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ABSTRACT 

INCREASE IN PERIPHERAL ARTERIAL TONE PREDICTS MYOCARDIAL ISCHEMIA INDUCED 

BY MENTAL STRESS 

Brendon Graeber, B.A., Matthew M. Burg, Ph.D., Aseem Vashist, M.D., Christine Earley, M.A., Joyce 

Liu, B.A., and Robert Soufer, M.D. 

Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 

Mental stress ischemia (MSI) is associated with poor prognosis for coronary artery disease (CAD) 

and is amenable to treatment, yet no easily administered test exists to diagnose it.  Given the known 

increase in systemic vascular tone in response to stress, we studied the ability of peripheral arterial 

tonometry (PAT), a noninvasive functional measure of arterial tone, to predict those vulnerable to MSI.  

Seventy-seven patients with chronic stable CAD were subjected to mental stress with concomitant 

assessment of myocardial perfusion and pulse wave amplitude.  Nuclear perfusion imaging was used to 

document MSI, and PAT was used to measure pulse wave and microarterial tone.  A ratio of PAT 

measurements during stress to those before stress was used to characterize vascular responses.  Serum 

catecholamines and endothelin-1 (ET-1) were simultaneously measured.  Subjects who experienced MSI 

had a lower average PAT ratio than those who did not (0.76 ± 0.04 vs. 0.91 ± 0.05, P = 0.03).  A receiver 

operating characteristics curve for PAT ratio predicting MSI had an area under the curve of 0.613 (standard 

error, 0.065, one-sided P = 0.04).  Maxima of sensitivity and specificity were observed at a threshold of 

0.78 to define an abnormal PAT ratio.  Cross-tabulation of groups above and below this threshold with 

groups of subjects with and without MSI showed a significant predictive relationship between PAT ratio 

and MSI (P = 0.03).  Subjects at or below this threshold (≤0.78) displayed a significant increase in 

norepinephrine levels during mental stress (235 pg/ml at baseline, 259 pg/ml during mental stress, P = 

0.007).  Subjects above this threshold (>0.78) displayed a significant decline in their ET-1 levels 24 hours 

after mental stress (1.15 pg/ml after mental stress, 0.93 pg/ml 24 hours later, P = 0.01), while those at or 

below threshold had a continued increase.  PAT ratio is a complex functional measure of peripheral arterial 

tone that significantly predicts the occurrence of MSI.  It may have clinical value as an easily administered 

screening test for MSI. 
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 1

INTRODUCTION 

 Acute mental stress has long been known to have detrimental effects on the 

cardiovascular system.  Acute episodes of stress due to a dramatic event, such as the 

death of a loved one or a natural disaster, are anecdotally associated with fatal 

cardiovascular events in popular lore.  In fact, the experience of acute psychological, 

psychosocial, or emotional stress can precipitate acute coronary syndromes (ACS), such 

as myocardial infarction (MI), and it can also cause fatal arrhythmias.  Studies of the 

association between anger and coronary artery disease (CAD) have established a 

demonstrable link between the two phenomena (1, 2).  However, the physiological 

mechanisms underlying these associations are poorly understood. 

 As the effects of acute stress on the cardiovascular system have been studied, it 

has become apparent that infarctions and arrhythmias culminating in sudden cardiac 

death are only the most dramatic manifestations of these effects.  Those vulnerable to 

these outcomes may manifest mental stress-induced pathology in less dramatic ways.  

Acute mental stress causes silent myocardial ischemia in at least 30%, and in some 

studies as many as 60%, of patients with CAD who are subjected to an acute laboratory 

stressor (3).  This mental stress ischemia (MSI) is generally asymptomatic and 

unapparent to the afflicted individual, and thus there are often no warning symptoms.  

Nevertheless, it can cause observable pathology, including abnormalities of the motion of 

the ventricular wall and a fall in left ventricular ejection fraction (LVEF), which 

compromise the efficiency of the heart as a pump.  It can also lead to deficits of 

myocardial perfusion that may be seen with nuclear imaging techniques and in some 
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cases can cause electrophysiological changes in the heart that can be seen on 

electrocardiography (ECG) and can contribute to arrhythmia. 

 The occurrence of MSI in vulnerable individuals with CAD is also associated 

with poor prognosis for cardiovascular outcomes relative to those who do not experience 

it (4, 5).  MSI may be a marker for more advanced CAD, merely indicating those 

individuals in whom the disease will progress more rapidly or be more severe.  But MSI 

may also directly contribute to CAD progression through damage caused by repeated 

episodes of subclinical ischemia.  MSI is silent and subtle, but the ability to evoke it 

consistently in the laboratory suggests its frequent occurrence in everyday life, with 

attendant consequences. 

 Despite the clinical significance of MSI, there is currently no easily administered 

and noninvasive way either to observe it or to identify those who are vulnerable to it.  

Trans-thoracic echocardiography (TTE) can be used to observe ventricular wall motion in 

patients undergoing a mental stress task, but not all patients with ischemia will manifest it 

as a wall motion abnormality (6).  Furthermore, the presence of a wall motion 

abnormality may be related to increased afterloading of the ventricle due to the rises in 

blood pressure and systemic vascular resistance (SVR) that mental stress elicits (7) and 

therefore may not be specific to myocardial ischemia.  The “gold standards” for 

observing myocardial ischemia, coronary angiography and nuclear perfusion imaging, 

require either invasive techniques or noninvasive administration of radioactive isotopes to 

assess perfusion.  Consequently, the utility and application of mental stress testing as a 

tool for assessing cardiovascular risk remain controversial, although its prognostic value 

has been shown (8).  This is in spite of the fact that emerging treatment strategies to aid 
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those who are vulnerable to MSI are effective in reducing the severity, progression and 

cost of cardiovascular disease (9-11). 

 

Epidemiology 

Perhaps our earliest and most intuitive understanding of the role of acute stress in 

CVD has come from the association of MI with the experience of sudden emotional 

stress, particularly anger.  This anecdotal association has been shown to have a scientific 

basis.  For example, a study of reported anger in victims of a recent nonfatal MI 

demonstrated a 2.5-fold increased risk of MI for up to 2 hours after the experience of 

moderate to extreme anger (1), while a prospective study of anger control found that 

those who reported high levels of anger had a 3.15 relative risk of MI  compared to those 

who reported low levels during a seven year follow-up period (2). 

Earthquakes have served as a useful example of an acute mental stressor 

experienced by many people in a similar manner.  The potential of such a stressor to 

provoke MI had been reported as early as 1983, in a study of fatal heart attacks after the 

Athens earthquake of 1981 which found that deaths attributable to coronary disease 

increased significantly to 7.7 fatalities per day in the three days following the earthquake 

from a background CAD mortality of 2.6 fatalities per day (12).  Subsequent studies of 

the 1994 Northridge, California, earthquake confirmed the association between these two 

phenomena (13, 14).  Additionally, victims of the 1999 Taiwan earthquake were found to 

have perturbations of heart rate variability (HRV) in the period immediately following 

the quake, which may contribute to arrhythmogenesis and sudden cardiac death (15). 
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Mental stress may directly cause cardiac arrhythmias as well.  Patients 

experiencing psychological stress can experience life-threatening ventricular arrhythmias 

in the absence of underlying structural heart disease, an effect which may be related to 

increased sympathetic activation (16).  Two studies examined the triggering of shocks to 

correct ventricular tachyarrhythmias in patients with implanted cardioverter-defibrillators 

(ICDs) after the terrorist attacks of September 11, 2001.  These studies found that, in the 

weeks immediately following the attacks, ventricular arrhythmias increased significantly 

in patients both proximal to and far removed from the locations where the attacks 

occurred (17, 18).  These findings indicate that the deleterious effects of acute mental 

stress are not limited to stressors that pose an immediate, tangible risk, as in the example 

of an earthquake.  Mental stress unrelated to a proximate physical threat, when acutely 

experienced, is sufficient to trigger cardiac arrhythmia. 

The effects of an acute episode of emotional stress are not limited to the hours or 

days immediately following the exposure.  One long-term prospective study of 

individuals who had lost a child found that their relative risk of a fatal MI from 7 to 17 

years after the event was 1.58 compared with matched controls, suggesting that, in 

addition to triggering acute cardiac events, a severe stressor may contribute to long-term 

mortality as well, possibly through chronic sequelae arising from an acute, emotionally 

traumatic experience (19). 

A syndrome of acute heart failure in response to a severe, acute mental stressor 

has been described in several case reports and case series (20, 21).  It is marked by severe 

ventricular dysfunction and wall motion abnormalities.  In contrast to precipitation of MI 

or arrhythmia, in which the acute stressor exploits the already diseased heart and 
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coronary arteries, this syndrome may occur in otherwise healthy individuals who lack 

evidence of significant coronary or electrophysiological disease.  It therefore appears to 

occur directly as a result of the stressor.  This syndrome of myocardial stunning after 

acute mental stress is not yet well understood.  There is some evidence that it may be 

caused by extreme activation of the sympathetic nervous system and marked by supra-

physiological levels of catecholamine release.  At such high levels, the catecholamines 

become cardiotoxic and appear to induce the syndrome (21). 

Cardiac-related deaths that are directly attributable to acute mental stress are 

nevertheless relatively rare.  The occurrence of subclinical MSI is likely far more 

common, as indicated by studies that have documented ischemia either in response to a 

laboratory stress task or in an individual’s normal environment using ambulatory ECG 

monitoring.  The Psychophysiological Investigations of Myocardial Ischemia (PIMI) 

Study studied 196 men and women with stable CAD and found evidence for MSI in 58% 

of them using a combination of two stressors.  Only a small fraction (10%) of those with 

MSI also reported angina during the stress tasks, while 8% displayed ST-segment 

depression on ECG (7). 

Another study of 132 patients with CAD found a prevalence of MSI of 34%, and 

also found that those with MSI in the laboratory were more likely to exhibit ischemia 

during daily life on ambulatory monitoring (relative risk 2.98 versus those without MSI) 

(22).  In specifically addressing the association of ambulatory ischemia with mental 

stress, another study found an adjusted relative risk of 2.2 for transient ischemia in the 

period immediately following the experience of negative emotions (23).  Other studies 



 6

using smaller numbers have found MSI to occur in 39% (24), 43% (25) and 60% (26) of 

patients. 

 The occurrence of MSI has prognostic implications.  In a longitudinal study, 30 

patients with stable angina pectoris and ischemia on stress perfusion imaging underwent 

continuous left ventricle functional monitoring during stress induced by serial 

subtraction.  They were then followed for two years for occurrences of MI or unstable 

angina.  Of the 15 patients with LV dysfunction during stress, 10 went on to experience 

one of these events during the follow-up period, while only 4 of the 15 patients without 

LV dysfunction experienced an event (4).  This finding has been replicated by three other 

studies (5, 27, 28), with the most recent demonstrating a statistically significant 3.0 rate 

ratio for death over a 5-year follow-up among CAD patients with ischemia during 

laboratory mental stress (5). 

 

Laboratory Studies of Mental Stress and Myocardial Ischemia 

In 1984, Deanfield and colleagues  reported that a mental stress task performed in 

the laboratory could provoke asymptomatic myocardial ischemia (29).  By subjecting 

patients with stable angina to a mathematical arithmetic stress task, the investigators were 

able to elicit abnormalities of myocardial perfusion using Rb-82 positron tomography.  In 

50% of those demonstrating ischemia, there were no accompanying symptoms or obvious 

ECG changes.  This phenomenon has been extensively observed in patients with CAD 

since then and, as described, has been found to occur in anywhere from 30-60% of 

patients with CAD (3). 
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A number of methods have been used both to provoke MSI and to observe it.  

Among the provocations, or tasks, that have been more commonly used are mental 

arithmetic, the Stroop color-word task, public speaking, anger recall, and anger recall 

with desperation or helplessness.  These vary in terms of their cognitive demand and 

emotional component; however, all have been found to elicit MSI.  The criteria used to 

define MSI have already received some attention and include the occurrence of a new 

ventricular wall motion abnormality, a decline in LVEF, and the presence of qualitative 

or quantitative perfusion defects identified with nuclear perfusion imaging of the 

myocardium. 

Mental arithmetic generally involves asking a subject to subtract a number 

serially from another number (e.g., 7 from 999, so that the series of correct answers is 

992, 985, 968, etc.) while the person administering the task berates and rushes the subject 

to produce a certain error rate.  The element of pressure and public performance 

combines with a cognitive challenge to produce stress. 

The Stroop color-word task puts the name of a color on a computer screen but 

prints that name in a discordant color (e.g., the word “red” in yellow text).  The subject is 

then asked to respond with the color of the text, not the color actually named (in the 

example, the correct response would be “yellow”).  The responses are timed in order to 

introduce an element of time pressure to the task, and advanced versions will titrate the 

difficulty and speed of the task based on the subject’s performance. 

Public speaking asks the subject to give a brief speech to one or more evaluators 

on a topic that has some emotional valence, such as a difficult interpersonal interaction.  
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The stress produced involves both the nature of the topic and the pressure of speaking in 

front of the evaluators. 

Anger recall functions similarly except that the subject chooses a recent 

experience that provoked irritation, aggravation or anger.  The subject recounts this 

experience to an interviewer who also asks leading questions and encourages the subject 

to explore their feelings and actions during the experience.  When desperation is included 

in the task, the recent experience chosen must include an element of helplessness on the 

part of the subject, a feeling that they could not affect or ameliorate the situation. 

While all of these tasks can produce MSI, anger recall may be the most potent in 

eliciting MSI (24) and has been found to be most successful in reproducing MSI in a 

given subject (30). 

The methods for observing MSI and the corresponding criteria to define them 

have advantages and disadvantages.  Mental stress has the ability to cause local 

abnormalities in cardiac wall motion during the ventricular beat (25, 31).  LVEF and wall 

motion can be assessed noninvasively with TTE, or by nuclear imaging with use of 

intravenous radionuclides.  However, the decline in LVEF that occurs during mental 

stress is in part attributable to an increase in SVR.  This is also likely true for wall motion 

abnormalities, as previously mentioned, and so these may result from increased 

afterloading, from segmental myocardial ischemia, or from a combination of the two.  

Consequently, these traditional measures of MSI may not be specific to myocardial 

ischemia per se. 

One study that used simultaneous perfusion imaging of the myocardium and TTE 

to observe MSI found that concordance between the two methods was only 46% (6).  
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This finding suggests that ventricular dysfunction during mental stress may not be 

attributable to decreased perfusion in a significant number of cases and may in fact result 

from afterloading or other unknown causes.  Perfusion imaging may therefore represent a 

“gold standard” for observation of MSI.  It provides the ability to identify ischemia 

during mental stress definitively.  Its disadvantages include the fact that it requires the 

intravenous administration of radioactive isotopes, and that it is expensive. 

The deficits of function and perfusion that constitute MSI are accompanied by 

deficits of vasomotor function in the coronary arteries during mental stress.  In 1991, 

Yeung and colleagues reported that, in diseased coronary arteries, a mental arithmetic 

stress task caused vasoconstriction that decreased coronary blood flow.  The degree of 

constriction correlated with paradoxical constriction of diseased arteries in response to an 

infusion of acetylcholine (32).  Such abnormal responses to normally vasodilatory stimuli 

have come to be understood as endothelial dysfunction, so-called because they represent 

a deficiency of endothelium-dependent relaxation of vascular smooth muscle.  This 

phenomenon has been observed in peripheral arteries as well (33, 34), using brachial 

artery reperfusion-dilation (commonly called flow-mediated dilation or FMD) as a 

surrogate measurement that correlates with coronary endothelial dysfunction (35). 

Mental stress also affects the electrophysiology of the heart and may contribute to 

cardiac arrhythmias.  It can both cause and destabilize ventricular arrhythmias and has 

been shown to worsen ventricular tachycardia in the laboratory (36, 37).  Myocardial 

ischemia changes the conductance of sodium and potassium across the cell membrane, 

and thus alters the electrical potential of the myocardial cell.  This can lead to instability 
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of the myocardium and cause the cells to fire in a disordered manner instead of in a 

unified pattern, predisposing to pathological arrhythmias. 

Mental stress may induce silent myocardial ischemia, but its effects on the 

coronary arteries may also be even more subtle.  In some patients with CAD, the 

response to mental stress may be marked not by ischemia but by a relative diminution of 

coronary function.  While these subjects do not become frankly ischemic, they do not 

exhibit the same increase in myocardial blood flow that accompanies mental stress in 

healthy subjects, characterized as coronary flow reserve.  One study documented this 

phenomenon in 10 subjects with CAD using quantitation of absolute myocardial blood 

flow.  It found that coronary flow reserve was diminished in these subjects during mental 

stress relative to a control group (38).  This diminution was most pronounced in those 

myocardial segments in which no critical stenosis of the epicardial coronary arteries was 

observed on coronary angiography.  In other words, a mechanism other than critical, 

flow-limiting stenotic disease was causing this failure of the coronary arteries to normally 

augment myocardial blood flow.  It has been postulated that this effect may result from 

dysfunction of the coronary microvasculature, dysfunction that may contribute to MSI 

(38).  These findings in combination with earlier findings of vasoconstriction in 

epicardial arteries (32) suggest two distinct mechanisms for MSI in the coronary 

circulation. 

 

Physiology and Pathophysiology 

Research is moving beyond the descriptive effects of mental stress on the 

cardiovascular system and into a nascent understanding of the pathophysiology of mental 
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stress.  This work encompasses all areas of the experience of mental stress, from its initial 

processing and manifestations in the central nervous system (CNS) to its ultimate effects 

on the heart and blood vessels. 

The various systems in the brain responsible for interpreting and manifesting the 

experience of stress are being described through the use functional neuroimaging 

modalities in humans.  Differences in mood and emotional coping mechanisms among 

human subjects make it implausible to detect highly consistent patterns of cortical 

activation across different neuroimaging studies of mental stress.  Furthermore, different 

induction methods of mental stress through cognitive and emotional tasks elicit activity in 

varying areas of the brain (39).  Nevertheless, the totality of neuroimaging studies in 

healthy normal subjects imply that the stress response is mediated by limbic structures—

such as the amygdala, hippocampus, hypothalamus, and cingulate cortex—in addition to 

prefrontal regions, the insular cortex, and other brainstem nuclei (39-41).  These results 

point to a complex, integrated response involving centers dealing with emotion, reason, 

affect, and executive function.  Furthermore, some of these areas are implicated in 

autonomic control of the cardiovascular system (42), and so these findings are significant 

because our understanding of the subsequent effects of mental stress—after it has been 

processed and interpreted as stress—focuses on the autonomic nervous system and its 

physiological effects. 

These findings integrate with—and in a number of cases form a part of—a 

putative central autonomic network that mediates the response to stress in the CNS, 

originally posited by Benarroch (43).  This network forms the basis for a model of 

neurovisceral integration in mental stress elaborated by Thayer and Lane (44), which 
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proposes mechanisms by which the CNS, autonomic nervous system (ANS), and 

peripheral systems (e.g., inflammatory responses, regulators of vascular tone) integrate 

and modulate the response to stress.  These systems then regulate the output of stress 

effector systems like the hypothalamic-pituitary-adrenal (HPA) axis and the ANS.  In the 

case of mental stress, the net effect of activation of this system may be an imbalance in 

autonomic tone marked by increased sympathetic output and decreased parasympathetic 

output (45).  This imbalance may contribute to cardiovascular pathology caused by 

mental stress. 

The output of the HPA axis and the ANS can be measured either by surrogate 

measures of efferent tone, or by direct measurement of their component molecules.  

Examples of methods that employ these two strategies include muscle sympathetic nerve 

activity (MSNA), an invasive method of measuring sympathetic tone; HRV, the high-

frequency component of which can be used as a non-invasive measure of vagal, or 

parasympathetic, tone; direct measurement of plasma and saliva cortisol, the latter 

providing a convenient and noninvasive method for measuring HPA output; and direct 

measurement of serum catecholamines, the primary mediators of sympathetic output. 

Acute mental stress is known to cause elevations in several measures of 

cardiovascular function, including heart rate, blood pressure, rate-pressure product, and 

cardiac index (46).  What is unusual about acute mental stress, in contrast to exercise 

stress, is that it is accompanied by an increase in SVR not seen during exercise that 

contributes to a concomitant drop in LVEF in healthy individuals without evidence of 

CVD (46).  This phenomenon also occurs in patients with CAD (7, 25). 
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These increases in hemodynamic parameters reflect an increase in vascular tone 

during mental stress and are accompanied by an increase in sympathetic tone as measured 

by both catecholamine levels and MSNA.  The PIMI Study measured sympathetic 

responses to various mental stressors by measuring serum catecholamines in both the 

study group of subjects with CAD and in a reference group of 29 healthy subjects (7, 46).  

Both groups experienced increases in serum catecholamines during mental stress, and 

epinephrine in particular was correlated with increases in blood pressure, heart rate, 

cardiac output, and SVR in the CAD group (7).  Serum cortisol was measured in the 

reference group during the acute stress tasks, and no significant differences were found in 

cortisol levels between baseline and any of the acute stress conditions.  However, other 

studies have shown salivary cortisol to be increased in the setting of chronic job stress 

and ongoing daily stressful events (47, 48).  In fact, a great deal of evidence points to an 

important role for cortisol in mediating the effects of chronic stress.  Its role in 

contributing to pathology caused by acute stress is poorly understood, and there is little 

evidence that it does so.  Consequently, it is not being studied in this research project. 

Using MSNA as well as measurements of heart rate and blood pressure, one 

group of researchers assessed responses to mental stress mediated by sympathetic tone by 

blocking sympathetic output centrally with the drug monoxidine.  They found that 

increases in heart rate, blood pressure, and MSNA during a mental arithmetic stress task 

were all attenuated by a central sympathetic blockade (49).  These findings in 

combination with those of the PIMI study and other studies point to an essential role for 

sympathetic output in mediating acute responses to mental stress. 
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The role that mental stress plays in causing arrhythmias appears to have both 

sympathetic and parasympathetic components.  Mental stress likely destabilizes the 

normal electrophysiology of the myocardium, and this destabilization apparently occurs 

through effects on two electrophysiological parameters.  First, heart rate variability 

(HRV) is decreased by mental stress, likely through a pathway mediated by the CNS that 

affects vagal tone and therefore beat-to-beat period variation (50).  Second, abnormal 

myocardial repolarization appears to increase during mental stress, as measured by 

indices of T-wave parameters on ECG that correspond to heterogeneity of repolarization 

(51).  Increases in T-wave alternans, a particular measure of heterogeneous 

repolarization, correlate with increases in epinephrine seen during mental stress and may 

increase the likelihood of developing an arrhythmia (51).  Interestingly, the study that 

demonstrated this relationship found that changes in myocardial repolarization did not 

correlate with changes in parasympathetic tone as measured by high-frequency HRV.  

This suggests that mental stress may contribute to arrhythmogenesis through an effect of 

sympathetic mediators on the myocardium itself, as well as through an effect of 

parasympathetic tone on rate control and pacing.  The contribution of decreased 

parasympathetic tone to pathology caused by mental stress in CAD remains unclear, 

although there is some early evidence that parasympathetic tone may play a protective, 

anti-inflammatory role in CVD (52). 

The consequences of mental stress-induced activation of these neurohormonal 

pathways are therefore in at least four parts.  First, chronic mental stress leads to a 

reduction in parasympathetic tone, which could then promote a pro-inflammatory state in 

the vessels that damages the endothelium and contributes to atherogenesis (52).  Second, 
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mental stress increases both blood pressure and SVR, leading to increased afterloading of 

the ventricle, which may have both acute and chronic effects on its function as a pump.  

Third, changes in autonomic tone affect vascular tone, leading to vasoconstriction or even 

vasospasm in diseased large arteries and in the microcirculation.  Ischemia and 

myocardial damage then ensue as a direct result of vasoconstriction, plaque disruption, or 

both.  Finally, changes in the balance of autonomic tone affect the electrophysiology of 

the heart.  This predisposes the heart to fatal arrhythmias which can cause sudden death 

(37, 51).  These mechanisms may occur independently or simultaneously.  In the latter 

case, it is likely that their effects are synergistic.  For example, inflammatory changes 

may make vessels more susceptible to sympathetic vasoconstriction; the resulting local 

ischemia and myocardial irritation may in turn lead to arrhythmogenesis.  Increased 

sympathetic tone during mental stress may independently perturb normal vascular 

function, or it may take place in the setting of disordered endothelial responses and may 

exploit a damaged endothelium to cause MSI.  In examining these relationships, the 

connection between endothelial dysfunction and mental stress will be discussed, and then 

the possible interaction or interdependence of sympathetic and endothelial mechanisms in 

causing MSI will be considered. 

 

Endothelial Dysfunction and Endothelin-1 

The endothelium comprises a single layer of cells that lines the lumen of all blood 

vessels, serving as a bi-directional, biocompatible barrier that facilitates the passage of 

blood gases and a range of molecules to and from tissues.  The endothelium maintains 

vascular homeostasis, responding to circulating and hemodynamic factors by releasing 
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bioactive substances to affect vascular tone, with the vasodilator nitric oxide (NO) as the 

primary active agent (53).  Endothelial dysfunction may be viewed as the failure of the 

endothelium to respond appropriately to these circulating and hemodynamic factors.  This 

dysfunction provides the setting for paradoxical vasoconstriction, platelet activation and 

leukocyte adherence, thrombosis and vascular inflammation, and eventual atherosclerosis 

(54).  Endothelial dysfunction is a product not only of decreased NO levels and decreased 

activity of the enzymes (e.g., endothelial nitric oxide synthase or eNOS) that synthesize 

it, but also of the resulting unopposed vasoconstriction.  The endothelium-dependent 

mechanism that contributes to this effect is mediated by endothelin-1 (ET-1) (55). 

ET-1 is one of a family of vasoactive polypeptides including as its primary 

isoforms ET-1, ET-2, and ET-3 (56).  ET-1 is a 21-amino acid peptide produced 

primarily by the endothelium (57) but also by other cell types, including vascular smooth 

muscle cells (VSMCs) (58) and leukocytes (59).  It is one of the most powerful 

endogenous vasoconstrictors known (57).  It produces vasoconstriction by causing influx 

of calcium ions into VSMCs, an effect that is mediated by stimulation of G protein-

coupled endothelin receptors (60).  It is also a mitogen involved in endothelial, VSMC, 

and glial cell proliferation, acting through two distinct mitogen-activated protein kinase 

cascades to produce these effects (60).  Both of these actions are predominantly mediated 

by the endothelin-A (ETA) receptor subtype.  ET-1 can also paradoxically produce 

vasodilatation by stimulating endothelin-B (ETB) receptors on endothelial cells, which 

stimulate eNOS to produce NO.  This appears to provide an important negative feedback 

pathway for limiting the vasoconstriction caused by ET-1 activity at ETA receptor sites.  

Additionally, stimulation of the ETB receptor by ET-1 is involved in mitogenic 
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stimulation of the endothelium (61) but may have pro-apoptotic effects in other cell 

types, such as melanocytes (62). 

The vasoconstrictor ET-1 is functionally related to NO, working in concert with 

and in opposition to NO in the maintenance of vascular tone.  It has been shown that 

endothelial dysfunction results not just from decreased levels of NO but also from 

increased activity of ET-1 (55).  This reflects an imbalance of vasoconstricting and 

vasodilating substances being produced by, and acting on, endothelial cells, an imbalance 

which itself indicates endothelial dysfunction (63). 

 

Measurement of Endothelial Dysfunction 

As endothelial dysfunction can reflect imbalances or changes in levels of various 

vasoactive molecules, measurement of levels of these molecules has become an 

increasingly accepted way to document dysfunction, as their levels have been found to be 

higher in those with endothelial dysfunction compared to those with normal endothelial 

function.  Examples of these molecular markers include certain cytokines, adhesion 

molecules, and metalloproteinases.  ET-1 itself is also a marker for dysfunction; elevated 

levels are associated with endothelial dysfunction and are found in those with 

documented atherosclerosis (64, 65). 

Endothelial dysfunction has traditionally been measured in a few different ways 

(63).  The “gold standard” measurement of cardiovascular endothelial dysfunction is via 

catheter infusion of acetylcholine into the coronary arteries during coronary angiography.  

In healthy arteries, this produces endothelium-dependent vasodilatation, while in the 

arteries of those with CAD, it produces paradoxical vasoconstriction, even in arteries 
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without apparent stenotic disease (66, 67).  This technique provided some of the earliest 

documentation of endothelial dysfunction occurring during mental stress (32). 

FMD of the brachial artery is a common peripheral, surrogate technique (68).  

The brachial artery is occluded transiently by a blood pressure cuff and then reperfused.  

The vasodilatation that results occurs through endothelium-dependent mechanisms, 

particularly the effects of mechanical distention and shear stress on the reperfused 

vessels, which stimulate NO production (69, 70).  A stereotactic ultrasound probe is used 

to record the diameter of the brachial artery before, during, and after the reperfusion, with 

changes in these values during an intervention or test referenced to the baseline values for 

a subject (63).  This method requires a very high degree of operator skill and expertise in 

order to produce reproducible measurements.  These considerations likely preclude its 

viability as a clinical diagnostic tool (63).  

Finally, assessment of endothelial dysfunction in the smaller arteries of the 

forearm and digits has been performed using both laser Doppler flowmetry of the 

microcirculation and strain gauge venous plethysmography, which measures changes in 

venous distention caused by changes in forearm blood flow.  These methods are even 

more vulnerable to operator variability than FMD and their use has been limited to 

exploratory research studies (63). 

 

Endothelial Dysfunction and Endothelin-1 during Mental Stress 

Mental stress can cause endothelial dysfunction in healthy individuals (71), and 

selective blockade of the ETA receptor has been shown to reverse the endothelial 

dysfunction observed during mental stress (72), suggesting a unique role of ET-1 in 
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mediating vascular responses and endothelial dysfunction during mental stress.  ET-1 

levels have been shown to rise abruptly after a brief period of mental stress in the 

circulations of both young healthy volunteers (73) and patients with vascular disease 

(74).  In addition, the increase in circulating ET-1 levels seen during mental stress is 

greater in offspring of hypertensive parents than in offspring of normotensive parents 

(75).  ET-1 also contributes significantly to the resting vasomotor tone of diseased 

coronary arteries (76, 77). 

Although ETA blockade has been shown to prevent stress-induced myocardial 

infarctions in hypercholesterolemic mice (78), the relationship of ET-1 to MSI has not 

been described in humans.  Nevertheless, the particular role of ET-1 in mediating 

vascular responses to stress suggests that it may play a role in causing MSI. 

 

Endothelin-1, MSI, and the Sympathetic Nervous System 

In patients with CAD, mental stress produces an increase in sympathetic tone that 

results in elevations of epinephrine and norepinephrine (7).  These catecholamines have 

been directly implicated in contributing to cardiovascular pathology, as indicated by the 

ability of adrenergic blockade to reverse stress-induced endothelial damage in an animal 

model of chronic stress (79).  Norepinephrine has an important role in local 

vasoconstriction during mental stress; it is released at local sympathetic termini in the 

coronary arteries, and it has a largely vasoconstrictive effect on vascular smooth muscle.  

Evidence increasingly points to a role for endothelial factors, and in particular ET-1, in 

mediating this vasoconstriction to norepinephrine. 
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ET-1 potentiates vasoconstriction to an infusion of norepinephrine in human 

arteries at concentrations of ET-1 that exert only a minimal direct pressor effect (80).  

This was observed in segments of resected human arteries in vitro, which exhibited 

contractile tension when exposed to norepinephrine that nearly doubled when a 

potentiating concentration of ET-1 was present.  Significantly, these arterial segments 

were removed from patients undergoing CABG who likely did not have fully intact or 

functional coronary endothelium. 

When the action of ET-1 is blocked in the human microcirculation in vivo, by 

pharmacologic blockade of the ETA receptor using the specific receptor blocker BQ-123, 

the normal vasoconstriction observed during an infusion of exogenous norepinephrine is 

significantly attenuated (81).  This was shown in a study using laser Doppler flowmetry 

to measure perfusion in the microcirculation of human skin.  In the presence of BQ-123, 

the concentration of norepinephrine required to produce any decrease in perfusion was 

approximately three orders of magnitude greater than the minimal dose that would 

decrease perfusion when blockade of ET-1 receptors was absent.  These findings were 

made in healthy subjects, and therefore the possibility exists that the sympathetic effect of 

ET-1 is much more pronounced in patients with diseased endothelium, in light of ET-1’s 

significant contribution to vasomotor tone in diseased coronary artery segments (76).  

These findings also point to an interaction between ET-1 and norepinephrine, perhaps 

through a threshold effect in which critical levels of one molecule potentiate the effect of 

the other molecule.   This interaction could then produce arterial vasospasm and 

vasoconstriction. 
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This possibility was explored in a study of variant or Prinzmetal angina in human 

subjects.  Intracoronary infusions of acetylcholine and ergonovine, which has partial α-

adrenergic agonist activity, were used to induce coronary vasospasm in patients with a 

history of variant angina.  Subjects who suffered coronary vasospasm had higher 

circulating levels of ET-1 at baseline in both peripheral veins and the coronary sinus than 

those who did not (82).  Interestingly, those subjects who suffered vasospasm also 

demonstrated a transient decrease in their ET-1 levels during the vasospastic episode that 

returned to baseline as the episode resolved.  This was attributed to an undescribed 

feedback mechanism that attempts to limit ET-1 release and activity during pathologic 

events. 

These results suggest a relevant role for ET-1 in mediating and potentiating the 

vasoconstrictive effects of sympathetic activity.  They also suggest that sympathetic 

activation during mental stress may promote vasospasm and a reduction in coronary 

blood flow when underlying cardiovascular pathology, and in particular endothelial 

dysfunction, already exists.  Sympathetic activation may do this both through adrenergic 

receptor stimulation and by stimulating the effects of ET-1 on the coronary circulation. 

 In summary, acute mental stress plays an increasingly recognized role in causing 

cardiovascular pathology.  It can precipitate ACS and arrhythmia leading to sudden 

cardiac death.  It can also cause transient, subclinical myocardial ischemia in vulnerable 

individuals, and the occurrence of this ischemia indicates a worse prognosis for the 

individual’s cardiovascular disease.  Those who suffer from MSI may have worse 

existing disease in their vessels than those who do not, or the phenomenon itself, brought 

about acutely but silently, may cause long-term damage that is undetectable in the acute 
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phase.  There is evidence that MSI is related to both sympathetic neurohormonal and 

endothelial factors.  Despite the clinical relevance of MSI, no noninvasive, easily 

administered test exists to document or predict its occurrence. 

A method known as peripheral arterial tonometry (PAT) has been developed that 

measures the pulse wave amplitude (PWA) of the small peripheral arteries in the 

microcirculation of the distal fingertip.  It is noninvasive and may be useful as a 

diagnostic test.  Past studies have indicated that a value of 0.8 for the ratio calculated by 

this method may differentiate those with and without cardiovascular pathology (83, 84).  

This method has been shown to reflect sympathetic activation and vasoconstriction due to 

the rich innervation of α-adrenergic fibers in the vascular bed (85-88).  However, recent 

results suggest that it correlates with endothelial function as well, as the change in 

peripheral PWA after brachial artery occlusion has been found to correlate strongly, in a 

linear fashion, with the traditional measurement of brachial arterial diameter during 

reperfusion of the occluded artery (89).   These correlations of PWA measurements with 

both α-adrenergic tone and endothelial function suggest that they provide a complex, 

functional measure of the interrelated systems contributing to arterial tone.  This study 

assesses the utility of the PAT method as an effective, noninvasive tool to diagnose or 

predict the occurrence of MSI. 
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STATEMENT OF PURPOSE, HYPOTHESIS, AND AIMS 

The purpose of this study is to investigate the relationship between Mental Stress 

Ischemia (MSI) and changes in neurohormonal output during mental stress, as measured 

indirectly by PAT.  It is possible that PAT could prove useful as an easily administered 

test to diagnose or screen for MSI.  In order to better understand the pathophysiological 

mechanisms that may contribute to increased arterial tone during mental stress, the direct 

relationship between PAT and levels of ET-1 and catecholamines is also studied. 

 

Hypothesis 

Peripheral arterial tone, as measured by PAT, will have a significant relationship 

with MSI, indicated by a strong predictive relationship of PAT to MSI, with a normal 

PAT ratio (>0.8) occurring predominantly in those without MSI, and an abnormal PAT 

ratio (≤0.8) occurring in those with MSI.  Levels of sympathetic catecholamines during 

mental stress and levels of ET-1 after mental stress will be significantly higher in those 

with an abnormal PAT ratio than in those with a normal PAT ratio. 

 

Aims 

1) To investigate the relationship between PAT ratio, a noninvasive index of 

peripheral arterial tone, and MSI, as measured by myocardial perfusion imaging. 

 2) To investigate the contributions of sympathetic catecholamines and ET-1 to 

increased peripheral arterial tone during mental stress, as measured by PAT. 
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METHODS 

Subjects: Subjects for the study were recruited from patients receiving care at the 

Cardiology Clinics of Yale-New Haven Hospital, the Connecticut Veterans’ Affairs West 

Haven Hospital, and affiliated clinics. Men and women from all ethnic backgrounds were 

recruited for the study.  All subjects carried an existing diagnosis of stable CAD, based 

on either a positive exercise stress test or history of a coronary intervention (bypass 

surgery or therapeutic coronary catheterization). 

Potential subjects were excluded from the study if they met any of the following 

criteria: MI or unstable angina in the preceding 6 months; CABG surgery or PTCA in the 

preceding 6 months; history of major cardiac arrhythmia, or use of a pacemaker or AICD; 

uncompensated heart failure; presence of any other incapacitating or life-threatening 

illness; major psychiatric disorder or abuse of any substance; use of benzodiazepines or 

other sedatives.  Also excluded were pre-menopausal women with serum estradiol >50 

pg/ml and women using hormone replacement therapy, due to the protective effects of 

estrogens on vascular function. 

Enrolled subjects were classified as obese if their BMI was ≥30.  Subjects 

classified as diabetic were those who carried a clinical diagnosis of Type I or II diabetes 

mellitus.  Subjects with a recent history of systolic pressure >140 mm Hg or diastolic 

pressure >90 mm Hg were classified as hypertensive.  Those with total cholesterol ≥200 

mg/dl or LDL ≥130 mg/dl were classified as having hypercholesterolemia.  Subjects’ 

smoking history was also recorded. 
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Subjects were asked to eat a light breakfast and take their normal medications on 

the day of the study, and then report to the study center.  Recruiting and subject 

enrollment were performed by the study coordinator. 

Summary of Protocol: Subjects were brought to the neurocardiac research lab at 

the West Haven VA Hospital, and the study coordinator obtained informed consent.  

Demographics, including cardiovascular comorbidities and medications, were recorded 

for the subject using a questionnaire administered immediately after informed consent 

was obtained.  IV access was secured, and then the subject underwent baseline 

myocardial perfusion imaging (MPI) using single-photon emission computed tomography 

(SPECT) with technetium-99-sestamibi injection.  The subject was then placed in a 

relaxed, recumbent position, and a blood pressure cuff and ECG leads were placed.  A 

PAT probe was also placed on the middle finger of the arm without BP cuff or IV 

catheter.  Hemodynamics and pulse wave amplitude were recorded continuously 

throughout the experiment.  The subject began the stress protocol by undergoing a 

relaxation period for 15 minutes, starting with a structured relaxation induction, to bring 

the subject to a relaxed baseline.  During this time, blood was obtained for measurement 

of baseline catecholamines and ET-1. 

After 15 minutes, the stress task began.  The subject was instructed to recall a 

recent, emotionally charged situation that made them angry or irritated, and then to 

recount the specific details of the event to the interviewer.  During this task, blood was 

drawn to quantitate the catecholamine surge associated with emotional activation, and 

another injection of technetium-99 isotope was administered to assess myocardial 

perfusion during MS.  The stress condition persisted for approximately 10 minutes as the 
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subject continued to recount the stressful event, and then a final blood sample was drawn 

to measure stress levels of ET-1 after completion of the task. 

Upon completion of the protocol, the IV catheter was withdrawn, all equipment 

and leads were removed, and the subject was thanked for his or her participation. 

Stress Task: The experiment employed a relaxation period followed by an anger 

recall task.  The relaxation period began with the interviewer asking the subject to 

describe a setting in which they felt completely relaxed.  The interviewer then asked the 

subject to imagine himself in that location, and provided verbal cues to invoke the image 

of the place in the subject’s mind.  The subject then lay quietly with eyes closed for 15 

minutes with no further conversation with any of the research staff, during which time 

baseline measurements were obtained. 

The stress condition employed anger recall to induce a mentally stressful state in 

the subjects.  This task is primarily an emotional stressor that has been reported as 

consistently producing hemodynamic activation as well as coronary arterial constriction 

in several studies (24, 25, 90).  The anger recall task was chosen for the study over other 

laboratory mental stressors because it was found to be consistent in eliciting MSI in 

vulnerable subjects (91).  Subjects were aroused from the relaxed state and asked to think 

of a recent even that had made them irritated, aggravated, or frankly angry.  When they 

had thought of one, they were asked to take a few seconds to fix the details in their mind, 

and then recounted it to the interviewer.  The interviewer would ask questions throughout 

the stress condition designed to get subjects to talk about things that they said, did, and 

felt during the stressful event, and during this time all stress data would be recorded and 
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the isotope administered.  The condition and the study were ended as soon as all data and 

samples were collected, after approximately 10 minutes. 

Relaxation was performed either by the research assistant or the research group’s 

clinical psychologist.  Either the author or the clinical psychologist performed the stress 

interview. 

Hemodynamic Measurements: Subjects underwent continuous monitoring of 

heart rate, blood pressure, and ECG throughout the study.  All measures were recorded at 

5-minute intervals during the relaxation period and at 1-minute intervals during the stress 

task.  Baseline hemodynamic parameters were calculated for each subject by taking the 

average of all measurements during the relaxation period.  Parameters during mental 

stress were taken from the measurement that produced the greatest cardiovascular 

activation as measured by rate-pressure product (RPP), calculated as the product of HR 

and SBP at that time point.  RPP is an accepted measure of cardiovascular activation, 

indicating reactivity to a mental or physical stressor and providing an index for 

cardiovascular demand created by a stress condition (92-94).  The point at which a 

maximum for RPP was observed was used to determine the subject’s HR and BP during 

MS.  Hemodynamic measurements during the study were obtained either by the author or 

by the research assistant present.  Calculation of values was performed by the author or 

by the research data assistant using methodology derived by the author. 

SPECT-MPI: Baseline and stress scans of myocardial perfusion were obtained 

with sestamibi isotope injection as described, using standard methodology.  All scans 

were performed in the Division of Cardiovascular Nuclear Imaging at the West Haven 
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VA Hospital.  The technetium-99 isotope was generated and the myocardial perfusion 

scans were obtained by the Nuclear Medicine technical staff. 

The two scans were compared to assess the occurrence of any reversible perfusion 

defect after undergoing the stress task.  The presence of a defect was assessed 

qualitatively by one of the trained attending physicians in nuclear cardiology who was 

blinded to the subjects’ other information; those with a perfusion defect were designated 

as positive for MSI, and those without a defect were designated as negative.  A typical 

example of a positive scan is shown in Figure 1. 

Administration of the isotope for the baseline scan was performed by the nuclear 

medicine staff.  Either the author or the cardiology fellow participating in the study 

administered the isotope for the stress scan during the anger recall task. 

 

 
 
Figure 1. Typical example of SPECT-MPI scan positive for myocardial ischemia during 

mental stress.  Stress images are in the upper row and baseline images are in the lower 

row.  This subject displayed apical ischemia during mental stress, indicated by white 

arrows. 
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PAT Methodology: PWA was recorded using a peripheral arterial tonometer 

(PAT) (Itamar Medical, Israel).  This instrument uses a noninvasive plethysmographic 

probe that places a uniform pressure field around the fingertip.  The field is adjusted for 

the subject’s baseline diastolic pressure to prevent venous pooling of blood and unload 

arterial wall tension, such that any volume changes in the fingertip with each pulse are 

only those of arterial perfusion (86).  The probe is attached to a pressure transducer and 

through it to a main system.  The main system amplifies the transducer signal and band-

pass filters it in the frequency range of 0.3 to 30 Hz.  The system then sends the signal to 

a laptop computer, which records the amplitude of each pulse wave as a continuous 

tracing and provides a measure of the small arterial smooth muscle tone in the fingertip.  

As tone increases, pulse wave amplitude decreases. 

A ratio of the PWA during stress to the PWA before stress was calculated.  This 

ratio was calculated by taking 1-minute representative segment from the relaxation period 

and a 30-second to 1-minute segment from the stress period with the lowest PWA, 

indicating maximum reaction to the stress condition.  The presence of significant motion 

artifact necessitated the taking of specific segments from the stress condition, as the 

recounting of a stressful experience frequently caused subjects to tense, flex, or even 

move their hands and forearms.  The PAT ratio provides an index of microarterial tone 

and function in the peripheral microcirculation.  Figure 2 displays examples of PWA 

traces that had normal and abnormal PAT ratios. 
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A 

B 

Figure 2. Examples of PWA traces with PWA displayed as a function of time.  Numeral 0 

in each trace indicates the relaxation period and numeral 1 indicates the beginning of the 

mental stress task.  A. Trace resulting in an abnormal PAT ratio, with relative 

vasoconstriction during mental stress. B. Trace resulting in a normal PAT ratio, with 

relative vasodilatation during mental stress. 
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For the purposes of this paper, PAT will be used generically to describe the test 

and PAT ratio to describe the calculated result of the test, while PWA will indicate the 

physiological parameter that the test measures. 

The recording of PWA during the study was performed either by the research 

assistant or by the author.  All PAT ratios were calculated by the author. 

Processing of Blood Samples: Blood was drawn from the IV line for analysis 

after 10 minutes of relaxation (baseline values), after 2 minutes of anger recall (stress 

catecholamine levels), and after completion of anger recall (stress ET-1 levels).  All 

samples were collected into tubes using potassium EDTA as an anticoagulant except for 

those used for catecholamine analysis.  Blood samples were kept on ice until 

centrifugation, which was performed promptly after completion of the study protocol.  

They were spun at 3000 rpm for 5 minutes and then the plasma was withdrawn and 

aliquotted.  All aliquots were stored at -80°C until analysis.  Either the author or the 

cardiology fellow drew all blood samples.  The author processed all blood samples unless 

not available after the study, in which case they were processed by the research data 

assistant or the fellow. 

Measurement of Catecholamines: Blood for catecholamine analysis was placed 

in special refrigerated tubes containing reduced glutathione to prevent oxidation and 

maintained at 0°C until processing immediately following the protocol.  Samples were 

centrifuged as above and plasma aliquots were stored at -80°C until batch analysis.  

Epinephrine and norepinephrine were measured from plasma samples using reverse-

phase high-performance liquid chromatography (ESA Inc, Chelmsford, MA) and 

electrochemical detection (Coulochem II) after alumina extraction.  The intra-assay 



 32

coefficient of variation for this method is 1-2%, and the inter-assay coefficient of 

variation varied from 10% for norepinephrine to 25% for low levels of epinephrine (<25 

pg/ml).  All processing and analysis of catecholamine samples were performed by the 

staff of the Yale General Clinical Research Center. 

Measurement of Endothelin-1: ET-1 was measured using enzyme-linked 

immunosorbent assay (ELISA).  An ELISA kit using the sandwich amplification 

technique from Biomedica Gruppe (Vienna, Austria) was used that provides quantitative, 

colorimetric measurement of ET-1 levels in human plasma.  Samples were run in 

duplicate for each subject and read on a Bio-Rad microplate optical density reader 

immediately upon completion of the assay.  Plates were read measuring absorbance at 

450 nm with reference measurement at 595 nm.  Each plate included two different 

positive controls and two negative control wells in addition to the standard curve.  

Results from each batch were fit to a standard curve generated for each unique kit, and 

concentrations of each duplicate sample were averaged and reported in units of fmol/ml.  

In all cases, standard curves displayed an r-value for correlation >0.995, and positive 

controls were noted to be within the concentration range given for both controls.  The 

manufacturer’s median ET-1 concentration detected by the kit was reported as 0.34 

fmol/ml (n=50).  Cross-reactivity with other ET isoforms was reported as 100% for ET-2, 

<5% for ET-3 and <1% for big ET.  Concentrations were converted into units of pg/ml 

using a conversion factor of 2.5, based on a molar weight of 2500 Da for ET-1.  A 

correction factor of 0.8 was then applied to the concentration to correct for an estimated 

20% of the reported concentration being attributable to ET-2 based on normal human ET-

2 plasma levels, so that the final reported concentrations are 80% of the measured 
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concentrations.  The author performed all analyses of ET-1 samples using the facilities 

and expertise of Dr. George Tellides. 

Data Analysis: Subjects were placed in the ischemic or non-ischemic groups 

based on the results of their SPECT-MPI studies.  Age was compared for each group 

using the Student’s t test, while LVEF, which was bimodally distributed in the ischemic 

group, was compared using the Wilcoxon rank-sum test.  Demographics for each group 

were compared using Fisher’s Exact Test for cross-tabulation.  All BP data were 

normally distributed and comparisons were made using the Student’s t test.  HR, RPP, 

catecholamine levels, and ET-1 levels were not normally distributed and exhibited 

significant rightward skewing in the most reactive individuals from each group.  As a 

result, nonparametric tests were used for comparisons: the Wilcoxon signed-rank test for 

intragroup comparisons and the Wilcoxon rank-sum test for intergroup comparisons.  

Additional comparisons were performed to compare groups with positive and negative 

PAT test results.  P-values <0.05 were considered significant.  Average PAT ratios are 

reported as mean ± SEM.  All other results are reported as mean ± SD except where data 

are not normally distributed, in which case they are reported as median (interquartile 

range). 

The average PAT ratio was compared between MSI-positive and MSI-negative 

groups using the Student’s t test.  A receiver operating characteristics (ROC) curve was 

generated for the relationship between PAT ratio and MSI to find a threshold test value 

for PAT ratio with maxima of sensitivity and specificity.  ROC results were compared 

with existing findings that suggest a threshold of <0.8 for an abnormal PAT ratio (83).  A 

group of those at or below the threshold for an abnormal ratio was determined using the 
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results of the ROC curve and analysis.  Cross-tabulation of PAT test results with SPECT-

MPI results was performed to evaluate significance and concordance of the test; these 

were assessed using Fisher’s Exact Test. 

The reported demographics included several comorbidities that can adversely 

affect vascular function, as well as medications that are protective of vascular function.  

Accordingly, additional ROC curves were generated to compare the performance of the 

PAT ratio based on the presence or absence of these comorbidities and medications.  

Hypercholesterolemia, hypertension, and the use of aspirin, β-blockers, and statins were 

all too prevalent in the study group to be able to have adequate comparison groups.  

Obesity, active smoking, diabetes, and ACE inhibitor use all had lower prevalence, and 

comparisons were generated for these demographic variables. 

Spearman correlation routines were performed for all neurohormonal levels to 

assess the contribution of each mediator to PAT ratio.  Those that appeared to have strong 

correlations were assessed for a predictive relationship with PAT ratio using univariate 

least-squares linear regression.  Results are reported with the Spearman coefficient and P-

value for the slope of the regression model. 

The author performed all statistical analyses with the technical and intellectual 

assistance of Drs. Soufer and Burg and Dede Collins, the research group’s biostatistician.  

All analyses were done with either NCSS97 or SAS v.8.2 statistical software. 

Statement of Participation: The simultaneous measurement of so many different 

sources of data required that several individuals participate in each successful study and 

that studies take place regularly during the week for over a year.  However, the author 

was the primary investigator responsible for acquisition and analysis of the data in this 



 35

study.  The author also participated extensively in the design and performance of the 

methods, specifically those for PAT measurements, analysis of ET-1 levels, and attendant 

blood samples. 
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RESULTS 

In total, 92 subjects were recruited for the study.  Fifteen of these were excluded 

from the study either because they were unable to complete the protocol or due to 

technical problems with either their PAT readings or their perfusion imaging scans.  The 

study group included 77 subjects who completed the protocol and had complete 

hemodynamic, PAT, and SPECT results, 26 of whom demonstrated mental stress 

ischemia on SPECT-MPI and 51 of whom did not.  The prevalence of MSI in the study 

population was 34%, which is consistent with other studies that have used anger recall to 

provoke MSI.  Of this group, 68 had complete catecholamine data.  Nine subjects failed 

to have data due either to insufficient quantities of blood samples or hemolyzed samples, 

or to technical difficulties running the samples.  Of the final study group, 39 had 

complete ET-1 data.  Reasons for not having data included those for incomplete 

catecholamine data.  In particular, the first 15 subjects did not have sufficient blood 

collected to run ET-1 or inflammatory markers, as the assays were added to the protocol 

after this time.  Additionally, 12 subjects had to be excluded due to cross reactivity of an 

unknown component of their plasma with the ELISA kit primary antibody, leading to 

extremely and inappropriately elevated optical absorptions of their samples.  They were 

all found to display this reactivity even on repeat runs on different plates, and in the 

setting of normal standard curves and controls.  In summary, the final study group 

comprised 77 patients with PAT and SPECT-MPI data which were used for all 

subsequent analyses, and the prevalence of MSI in this group was 34%. 
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Table 1. Demographics of the study group.A   

Variable Overall (n=77) Ischemic (n=26) Non-Ischemic 
(n=51) 

Age (years) 65.6 ± 8.6 64.5 ± 6.9 66.4 ± 9.4 
    
Female 8 (10) 1 (4) 7 (14) 
    
Nonwhite 13 (17) 5 (19) 8 (16) 
    
LVEF (%) 54 (17) 51 (18) 55 (14) 
    
Comorbidities    
Hypertension 67 (87) 23 (88) 44 (86) 
    
Diabetes 21 (27) 9 (35) 12 (24) 
    
Hypercholesterolemia 74 (96) 26 (100) 48 (94) 
    
Obesity 28 (36) 10 (38) 18 (35) 
    
History of Smoking 53 (69) 20 (77) 33 (65) 
    
Actively Smoking 17 (22) 4 (15) 13 (25) 
    
Medications    
ACE Inhibitor 40 (52) 14 (54) 26 (51) 
    
Beta Blocker 60 (78) 20 (77) 40 (78) 
    
Statin 69 (90) 23 (88) 46 (90) 
    
Aspirin 54 (70) 18 (69) 36 (71) 
    

A Values are displayed as n (%), mean ± SD (age), or median (interquartile range) (LVEF).  There 
were no significant differences between the ischemic and non-ischemic groups with regard to 
demographics and comorbidities (P = NS). 
 

Demographics from the study group are shown in Table 1.  The great majority of 

subjects were white males despite a sustained effort to recruit women and minorities.  

The two groups (with and without MSI) did not differ significantly with respect to age, 

LVEF, or any cardiovascular comorbidity.  The groups also did not differ with respect to 

use of any cardiovascular medications; all medications were present in nearly identical 

proportions. 
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Baseline hemodynamics and responses to mental stress, including heart rate (HR), 

systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure 

(MAP), and RPP, are shown in Table 2.  There were highly significant increases in all 

hemodynamic parameters during mental stress for both ischemic and non-ischemic 

groups (P < 0.001).  However, there was no significant difference between the two 

groups with respect to any of the parameters measured. 

 

Table 2. Hemodynamics at baseline and hemodynamic responses to mental 

stress.A   

Variable Overall (n=77) Ischemic (n=26) Non-Ischemic 
(n=51) 

Baseline    
HR (bpm) 56 (11) 56 (11) 56 (13) 
    
SBP (mm Hg) 134 ± 17 134 ± 21 134 ± 16 
    
DBP (mm Hg) 75 ± 10 73 ± 9 75 ± 10 
    
MAP (mm Hg) 94 ± 11 94 ± 11 95 ± 10 
    
RPP (bpm*mm Hg) 7164 (2580) 6797 (3411) 7198 (2316) 
    
Mental Stress    
HR (bpm) 66 (14) 64 (19) 68 (12) 
    
SBP (mm Hg) 162 ± 22 158 ± 24 164 ± 20 
    
DBP (mm Hg) 89 ± 11 87 ± 12 91 ± 10 
    
MAP (mm Hg) 114 ± 12 110 ± 14 115 ± 11 
    
RPP (bpm*mm Hg) 10800 (2705) 9712 (5733) 11200 (2496) 
    

A Values are displayed as mean ± SD or median (interquartile range).  All groups experienced 
highly significant increases in all hemodynamic parameters during mental stress compared to 
baseline conditions (P < 0.001).  There were no significant differences between the ischemic and 
non-ischemic groups at similar conditions or from baseline to mental stress (P = NS). 
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The average PAT ratio for the overall study group was 0.86 ± 0.04, indicating 

that, on average, vasoconstriction occurred during the stress condition.  A comparison of 

the average PAT ratio between the groups with and without MSI showed that those who 

experienced ischemia had an average ratio of 0.76 ± 0.04, while those who were without 

ischemia had an average ratio of 0.91 ± 0.05 (P = 0.03, Figure 3). 
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Figure 3. Average PAT ratio for those with and without mental stress ischemia.  Those 

with ischemia had an average ratio of 0.76 ± 0.04 while those with no ischemia had an 

average ratio of 0.91 ± 0.05 (* P = 0.03 vs. non-ischemic group; bars indicate SEM). 

 

To determine the optimum threshold of this measurement for diagnosing MSI, an 

ROC curve was generated for PAT ratio predicting MSI (Figure 4).  The estimated area 
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under the curve (AUC) was 0.613 with a standard error of 0.065 (one-sided P = 0.04).  

This curve produced a maximum of sensitivity versus 1-specificity at a value of 0.78 to 

define a positive test, with a sensitivity of 0.62 and a specificity of 0.63 at this value.  

This threshold produced a positive predictive value of 0.46 and a negative predictive 

value of 0.76. 

 
Figure 4. ROC curve for PAT ratio predicting mental stress ischemia.  The AUC is 0.613 

(SE, 0.065, one-sided P = 0.04), indicating that PAT ratio has diagnostic utility in 

predicting MSI. 

 

In order to account for the effects of ACE inhibitors on hemodynamics, we 

analyzed these results based on the presence or absence of ACE inhibitors in the study 

group.  When an ACE inhibitor was present, the AUC was 0.768 (standard error 0.081, 

one-sided P < 0.001) versus 0.408 (standard error 0.095, one-sided P = 0.17) when an 

ACE inhibitor was absent (P = 0.004 for difference in AUC, Figure 5).  In the group 
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taking an ACE inhibitor, the sensitivity and specificity of the test jumped to 0.86 and 

0.73, respectively, at the established threshold of 0.78.  These values were also maxima 

for the ROC curve.  This discrepancy in the performance of PAT ratio as a test was seen 

despite the fact that the average PAT ratio among those taking an ACE inhibitor was 0.88 

± 0.07 and was not significantly different than the average ratio among those not taking 

an ACE inhibitor, which was 0.83 ± 0.04 (P = 0.48).  There were no significant 

differences in AUC when comparing active smoking, obesity, and diabetes (data not 

shown). 

 
Figure 5. ROC curves for PAT ratio predicting mental stress ischemia for those who were 

taking ACE inhibitors versus those who were not.  The AUCs are 0.768 (SE = 0.081, 

one-sided P < 0.001) when ACE inhibitors are present and 0.408 (SE = 0.095, one-sided 

P = 0.17) when they are absent (P = 0.004 for difference in AUC).  This indicates that 

PAT ratio performs significantly better as a test in those who are taking ACE inhibitors. 
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The threshold of 0.78 resulting from the ROC analysis was used to divide the 

entire study group into groups of those either above or below the PAT ratio threshold.  

Cross-tabulation of these groups with the ischemic and non-ischemic groups showed that 

47% of those with a PAT ratio equal to or lower than the threshold had ischemia during 

mental stress, while only 23% of those with a ratio greater than the threshold had 

ischemia.  The overall concordance of the test was 64%, i.e., the test properly diagnosed 

64% of the subjects (P = 0.03, Table 3). 

 

Table 3. Cross-tabulation of mental stress ischemia with results of 

PAT testing for the entire study group.A  

 Ratio ≤ 
Threshold 

Ratio > 
Threshold 

(Totals) 

Ischemic 16 10 26 

Non-Ischemic 18 33 51 

(Totals) 34 43 77 

A The relationship between PAT and mental stress ischemia was significant (P = 0.03). 
 

As indicated by the ROC results, when only subjects on an ACE inhibitor were 

tabulated, these numbers improved significantly.  Sixty-three percent of those at or below 

the threshold had ischemia, while only 10% of those above the threshold had ischemia, 

yielding a concordance of 78% (P < 0.001, Table 4).  Among those subjects not taking an 

ACE inhibitor, concordance of the two measures was only 49% (P = 0.72, data not 

shown). 
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Table 4. Cross-tabulation of mental stress ischemia with results of 

PAT testing for subjects taking an ACE inhibitor.A  

 Ratio ≤ 
Threshold 

Ratio > 
Threshold 

(Totals) 

Ischemic 12 2 14 

Non-Ischemic 7 19 26 

(Totals) 19 21 40 

A The relationship between PAT and mental stress ischemia for those taking an ACE inhibitor was 
highly significant (P < 0.001). 
 

In order to investigate relationships between catecholamines and PAT ratio, the 

correlations between them were analyzed.  Among the entire study group, a negative 

correlation was found between changes in norepinephrine level during mental stress and 

PAT ratio.  Linear regression of the two variables showed a predictive relationship of 

change in norepinephrine for PAT ratio (r = -0.367, P = 0.002).  As the magnitude of 

change in norepinephrine increased, the observed PAT ratio tended to decrease.  This is 

consistent with the previously documented relationship between α-adrenergic stimulation 

and reduction in PWA.  In contrast to this, there was no significant correlation observed 

between epinephrine levels and PAT ratio, and change in epinephrine did not correlate 

significantly with PAT ratio (r = 0.179, P = 0.14). 

Catecholamine levels for groups above and below the PAT threshold were 

compared (Figure 6).  The levels of norepinephrine in the group with PAT ratios at or 

below the threshold (≤0.78) were lower at baseline (235 (221) pg/ml vs. 290 (210) pg/ml) 

and during mental stress (259 (194) pg/ml vs. 294 (311) pg/ml) than the above-threshold 

(>0.78) group, although not significantly so.  However, the group at or below the 

threshold displayed a significant increase in norepinephrine from baseline to mental 
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stress (P = 0.007) while levels in the above-threshold group did not change significantly.  

Increases in epinephrine from baseline to mental stress were significant for both groups 

(P = 0.02 for those at or below threshold, P = 0.002 for those above threshold, data not 

shown). 
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Figure 6. Median norepinephrine levels (pg/ml) at baseline and during mental stress.  

Subjects with an abnormal PAT ratio at or below threshold (≤0.78) displayed a 

significant increase in norepinephrine levels from baseline to mental stress, while those 

with a ratio above threshold did not (* P = 0.007 vs. baseline for those below threshold). 
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Endothelin-1 levels were compared between PAT groups as well (Figure 7).  ET-

1 levels did not differ significantly between those with ratios at or below threshold 

(≤0.78) and those with ratios above threshold (>0.78) at any time point.  The group at or 

below threshold had levels of 0.90 (1.20) pg/ml at baseline and 0.97 (1.59) pg/ml 

immediately after mental stress, and these increased to 1.04 (1.51) pg/ml by 24 hours 

after mental stress.  These levels did not differ significantly from one another.  In 

contrast, the group above threshold had levels of 0.97 (1.29) pg/ml at baseline and 1.15 

(1.34) pg/ml after mental stress, and then experienced a significant drop to 0.93 (1.61) 

pg/ml after 24 hours (P = 0.01).  The overall change in ET-1 from after mental stress to 

24 hours later displayed a negative correlation with PAT ratio that was not significant but 

approached significance (r = -0.294, P = 0.07). 
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Figure 7. Median ET-1 levels (pg/ml) at baseline, immediately after mental stress, and 24 

hours after mental stress.  Those with a normal PAT ratio above the threshold (>0.78) 

displayed a significant decline in ET-1 levels after 24 hours (* P = 0.01 vs. mental stress 

for those above threshold).  Conversely, those with an abnormal PAT ratio below 

threshold (≤0.78) displayed a slight increase in levels at 24 hours that was not significant. 



 47

DISCUSSION 

In this study, we have demonstrated that an abnormal PAT ratio during mental 

stress is strongly correlated with the presence of MSI as documented by SPECT 

perfusion imaging.  An abnormal PAT ratio ≤0.78 correctly identified 62% of those 

subjects vulnerable to MSI, while a normal ratio >0.78 correctly identified 65% of those 

not vulnerable to MSI.  Subjects who had an abnormal PAT ratio also demonstrated a 

neurohormonal profile that distinguished them from those with a normal ratio, marked by 

a significant increase in norepinephrine levels during mental stress and maintenance of 

ET-1 levels 24 hours after mental stress.  Acute mental stress causes changes in 

neurohormonal output, as measured indirectly by PAT.  These changes lead to increased 

arterial tone that is more pronounced in those who are vulnerable to MSI, suggesting a 

mechanism by which myocardial ischemia may occur during mental stress. 

Mental stress ischemia indicates a poor prognosis in those who are vulnerable to 

it.  It likely occurs in such individuals on a daily basis and leads to cardiovascular disease 

progression and increased mortality.  Yet it is becoming clear that it is amenable to 

specific therapies, and that, for those in whom it is detected and treated, such therapy can 

have significant benefits (8-11).  MSI is not easy to diagnose with most current 

methodologies, and considerations of cost and risk to the patient make those that are 

definitive unsatisfactory for routine use.  The availability of an easily administered test 

for MSI would enable screening of at-risk patients as a component of good 

cardiovascular care.  Those who are identified as susceptible to MSI would then be 

candidates for specific interventions that could positively impact their survival. 
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In screening patients for MSI using the PAT method, those with known CAD 

would undergo the test to assess vulnerability to MSI.  Patients who displayed an 

abnormal ratio would then be considered for a study using perfusion imaging to 

document definitively the occurrence of MSI, contingent upon other clinical issues and 

risk factors particular to each patient.  For those patients found to be vulnerable to MSI, 

management of mental stress and emotional factors would become an integral part of the 

management of their CAD. 

 In order to assess the performance of PAT as such a screening test, ROC data 

were generated to find an optimum threshold at which to distinguish a normal PAT ratio 

from an abnormal one, in other words, a threshold that would produce the strongest 

relationship between PAT and MSI.  In a previous paper, Goor and colleagues looked at 

PAT ratio and mental stress testing in 16 subjects with known coronary disease, using 

presence of either ventricular wall motion abnormality or drop in LVEF as an indicator of 

MSI (84).  The study used a threshold of 0.80 or less to define an abnormal PAT ratio, 

derived from a previously published ROC study (83).   At this threshold, they reported a 

concordance of 88% between categorical PAT results and the presence or absence of 

MSI.  The threshold of 0.78 derived for this study is very similar to the published 

threshold of 0.80 even though that threshold was initially derived in a model of exercise 

stress perfusion imaging.  This suggests that both exercise stress and mental stress may 

exploit similar mechanisms in causing ischemia.  This study differs from previous studies 

in that 77 subjects were assessed using a “gold standard” method for observing 

myocardial ischemia—SPECT-MPI.  Furthermore, the current study considers multiple 

comorbidities and medical therapies in this assessment.  However, the overall 
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concordance of 64% seen in the present study, while significant, was well below the 88% 

reported previously. 

 A possible explanation for this discrepancy is the use of LV function as the index 

for MSI in the study by Goor and colleagues, versus the use of SPECT perfusion imaging 

in this study.  By using LV function, the previous study would likely have observed those 

who experienced a decrement in function due to segmental ischemia as well as those who 

experienced such a decrement because of vasoconstriction and afterloading.  Both of 

these phenomena would likely then have correlated with PAT ratio, strengthening the 

overall concordance. 

 This discrepancy in concordance also points to a similar observation regarding the 

relationship between subjects who were taking ACE inhibitors and those who were not.  

It is notable that ACE inhibitor therapy increased both the sensitivity and specificity of 

the PAT ratio.  This therapy may decrease the false-negative rate by selecting for those 

subjects vulnerable to MSI who have an exaggerated sympathetic response to mental 

stress.  This may perhaps be the case because of an undescribed association of this 

response with hypertension.  This exaggerated response then causes peripheral 

vasoconstriction and MSI in vulnerable individuals despite treatment with ACE 

inhibitors, as opposed to those who may experience MSI without peripheral 

vasoconstriction.  The false-positive rate may be improved by a decrease in nonspecific 

peripheral vasoconstriction caused by angiotensin II in those taking ACE inhibitors.  

Clearly, a great deal of work remains to be done in order to understand fully the various 

factors that contribute to the relationship between MSI and PAT, so it can generate the 

maximum clinical benefit.  Both peripheral arterial tone and myocardial perfusion depend 
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on complex, multifactorial mechanisms that involve the interplay of both physical forces 

and a multitude of biological molecules.  These include many that were not investigated 

at all by the present study but likely play an important role in MSI and PAT, such as NO, 

prostaglandins, and inflammatory cytokines. 

 Nevertheless, the current study provides some findings that may contribute to the 

understanding of these mechanisms.  The overall correlation of PAT ratio with changes in 

norepinephrine levels and the significant increase in norepinephrine seen preferentially in 

those with an abnormal ratio are unsurprising given previous work that has linked PAT 

ratio to sympathetic output.  However, those with a normal ratio experience a significant 

decline in their circulating ET-1 levels after 24 hours, while those with an abnormal ratio 

do not.  While circulating ET-1 may rise transiently after a mental stressor, prolonged 

endothelial dysfunction that is sensitive to endothelin receptor blockade may also result 

from mental stress (72).  Most ET-1 is contained in the vessel wall, in the abluminal 

space between the endothelium and VSMCs, where it is bound to receptors.  Both the 

transient rise in levels during mental stress, as well as any sustained release of ET-1, 

likely result from spillover of ET-1 from this space into the circulation, which may cause 

the failure of circulating levels to decline after mental stress in some individuals.  This 

may help to explain why Kuvin and colleagues reported that, in a group of 89 subjects 

being evaluated for angina, PAT ratio during reactive hyperemia correlated strongly with 

a traditional measure of endothelial dysfunction, FMD of the brachial artery (89).  It 

provides further evidence that PAT ratio provides an index not only of sympathetic tone 

but also of endothelial dysfunction.  It is even possible that those who display a sustained 

elevation of ET-1 levels may ruminate more on the events discussed in the anger recall 
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task, leading to continued endothelial dysfunction and ET-1 release 24 hours later.  These 

subjects may in turn be more susceptible to stress-induced vasoconstriction, which is then 

detected by PAT. 

This study also makes some important observations about the phenomenon of 

MSI itself.  The demographics and medication profiles of the ischemic and non-ischemic 

groups are essentially indistinguishable.  This indicates that even in a population of 

patients with chronic stable CAD, a significant portion of whom have their risk factors 

medically controlled, a third or more of them will remain vulnerable to MSI.  The 

presence of medications that protect against traditional risk factors does not guarantee 

protection against MSI, which underscores the need both for mental stress testing and for 

specific interventions to target MSI. 

One of the potential causes of MSI may be an increase in myocardial oxygen 

demand due to the stress response.  When this demand goes unmet in vulnerable subjects, 

they may become ischemic, display abnormalities of ventricular wall motion, or suffer a 

drop in LVEF.  However, this study suggests that MSI, at least as observed with SPECT-

MPI, is not principally related to myocardial demand.  This is indicated by the lack of a 

significant difference in RPP, a classic index of myocardial oxygen demand, between the 

ischemic and non-ischemic groups; median RPP was in fact lower during stress in those 

vulnerable to MSI, although not significantly so.  This finding suggests that other factors 

in addition to myocardial demand are responsible for producing MSI. 

Such factors may vary significantly from person to person based on gender, race, 

and genetics.  These findings were generated in a group largely composed of white males, 

and the relationship between MSI and PAT may be quite different in women and in 
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people of non-white racial backgrounds.  Additionally, comorbidities that were too 

prevalent in this study for meaningful comparisons, such as hypertension and 

hyperlipidemia, need to be considered.  Finally, the effect of ACE inhibitor therapy on 

the performance of the test indicates that its performance needs to be studied in groups in 

which the presence or absence of other vasoactive medications, such as β-blockers, can 

be assessed. 

Ultimately, the biological and demographic factors that affect PAT and MSI need 

to be integrated into models that can describe how changes in PWA during mental stress 

occur under various conditions and in various patient groups.  This will allow PAT to 

provide the maximum utility for mental stress testing and is a necessary step for adoption 

of the technology to clinical applications.  The possibility that such testing might become 

widely available offers the promise of effectively diagnosing and treating those who are 

susceptible to MSI, with important implications for the management and outcomes of 

patients with CAD. 
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