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Akadcmiai Kiado - Springer-Verlag 

SOME NON-EXISTENCE RESULTS ON DIVISIBLE DIFFERENCE 
SETS* 

K. T. ARASU, JAMES DAVIS, DIETER JUNGNICKEL and ALEXANDER 
POTT 

llcceivcd April 20, 1988 

In this paper, we shall prove several non-existeuce results for divisible difference sets, using 
three approaches: 

(i) character sum arguments similar to the work of Turyn [25] for ordinary difference sets, 
(ii) involution arguments 

and (iii) rrrnltipliers in conjunction with results on ordinary difference sets. 
Among other results, we show that an abclian affine diffcren<:c set of odd orders (snot a perfect 

square) in G can exist only if the Sylow 2-subgroup of G is cyclic. We also obtain a non-existence 
result for non-cyclic (n, n, n, 1) relative difference sets of odd order n. 

1. Introduction 

A divisible difference set with parameters m, n, I~, ,\1, ,\2 (for short, an 
(m, n, k, A1, A2) - DDS) in a group G of order mn relative to a normal subgroup 
N of order n is a k-subset D of G such that every element g E G \ N has exavtly A2 
representations as g = d - d' with d, d' E D and every g =I 1 in N has exactly ,\1 
such representations (here we write G additively). We say that G is splitting if in 
fact G = NEB JI for some subgroup H of G. D is called abclian or cyclic or splitting 
if G has the respective property. In case ,\1 = 0, D is called a relative difference set 
(for short, an (m, n, k, ,\2) - RDS). Finally, an affine difference set of order s is an 
( s + 1, s - 1, s, 1) - RDS, since there is a natural way of constructing an affine plane 
of order s from D. For more on divisible difference sets (including a detailed bib­
liography), sec [17] and [21]. (We warn the readers that various authors, including 
[17], use somewhat different terminology than the one introduced above). Relative 
difference sets were introduced by Elliott and Dutson [9], and affine difference sets 
have been extensively studied since the pioneering papers of Bose [7] and Hoffman 
[12]. We mention [3], [4], [18], [20], [21], [23] as recent examples. Note that a DDS 
with ,\1 = ,\2 or with n = 1 is just an ordinary difference set (see [6] for background 
on these). 

We shall need one more concept: An integer t is called a multiplier of an abelian 
(m,n,k,,\1,,\2) - DDS D, if If): x 1-+ tx is an automorphism of both G and the 
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divisible design devD = (G, {D + x I x E G}, E) naturally associated with D (sec 
e.g. [17]). In other words, we require ( t, mn) = 1 and. tD ~ { td,: .d. E D} == D + 

9 for a suitable g E G. (Actually, one may assume g = 0 m tlus dehmt1on, but we will 
not make use of this fact). 

In this paper we shall prove several non-existence results for divisible difference 
sets, using three approaches: 

(i) character sum arguments similar to the work of Turyn [25] for ordinary 
difference sets, 

(ii) involution arguments 
and (iii) multipliers in conjunction with results on ordinary difference sets. 
Among other results, we show that an abelian affine difference set of odd order s (s 
not a perfect square) in G can only exist if the Sylow 2-subgroup of G is cyclic. We 
also obtain a non-existence result for non-cyclic (n, n, n, 1) - RDS's of odd order n. 

2. Preliminaries on character sums 

In this section we write G multiplicatively and consider the group ring zc of 
G over the integers. By abuse of notation, we will identify each subset S of G with 
"L:xES x E ZG. As usual, we shall define 

A(t) = L a9gt for A= L a9g E ZG, 

gEG gEG 

where t is an arbitrary integer. With these notations, a subset D of G is an 
(m, n, k, >.1, >-2) - DDS in G relative to N if and only if D satisfies the identity: 

(1) DD(-l) = k - >-1 + >-1N + >-2(G - N). 

Assume that G is abelian and that x is a nonprincipal character of G which is also 
nonprincipal on N (see Huppert [14] for background from group theory). Thus, X is 
a homomorphism from G into Z[w] where w is a primitive eth root of unity (withe 
the exponent of G). We may extend x to a ring homomorphism from ZG to Z[w] 
(by linearity) which will again be denoted by X· Applying x to equation (1) yields 

(2) x(D)x(D(-l)) = k - >-1 

since x(N) = x(G) = 0 by the orthogonality relations. Note that x(D(-1)) ::::: 
x-1(D) = x(D), where - denotes complex conjugation. Thus (2) implies the 
following result: 

Lemma 2.1. Let D be an abelian (m,n,k,>.i,>.2) - DDS in G (relative to N). Ifx 
is any character of G which is non-principal on N, then one has 

(3) ix(D)\2 = k - >-1. I 

We shall next derive a similar result for splitting divisible difference sets. Thus 
assume that G = NEB H and denote by A the image of A E Z G under the canonical 
epimorphism /: ZG--+ Z(G/H) ~ZN. Applying/ to equation (1) gives 

(4) DD(-l) = k - >.1 + (>.1 + >-2(m - l))N. 

Assume furthermore that N is abelian and that x is a non-principal character of N. 
Then an analogous argument as the one given above shows the following: 
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Lemma 2.2. Let D be a splitting (rn, n, k, .\1, .\2) - DDS in G = NEB H, wliere N is 
abelian. If X is non-principal character on N, then one l1as 

(5) lx(D)l2 = k - .\1. D 

We close this section by stating the following Lemma due to Turyn [25]: 

Lemma 2.3. Let T/ be an algebraic integer in the rn th cyclotomic field Qm and suppose 
that IT/1 2 = n. Let p be a prime divisor of n which is semi-primitive modulo rn (i.e., 
there exists a non-negative integer f with pf = -1 (mod m)). Tlien p divides n to 
an even power, say p2blln and Pbllr1 (liere we write pallx ifpalx but p"+ltx). I 

It is clear that Lemma 2.3 applies to x(D) in the situation of either Lemma 2.1 
or Lemma 2.2. 

3. Abelian Divisible Difference Sets 

We begin with the following application of Lemma 2.1: 

Theorem 3.1. Let D be an abclian (rn, n, k, ,\i, .\2) - DDS in G relative to N and 
suppose rn = 2 mod 4. Tlwn the Sylow 2-subgroup of G is cyclic or k - .\1 is a 
perfect square. 

Proof. We may assume that the Sylow 2-subgroup S of G is not cyclic. As m = 2 
mod 4 this implies that n is even. Thus ISi = 2d for some d ~ 2 and IN n SI = 2d-l. 
Consider the Frattini subgroup 1I>(S) of S (see Huppert [14] for the properties of 
<I>(S) which we shall use). Since S is not cyclic, we have l<I>(S)I :::;: 2d-2 < IN n SI. 
Thus we may choose an element g E (NnS) \ <I>(S). Then g is contained in a minimal 
generating set (i.e. in a basis) of S, and therefore g is also contained in a basis B of 
G. Let x be the character of G which maps g to -1 and every other element of B 
to +l. Then x has order 2 a~1d is non-principal on N. Hence x = x = :x-1 and thus 
Lemma 2.1 shows that x(D) 2 = k - .\1 is a perfect square. I 

Corollary 3.2. Let D be an abclian aflirie difference set of orders = 1 (mod 4) in G. 
Then the Sylow 2-subgroup of G is cyclic or s is a perfect square. I 

We next state a simple Lemma which will allow us to deal also with abelian 
affine difference sets of order s = 3 (mod 4). 

Lemma 3.3. Let D be an (rn, n, k, .\1, .\2) - DDS in G relative to N (where G is not 
necessarily abelian). If .\1 is odd, tlien all involutions of G are contained in G \ N. 
If .\2 is odd, then all involutions of G are contained in N. 

Proof. Assume that .\1 is odd. If possible, pick an involution x E N. Whenever 
x = d - d' with d, d1 ED, then also x = -x = d' - d. Thus the number of difference 
representations of x from D has to be even, a contradiction. The proof of the second 
assertion is similar. I 

Corollary 3.4. Let D be an affine difference set of orders = 3 (mod 4) in G. Tlien 
the Sylow 2-subgroup of G is cyclic. 
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Proof. As n = s - 1 = 2 (mod 4), the Sylow 2-subgroup of N is isomorphic to Zz, 
Thus N contains a unique involution. If the Sylow 2-subgroup of G if not cyclic, wt., 
have to have an involution outside N, contradicting 3.3. ~ 

Combining 3.2 and 3.4, we obtain: 

Theorem 3.5. Let D be an abelian afllne difference set of odd order s in G. Tlwr~ 
the Sylow 2-subgroup of G is cyclic or s is a perfect square. ~ 

4. Splitting divisible difference sets 

We begin with an application of Lemma 2.2 which gives the following analogu(j 
of Theorem 3.1: 

Theorem 4.1. If there exists a splitting (m, n, k, >.i, >.2) - DDS in G = NEB H wlwr1~ 
N is an abelian group of even order, then k - >.1 is a perfect square. 

Proof. Since INI is even, there exists a non-principal character x of order 2. Apply 
Lemma 2.2. -

Specializing 4.1 to affine difference sets is not too interesting since one can obtail\ 
a stronger result from Lemma 3.3: 

Lemma 4.2. There exists no splitting affine difference set of odd orders. 

Proof. Note that here m = s + 1 and n = s - 1 are both even. If D is a splittinP; 
affine difference set of order s in N EB H, then clearly H contains an involution, 
contradicting Lemma 3.3. -

Combining 4.2 with results of Arasu and Jungnickel [4] we obtain: 

Theorem 4.3. Assume the existence of a splitting affine difference set D of order s, 
Then s = 2 or s is divisible by 11. If D is abelian, then s is divisible by 8 (unles:s 
s = 2 or 4). Moreover, the fallowing two conditions have to be satisfied: 

(i) There exists a Hadamard difference set in N which admits every prirrrn 
divisor of s as a multiplier. 

(ii) Either s is a square, or we have ( ~) = 1 for each prime p dividing s aIJ<t 

each prime q dividing s - 1. (Here ( ~) denotes the Legendre symbol.) • 

A weaker version of 4.3 (in particular containing the abelian case) was obtained 
by Jungnickel [20]. We now use 3.3 to strengthen another result of [20]: 

Theorem 4.4. Let H and N be arbitrary groups and assume the existence of a 
splitting (n>. + 2, n, n>. + 1, >.) - RDS in G = H EB N. Then one has one of the 
fallowing cases: 

(i) n and >. are even, n>. + 1 is a perfect square and H is non-abclian. 
(ii) n = 0 mod 4, >. is even and N is not solvable. 

(iii) n = 3 mod 4 and >. is odd. 
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(iv) n is odd and A is even. 

Proof. Except for the assertion that A is even in (i) and (ii), this is Theorem 4.3 of 
[20]. Note that the assumption that A is odd yields a contradiction as in the proof 
of 4.2. I 

5. Characters of prime order 

In this section we shall apply Lemmas 2.2 and 2.3 to characters of prime order 
to obtain the following result: 

Theorem 5.1. Let D be a splitting (m, n, k, A1, A2) - DDS in G =NEB JI, where N 
is abclian. Moreover, let p be a prime dividing the square-free part of k - A1, and 
let q # p be any prime divisor of n. Then p is a quadratic residue modulo q. 

Proof. Since q divides n, we may choose a (non-principal) character X of order q on 
N. By Lemma 2.2, the algebraic integer x(D) (in the qth cyclotomic field) satisfies 
lx(D)l2 = k - Al E Z. Thus Lemma 2.3 shows that p cannot have even order mod 
q (since otherwise pf = -1 mod q) for a suitable f, contradicting the fact that p 
divides k - Al to an odd power, by hypothesis). Thus p has odd order mod q which 
implies that p is a quadratic residue mod q. D 

We note that Theorem 5.1 is equivalent to Theorem 8.1 of Elliott and Butson [9] 
under the additional assumptions that q does not divide m and that JI is abelian. 
Our result is stronger, as it also rules out certain non-abelian groups. Even more 
important is the removal of the assumption that q doe." not divide m, since this 
enables us to obtain a non-existence result for splitting (n, n, n, 1) - RDS's of odd 
order n: 

Theorem 5.2. Let D be a splitting (n, n, n, 1) - RDS in G = NEB JI, where N is 
abclian. Moreover, let p be an odd prime dividing the square-free part of n. Then p 
is a quadratic residue modulo q far every prime divisor q # p of n. I 

We give two sample applications: 

Corollary 5.3. Let D be a splitting (n, n, n, 1) - RDS in G = NEB JI, where N is 
abclian. Then the square-free part of n has at most one prime divisor= 3 modulo 4. 

Proof. Otherwise let p and q be distinct prime divisors of n which are = 3 modulo 

4. Thus (~) = ( ~) = 1 by 5.2 (where (~) denotes the Legendre symbol). But 

quadratic reciprocity gives ( ~) = - (~) for p, q = 3 (mod 4), a contradiction. I 

Corollary 5.4. Let D be a splitting (n, n, n, 1) - RDS in G = NEB JI, where N is 
abclian. If 3 divides the square-free part of n, then every other prime divisor q of n 
satisfies either q = 1 mod 12 or q = -1 mod 12. In the second case, q divides n to 
an even power. 

Proof. Ily 5.2, (V = 1 and thus q = ±1 mod 12. If q = -1 mod 12, then q = 3 

mod 4 and so q does not divide the square-free part of n by 5.3. I 
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We remark that the structure of abelian (n, n, n, 1) - RDS's of even order is 
completely settled; in particular, n is a power of 2, then, and G does not split (see 
Ganley [10] and, for a simpler proof, Jungnickel [19]). Thus 5.2 is only interesting 
if n is odd. In this case, every affine plane of order n over a commutative semifield 
gives rise to an abelian (n, n, n, 1) - RDS. Thus n is a prime power, then; moreover, 
G is known to be elementary abclian (sec, e.g., Jungnickel [17] for a proof of this 
result which basically goes back to Hughes [13]). In particular, for all known abclian 
examples of odd order, the RDS is splitting. Thus this assumption on Theorem 5.2 
seems reasonable. We note also that no cyclic (n, n, n, 1) - RDS with n ~ 3 exists, 
see Elliott and Butson [9]. 

In view of Theorem 4.3, an application of 5.1 to affine difference sets can only 
be interesting if the order s is even. We then obtain the following result: 

Theorem 5.5. Let D be a splitting affine difference set (of even orders) in G = N fJJH, 
where N is abelian. If p is a prime dividing the square-free part of s and if q is any 

prime divisor of s - 1, then ( ~) = 1. 

If G is abelian, a somewhat stronger result than 5.5. holds, (cf. Theorem 4.3). 
We note that 5.2 can also be derived from a result due to de Launey who used the 
notion of "generalized Hadamard matrices", see [8]. 

6. Some results involving multipliers 

In this section, D will always be an abelian (m, n, k, >.) - RDS in G relative 
to N. If K is any subgroup of order t of N, then the image of D in G / K is an 
(m, n/t, k, >.t) - RDS relative to N / K; this- well-known result is due to Elliott and 
Butson [9]. In particular, we obtain an ordinary (m, k, >.n)-differcncc set D in G / N. 
This allows us to use non-existence results for difference sets to obtain some new 
results for relative difference sets. The first of these strengthens a result of Arasu 
and Pott [5]: 

Theorem 6.1. Let D be an abelian (m, n, k, >.) - RDS in G with multiplier 2, and 
assume that k - n>. is odd. Then Dis a (k + 1, (k - l)/>., k, >.) - RDS. 

Proof. By assumption, the order k - n>. of the associated (m, k, n>.)-difference set 
D is odd. Clearly, 2 is a multiplier of D, as it is a multiplier of D. This is possible 
only if D is a trivial difference set, i.e. k - n>. ~ 1, by a result of Pott [24]. Since 
k - n>. is odd, we have k = n>. + l. The trivial equation >.n(m - 1) = k(k - 1) gives 
the assertion. I 

Similarly, one also gets the following result: 

Theorem 6.2. Let D be an abelian (m, n, k, >.) - RDS with multiplier 3, where 3 does 
not divide k - >.n. If there is no (m, k, n>.)-difference set with multiplier -1, then R 
is a (k + 1, (k - 1)/>., k, >.) - RDS. 

Proof. Here D is an abelian (m, k, n>.)-difference set with multiplier 3, where 3 does 
not divide the order k - n>. of D. Again by [24], -1 is a multiplier of D or D is 
trivial. By hypothesis D is trivial and the assertion follows. I 
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Note that there arc many known non-existence results for abclian difference sets 
with multiplier -1, see [GJ, [11], [15], [lG], [24]. Thus our hypothesis will be satisfied 
quite often. We note that examples for G.l and G.2 are provided by the cyclic affine 
difference sets of orders 211 and 3a, respectively, and their homomorphic images. The 
case >. = 1 of G.1 and G.2 is of particular interest when combined with Hoffman's 
multiplier Theorem [12]: 

Corollary 6.3. Let D be an abclian (m, n, k, 1) - RDS. Then one has the following: 
(i) If k - n is odd then 2 is a multiplier of D if D is an affine difference set of 

even order k. 
(ii) If 3 is a nmJtiplier of D and if 3 divides k, then Dis an affine difference set of 

order k or there exists an ( m, k, n )-difference with multiplier -1. In the latter c<1se, 
m is even and k - n a perfect square. 

Our final result is as follows: 

Theorem 6.4. Let D be an abelian (m, n, k, ,\)-RDS with multiplier 2, where k-n>. = 
2 (rnod4). ThenDisa(4t-l,(t-1)/,\,2t-l,>.)-RDSora(4t-1,t/>.,2t,>.)­
RDS. 

Proof. Now D is a (rn, k, n>.)-differencc set with multiplier 2 and order k - n>. = 2 
mod 4. By results of Arasu [l], [2], D has to be a (4t - 1, 2t - 1, t - 1)-difference set 
or the complementary ( 4t - 1, 2t, t )-difference set. I 

The only examples of RDS's with the parameters of Theorem G.4 known to us 
arc cyclic (7, 2, 4, 1) - and (31, 2, lG, 4) - RDS's, sec Lam [22]. Since n = 2, here, 
these examples of course do not admit 2 as a multiplier. Note that all the theorems 
of this section remain true under the possibly weaker assumption that the image D 
of D admits the multipliers in question (even if D itself does not). Indeed, this is 
true for the two examples mentioned above. 

Acknowledgement. The authors thank Dr. John F. Dillon for a helpful discussion. 
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