
University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

10-1998

Finding Cyclic Redundancy Check Polynomials
for Multilevel Systems
James A. Davis
University of Richmond, jdavis@richmond.edu

Miranda Mowbray

Simon Crouch

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Mathematics Commons

This Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been accepted for
inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information,
please contact scholarshiprepository@richmond.edu.

Recommended Citation
Davis, James A., Miranda Mowbray, and Simon Crouch. "Finding Cyclic Redundancy Check Polynomials for Multilevel Systems."
IEEE Transactions on Communications 46, no. 10 (October 1998): 1250-253.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Richmond

https://core.ac.uk/display/232769278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

1250 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 46, NO. 10, OCTOBER 1998

Finding Cyclic Redundancy Check Polynomials for ,Multilevel Systems
James A. Davis, Miranda Mowbray, and Simon Crouch

Abstract-This letter describes a technique for finding cyclic
redundancy check polynomials for systems for transmission over
symmetric channels which encode information in multiple voltage
levels, so that the resulting redundancy check gives good error
protection and is efficient to implement. The codes which we
construct have a Hamming distance of 3 or 4. We discuss a way
to reduce burst error in parallel transmissions and some tricks
for efficient implementation of the shift register for these poly
nomials. We illustrate our techniques by discussing a particular
example where the number of levels is 9, but they are applicable
in general.

Index Terms-Communication systems, cyclic codes, multilevel
systems, polynomials.

I. INTRODUCTION

I N AN EFFORT to have high-speed transmission without
exceeding emissions regulations, engineers have turned to

transmissions which encode information in multiple voltage
levels in place of the traditional binary transmission with two
voltage levels. In order to ensure reliable transmission, some
error detection needs to be included. This letter de~cribes how
to choose a cyclic redundancy check polynomial (CRC) in
such a system, and we also discuss how to implement such
a system, describing a technique which increases protection
against burst errors, and efficient implementation of the shift
register. We will assume that the transmission channel is the
multilevel symmetric channel, so that if the voltage level
received is in error, each of the possible wrong levels is equally
likely to occur. For this channel, the most suitable distance
measure is the Hamming distance.

We will focus our attention on a system with nine levels
because of the particular application out of which this arose,
but everything that we discuss can be done in a more general
setting. We chose to work with cyclic codes over Z 9 because
these codes are relatively easy to work with both theoretically
as well as practically, but there are other choices. We could
have constructed a cyclic code over GF(9), the finite field with
nine elements, or we could have constructed a cyclic code over
either Z8 or GF(8) (finite ring or field with eight elements)
and then had one signal level which is never used. The latter
suggestion came from a referee and was not considered during
the original work done on the code. Such a code would be no
less efficient than our nine-level coding; but there is a reason

Paper approved by S. B. Wicker, the Editor for Coding Theory and
Techniques of the IEEE Communications Society. Manuscript received March
1. 1997; revised February 16, 1998.

J. A. Davis was with Hewlett-Packard Laboratories, Bristol, BS34 6QZ
U.K., on sabbatical from the Department of Mathematics and Computer
Science, University of Richmond, Richmond, VA 23173 USA.

M. Mowbray and S. Crouch are with Hewlett-Packard Laboratories, Bristol
BS34 6QZ U.K.

Publisher Item Identifier S 0090-6778(98)07771-X.

for using all nine levels rather than, effectively, just eight,
in that with nine levels there are more possible choices for
code words which do not encode data, but are special signals
used for synchronization information or to signal the end of
the packet. The greater choice for nondata codewords allows
run lengths to be kept short and allows for more efficient
clock recovery. The other alternative mentioned, working over
GF(9), does not have any advantages over Z9 in terms of
complexity of algebraic operations, and it seems harder to
explain. Thus, we will construct codes over Z9 in this letter.

We assume that the reader is familiar with CRC's over
GF(2): see [1] for background. In Section II, we describe how
to choose a CRC over GF(3) with Hamming distance 4-i.e.,
so that error resulting in a change in up to three symbols in the
packet will be detected. In Section III, we show how to use
this to construct CRC' s over Z 9 with Hamming distance 4. In
Section IV, we briefly discuss two implementation issues.

II. POLYNOMIAL OF GF(3)

We will ultimately want to have error protection for a nine
level system. In order to do that, we first need to construe!
a system which will work for a three-level system. We will
extend this in Section IV, but we state without proof at thh
stage that the nine-level system will have error detectior.
capabilities at least as good as the three-level system used
to generate it. We start with a well-known lemma. (The proofr
of all the lemmas are in the Appendix.)

Lemma 1: Suppose that P(x) is a primitive polynomial
over GF(3) with degree d > 1, and that n is an integer less
than (3d - 1)/2. Then the code generated by P truncated at
length n has a Hamming distance of at least 3.

In order to increase the Hamming distance of the code
we are using to 4 (which would detect any error altering
at most three symbols in the packet), we can modify a
standard technique from binary transmissions: when working
with cyclie codes over GF(2), any code whose generator is
divisible by (x+ 1) will detect any error altering an odd number
of symbols in the packet. Thus, we can take a cyclic code over
GF(2) whose Hamming distance is 3 and construct a new code
whose Hamming distance is 4 by multiplying the generator by
(x + 1). This technique does not directly work over GF(3),
but the following lemma demonstrates that we can perform a
similar trick.

Lemma 2: Suppose that g(x) is a generator of a truncated
cyclic code over GF(3) of length n and Hamming distance at
least·3. Then the code of length n generated by (x - l)g(x)
has Hamming distance of at least 4 if and only if there are no

· ""k · 0m-k k · codewords of the form L..i=l xm-i - L..j=l xm- -i, m <; n
in the truncated code generated by g(x).

0090-6778/98$10.00 © 1998 IEEE

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 46, NO. 10, OCTOBER 1998

We will show later that if b(x) is the generator for a
truncated cyclic code over GF(3) = Z3 with Hamming
distance h, then the truncated cyclic code over Z9 whose
generator is b(x) [considered as a polynomial over Z9 rather
than GF(3)] will also have Hamming distance h .. In our
application, we work with packets which have a maximum
length of 4500 bytes (the size of Token Ring packets). Each
byte is to be encoded as a triple of nine-level symbols. (This
coding is not as efficient as sending the bytes directly, but
allows for special code words which do not encode data, as
explained in the introduction.) Thus, the detection scheme
will be a truncated nine-level cyclic code of length at most
13 500. Since the length of the packets that we will be sending
is at most 13 500, if we find a primitive polynomial over
GF(3) of degree at least 10, then by the first Lemma this
will generate a truncated code with Hamming distance 3.
Multiplying this primitive polynomial by (x - 1) will give
a polynomial of degree at least 11, which by the second
Lemma will generate a truncated code with Hamming distance
4 as long as we avoid codewords of the specified form. We
want to organize the remaining symbols into triples like the
rest of the packet, and hence we would like the degree of
the primitive polynomial to be congruent to 2 mod 3. We
constructed five or six primitive polynomials over GF(3) of
degree 11 or 14, but all of these divided a polynomial of the
form I:7=l xm-i - L:]:-;:k xm-k-j, m < n. There may be
a polynomial with degree 11 or 14 which does not divide a
polynomial of that form, but we decided to increase the degree
to 17. We did find some primitive polynomials of degree 17
which do not divide any polynomial of this form. One example
is f(x) = 1 - x - x 2 - x 3 - x 4 - x 5 - x 6 - x 7 - x 8 - x 9 -
xlO + xll + x12 _ x13 + x17.

We now describe the procedure which we followed in order
to find this primitive polynomial of degree 17. Once we had
found it, we used Mathematica [2] to check whether it divided
any polynomial of the form I:7=1 xm.:._i - L:j'=-;:k xm-k-j,

m < n; it does not, but if it had we would have used the same
procedure to find another primitive polynomial. The procedure
can be used in general to find primitive polynomials of a given
degree over GF(3) and is derived from the results in [3].

1) Find an irreducible polynomial of degree 17 over
GF(3). The multiplicative group of GF(317) is cyclic
with order 317 - 1 = 2.1871.34511, and so contains an
element of order 1871. The minimal polynomial of this
element (over GF3) divides x 1871 - 1 and is irreducible
of degree 17. Type the command Factor [x(1871)
- 1, Modulus ___.3 J into Mathematica. This gives
110 irreducible factors of degree 17 [and the obvious
factor of (x-1)]. Choose one of these; there is no
clear reason at this stage to prefer any one of these
to any other. The polynomial that we chose was
x17 + xl4 + x13 + xg + x7 + x5 + x3 + x _ 1.

2) The multiplicative group of GF(317) = GF(3)[x]/
(x17 + x14 + x13 + xg + x7 + x5 + x3 + x - 1) is
cyclic (true of all finite fields) of order 2(1871)(345! 1).
We need to find a generator of this cyclic group,
in other words an element of this order, which we

1251

will construct by multiplying together three elements
whose orders are 2, 1871, and 34511, respectively.
So we need to find an element of order 34 511. If
(x2 + 1)2<1871) is not 1 in the field, then it will be
an element of order 34 511. (If it is equal to 1, take
another .irreducible polynomial in place of x2 + 1
and try again.) To do this, first use Mathematica
to compute the powers of x with the command
Do[g[x_, i_J := PolynomialPowerMod[x, i, £17 + x{4
+£13 + x"9 + x7 + x'5 + x'3+x - 1, 3], i, 1, 5000] then
rewrite (x2 + 1)2<1871) as ((x2 + 1)729)5((x2 + 1)81)
((x2+1)9).((x2+ 1) 7) = ((x1458 + l)s(x162+ l)(x18+ 1)
(x2 + 1)7), exploiting the fact that raising polynomials
to powers of 3 is easy mod 3; this can be
computed using the Mathematica command
PolynomialMod[PolynomialRemainder[((g[x, 1458]
+1)'5) * (g[x, 162] :+- 1) * (g[x, 18] + 1) * ((x'2 + 1)7),
£17 +x"14 + £13 + x'9 + x7 + x'5 + x'°3 + x - 1], 3]
which yields the result 1 +x2 +x4 +x5 +x11 +x13 -xl4
- x 15 . This polynomial has multiplicative order
34511 in the finite field GF(3)[x]/(x17 + x14

+ x13 + xg + x7 + x5 + x3 + x - 1).
3) The element 2 has order 2 in the field. Multiplying

this by x, which has order 1871, and by 1 + x2 + x 4

+xs+x11+x13_x14_x1s, we get that xl6+x15_x14_

x 12 - x 6 - x 5 - x 3 - x is a primitive element of the field.
If we call this element b, then the minimum polynomial
for the element is f(y) = (y - b)(y - b3)(y _, b9) · · ·

(y - b316
). In Mathematica, call b the function

[x_] := £16 + x"15 - £14 - £12 - xo - x'5 - x'°3 - x
and b3

n-i is the function gn[x_J := PolynomialMod
(PolynomialRemainder[(g(n - 1)[x])'3, £17 + £14
+£13 + x'9 + x7 + x'5 + x'3 +x - 1, x], 3]

4) The Mathematica command PolynomialMod[Poly
nomialRemainder[(y - g1[x])(y - g2[x])(y - g3[x]) ...
(y - g17[x]), x"l. 7 + £14 + x1-3 + x'9 + x7 + x" 5 + x'°3
+x-1,x],3] yields the minimal polynomial for
the primitive element that we have constructed
and is therefore a primitive irreducible polynomial
of degree 17. The output of this command is
f(y) = 1 - y - y2 - y3 - y4 - y5 - y6 - y7 - y8 -
yg _ ylO + yll + y12 _ yl3 + yl 7

We know by Lemma 2 that the truncated code generated
by f(y) has Hamming distance 3. There may well be other
primitive polynomials of degree 17 with a greater minimum
distance than this one, but we do not have a construction which
will automatically produce such polynomials, and indeed the
minimum distance of a given primitive polynomial is very
difficult to determine. If we can demonstrate that there is a
word of weight 4, we are done. Otherwise, we would have
to come up with an argument why there cannot be words of
weight 4. However, by using Lemma 3, we can construct a
truncated code which we know has Hamming distance 4.

When we multiply f(y) by (y - 1), we get g(y) = -1 -
y + yll - y13 - y14 - y17 + y18. The truncated code generated
by g(y) has Hamming distance 4, so it will detect any errors
which result in changes to at most 3 symbols.

1252

The same method can be used to produce other polynomials
of degree 18 over GF(3) which generate a truncated code with
Hamming distance 4. Given a number of such polynomials,
select the one with the smallest weight, because the smaller
the weight th~ simpler the implementation of the CRC will be.

It is interesting to compare our construction with the ternary
codes constructed by Kschischang and Pasupathy in [4]. In that
paper there are tables of codes with large minimum distances
and lengths of up to 50, whereas our ternary code starts at
length 317 - 1 (about 108) and then gets truncated to a length
which may be as large as 13 500. Reference [4] also gives
some recursive construction methods for generating codes of
longer length and large minimum distance. The most prolific
construction, the (u + v + wl2u + vlu) construction, produces
codes which are not in general cyclic (or constacyclic), which
means that it is not possible to encode or decode them with a
shift register. The encoding and decoding difficulties for such
codes makes them completely impradical for our application.
There is, in addition, a more specialized recursive construction
[4, Sec. III] which does generate cyclic codes. However, the
degree of the codes generated in this construction is not bound,
and the degree of a code with length near 13 500 constructed in
this way is in general much larger than 17. Using a polynomial
of large degree as a CRC is expensive in coding, decoding,
and transmission time. In summary, the codes in [4] certainly
have larger minimum distances than the ones we construct, but
our construction yields polynomials which are more suitable
for use as CRC's with large packet lengths.

III. LIFTING TO A POLYNOMIAL OVER Z9

So far we have been discussing three-level codes, and we
would like to have a nine-level code. We could do the usual
coding theory following the same model as above over GF(9)
rather than GF(3). We could, alternatively, lift the codes from
the previous sections to a code over Z9 • This alternative has
the advantage of having a natural connection to the symbols
that are going to be transmitted over the wires. We will follow
this method of worki.ng with a nine-level code.

Recent papers in the literature (see [5]) have described
how to generalize binary cyclic codes to co.des over Z4 . The
general idea is to follow an algorithm to get a polynomial
g(x) with coefficients in Z4 so that the natural homomorphism
from Z4[x] to Z2 [x] maps g(x) to the generator of a binary
cyclic code. In [5], g(x) is required to be a "basic primitive
polynomial," related to its use in defining Galois Rings. This
process can be mimicked to lift polynomials from Z3 to Z9,
yielding a basic primitive polynomial with coefficients in Z9
which when reduced modulo 3 is just the original polynomial
with coefficients in Z3 . However, we do not really need to
have a basic primitive polynomial, only a polynomial that has
at least as good error detection as the polynomial over Z3
from which it is lifted.

Case m = 3, r = 2 of the lemma below implies that
the truncated code over Z9 generated by any polynomial
over Z9 has error detection capabilities at least as good as
the polynomial over Z3 whose coefficients are obtained by
reducing the coefficients of the original polynomial mod 3.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 46, NO. 10, OCTOBER 1998

Therefore, once we have used the technique of Section II
to construct a polynomial over GF(3) = Z3 which generates
a code truncated at length n with Hamming distance 4, any
polynomial over Z9 which reduces mod 3 to the polynomial
we have constructed. will also generate a code truncated at
length n with Hamming distance 4.

Lemma 3: Suppose m > 1 and P(x) is a polynomial over
Z with leading coefficient I. Suppose that P(x) mod (m)
generates a truncated cyclic code over Zm of Hamming
distance h. Then for all r 2: 1, P(x) mod (mr) generates
a truncated cyclic .code (truncated at the same length) over
Zmr of Hamming distance at least h.

IV. IMPLEMENTATION ISSUES

Two implementation issues are worth briefly mentioning.
Burst errors occur when a sequence of consecutive symbols
are compromised, typically by some external event. In general,
CRC' s will protect against bursts whose length is the same as
the degree of the CRC because division by the polynomial g(y)
will yield a remainder different than the recorded remainder of
the message. We can protect against errors of this type when
the transmission occurs on multiple wires by using interleaving
strategies similar to [6].

A second issue is adding and multiplying modulo 9. The
multiplication can be considerably simplified by restricting
the coefficients of the CRC polynomial to 0 and ±1. In
addition, we can insist on a clever mapping from binary to nine
levels so that multiplication is simply transposition of binary
symbols. (Note: in order to do any algebraic manipulations
of the symbols, we need to map to binary and use standard
gates.) The addition of multiple levels is always complicated
by the fact that the only practical gates are binary, but again
we can keep this as efficient as possible by a clever mapping
from the nine-level symbols to binary.

APPENDIX

PROOFS OF LEMMAS

Proof of Lemma 1: Let Q(x) be a nonzero polynomial
over GF(3), of degree less than n, with fewer than three
nonzero coefficients. We want to show that P(x) does not
divide Q(x). Clearly, Q(x) must be of the form xi or xi(l ±
xi) for some i, j. Since P(x) is irreducible of degree greater
than 1, P(x) does not divide x, and hence [since the ring of
polynomials over GF(3) is a unique factorization domain] it
does not divide xi for any i. So we have (P(x) divides Q(x))
::::} (Q(x) = xi(l ±xi) for some i, j < n and P(x) divides
(1 ±xi)) ::::} (P(x) divides (1 ± xi)(l =f xi) = x2i - 1 for
s.ome 2j < 2n < 3d - 1). But P(x) is primitive of degreed,
and s~ by standard properties of primitive polynomials does
not divide xk - 1 for any k < 3d - 1. The result follows. •

Proof of Lemma 2: Suppose that b(x) is in the truncated
cyclic code generated by (x - l)g(x). It must be of the
form (x - l)c(x), where c(x) is in the truncated cyclic code
generated by g(x). Without loss of generality, the codeword
c(x) has a nonzero constant term: we can shift it if required.
Sin"ce b(x) = (x- l)c(x) is in the code generated by g(x), we
know that it cannot have fewer than three nonzero coefficients.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 46, NO. 10, OCTOBER 1998

The different coefficients could correspond to different voltage
levels at the physical layer of the code.

Suppose that it has exactly three nonzero coefficients. Now
b(1) = 0, so these coefficients must all be equal. It follows
that c(x) = b(x)/(l - x) is of the form ±(I:7=l xm-i -
I;~--;_k xm-k-i) for some m < n. Conversely, if there is any
codeword of this form in the truncated cyclic code generated
by g(x), multiplying such a codeword by (x - 1) gives
a codeword with exactly three nonzero coefficients in the
truncated cyclic code generated by (x - l)g(x). The result
follows. •

One "physical" interpretation of the form of the excluded
codewords is that during the transmission of a codeword of this
form there are precisely three changes in the voltage level.

Proof of Lemma 3: The proof is by induction on r; case
r = 1 is trivial. Let Q(x) be a polynomial over Z with degree
less than the truncation length, whose coefficients lie between
0 and mr - 1 and with fewer than h nonzero coefficients.
Suppose that P(x) divides Q(x) (mod mr). Then P(x) divides
Q(x) (mod m), and since P(x) (mod m) generates a truncated
a cyclic code of Hamming distance h it follows that Q(x)
is equal to the zero polynomial (mod m); in other words,

1253

Q(x) = m.Q'(x) for some Q'(x) whose coefficients lie
between 0 and mr-l - 1. Since the leading coefficient of
P(x) is 1, no prime factor of m divides P(x). It follows that
P(x) divides Q'(x) (mod mr-1). But Q'(x) has fewer than h
nonzero coefficients, and so by induction on r, Q'(x) must be
the zero polynomiai, and hence Q(x) is the zero polynomial,
which completes the proof. •

REFERENCES

[1] F. J. Mac Williams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[2] S. Wolfram, "Mathematica, a system for doing mathematics by com
puter," in The Advanced Book Program. Redwood City, CA: Addison
Wesley, 1988.

[3] R. Lid! and H. Niederreiter, "Finite fields," in Encyclopedia of Math
ematics and its Applications, Gian-Carlo Rota, Ed. Reading, MA:
Addison-Wesley, 1983, vol. 20.

[4] F. R. Kshischang and S. Pasupathy, "Some ternary and quaternary codes
and associated sphere packings," IEEE Trans. Inform. Theory, vol. 38,
no. 2, pp. 227-246, 1992.

[5] A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane,
and P. Sole, "The Z 4 -linearity of Kerdock, Preparata, Goethals, and
related codes," IEEE Trans. Inform. Theory, vol. 40, pp. 301-319, 1994.

[6] J. Jedwab and S. E. Crouch, "Method and system for communicating
data," U.S. Patent 5410309, Apr. 25, 1996.

	University of Richmond
	UR Scholarship Repository
	10-1998

	Finding Cyclic Redundancy Check Polynomials for Multilevel Systems
	James A. Davis
	Miranda Mowbray
	Simon Crouch
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5

