
University of Richmond
UR Scholarship Repository

Math and Computer Science Technical Report
Series Math and Computer Science

2-1994

An Algorithmic Palette Tool
Gary R. Greenfield

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-reports

Part of the Graphics and Human Computer Interfaces Commons

This Technical Report is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Technical Report Series by an authorized administrator of UR Scholarship Repository. For more
information, please contact scholarshiprepository@richmond.edu.

Recommended Citation
Gary R. Greenfield. An Algorithmic Palette Tool. Technical paper (TR-94-02). Math and Computer Science Technical Report Series.
Richmond, Virginia: Department of Mathematics and Computer Science, University of Richmond, February, 1994.

http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

An Algorithmic Palette Tool

Gary R. Greenfield
Department of Mathematics and Computer Science

University of Richmond
Richmond, Virginia 23173

email: grg5l@mathcs.urich.edu

February, 1994

TR-94-02

1 Introduction.

Color - in particular, red, green, and blue (RGB) color - in graphics
systems in usually controlled either directly by allotting to each pixel a
certain number of bits to specify each of the red, green, and blue values for
that pixel, or indirectly by allotting to each pixel a certain number of bits to
serve as an index into a lookup table (LUT) which stores these RGB values.
Thus when one speaks of "full 24 bit color" one refers to a system that stores
per pixel eight bits each for red, green, and blue with the eight bits used
to determine the percentage of that "primary" color that will be mixed to
produce the color displayed at that pixel. In this manner one arrives at the
oft quoted phrase about a color system allowing one to choose colors from
a palette of

256 x 256 x 256 = 16, 777, 216

colors or, stated more succinctly, to choose from a palette of more than 16
million colors. Although occasionally one encounters extended 36 bit direct
color systems, full 24 bit color is the sine qua non for color systems that are
descended from the direct display eight-color systems where only one bit was
devoted to each of the RGB values. This meant only zero or one hundred
percent of each primary color could be mixed and gave rise to the infamous
red, green, blue, cyan, yellow, magenta, white and black color palette.

The indirect method using L UTs is the one we shall be concerned with.
It still allows one to choose from more than 16 million colors - because the
LUT can store 24 bit RGB values - but the number of colors that can be
displayed simultaneously is limited by the size of the table. Ordinary work
stations with "eight bit color" allow one to display simultaneously 28 = 256
colors constituting the palette that has been established for the applica
tion at hand. This report describes an algorithmic tool for L UT palettes,
which when coupled with the user's aesthetic criteria, is found to be useful
for discovering creative and ingenious palettes for visualization and artistic
purposes.

The conceptual approach to using color in direct versus indirect displays
is quite different. A full 24 bit color display supports and promotes the
traditional mode of image creation: tools can help select, mix, and shade
a color, and (via further tools?) that color can then be applied to selected
portions of the image. But indirect color display has side effects. Altering
an existing color in a selected portion of the image by a substitution in the
LUT which will modify its hue, saturation and/or value must, by conse-

2

quence, affect that color's occurrence at every pixel throughout the image.
This is both a boon and a bust. For example, it supports the primitive
animation technique of erasing and drawing objects and regions by masking
and unmasking their L UT entries.

A few hours spent wandering through the software and hardware ven
dor exhibition of a recent SIGGRAPH conference yielded demonstrations of
various palette tools and widgets designed for use with LUTs which seemed
for the most part to be based on one of the following three principles:

1. Reassignment of the RG B percentages. To illustrate the idea,
one might imagine modifying an image so that every entry in the L UT
where red is currently mixed at 40% is changed so that it is now mixed
at 70%. To design a widget to accomplish this task one can use side
by-side graphs comparing the default linear percentages for the 256
possible red values with their reassignments. (See Figure 1.) Further,
one can implement user control of reassignment by allowing the user
to trace the reassignment curve or manipulate the control points of
splines governing such a curve. An advantage to reassignment is that
the L UT does not have to be modified, only reinterpreted.

2. Loading the table with RGB values obtained from RGB per
centage curves. This is a very natural way to work with the LUT as
it supports the RGB color mixing theory that color experts are well
versed in. For its implementation, curves for each of the RGB values
use one axis for the LUT entry and the other for the percentage. (See
Figure 2.) Of course the curves should be aligned or simultaneously
displayed in order to gauge the effect, but once more curve tracing and
curve fitting can augment user control. Additionally, we have seen ef
fective use made of expansion and compression. That is, a user can
gain the full contrast of green in a brief table segment while simul
taneously controlling for subtle differences in red. (See Figure 3.) A
drawback would seem to be the emphasis on continuous, or piecewise
continuous curves.

3. Permutation of table entries. This technique is another favorite
used in special effects. Typically one circularly shifts the table en
tries or transposes large segments of the table. Both operations are
especially conducive to control by scrolling, slider, or button widgets.

Our algorithmic tool follows the model of RGB percentage curves, but
now the control of these curves is though algorithms that indirectly, and

3

more abstractly, create, evolve, and modify such curves. To fully explain
our methods we must first introduce the topic "mutating expressions." This
is done in Section Two. In Section Three we document the user-interface
problems we dealt with, and finally in Section Four discuss conclusions and
suggest ideas for future exploration. Before commencing with the techni
cal details however, we wish to emphasize the nature of the "colorization"
problem that led to the conception and development of our methods.

An image to be used in conjunction with an L UT display has two largely
independent attributes. First, the topological characteristics of the LUT
indices with respect to their distribution among the pixels. Second, the
visual or aesthetic characteristics inferred from the entries (i.e., palette)
the L UT stores. Naively, we are merely saying that an image is a paint
by-numbers canvas. Its topological attribute is the the organization of the
numbers on the canvas, and its visual attribute is the color scheme of the
paints associated to the numbers.

The independent and sometimes conflicting nature of the topological and
visual attributes is well-known. We first confronted and exploited the in
terplay between the contrast properties of the index distribution and the
aesthetics of the palette in the algorithmic art tools we described in [2].
The subject has also received much recent attention by Scientific Visualiza
tion proponents because of the misleading scientific conclusions that might
be caused by improper colorization of data [3]. And certainly artists are
aware of the distinction between contrast by value (our indexes) and hue
(our color). Witness the advice of Patricia Lambert in her how-to book
Controlling Color [1, page 32]:

Although value is only one of the four properties inherent in
every color, it may be used independently. Therefore a design
may first be executed in value before it is translated into color -
an excellent habit to develop.

2 Mutating Expressions.

Our specification of RGB percentage curves will rely on functions of the
form J(u), in one independent variable u, with domain and range I, the
unit interval. Given an LUT of size s with indices 0, 1, ... , s - 1 we would
use f for say the red component by storing at entry i, 0 ~ i < s, a red
percentage of f(i/s). In fact, most RGB scales use values between 0 and

4

255, so the table entry for red is the one associated with the nearest integer
to 255 x J(i/s).

To create, modify, and manage RGB-curves we use our own version and
implementation of mutating or evolving expressions as introduced by Karl
Sims [4). Our functions are expressions that can be stored symbolically as
trees, and can be evaluated at the independent variable u to yield a real
number in the unit interval. The strength and power of using trees for
functions relies on being able to adapt intrinsic tree algorithms for building
and modifying trees. The end result is a user-controlled genetic algorithm to
search for expressions that will provide palettes that are often unexpected,
unimagined, unanticipated, and unplanned. That is, palettes that have
aesthetic merit but that a person without traditional artistic training would
be hard pressed to develop.

We need a more precise description. The leaves are our expression trees
will contain either the symbol u, denoting the independent variable, or the
symbol c, denoting a constant. Internal nodes of the tree will be functions
in one or two variables and therefore internal nodes will have one or two
branches respectively. This means we must provide a set of building block
functions for the internal nodes with the property that both their arguments
and their results must be restricted to lie between zero and one. To this end
we defined normalized functions in one variable

nsin, ncos, nexp, nlog, nsqt, nsqr, ncub, nnot

and in two variables

nadd, nmul, nmod, nmin, nmax, npwr, nand, nvee, ncir.

For example, the graph of say the normalized cosine function ncos would
show the classic cosine curve compressed and shifted so that it fits in the
unit square. Similarly, the graph in the unit cube of three-space of ncir
would reveal concentric circles whose projections onto the plane are centered
at the point (1/2, 1/2, 0). These projected circles are "lifted" so that they
assume z-values starting at zero for the circle of radius zero and increasing
as they radiate outward so that the circle whose projection passes through
the vertices of the unit square is lifted to a z-value of one. The function
nand is a normalized bitwise-and operator. Together with the two variable
nmod and npwr functions they introduce fractal elements into the evolved
and mutated expressions. In this report we choose not to rigorously define
all our building blocks.

5

To add some measure of variation, and to assist in fine tuning expression
trees, every node additionally stores two real numbers - a coefficient a and a
constant b. The real numbers are used to modulate the value of the function
value that is first calculated at that node. Formally, the function value r is
an intermediate result which is modulated to produce the final node result

e = (a * r + b) mod 1

which will now serve as the argument value to the function of a parent node.
(The function value of a leaf with symbol c is zero.) Our implementation
always requires the constants b to lie between zero and one, but allows the
coefficients a to be between zero and two because this promotes periodicity,
a feature which was found to be useful in evolving palettes.

EXAMPLE 2.1. Since we found it easiest to "read" expressions when
the coefficients and constants were printed in front of the functions for the
nodes, the expression tree printed as

0.05 0.38 nmin(0.54 0.09 nsin(0.42 0.52 u), 1.22 0.40 nsqt(0.04 0.63 c))

would correspond to the tree of Figure 4, and would be evaluated for L UT
index i by setting using u = ifs, and calculating

(0.05 * nmin((0.54 * nsin((0.42 * u + 0.52) mod 1) + 0.09) mod 1,
(1.22 * nsqt(.63) + 0.40) mod 1) + 0.38) mod 1.

3 The User Interface.

Our user interface is written using the public domain Simple Raster Graphics
Package (SRGP) written by David Frederic Sklar. We believe this package
promotes reasonably rapid prototyping. The window we display for devel
oping our palettes is shown in Figure 5. (The figure is unfortunately in
black and white, but it will serve for descriptive purposes.) The upper left
rectangle in Figure 5 is for displaying the image that one is currently col
orizing. But thanks to the vagaries of the X window system we are able to
colorize across windows because the window manager will perform a context
switch of color maps as the mouse cursor is moved from window to window.

6

The rectangle to the immediate right of the one used for the image is a
radio-button widget to allow the user to select either the red (RR), green
(GG), blue (BB) or all (AA) three of the RGB-curves to create or mod
ify. The rectangle immediately below the image rectangle gives a histogram
indicating the proportion of pixels numbered by each L UT index - one un
derstands the horizontal axis to be labeled left to right with the LUT indices
- and it superimposes the current RGB-curves in their respective colors on
the histogram. The histogram itself is scaled so that the index that is used
most frequently by the image receives a bar which just reaches the top of
the rectangle, while all other bars are proportional to this largest one. If
an image concentrates its index distribution, the superimposed RGB-curves
are suppressed at indices that have no bearing on the image. In any event,
the wide rectangle at the bottom displays the current palette by drawing a
vertical bar of the properly mixed color for each L UT index according to
the horizontal LUT index scale of the histogram and RGB-curves rectangle.
On the menu at the far right of Figure 5, the buttons labeled

Slide Perturb
Feather Differ
Vary Evolve
Extend Mutate
Drift Birth

are the user controls for the RGB-curves. The RGB-expressions are dis
played in printed form (using the format described above in Example 2.1)
in the text window where the palette tool was launched from. The effect of
any of the menu actions above on the RGB-expressions is echoed by scrolling
the updated RGB-expressions in the launch window.

Regarding the individual buttons, selecting <Birth> initializes a curve
by generating a "small"' random expression tree. The principal means of
complexifying an expression is accomplished using the <Evolve>, <Extend>
and <Mutate> buttons. <Evolve>, as one might expect, invokes an al
gorithm that in addition to giving every node a small chance of having its
building block function altered, gives every leaf node a small chance of evolv
ing to an internal node, and every one-variable function node a small chance
of evolving to a two-variable function node. <Extend> is similar, but it only
affects leaf nodes, thereby preserving the existing evolved internal structure
of the expression tree. <Mutate> tries to emulate what might happen if
an error is made in reproducing an expression. It does this by clipping a
subtree from a copy of the expression and reinserting it in place of another

7

subtree of the expression. The other buttons implement milder modifica
tions to expressions that could make sense if the expressions were viewed as
genetic material from a population of organisms. Thus <Differ> alters the
building block function in a single randomly selected node of the expression,
and <Vary> does the same for a small percentage of the leaves of the ex
pression. The remaining buttons focus on the constants a and b stored at
each node and are used to foster "genetic variation." <Drift> impercepti
bly shifts the constants at every node by a minute amount. <Perturb> also
adjusts the constants at every node, but the fidgeting is weighted so that it
becomes more severe as the depth of the node increases. Finally, <Feather>
and <Slide> were especially designed for the colorization problem because
they affect parameters of the expression that are particularly germane to
palette construction. <Feather> fidgets only with the constants of leaves,
while <Slide> fidgets only with the constant a of the root node.

The palettes we have worked with to date use s = 180 colors. We
could use up to s = 256 colors, but the reason we chose 180 reminds us
of an anecdote about buying hams: A daughter, as she had learned to do
from her mother, always asked the butcher to cut off the end of the ham.
When this behavior was brought to her attention, she conferred with her
mother only to learn the reason for doing so was to make the ham fit in the
pot! Our parallel anecdote stems from using a public domain palette editor
authored by Gordon Cameron of Edinburgh University. The defaults for
this editor are 180 colors, and we created some palette files using this editor
that we transported to our application. Since those original palettes are still
indispensable to us, we stick with s = 180. It is still true that with palettes
of this size only one palette can be displayed at a time. Thus we were led
to save expressions in circular buffers which operate independently for red,
green, and blue. Frequently when a palette had several features we were
trying to improve upon we found that we wanted to undo a modification
and restore the original, thus the <UNDO> button was added to back up
the pointers to these buffers. Also, because we often encountered promising
palettes that we wanted to set aside for safekeeping, we added <PUSH>
and <POP> buttons for moving them to and from a stack. In this manner,
we could save several candidates on the stack, unstack them to the buffers,
and then roll back through the buffers to make decisions on whether to save
them to disk using the <ARCHIVE> button, restack them, or attempt to
further develop their traits and characteristics.

The button <InPic> reads in the next available image from a file cre
ated especially for that purpose, and the button <NxtPal> cycles through

8

the RGB palettes from our image making software (see [2]) that are in
the file format adopted by Cameron's palette editor, and that were used
when creating the images we are trying to re-colorize. This explains the
need for a <SwiPal> button to toggle between the original palette that was
used to create the image, and the alternative palette we are creating using
RGB-expressions. Of course all archiving, pushing, popping, and reading
operations are echoed in the launch window.

EXAMPLE 3.1. The following image to be colorized is titled "The En
trance." It is also an expression tree, one that was created using our gb
software [2].

>P 0.77 0.81 ncir(0.71 0.43 nmax(0.73 0.50 ncir(0.69 0.80
ncir(0.73 0.39 nmax(0.81 0.65 v 0.21 0.10 v) 0.72 0.98 u)
0.86 0.64 v) 0.75 0.65 c) 0.12 0.09 u)

It was archived in the above form by the palette tool along with the follow
ing deceptively simple RGB-expressions we evolved for it. They provide a
palette that added an outstanding color scheme.

>R 1.09 0.43 nmin(1.61 0.81 u 0.44 0.23 u)
>G 1.25 0.07 u
>B 1.19 0.36 runod(0.80 0.76 c 1.25 0.31 c)

4 Conclusions and Future Inquiries.

We have been pleased with the initial experiments we conducted using our
algorithmic palette tool, but there is still considerable room for improve
ment. In Figure 6, we have collected some sample RGB-curves that we
created. (Again, black and white printing is a drawback, as only the red
and blue curves could be reproduced.) It is gratifying to be able to ver
ify from this figure that periodicity, fractal elements, and the modulo one
"wrapping" are being drawn upon for palette creation. Especially telling is
the piecewise phenomena exhibited by many of these curves, a feature which
one hardly ever sees in connection with traditional palette tools.

The greatest drawback we have encountered so far is related to curve se
lection. First there is the problem of deciding at what point during palette
development to concentrate on an individual red, green, or blue expression
rather than all three at once. Second, it is easy to "forget" that at times
the buttons are now affecting only a single expression. Since the <UNDO>

9

button is keyed to curve selection, popping from the stack and rolling back
through the buffer(s) can destroy palettes in these situations. This prob
lem can be partly remedied by synchronizing the buffers i.e., copying idle
expressions after each selection when only one expression is active. We are
still at loss as to how best to remind the user that only a single expression
is being operated upon though. The idea of suppressing the graphs of idle
curves is contraindicated by the fact that colors are a mix of RGB values.

The design decision to superimpose RGB-curves on the histogram display
is of questionable value. We fell victim to our own poor planning. Since we
program so that windows can be resized, it became difficult for us to easily
redesign the display so that the histogram, RGB-curves, and palette were
aligned and displayed in the available space. We are also not sure how to best
design the display in order to convey the information about which fragments
of the RGB-curves are having a significant impact on the colorizing. Since
many of our images use a surprisingly small number of L UT indices, this
is an important question. We found suppression of the unused portions
of the curves irritating, but found equally irritating buttons that modified
expressions and produced drastic palette changes yet had little impact on
the image because the key LUT indices were not adversely affected.

Continuing along these lines, when an image relies on just a few LUT in
dices, and these indices are also close together in the L UT table, it can take
an inordinately long time to discover a palette that is sensitive to these in
dices. In such cases trying to modify palettes also proved frustrating. Many
buttons seemed to have no effect at all. Our original default palettes had
lots of sharp contrasts to overcome this problem and to help analyze and
refine these kinds of images, evolved palettes have no specialized tools for
this purpose. It is beyond our ability at this stage to incorporate methods
for splicing palettes (an obvious attempt at a compromise?) since both dis
playing splices and managing data structures for splicing seem inconsistent
with the expression tree approach.

Perhaps a stack is not the best choice for a data structure to use to
temporarily set aside palettes. It would seem that a table that allows the
user to direct palettes to and from the buffers would be more desirable. A
table would probably be even more useful if there was an acceptable way
to iconify the palette at each entry. One possibility is a table where each
entry has three fields: STORE, RETRIEVE, and DISPLAY. STORE, would
store the push of the active palette, RETRIEVE would pop onto the active
palette, and DISPLAY would echo the saved palette expressions and give a
pop-up visual readout.

10

The fact that RGB-curves are calculated using only one independent
variable seems to limit their scope unnecessarily. However, we have drawn
a blank when it comes to suggesting other independent variables for which
it would make sense to try and place them under user control. Clearly,
perfect user control is not our objective, but then again neither is perfect
randomness!

An idea that we feel must definitely be explored is the concept of a
hands-on visual display of the expression trees in tree-form. We are certain
that if a user could be provided visual feedback about the effects of altering
explicit subtrees or nodes in expressions, and had tools that would support
this greater intimacy, the paradigm of mutating expressions would become
more exciting and powerful. Therefore our long-term goal is to integrate
improved palette tools, image tools (after [2]), and expression tree-editing
tools into one unified package.

References

[1] P. Lambert, Controlling Color: A Practical Introduction for Designers
and Artists, Design Press, New York, NY, 1991.

[2] G. Greenfield, Graphical evolution and computer art, preprint.

[3] N. Gershon, How to lie and confuse with visualization, IEEE Computer
Graphics and its Applications, January 1993, 102-103.

[4] K. Sims, Artificial evolution for computer graphics, Computer Graphics,
25 (1991), 319-328.

11

I

? '100/o
I

I

i. Reassignment Curve

\oc

-
0

0
s

2. Percentage Curve

' I.

3. Compression and Expansion Curves

4. Expression Tree

D RR

D GG

0 BB

D AA

I
I
I
I
I 111111
I

5. Palette Window

QUIT

Slide

Perturb

Feather

Differ

Vary

Evolve

Extend

Mutate

NxtPal

SwiPal

lnPic

PUSH

POP

UNDO

ARCHIVE

Drift

Birth

I
I
I
I
I

I
I
I

I
I I .,•

I •

I
I
I
I
I
I

I

I I

I
I
I
I
I ___ .J......._

~rl"
.i#A

I

I

I
I I

•' '• ••

I
I

I
I
I
I
I
I

•• \fy' ••
I I

I
I

\1r
r

6. Sample (Red and Blue) Expression Curves

	University of Richmond
	UR Scholarship Repository
	2-1994

	An Algorithmic Palette Tool
	Gary R. Greenfield
	Recommended Citation

	tmp.1444159000.pdf.JsgjO

