supports a ($q, k^{\prime}, \lambda^{\prime}$) difference set. Then for each i form the set $D_{i}=\cup_{j=1}^{k^{\prime}} a_{i j} H_{i} \subset E$ (regarding each $a_{i j} H_{i}$ as a subset of E), where $\left\{a_{i j} H_{i}: j=1, \ldots, k^{\prime}\right\}$ is a $\left(q, k^{\prime}, \lambda^{\prime}\right)$ difference set in E / H_{i} (regarding each $a_{i j} H_{i}$ as an element of E / H_{i}). Suppose M is an Abelian group containing a (m, $\left.\left(q^{d+1}-1\right) /(q-1), \lambda^{\prime \prime}\right)$ difference set $\left\{b_{i}: i=1, \ldots,\left(q^{d+1}-1\right) /(q-1)\right\}$. Then form the set $D=\cup_{i=1}^{\left(q^{d+1}-1\right)(q-1)} b_{i} D_{i} \subset M \times E$. The set D thus constructed is a divisible difference set:

Theorem 1. Let q be a prime power. If there exists a $\left(m,\left(q^{d+1}-1\right) /(q-1), \lambda^{\prime \prime}\right)$ difference set in an Abelian group M and a $\left(q, k^{\prime}, \lambda^{\prime}\right)$ difference set in $E A(q)$, then there exists $a\left(m, q^{d+1}, q^{d}\left(\left(q^{d+1}-1\right) /(q-1)\right) k^{\prime}, q^{d}\left(\left(\left(q^{d+1}-1\right) /(q-1)\right) k^{\prime}-q^{d}\left(k^{\prime}-\lambda^{\prime}\right)\right)\right.$, $\left.q^{d-1} k^{\prime 2} \lambda^{\prime \prime}\right)$ divisible difference set in $G=M \times E A\left(q^{d+1}\right)$ relative to $E A\left(q^{d+1}\right)$.

Proof. We work in the group ring $Z[E]$. For hyperplanes H_{i}, H_{i}, of E the expression $H_{i} H_{i}$, in $Z[E]$ is equal to $q^{d} H_{i}$ if $i=i^{\prime}$ and $q^{d-1} E$ if $i \neq i^{\prime}$. Since $\left\{a_{i j} H_{i}\right\}$ is a $\left(q, k^{\prime}, \lambda^{\prime}\right)$ difference set in E / H_{i}, it follows that in $Z[E]$ we have $D_{i} D_{i}^{(-1)}=q^{d} \Sigma_{j, j} a_{i j} a_{i j^{\prime}}^{-1} H_{i}=q^{d}\left(k^{\prime} H_{i}\right.$ $+\lambda^{\prime}\left(E-H_{i}\right)$. Also note that $\sum_{i} H_{i}=\left(q^{d+1}-1\right) /(q-1)+\left(q^{d}-1\right) /(q-1)(E-1)$. The proof involves a separation into cases based on $i=i^{\prime}$ and $i \neq i^{\prime}$:

$$
\begin{aligned}
D D^{(-1)} & =\sum_{i=1}^{\left(q^{d+1}-1\right) /(q-1)} \sum_{j=1}^{k^{\prime}} b_{i} a_{i j} H_{i} \sum_{i^{\prime}=1}^{\left(q^{d+1}-1\right) /(q-1)} \sum_{j^{\prime}=1}^{k^{\prime}} H_{i^{\prime}} a_{i j^{\prime}}^{-1} b_{i^{\prime}}^{-1} \\
& =q^{d} \sum_{i} \sum_{j, j^{\prime}} a_{i j} a_{i j^{\prime}}^{-1} H_{i}+q^{d-1} \sum_{i \neq i^{\prime}} b_{i} b_{i^{\prime}}^{-1} \sum_{j, j^{\prime}} a_{i j} a_{i^{\prime} j^{\prime}}^{-1} E \\
& =q^{d} \sum_{i}\left(k^{\prime} H_{i}+\lambda^{\prime}\left(E-H_{i}\right)\right)+q^{d-1} k^{\prime 2} E \sum_{i \neq i^{\prime}} b_{i} b_{i^{\prime}}^{-1} \\
& =q^{d}\left(k^{\prime}-\lambda^{\prime}\right) \sum_{i} H_{i}+q^{d} \lambda^{\prime} \frac{q^{d+1}-1}{q-1} E+q^{d-1} k^{\prime 2} E \lambda^{\prime \prime}(M-1) \\
& =q^{d} k^{\prime} \frac{q^{d+1}-1}{q-1}+q^{d}\left[\frac{q^{d+1}-1}{q-1} k^{\prime}-q^{d}\left(k^{\prime}-\lambda^{\prime}\right)\right)(E-1) \\
& +q^{d-1} k^{\prime 2} \lambda^{\prime \prime}(G-E)
\end{aligned}
$$

A divisible difference set with the parameters of Theorem 1 can also be constructed in any group containing a normal subgroup isomorphic to E, using a similar adaption of the above method to that introduced by Dillon [3] to modify the scheme of McFarland [5].
The parameters in Theorem 1 are not semiregular in general, but they are in the special case when the difference set $\left\{b_{i}\right\}$ is trivially the whole of M :

Corollary 1. If $m=\left(q^{d+1}-1\right) /(q-1)$, then the divisible difference set is semi-regular.
Proof. $k^{2}=q^{2 d}\left(\left(q^{d+1}-1\right) /(q-1)\right)^{2} k^{\prime 2}=\left(\left(q^{d+1}-1\right) /(q-1)\right)\left(q^{d+1}\right)\left(q^{d-1} k^{\prime 2}\left(\left(q^{d+1}-1\right) /\right.\right.$ $(q-1)))=m n \lambda_{2}$.

For example, if we choose $q=7, k^{\prime}=3, \lambda^{\prime}=1$, and $d=1$, then the corollary shows the existence of a $(8,49,168,70,72)$ semi-regular divisible difference set in $M \times E A(49)$, where M is any group of order 8 (including nonabelian). Known existence results for (q, $k^{\prime}, \lambda^{\prime}$) difference sets in $E A(q)$ provide many examples for the construction of Corollary 1. In the case $q \equiv 3(\bmod 4)$ there exists a $(q,(q-1) / 2,(q-2) / 4)$ difference set. In the case $q \equiv 1(\bmod 4)$ there are examples such as $(13,4,1)$ and $(73,9,1)$ in the projective planes, as well as others such as $(37,9,2)$.

References

1. K.T. Arasu, D. Jungnickel, and A. Pott, Divisible difference sets with multiplier -1, J. Algebra, Vol. 133, (1990) pp. 35-62.
2. J.A. Davis, Almost difference sets and reversible divisible difference sets, Archiv der Mathematik. To appear.
3. J.F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets, J. Combin. Theory (A), Vol. 40, (1985) pp. 9-21.
4. D. Jungnickel, On automorphism groups of divisible designs, Canad. J. Math., Vol. 325, (1982) pp. 257-297.
5. R.L. McFarland, A family of difference sets in non-cyclic groups, J. Combin. Theory (A), Vol. 15, (1973) pp. 1-10.
