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Finding Cyclic Redundancy Check Polynomials for ,Multilevel Systems 
James A. Davis, Miranda Mowbray, and Simon Crouch 

Abstract-This letter describes a technique for finding cyclic 
redundancy check polynomials for systems for transmission over 
symmetric channels which encode information in multiple voltage 
levels, so that the resulting redundancy check gives good error 
protection and is efficient to implement. The codes which we 
construct have a Hamming distance of 3 or 4. We discuss a way 
to reduce burst error in parallel transmissions and some tricks 
for efficient implementation of the shift register for these poly
nomials. We illustrate our techniques by discussing a particular 
example where the number of levels is 9, but they are applicable 
in general. 

Index Terms-Communication systems, cyclic codes, multilevel 
systems, polynomials. 

I. INTRODUCTION 

I N AN EFFORT to have high-speed transmission without 
exceeding emissions regulations, engineers have turned to 

transmissions which encode information in multiple voltage 
levels in place of the traditional binary transmission with two 
voltage levels. In order to ensure reliable transmission, some 
error detection needs to be included. This letter de~cribes how 
to choose a cyclic redundancy check polynomial (CRC) in 
such a system, and we also discuss how to implement such 
a system, describing a technique which increases protection 
against burst errors, and efficient implementation of the shift 
register. We will assume that the transmission channel is the 
multilevel symmetric channel, so that if the voltage level 
received is in error, each of the possible wrong levels is equally 
likely to occur. For this channel, the most suitable distance 
measure is the Hamming distance. 

We will focus our attention on a system with nine levels 
because of the particular application out of which this arose, 
but everything that we discuss can be done in a more general 
setting. We chose to work with cyclic codes over Z 9 because 
these codes are relatively easy to work with both theoretically 
as well as practically, but there are other choices. We could 
have constructed a cyclic code over GF(9), the finite field with 
nine elements, or we could have constructed a cyclic code over 
either Z8 or GF(8) (finite ring or field with eight elements) 
and then had one signal level which is never used. The latter 
suggestion came from a referee and was not considered during 
the original work done on the code. Such a code would be no 
less efficient than our nine-level coding; but there is a reason 
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for using all nine levels rather than, effectively, just eight, 
in that with nine levels there are more possible choices for 
code words which do not encode data, but are special signals 
used for synchronization information or to signal the end of 
the packet. The greater choice for nondata codewords allows 
run lengths to be kept short and allows for more efficient 
clock recovery. The other alternative mentioned, working over 
GF(9), does not have any advantages over Z9 in terms of 
complexity of algebraic operations, and it seems harder to 
explain. Thus, we will construct codes over Z9 in this letter. 

We assume that the reader is familiar with CRC's over 
GF(2): see [1] for background. In Section II, we describe how 
to choose a CRC over GF(3) with Hamming distance 4-i.e., 
so that error resulting in a change in up to three symbols in the 
packet will be detected. In Section III, we show how to use 
this to construct CRC' s over Z 9 with Hamming distance 4. In 
Section IV, we briefly discuss two implementation issues. 

II. POLYNOMIAL OF GF(3) 

We will ultimately want to have error protection for a nine
level system. In order to do that, we first need to construe! 
a system which will work for a three-level system. We will 
extend this in Section IV, but we state without proof at thh 
stage that the nine-level system will have error detectior. 
capabilities at least as good as the three-level system used 
to generate it. We start with a well-known lemma. (The proofr 
of all the lemmas are in the Appendix.) 

Lemma 1: Suppose that P(x) is a primitive polynomial 
over GF(3) with degree d > 1, and that n is an integer less 
than (3d - 1)/2. Then the code generated by P truncated at 
length n has a Hamming distance of at least 3. 

In order to increase the Hamming distance of the code 
we are using to 4 (which would detect any error altering 
at most three symbols in the packet), we can modify a 
standard technique from binary transmissions: when working 
with cyclie codes over GF(2), any code whose generator is 
divisible by ( x+ 1) will detect any error altering an odd number 
of symbols in the packet. Thus, we can take a cyclic code over 
GF(2) whose Hamming distance is 3 and construct a new code 
whose Hamming distance is 4 by multiplying the generator by 
(x + 1). This technique does not directly work over GF(3), 
but the following lemma demonstrates that we can perform a 
similar trick. 

Lemma 2: Suppose that g(x) is a generator of a truncated 
cyclic code over GF(3) of length n and Hamming distance at 
least·3. Then the code of length n generated by (x - l)g(x) 
has Hamming distance of at least 4 if and only if there are no 

· ""k · 0m-k k · codewords of the form L..i=l xm-i - L..j=l xm- -i, m <; n 
in the truncated code generated by g(x). 

0090-6778/98$10.00 © 1998 IEEE 
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We will show later that if b(x) is the generator for a 
truncated cyclic code over GF(3) = Z3 with Hamming 
distance h, then the truncated cyclic code over Z9 whose 
generator is b(x) [considered as a polynomial over Z9 rather 
than GF(3)] will also have Hamming distance h .. In our 
application, we work with packets which have a maximum 
length of 4500 bytes (the size of Token Ring packets). Each 
byte is to be encoded as a triple of nine-level symbols. (This 
coding is not as efficient as sending the bytes directly, but 
allows for special code words which do not encode data, as 
explained in the introduction.) Thus, the detection scheme 
will be a truncated nine-level cyclic code of length at most 
13 500. Since the length of the packets that we will be sending 
is at most 13 500, if we find a primitive polynomial over 
GF(3) of degree at least 10, then by the first Lemma this 
will generate a truncated code with Hamming distance 3. 
Multiplying this primitive polynomial by (x - 1) will give 
a polynomial of degree at least 11, which by the second 
Lemma will generate a truncated code with Hamming distance 
4 as long as we avoid codewords of the specified form. We 
want to organize the remaining symbols into triples like the 
rest of the packet, and hence we would like the degree of 
the primitive polynomial to be congruent to 2 mod 3. We 
constructed five or six primitive polynomials over GF(3) of 
degree 11 or 14, but all of these divided a polynomial of the 
form I:7=l xm-i - L:]:-;:k xm-k-j, m < n. There may be 
a polynomial with degree 11 or 14 which does not divide a 
polynomial of that form, but we decided to increase the degree 
to 17. We did find some primitive polynomials of degree 17 
which do not divide any polynomial of this form. One example 
is f(x) = 1 - x - x 2 - x 3 - x 4 - x 5 - x 6 - x 7 - x 8 - x 9 -
xlO + xll + x12 _ x13 + x17. 

We now describe the procedure which we followed in order 
to find this primitive polynomial of degree 17. Once we had 
found it, we used Mathematica [2] to check whether it divided 
any polynomial of the form I:7=1 xm.:._i - L:j'=-;:k xm-k-j, 

m < n; it does not, but if it had we would have used the same 
procedure to find another primitive polynomial. The procedure 
can be used in general to find primitive polynomials of a given 
degree over GF(3) and is derived from the results in [3]. 

1) Find an irreducible polynomial of degree 17 over 
GF(3). The multiplicative group of GF(317) is cyclic 
with order 317 - 1 = 2.1871.34511, and so contains an 
element of order 1871. The minimal polynomial of this 
element (over GF3) divides x 1871 - 1 and is irreducible 
of degree 17. Type the command Factor [x(1871) 
- 1, Modulus ___.3 J into Mathematica. This gives 
110 irreducible factors of degree 17 [and the obvious 
factor of (x-1)]. Choose one of these; there is no 
clear reason at this stage to prefer any one of these 
to any other. The polynomial that we chose was 
x17 + xl4 + x13 + xg + x7 + x5 + x3 + x _ 1. 

2) The multiplicative group of GF(317) = GF(3)[x]/ 
(x17 + x14 + x13 + xg + x7 + x5 + x3 + x - 1) is 
cyclic (true of all finite fields) of order 2(1871)(345! 1). 
We need to find a generator of this cyclic group, 
in other words an element of this order, which we 
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will construct by multiplying together three elements 
whose orders are 2, 1871, and 34511, respectively. 
So we need to find an element of order 34 511. If 
(x2 + 1)2<1871) is not 1 in the field, then it will be 
an element of order 34 511. (If it is equal to 1, take 
another .irreducible polynomial in place of x2 + 1 
and try again.) To do this, first use Mathematica 
to compute the powers of x with the command 
Do[g[x_, i_J := PolynomialPowerMod[x, i, £17 + x{4 
+£13 + x"9 + x7 + x'5 + x'3+x - 1, 3], i, 1, 5000] then 
rewrite (x2 + 1)2<1871) as ((x2 + 1)729)5((x2 + 1)81 ) 
( (x2+1 )9).( (x2+ 1) 7) = ( (x1458 + l)s(x162+ l)(x18+ 1) 
(x2 + 1)7), exploiting the fact that raising polynomials 
to powers of 3 is easy mod 3; this can be 
computed using the Mathematica command 
PolynomialMod[PolynomialRemainder[ ( (g[x, 1458] 
+1)'5) * (g[x, 162] :+- 1) * (g[x, 18] + 1) * ((x'2 + 1)7), 
£17 +x"14 + £13 + x'9 + x7 + x'5 + x'°3 + x - 1], 3] 
which yields the result 1 +x2 +x4 +x5 +x11 +x13 -xl4 
- x 15 . This polynomial has multiplicative order 
34511 in the finite field GF(3)[x]/(x17 + x14 

+ x13 + xg + x7 + x5 + x3 + x - 1). 
3) The element 2 has order 2 in the field. Multiplying 

this by x, which has order 1871, and by 1 + x2 + x 4 

+xs+x11+x13_x14_x1s, we get that xl6+x15_x14_ 

x 12 - x 6 - x 5 - x 3 - x is a primitive element of the field. 
If we call this element b, then the minimum polynomial 
for the element is f(y) = (y - b)(y - b3)(y _, b9 ) · · · 

(y - b316
). In Mathematica, call b the function 

[x_] := £16 + x"15 - £14 - £12 - xo - x'5 - x'°3 - x 
and b3

n-i is the function gn[x_J := PolynomialMod 
(PolynomialRemainder[ (g(n - 1)[x])'3, £17 + £14 
+£13 + x'9 + x7 + x'5 + x'3 +x - 1, x], 3] 

4) The Mathematica command PolynomialMod[Poly
nomialRemainder[(y - g1[x])(y - g2[x])(y - g3[x]) ... 
(y - g17[x]), x"l. 7 + £14 + x1-3 + x'9 + x7 + x" 5 + x'°3 
+x-1,x],3] yields the minimal polynomial for 
the primitive element that we have constructed 
and is therefore a primitive irreducible polynomial 
of degree 17. The output of this command is 
f(y) = 1 - y - y2 - y3 - y4 - y5 - y6 - y7 - y8 -
yg _ ylO + yll + y12 _ yl3 + yl 7 

We know by Lemma 2 that the truncated code generated 
by f(y) has Hamming distance 3. There may well be other 
primitive polynomials of degree 17 with a greater minimum 
distance than this one, but we do not have a construction which 
will automatically produce such polynomials, and indeed the 
minimum distance of a given primitive polynomial is very 
difficult to determine. If we can demonstrate that there is a 
word of weight 4, we are done. Otherwise, we would have 
to come up with an argument why there cannot be words of 
weight 4. However, by using Lemma 3, we can construct a 
truncated code which we know has Hamming distance 4. 

When we multiply f(y) by (y - 1), we get g(y) = -1 -
y + yll - y13 - y14 - y17 + y18. The truncated code generated 
by g(y) has Hamming distance 4, so it will detect any errors 
which result in changes to at most 3 symbols. 
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The same method can be used to produce other polynomials 
of degree 18 over GF(3) which generate a truncated code with 
Hamming distance 4. Given a number of such polynomials, 
select the one with the smallest weight, because the smaller 
the weight th~ simpler the implementation of the CRC will be. 

It is interesting to compare our construction with the ternary 
codes constructed by Kschischang and Pasupathy in [4]. In that 
paper there are tables of codes with large minimum distances 
and lengths of up to 50, whereas our ternary code starts at 
length 317 - 1 (about 108 ) and then gets truncated to a length 
which may be as large as 13 500. Reference [4] also gives 
some recursive construction methods for generating codes of 
longer length and large minimum distance. The most prolific 
construction, the ( u + v + wl2u + vlu) construction, produces 
codes which are not in general cyclic (or constacyclic), which 
means that it is not possible to encode or decode them with a 
shift register. The encoding and decoding difficulties for such 
codes makes them completely impradical for our application. 
There is, in addition, a more specialized recursive construction 
[4, Sec. III] which does generate cyclic codes. However, the 
degree of the codes generated in this construction is not bound, 
and the degree of a code with length near 13 500 constructed in 
this way is in general much larger than 17. Using a polynomial 
of large degree as a CRC is expensive in coding, decoding, 
and transmission time. In summary, the codes in [4] certainly 
have larger minimum distances than the ones we construct, but 
our construction yields polynomials which are more suitable 
for use as CRC's with large packet lengths. 

III. LIFTING TO A POLYNOMIAL OVER Z9 

So far we have been discussing three-level codes, and we 
would like to have a nine-level code. We could do the usual 
coding theory following the same model as above over GF(9) 
rather than GF(3). We could, alternatively, lift the codes from 
the previous sections to a code over Z9 • This alternative has 
the advantage of having a natural connection to the symbols 
that are going to be transmitted over the wires. We will follow 
this method of worki.ng with a nine-level code. 

Recent papers in the literature (see [5]) have described 
how to generalize binary cyclic codes to co.des over Z4 . The 
general idea is to follow an algorithm to get a polynomial 
g(x) with coefficients in Z4 so that the natural homomorphism 
from Z4[x] to Z2 [x] maps g(x) to the generator of a binary 
cyclic code. In [5], g(x) is required to be a "basic primitive 
polynomial," related to its use in defining Galois Rings. This 
process can be mimicked to lift polynomials from Z3 to Z9, 
yielding a basic primitive polynomial with coefficients in Z9 
which when reduced modulo 3 is just the original polynomial 
with coefficients in Z3 . However, we do not really need to 
have a basic primitive polynomial, only a polynomial that has 
at least as good error detection as the polynomial over Z3 
from which it is lifted. 

Case m = 3, r = 2 of the lemma below implies that 
the truncated code over Z9 generated by any polynomial 
over Z9 has error detection capabilities at least as good as 
the polynomial over Z3 whose coefficients are obtained by 
reducing the coefficients of the original polynomial mod 3. 
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Therefore, once we have used the technique of Section II 
to construct a polynomial over GF(3) = Z3 which generates 
a code truncated at length n with Hamming distance 4, any 
polynomial over Z9 which reduces mod 3 to the polynomial 
we have constructed. will also generate a code truncated at 
length n with Hamming distance 4. 

Lemma 3: Suppose m > 1 and P(x) is a polynomial over 
Z with leading coefficient I. Suppose that P(x) mod (m) 
generates a truncated cyclic code over Zm of Hamming 
distance h. Then for all r 2: 1, P(x) mod (mr) generates 
a truncated cyclic .code (truncated at the same length) over 
Zmr of Hamming distance at least h. 

IV. IMPLEMENTATION ISSUES 

Two implementation issues are worth briefly mentioning. 
Burst errors occur when a sequence of consecutive symbols 
are compromised, typically by some external event. In general, 
CRC' s will protect against bursts whose length is the same as 
the degree of the CRC because division by the polynomial g(y) 
will yield a remainder different than the recorded remainder of 
the message. We can protect against errors of this type when 
the transmission occurs on multiple wires by using interleaving 
strategies similar to [6]. 

A second issue is adding and multiplying modulo 9. The 
multiplication can be considerably simplified by restricting 
the coefficients of the CRC polynomial to 0 and ±1. In 
addition, we can insist on a clever mapping from binary to nine 
levels so that multiplication is simply transposition of binary 
symbols. (Note: in order to do any algebraic manipulations 
of the symbols, we need to map to binary and use standard 
gates.) The addition of multiple levels is always complicated 
by the fact that the only practical gates are binary, but again 
we can keep this as efficient as possible by a clever mapping 
from the nine-level symbols to binary. 

APPENDIX 

PROOFS OF LEMMAS 

Proof of Lemma 1: Let Q(x) be a nonzero polynomial 
over GF(3), of degree less than n, with fewer than three 
nonzero coefficients. We want to show that P(x) does not 
divide Q(x). Clearly, Q(x) must be of the form xi or xi(l ± 
xi) for some i, j. Since P(x) is irreducible of degree greater 
than 1, P(x) does not divide x, and hence [since the ring of 
polynomials over GF(3) is a unique factorization domain] it 
does not divide xi for any i. So we have (P(x) divides Q(x)) 
::::} (Q(x) = xi(l ±xi) for some i, j < n and P(x) divides 
(1 ±xi)) ::::} (P(x) divides (1 ± xi)(l =f xi) = x2i - 1 for 
s.ome 2j < 2n < 3d - 1). But P(x) is primitive of degreed, 
and s~ by standard properties of primitive polynomials does 
not divide xk - 1 for any k < 3d - 1. The result follows. • 

Proof of Lemma 2: Suppose that b(x) is in the truncated 
cyclic code generated by (x - l)g(x). It must be of the 
form (x - l)c(x), where c(x) is in the truncated cyclic code 
generated by g(x). Without loss of generality, the codeword 
c( x) has a nonzero constant term: we can shift it if required. 
Sin"ce b(x) = (x- l)c(x) is in the code generated by g(x), we 
know that it cannot have fewer than three nonzero coefficients. 
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The different coefficients could correspond to different voltage 
levels at the physical layer of the code. 

Suppose that it has exactly three nonzero coefficients. Now 
b( 1) = 0, so these coefficients must all be equal. It follows 
that c(x) = b(x)/(l - x) is of the form ±(I:7=l xm-i -
I;~--;_k xm-k-i) for some m < n. Conversely, if there is any 
codeword of this form in the truncated cyclic code generated 
by g(x), multiplying such a codeword by (x - 1) gives 
a codeword with exactly three nonzero coefficients in the 
truncated cyclic code generated by (x - l)g(x). The result 
follows. • 

One "physical" interpretation of the form of the excluded 
codewords is that during the transmission of a codeword of this 
form there are precisely three changes in the voltage level. 

Proof of Lemma 3: The proof is by induction on r; case 
r = 1 is trivial. Let Q(x) be a polynomial over Z with degree 
less than the truncation length, whose coefficients lie between 
0 and mr - 1 and with fewer than h nonzero coefficients. 
Suppose that P(x) divides Q(x) (mod mr). Then P(x) divides 
Q(x) (mod m), and since P(x) (mod m) generates a truncated 
a cyclic code of Hamming distance h it follows that Q(x) 
is equal to the zero polynomial (mod m); in other words, 
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Q(x) = m.Q'(x) for some Q'(x) whose coefficients lie 
between 0 and mr-l - 1. Since the leading coefficient of 
P(x) is 1, no prime factor of m divides P(x). It follows that 
P(x) divides Q'(x) (mod mr-1). But Q'(x) has fewer than h 
nonzero coefficients, and so by induction on r, Q'(x) must be 
the zero polynomiai, and hence Q(x) is the zero polynomial, 
which completes the proof. • 
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