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1 Introduction. 

The hand-held battery-operated computer game Merlin offers a game called 
Magic Square. Merlin has nine buttons and lights located at the grid points 
of a 3 x 3 square. The pattern of lights of the grid is altered by touching 
any one of the buttons, and the topology of the buttons/lights serves as a 
guide to remembering how the pattern will change. 

• If a corner button is touched, all lights in the 2 x 2 corner that button 
belongs to are inverted. 

• If an edge button is touched, all lights in the (outer) row or column 
that button belongs to are inverted. 

• If the center button is touched, its light together with those of the four 
edge buttons are inverted. 

After Merlin displays a random starting pattern of lights, the player's ob­
jective is to the push buttons so as to achieve the pattern where all lights 
but the center one are lit. 

The first published solution to Merlin's Magic Square that we are able to 
reference can be found in Marc Konvisser's 1981 book, Elementary Linear 
Algebra [3, pages 243-252]. A more widely known, and more often cited 
solution, virtually identical to Konvisser's, was published by Don Pelletier 
in 1987 in the American Mathematical Monthly [6]. Inquiries about how this 
sequence of events occurred produced the following excerpt from a letter sent 
to us by Konvisser [4]. 

I devised the solution somewhere over the Atlantic Ocean ... My 
big problem was inverting the 9 X 9 matrix. I remember using 
checkers or coins to perform the row operations in my mother­
in-law 's house in Jerusalem. A number of years later an article 
appeared in the Monthly with the same solution, but I was not 
referenced. I had some rather rancorous communications with 
the editor of the Monthly about citing my work. Eventually 
there was a note mentioning my book. 

Sure enough, on page 994 of the December 1987 issue of the Monthly, Item 
3 under a list headed "Addenda, Errata, Etcetera, for 1987" acknowledges 
Marc's prior solution. 

This paper first considers questions about games related to Merlin's 
Magic Square from the point of view of group actions. At this juncture, 
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little beyond the formal model is new, but the exposition sets the stage for 
considering certain "enhanced" versions of these games. The analysis of en­
hanced games, with the aid of semigroup actions, is carried out in complete 
detail for an ostensibly simpler (k = 3) game before turning to a Merlin 
( k = 4) game. Concluding sections discuss various ways to generalize our 
games. 

To review the solution to Merlin's Magic Square, we begin by introducing 
our formal model. As usual, we use 1 to represent an ON light and 0 to 
represent an OFF light. When light and button are one unit as in Merlin 
we shall also speak of the button itself as being ON or OFF. 

2 A Formal Model. 

Let S be a set of labels for the lights to be controlled by the buttons. Then 
the current pattern or configuration of the lights can be represented as a 
binary string of length ISi, where the bits are indexed by the elements of 
S. Equivalently, we may view a configuration as a vector in the vector 
space V(S), of dimension ISi over the field with two elements, Z2 , where 
the coordinates are indexed by the elements of S. For x E S, we let e"' be 
the usual standard basis vector in V(S). For v E V(S), we implement the 
bitwise flip, clear, and set operations, denoted f:c, P:c, and b:c respectively, 
which affect only bit x as follows: 

f:c(v) = e"' + v, 

P:c ( v) = P:c ( L ly ey) = L ly Vy, 
yES y¢:c 

Henceforth we shall write b:c = f:cP:c, and in general when we write 
operators as products, we mean that they are products under composition. 
We list some properties of these operators, whose proofs are omitted as they 
are routine. 

PROPOSITION 2.1. Let x, y ES be distinct, and let I be the the identity 
operator on V(S). Then 

2. P:c is linear on V(S). 
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3. OxOy = oyox, for o freely chosen from the set {p, f, b }. 

4. PxOx = Px and bxox = bx, for o freely chosen from the set {p, f, b }. 

5. J; =I. 

6. UxPx)(v) = Px(v) +ex, (Jxbx)(v) = bx(v) +ex. 

Returning briefly to Merlin's Magic Square, let the lights and buttons be 
labeled using the set { 1, ... , 9} as in Figure 1, and let the result of touching 
button i be denoted by F;. Observe that for a corner button, say Fi, 

while for an edge button, say F6 , 

and for the center button F 5 , 

Evidently, a sequence of button presses is a word W in the group gener­
ated by {F';} subject to the relations induced by the{!;}. Moreover, W(v) 
represents the configuration obtained by evaluating this word on the initial 
configuration v. Thus we can restate the objective of Merlin's Magic Square 
as follows: Given u, a solution to Merlin's Magic Square is a word W such 
that W(u) = L;;e5 e;. 

Continuing with our formal development, we construct from any subset 
R ~ S the operator Fn of F-type as 

Fn = IT fr· 
rE'R 

Operators Pn and Bn are constructed similarly. Our first two results are 
straightforward and their proofs are omitted. 

LEMMA 2.2. For any R, T ~ S and v, w E V(S), 

1. Fn(v)=v+LrEner. 

2. Fi._ = I. 

3. FnFT = FyFn,. 
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4. Fn(v + w) = Fn(v) + w. 

PROPOSITION 2.3. For a family of subsets 'Ri, 'R2, ••• , 'Rm of S, the 
group of operators generated by the set { FnJ is an elementary abelian 
2-group of rank r < m. 

DEFINITION 2.4. A Merlin style game is one where all buttons corre­
spond to operators of F-type. 

If a game has n = ISi lights, then there are 2n possible configurations. 
Usually we would expect m, the number of buttons, not to exceed n, the 
number of lights. There is no harm or loss of generality in assuming that 
the number of buttons is different than the number of lights, nor is there 
any harm in assuming that some lights offer a choice of buttons of F-type. 
There are several questions one might try to answer when analyzing Merlin 
style games. 

• The Transitivity Problem. Given u, v is there a word W such that 
W(u) = v? 

• The All-Ones Problem. Does there exist a word W such that W(O) = 
1? 

• The Orbit Problem. Given u, describe W ( u) as W ranges over all 
words. 

• The Minimality Problem. If W(u) = v, what is the minimal length 
word that solves this equation? 

• The Garden-of-Eden Problem. Does there exist a u E V(S), such 
that W( u) =/:- u for all W =/:- I? (i.e., Does there exist a starting 
configuration that one cannot return to?) 1 

• The Mentat Problem. Are there shortcuts and mnemonics to enable a 
human to algorithmically solve W( u) = v without recourse to pencil, 
paper, calculator, etc.2 

Both Konvisser and Pelletier "solve" the Magic Square game by find­
ing a canonical minimal solution to the Transitivity Problem. Pelletier also 

1The Garden-of-Eden Problem anticipates games where F-type operators are not 
allowed. 

2The word "mentat" is adapted from the Ghola Mentats of Arthur C. Clarke's science 
fiction series Dune. 
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makes suggestions concerning the Mentat Problem. Improvements and fur­
ther discussion of the Mentat Problem are found in a paper by Stock [9]. 

The solution to the Transitivity problem for Merlin's Magic Square and 
Merlin style games is easily derived from the observation that since W is an 
element in an elementary abelian 2-group, W must be of the form 

m 

II f' 
W = F.,t,i' 

i=l 

where E; E Z2• Let M be then X m matrix whose j-th column is the vector 
F'R;(O). We have 

so we can solve 

if and only if 

which leads to: 

W(u) = v, 

II F.;tj ( u) = v 

u + LM(E;e;) = v 

M(LE;e;) = v - u, 

PROPOSITION 2.5. In a Merlin style game, if the number of buttons m 

equals the number of lights n, and Mis invertible there is a unique (minimal) 
solution to the Transitivity Problem. 

COROLLARY 2.6. There is a unique (up to ordering) solution to the 
Transitivity Problem for Merlin's Magic Square. Namely, starting from con­
figuration u, to achieve configuration v, press button j if and only if E; = 1 
in the solution to MO::; E;e;) = v - u. 

Proof. See [3] or [6] for the details about the invertibility of M. 

A game remarkably similar to Merlin's Magic Square is Quatrainment, 
analyzed by Gantner [2]. This game uses a 4 x 4 grid with the cells row 
ordered as in Merlin and a light-button pair associated to each cell. As in 
Merlin we may identify buttons and lights. As Figure 2 helps illustrate, in 
Quatrainment, 

• Corner buttons invert the associated 3 x 3 triangle. 
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• Interior buttons invert their lights and those of their four horizontal 
and vertical neighbors (so they behave like Merlin's center button). 

• Edge buttons invert the lights of their three horizontal and vertical 
neighbors but NOT themselves. 

The game to be played is the transitivity game: Given u 1 v determine a 
sequence of moves, if possible, that will transform u to v. Gantner proves 
Quatrainment also has a unique solution, but if we resume the usual practice 
of allowing an edge button to invert itself, then the resulting 16 x 16 matrix 
M has rank 12, and we conclude solutions for this Modified Quatrainment 
that are obtained using our matrix equation are unique up to disabling four 
buttons - for example, in the Merlin notation buttons Fi, F2 , F15 , F16 

[2, page 34]. From elementary linear algebra considerations it is clear that 
the orbits in Modified Quatrainment form equivalence classes of size 212 , 

and because the dimension of the null space of M is 4, that every solvable 
instance of the Transitivity Problem will yield 24 = 16 distinct solutions 
of length at most 16. The Minimality Problem reduces to the well known 
problem of trying to determine the solution x to the matrix equation Ax = b 
with the fewest nonzero coefficients. 

Once more the historical sequence of events is confusing. Appearing 
in 1988, Gantner's Quatrainment makes no reference to Merlin; rather it 
traces its origins to Think-a-Dot [1], [7] a game where an inversion operator 
is dependent in the sense that an operator's effect on certain lights in the 
configuration cannot be calculated without prior knowledge of the status 
of some of the other lights in the configuration. Technically, this amounts 
to saying some of its operators do not satisfy the following independence 
property. 

DEFINITION 2. 7. An operator W of V(S) is independent if and only if 

W(v) = W(L>:.,e.,) = L:W.,(€.,e.,), 

where each induced operator W., is not required to be linear. 

Think-a-Dot does inspire both the Minimality and Mentat Problems, 
and it is noteworthy for marking the introduction of automata theory into 
the analysis of these inversion games. The fusion of Merlin style games 
and linear bounded automata occurs in Sutner's papers [10], [11] only now 
Pelletier is referenced but Gantner and his predecessors are not! Sutner is 
motivated by an All-Ones Problem where lights and buttons are identified, 
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and all buttons affect themselves and their horizontal and vertical neigh­
bors (Merlin's center button again). Sutner considers many All-Ones and 
Garden-of-Eden variations and is responsible for the most far-reaching of 
the results about the All-Ones Problem. But along these lines a dynamic 
problem formulated by Peled, together with its elegant solution by Lossers, 
is not to be missed [5]. We restate the Peled-Lossers version of the All-Ones 
Problem in terms of our model. 

PROPOSITION 2.8 If n = m and the matrix M of a Merlin style game 
is (a) symmetric and ( b) has all ones on the diagonal, then the All-Ones 
Problem has a solution. 

Note that from a design point of view, since M = ( mi,i) where 

mi . = { 1 if button j inverts light i 
'1 0 otherwise 

the conditions stated are merely (a) that if button i inverts light j then 
button j inverts light i, and ( b) button i inverts light i. 

3 An Enhancement. 

The enhanced game we wish to consider was motivated by a problem that 
appeared in the November 1990 Monthly [8] and is here produced verbatim. 

E 3406. Proposed by Jeffrey Shallit, Dartmouth College, 
Hanover, NH 

Consider three circles in the plane that intersect to form seven 
regions. In each region there is a token that is white on one side 
and black on the other. At any stage the following two opera­
tions are permissible: (a) we can invert (flip over) all four tokens 
inside one of the three circles, or (b) we can invert those tokens 
showing black inside one of the three circles so that afterwards all 
tokens in the circle show white. From the starting configuration 
in which all tokens show white, can we reach the configuration 
in which all tokens show white except that the central region 
common to these three discs shows black? 

To begin our analysis of Shallit's game, let the fixed orientation of the 
three circles be labeled A, B, C as in Figure 3. The seven regions referred 
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to will he our seven lights. White is interpreted as OFF and black as ON. 
The set oflahels is {A,B,C,AB,AC,BC,ABC}. It is necessary to identify 
labels and regions. 

• Xis the label for the isolated or exterior region X - (YU Z). 

• XY is the label for the overlap region ( X n Y) - ( X n Y n Z) 

• ABC is the label for the central region A n B n C. 

We recognize, of course, that ordering within our labels does not matter i.e., 
Y X is also a valid label for XY. The distinction between circle or set X 
and the labeled exterior region X should be clear from the context. To each 
light with a label of the form X we associate two buttons: 

Fx = fxfxyfxzfxyz, 

and 
Px = PxPxYPxzPxyz. 

We form words from the semigroup generated by the set 

{Fx,Px: X = A,B,C}, 

and restate Shallit's problem as: Is there a word W such that W(O) 
eA,B,c? 

Warning. Because our semigroup is not abelian, and because W is a 
composition operator, to implement W( v) as a sequence of button presses 
the word W must be read from right to left. If W = 0 10 2 ••• O, the sequence 
of button presses is 0,, ... , 0 2 , 0 1• 

A solution to Shallit's problem is not difficult. We let the canonical 
ordering for a light configuration be 

LEMMA 3.1. The subgroup generated by {Fx} is an elementary ahelian 
2-group of rank 3 i.e, isomorphic to C2 X C2 X C2 • 

Proof. The 7 x 3 matrix M for the operators { F x} under the canonical 
ordering has the property that its transpose M' = [ /3 I * ], so M has rank 
three and the result follows. 
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For future reference we record the configurations that can be obtained 
from this subgroup acting on the zero vector. We call this the F-class of 0. 

Fx(O) ex+ exy + exz + exyz 

FxFy(O) ex+ ey + exz + eyz 

FxFyFz(O) = ex+ ey + ez + exyz 

LEMMA 3.2. (W1PxW20xWa)(v) = (W1PxW2Wa)(v) where 0 is either 
F, P, or B. In particular, a semigroup word never requires Fx to follow 
Px. 

Proof. Because our operators are coordinatewise independent it suffices 
to consider v = l;e;. If i is not a label associated with set X, then Px and 
0 x have no influence, and if i is such a label, then both expressions evaluate 
to W1 ( v). 

COROLLARY 3.3. If W(u) = v, then (WpWp)(u) = v where Wp = 
F~A F;t F~c, and either Wp =I, or for some set X, Wp begins with Px and 
does not contain Fx. 

Proof. Immediate from the previous lemmas. 

CLAIM 3.4 It is not possible to solve W(O) = eABC· 
Proof. Suppose W(O) = eABC· We write W = WpWp as described 

above. With reference to the F-class of 0, it is clear Wp -:/:;I, so assume Wp 
begins in say Px. If Fx precedes Px then ex is a component of W(O). If 
W = FyPx ... then exy is a component of W(O). And if W = FyFzPx ... 
then eABC is not a component of W(O). This establishes that no such W 
exists. 

CLAIM 3.5. It is not possible to solve W(O) = eAB + eAc + eBc· 
Proof. Arguing as in the previous claim, we quickly see that some Px 

operator must be used, and since eABC is not a component of W(O), W = 
FyFzPx ... But then exz is not a component. This contradiction completes 
the proof. 

With an eye towards the Transitivity Problem, we calculate the F-classes 
for these two unobtainable configurations, recording 16 configurations that 
are not in the orbit of 0. For the purpose of symmetry it is often convenient 
to use XYZ as an unspecified ordering for ABC. We compute the F-class 
of eABC· 
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2. Fx(exyz) =ex+ exy + exz· 

3. FxFy(exyz) =ex+ ey + exz + eyz + exyz. 

4. FxFyFz(eABc) = eA + eB + ec. 

We compute the F-class of eAB + eAc + eBc· 

1. I( eAB + eAc + eBc) = eAB + eAc + eBc· 

2. Fx(eAB + eAc + eBc) =ex+ eyz + exyz. 

3. FxFy(eAB + eAc + eBc) =ex+ ey + exy. 

Note from this last equation that the All-Ones Problem is not solvable for 
Shallit's Game. For visual cues to the patterns found above whose labels 
involve indeterminates, see Figures 4 and 5. 

We will now derive our solutions to the Orbit and Minimality Problems 
simultaneously. A lemma sets-up the key relations we will need. 

LEMMA 3.6. For X-::/:- Y, (PxFy )(v) = (FyPx)(v) + exy + exyz. 
Proof. By independence we may assume v has no ez component. For 

v = Li;i!Z fiei, 

(PxFy )(v) = (1 + fy )ey + (1 + fyz)eyz, 

and 
(FyPx )(v) = (1 + fy )ey + (1 + fyz)eyz + exy + exyz. 

The result is now clear. 

PROPOSITION 3. 7. For x -::/:- y' 

1. (FxFyPyFx )(0) = (PxFy )(0). 

2. (FxPxFy)(O) = (FyPyFx)(O). 

3. (FyPxFy )(0) = (FxPyFx )(0). 
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Proof Using the previous lemma twice, we find 

(FxFyPyFx )(0) = (FxFy )(PyFx(O)) 

(FxFy )(FxPy(O) + exy + exyz) 

= (FxFy(FxPy(O))) + exy + exyz 

(FyPy )(0) + exy + exyz 

(FyPx )(0) + exy + exyz 

= (PxFy )(0), 

which proves the first assertion. Then 

(FxPxFy )(0) = (FxFxFyPyFx )(0) = (FyPyFx )(0), 

and 

as desired. 

THEOREM 3.8. There are 14 distinct configurations of the form Wp(O), 
and therefore under F-equivalence 8 · 14 = 112 configurations in the orbit 
of 0. The minimal non-identity words producing distinct non-zero configu­
rations are: 

Proof Because Px(O) = 0, we do not want Wp to end in Px, and since 

(PxPyPz)(v) = 0, 

we know Wp will not contain this subsequence. We also know neither Fx 
nor Px can follow Px in Wp so minimality can be established by showing F­
inequivalence for the words listed i.e., showing WpWp(O) = w;,(o) implies 
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Wp = w;,. Observe that since 

and 

(PxFv )(0) = ey + eyz 

(PxFvFz)(O) ey+ez 

(PxPvFz)(O) ez 

(PxFyPzFy )(0) = eyz 

(PxFyPyFz)(O) = ey + ez + eyz, 

(WFWP)(O) = WF(Wp(O)) = WF(O) + Wp(O), 

a glance at the listing of the F-class of 0 convinces us that the words listed 
under _different numerals in the statement of the theorem cannot be F­
equivalent. Within numerals, the arguments are more tedious. For (1), the 
previous proposition shows the F-equivalence of PxFy and PvFx and the 
form (PxFy )(0) takes shows F-equivalence cannot arise in any other way. 
An F-translate of a word in (2) is not of that form, so by commutativity 
of the F's we have distinct inequivalences. For (3) or (4), F-translates are 
again forbidden and the fact that there are only three distinct configurations 
obtainable verifies the listings. Finally, for (5), using the identity 

(FxFv )((PxFvPvFz)(O)) =ex+ ez + ex,z = (PvFxPxFz)(O), 

and the identity 
(FxPxFy )(0) = (FyPyFx )(0), 

one shows all words of the form (PxFyPyFz)(O) are F-equivalent to the 
one listed. 

To solve the Orbit Problem, let 'R( u) be the orbit of u, and let :F( u) be 
the F-class of u. 

COROLLARY 3.9. The three orbits for Shallit's Game are 'R(O), 'R(O) U 

:F( eAnc ), and 'R(O) U :F( eAn + eAc +enc). 
Proof. By the theorem, V(S) is the disjoint union of 'R(O) and the F­

classes of the two vectors indicated. Since the zero operator is a word, every 
orbit contains 'R(O). Therefore the orbits listed are those for 0, eAnc, and 
eAn + eAc +enc respectively. The orbit of an arbitrary u is determined by 
its membership in the disjoint union. 

We conclude this section with an algorithm for the Mentat Problem 
which is applicable to the solution of W(O) = v. It is somewhat hampered 
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by the need to first apply operators of F-type to v in order to determine 
whether or not v is actually in the orbit of 0. The idea behind the algorithm 
is that a configuration (WFWP)(O) is determined up to F-equivalence once 
one decides which operator of P-type, say Pz, Wp begins with. Let 

Vzc = v - Pz(v) = f.xex + f.xyexy + f.yey 

record the status of the lights in the sought for configuration v that do not 
belong to Z and set Vz = v - Vzc. The algorithm is devised by by evaluating 
Vzc at each of WF = Fx, FxFy, FxFz and FxFyFz; separating the result 
into those components belonging to Z, say Wz, and those not belonging Z, 
say Wzc; then setting up the chart shown in Figure 6 by matching Wz to Vz. 
(Note that by careful labeling WF = FyFz is not required, and the trivial 
cases W F = I, F z require no special consideration.) At this stage we have 

Wp(Vzc) = Wz + Wzc = Vz + Wzc, 

or 
Vzc = Wp(Vz + Wzc) = Vz + WF(wzc), 

which allows us to write 

V = Vzc + Vz = Wp(Wzc). 

Knowledge of the forms of the minimal Wp expressions that were obtained 
in the proof of the Theorem allows us in all cases to select W p satisfying 
Wp(O) = Wzc, hence (WFWP)(O) = v. 

For example, consider the argument for Wp = FxFz, using 

(FxFz)(vz 0 ) = (1 + f.x )ex+ (1 + f.xy )exy + f.yey + eyz + ez. 

The presence of ez and eyz tells us: If we orient the device so the bottom 
circle (to be labeled Z) of the v configuration has its exterior light together 
with one of the lights in an overlapping region (to be labeled Y) ON, and 
those of the other overlapping region (to be labeled X) and the center OFF, 
then we will need a W p that gives the configuration that matches the final 
state of v in Y but has lights in the X and XY regions inverted from their 
final state. Now, Wp applied to 0 leaves the lights in set Z OFF, but applying 
F x F z turns 0 N lights labeled Z and Y Z while simultaneously inverting 
lights labeled X and XY - precisely, the ones that Wp had incorrectly set. 

Algorithm 3.10. A Solution to the Mentat Problem for W(O) = v in 
Shallit's Game. 
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Step 1 By using F-type operators extinguish the exterior lights in v but 
remember which X's were used. 

Step 2a If this configuration is not obtainable, restore v, announce IM­
POSSIBLE, and HALT. Otherwise, 

Step 2b Restore v and rotate the the device until the bottom circle of v 
matches one that appears in the heavily outlined circles of the chart 
in Figure 6. 

Step 3 Identify X and Y consistent with the chart's labeling, and enter the 
sequence necessary to set the lights, or their inversions when indicated 
by the presence of the symbol c, for regions X, XY, and Y. 

Step 4 Apply the specified F-sequence found in the chart. 

4 Merlin Enhanced. 

To enhance Merlin, label the four 2 x 2 corner squares of the grid as A, B, 
C, and D as in Figure 7, and consider our "inversion" and "clear" operators 
F x and Px for each of these 2 x 2 squares. More precisely, label the lights 
in the corner squares with i E Z4 , the light in the center with c, and the 
edge lights with the unordered pairs (i, i + 1) (see Figure 8). To each corner 
light we associate the two buttons 

and 

We quickly observe this Shallit k = 4 game with 9 lights and 8 buttons 
is quite different from Shallit's k = 3 game with 7 lights and 6 buttons as 
the computation 

(Fi~+2Fi)(O) = ec, 

lights the center light, and shows this configuration is now obtainable from 
zero. In fact, perhaps surprisingly, the Transitivity Problem can be solved 
for this game. Since zero is in every orbit, we shall prove this by showing 
the orbit of zero is all of V(S). The idea behind the proof is to mimic the 
approach we used to devise the Mentat Algorithm in the last section. 
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LEMMA 4.1. If P4 ( v) = v then the equation 

has a unique mod 2 solution for { ai}. 
Proof. Let W be the word suggested. P4 (W(O)) = W(O) and it is clear 

that for i -::/ 4, the ei component of W(O) has coefficient a_; +a+;, where 
it is understood a+3 = 0. For i -::/ 4, it is true that the e;,i+1 component of 
W(O) has coefficient a+; + a-(i+i)· Therefore, using E's for the coefficients 
of v, back substitution allows one to solve the linear system 

a_3 €3 

a+2 + a_3 €2,3 

a_2 + a+2 f2 

a+i + a_2 E1,2 

a_ 1 + a+i E1. 

THEOREM 4.2. 'R(O), the orbit of zero, is all of V(S) for the Enhanced 
Merlin Game. 

Proof. To solve W(O) = v, locate the F-sequence, Wp, in Figure 9 for 
which Wp(O) matches v4 , the configuration that matches the lower left 2 X 2 
corner of the configuration v but has zeroes at other labels. Figure 9 is 
condensed so that if an inversion is required, W F is replaced by F4 W F. Use 
the lemma to construct W satisfying 

Then 

W(O) P4 ( v - Wp(O)) 

P4( v) - P4 (Wp(O)) 

( v - V4) - (Wp(O) - V4) 
v- Wp(O). 

(WFW)(O) = W(O) + Wp(O) = v. 

As the reader may have anticipated there is an easy generalization to an 
enhanced k 2".: 4 game with n = 2k + 1 lights and m = 2k buttons. At each 
vertex i of a regular k-gon, the two buttons F;, P; are defined exactly as they 
were at the beginning of this section, so they affect the light at vertex i, the 
center light c, and two lights at the midpoints of the chords joining vertex i 
to vertices i - 1 and i + 1 with labels formed in the obvious way. The proof 
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of a suitably modified Lemma 4.1where4 is replaced by k is straightforward 
and this task is left as an exercise for the reader. In the theorem no changes 
are required if we replace 4 by k. Topologically, it may make more sense to 
imagine Shallit's k 2: 4 game as being played on an annulus with alternating 
regions as suggested in Figure 10. 

5 Changing the Modulus. 

It is also natural to generalize by changing the modulus, which is equivalent 
to having buttons operate on d-way bulbs. (It may be useful to substitute an 
ordered sequence of colored bulbs located at label x for the basic operator f x 
to step through in favor of a d-way bulb.) For the puposes of generalization 
we did not appeal to the mod 2 nature of the matrix equation derived for 
handling operators of F-type, MO:>oxex) = v - u. Before we proceed, we 
should mention the obvious: Now operators of F-type have order d and 
the abelian subgroup of our semigroup is a rank r < t elementary abelian 
d-group, where tis the number of operators of F-type in the generating set. 

As we have already pointed out, thanks to our matrix equation, d-way 
bulbs do not effect our results for Merlin style games. Turning to Shallit's 
game when k 2: 4, the linear system in the lemma of the previous section 
was to be solved mod 2, but can equally well be solved mod d. Thus we 
need only discern whether or not the four lights at vertex i can be controlled 
using only the ~ buttons. This, in turn, means we will need to be able to 
solve the linear system induced from the equation 

where Pk( w) = w. The system we want to solve mod d is 

ak 

a1 + ak 

ak-1 + ak 

ac + ak-1 + ak + a1 

f1,k 

which can be solved by inspection. This extends our theorem about the 
orbit of zero to the case where k 2: 4, and we state this formally. 

THEOREM 5.1. 'R(O) = V(S) for the Shallit game with k 2: 4, and d 2: 2. 
That is, every configuration is in the orbit of zero. 
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Returning to the original k = 3 Shallit game we must exercise greater 
care in the analysis. 

PROPOSITION 5.2. A configuration v for Shallit's k = 3, d ~ 2 game is 
in the orbit of zero if and only if for some region Z the coefficients of the 
components of v belonging to Z, 

Vz = v - Pz(v) = €zez + £xzexz + €yzeyz + £xyzexyz, 

satisfy the mod d relation 

€z + £xyz = £xz + €yz. 

Proof. If W(O) = (WFWP )(0) = v, where as usual Wp begins with Pz, 
then the inverse of W F must zero out the components under consideration. 
Ignoring £xyz for the moment, we are forced to choose 

W -1 _ p-<xz+<zF-<yz+<zp-<z 
F - X Y Z 

whence the coefficient of the exyz component of Wi 1(v) will be £xyz plus 
the sum of the exponents of Wi 1 taken modulo d, giving rise to the desired 
equation. To complete the proof we must again show that there is a Wp for 
which 

Wp(O) = £xex + €yey + £xyexy. 

Is is routine to verify that 

W - p p<xF<xy-<xp v<y+<x-<xy 
P - z x y xry 

will do the job. 

Remark. This proposition allows us to streamline our alogorithm for 
solving the Mentat Problem for Shallit's k = 3 game, because it points out 
a fact that was not clearly evident when we were devising that algorithm. We 
can combine Steps 1 and 2a of Algorithm 3.10 into a single step which does 
not require temporarily modifying v at all. In the new Step 1, we announce 
IMPOSSIBLE precisely when the parity of the exterior and central regions 
does not match the parity of the two overlapping regions in each of the 
circles A, B, and C. 

We shall not try to find the minimal Wp words giving rise to the F­
inequivalent configurations for d-way bulbs, but we shall count the number 
of F-inequivalences. To facilitate the counting, we let 

P = {v: Pz(v) = v for some Z}. 
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Our task is to decide under what conditions Wp(Wp(O)) E P. Assume Wp 
begins in Pz. Since the exyz component of any v E P must be zero we 
know by independence Wp = F;x FyY F;z, where ax+ ay + az = 0 in 
Zd. At most one of ax, ay, az can be zero otherwise we will have the 
trivial solution Wp = I. Moreover, if az = 0, then ax =/= 0 and ay =/= 0 
give nonzero exz and eyz components, and it will not be the case that 
Wp(Wp(O)) E P. On the other hand if ax,ay,az =/= 0 then ax+ az and 
ay + az are nonzero, and they will be the coefficients of exy and eyz so 
again Wp(Wp(O)) cannot be in P. This means, by relabeling if necessary, 
Wp = Fxaz F;z. We write Wp(O) canonically as 

Wp(Wp(O)) adds to this 

(-az )ex+ O:zez + (-az )exy + O:zeyz. 

The result will be in P if and only if 

O:z = fx = fxy. 

This calculation helps us make inequivalent assignments to the triples 

(Ex, fxy, fy ), 

where without loss of generality region Y follows X under clockwise ordering. 

PROPOSITION 5.3. For Shallit's k = 3, d 2'.: 2 game, the F-inequivalent 
classes in P are enumerated as follows. There are 

1. d F-inequivalences of the form ( i, i, i). 

2. 3( d2 - d) F-inequivalences of the form ( i, j, i) with i =/; j. 

3. 3(d2 - d) F-inequivalences of the form (i,j,j) with i =/= j. 

4. 3d(d - l)(d - 2) F-inequivalences arising from triples in Zd with all 
entries distinct. 

Proof. We must prove all possible assignments to triples are accounted 
for and the listed assignments are inequivalent. Under clockwise labeling, 
the orderings for XY are AB, BC, and CA. All XY assignments for ( 1) 
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are F-equivalent to say the AB assignment. For (2), The assignments are 
clearly not F-equivalent. For (3), assignments (i,j,j) to AB, BC, CA are 
inequivalent, and assignment (j,j, i) with i -:/= j at XY is accounted for 
because it is equivalent to assignment ( i,j,j) at Y Z! For ( 4), it is again 
clear that the assignments are inequivalent, and the counting is simple. 

To summarize, after generating d3 configurations comprising each F­
class of the d(3d2 - 3d + d) F-inequivalent configurations enumerated above, 
we see that the orbit of zero contains d4 (3d2 - 3d + d) of the d7 possible 
configurations for Shallit 's k = 3 game. To solve the Minimality Problem 
for these F-inequivalent configurations seems daunting. 

6 Design Considerations. 

We pose a rhetorical question: Would anyone care to implement Shallit's 
game in hardware or software? We believe that the solvable k 2:'.: 4 games 
could turn out to be very amusing, especially since a "solve" button could 
skillfully hide from a perplexed player the details of the algorithm we have 
developed. For example, since labeling of the vertices is not important, each 
time a "solve" is requested a random vertex could serve as the key vertex 
we labeled k. There are also alternatives to the linear system we established 
that could be exchanged and manipulated to further obscure the algorithm. 

The reader may wonder why we introduced operators of B-type, which 
we have hardly made mention of at all. Some have found it convenient to 
think of the Bx = F x Px composition as a separate "Make Black" operation 
that supplements "Invert" and "Make White" operations. 

We experimented briefly with a generalization of Shallit 's game that 
preserved the intersecting sets theme. A topological layout for illustrating 
all possible intersections between sets A, B, C, and D is shown in Figure 
11. For this game Fx and Px would affect all regions that use X in their 
labels. We made no dramatic progress towards analyzing this game. 

There are a wealth of games that can be designed based on composi­
tions of the independent fr, p,,,, and b,,, operators. In this paper we have 
not explored individual operators constructed using a mix of p and f op­
erations though one would expect interesting properties and relationships 
could be developed. The challenge, of course, is to make compelling, simple 
to understand, yet fiendishly difficult to solve games. 
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