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The set of hemispheres containing a closed curve on the sphere 

Mary Kate Boggiano and Mark Desantis, 
University of Richmond 

Suppose you get in your car and take a drive on the sphere of radius R, so that 
when you return to your starting point the odometer indicates you've traveled less than 
27tR. Does your path, y, have to lie in some hemisphere? 

This question was presented to us by Dr. Robert Foote of Wabash College. 
Previous authors chose two points, A and B, on y such that these points divided y into 
two arcs of equal length. Then they took the midpoint of the great circle arc joining A and 
B to be the North Pole and showed that the curve must be contained in the Northern 
Hemisphere. This type of proof not only answers the existence question, but also yields 
a specific hemisphere that contains your path. 

We, however, thought the problem lent itself nicely to integral geometry, which 
required us to consider the space whose points are hemispheres. This led to a different 
existence proof and to a solution of the more general question: can you describe and 
measure the set of all hemispheres that contain "(? 

An outline of the remainder of this paper follows. In Section 2 we introduce 
terminology and definitions. The existence of at least one hemisphere containing y is 
proved using the ideas of integral geometry in Section 3. Classifying sets of such 
hemispheres for a single arc, a geodesic triangle, and a geodesic quadrilateral is 
accomplished in Section 4. Section 5 contains a discussion of convexity on the sphere and 
how it relates to our question. Our main theorem is stated and proved in Section 6. 

2. Terminology 

In the remainder of the paper, we restrict attention to the sphere of radius one. 
As a subset of 9t3, we write the unit sphere S2 as the set of points x satisfying x·x = 1. 

2.1. Definitions. Let n be a unit vector in 9t3• The set of points x e S2 satisfying n·x > 
0 is the open hemisphere determined by n. We denote this hemisphere by Hn. The 

closure Cl(Hn) of Hn is the set of points x with n·x ~ 0. The set of points satisfying n·x 

= 0, which forms the boundary a(Cl(Hn)) of the closure ofHn, is a great circle. Arcs of 

great circles are geodesics in S2• A subset T of S2 is contained in the hemisphere Hn ifn·x 

> 0 \Ix e T. Finally, we denote by H(T) the set of all hemispheres containing T; that is, 

H(T) is the set of all unit vectors n with n·x > 0 \Ix e T. 

In this definition n is the normal vector to a plane in 9t3 that intersects S2 and 
passes through the origin. This plane divides the sphere into the two hemispheres Hn and 
Rn. Since n and -n refer to the same plane, they determine the same great circle. 
Conversely, a pair of non-antipodal points determines a unique great circle and thus a pair 



of opposite hemispheres. The one-to-one correspondence between unit vectors n and 
hemispheres Hn shows that the space of all open hemispheres is just another copy of S2• 
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2.2 Definitions. Two great circles intersect in a pair of antipodal points x and -x which 
lie on a line through the origin in 9t3• The two great circles divide the sphere into four 
regions. Each region is a half-lune whose poles are the intersection points of the great 
circles. The union of two adjacent half-lunes is a hemisphere. A lune is the union of non
adjacent half-lunes. Finally, we introduce the spherical cross product, defined in terms of 
the usual cross product by x®y = xxy I I xxy I· Note that the scalar triple products 

x®y·z and xxy·z have the same sign. 

3. Existence 

Now that the ground work has been laid, we are prepared to anwer our 
introductory questions. In this section we prove that there does indeed exist a 
hemisphere containing a closed curve of length less than 21t. Our starting point is the 
Cauchy-Crofton formula. For plane curves, this formula states that the measure of the 
set of straight lines that intersect a given curve, counted with multiplicities, is twice the 
length of the curve. A nice proof of this formula appears in [dC] (p. 44 - 45). The same 
formula holds for curves on the sphere Gust replace "straight line" by "great circle"). 

3.1. Theorem. If y is a piecewise differentiable closed curve in s2 of length f < 21t, then 
there exists a hemisphere which contains y. 

Proof. We must show that there is a great circle g that fails to intersect y. Since pairs of 
antipodal points n and -n determine the same great circle, the space whose points are 
great circles in S2 is obtained from S2 by identifying antipodal points. This space is 
known as the projective plane P2• The area of a subset of P2 is half the area in S2 that is 
covered by the pairs of antipodal points that are identified to form points of the subset. 

For n e S2, let N(n) be the number of times the geodesic orthogonal ton crosses y. 

Then, by the Cauchy-Crofton formula, 112Hs2 N(n) dA = U. Note that N(n) may be 
infinite for some points n. The assumptions on y insure that the integral does converge 

(in the Lebesgue sense, see [S 1 ], p.31 ). Let X c S2 correspond to the set of geodesics 

that intersect y at least twice. Then Area(X) S: 112Hs2 N(n) dA = 2l < 41t. Since 41t is the 

total area of S2, there must be some geodesic g' that intersects yin at most one point. If g' 

fails to intersect y, we're done. Otherwise, let x be the point of intersection and let n' be 

the unit normal to the plane of g'. Then y c Cl(Hn-). We may parameterize yby 

arclength so that, as the continuous image of the closed and bounded interval [O,l], yis 

compact. Hence the set K = yr. Cl(Hn-) r. Cl(H_x) is also compact and the function that 

gives the distance from a point ofyto g' achieves a nonzero minimum o in K. Let n = 

cos(o/2)n'+sin(o/2)x and let g be the great circle orthogonal ton. Then, because of the 



way n is rotated from n', any intersection point of g with y must lie in K. But the 

distance from any pointy in g to g' is at most B/2, so g n y is empty and y c Hn. 

4. Basic Examples of Sets H(y) 
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With the existence of at least one hemisphere established, we look at a few simple 

examples for which the set H(y) of hemispheres that contain y can be described explicitly. 

4.1. Theorem. Let y be a great circle arc of length £ < 7t. Let v 1 and v2 be the endpoints 

ofy so that the Arccos(vrviJ = L Then the set H(y) is equal to the open half-lune and 

centered on the midpoint ofy having poles ±(v1 ®vi) and included angle 7t - £. The area 

of this half-lune is 2(7t - f, ). 

Proof. Without loss of generality, write y= {(cos(t), sin(t), 0) I 0:::.:; t:::.:; £ < 7t} and write 

n = (cos(u)cos(v), sin(u)cos(v), sin(v)) with 0:::.:; u:::.:; 27t and -7t/2:::.:; v:::.:; 7t/2. For x e y, we 

compute n·x = cos(v)cos(u - t). For this to be positive, we must have -7t/2 < v < 7t/2 and 

-7t/2 < u - t < 7t/2, i.e. we need t - 7t/2 < u < t + 7t/2 for all t with 0 :::.:; t :::.:; £. Hence u must 

lie in the intersection of the intervals (t - 7t/2, t + 7t/2) with 0:::.:; t:::.:; £. Since£< 7t and each 

open interval has length 7t, the left endpoint for the intersection occurs when t is at its 
maximum, i.e. t = £, and the right endpoint occurs at t = 0. Thus, u must satisfy 

£ - 7t/2 < u < 7t/2 or £/2 - (7t - £)/2 < u < £/2 + (7t - l)/2. Note that u=f/2 and v=O 

corresponds to the midpoint of y and is the center of the lune, whose included angle is (7t -

£)/2 + (7t - £)/2 = 7t - £. Letting R denote the rectangle {(u,v): £ - 7t/2 < u < 7t/2 and-7t/2 < 

v < 7t/2 }, the measure ofH(y) is J JR cos(v) dv du= 2(7t - l). 

The next case we consider has y as the boundary of a geodesic triangle. 

4.2. Theorem. Let ll be a non-degenerate triangle in s2 with vertices vb v2, andv3. Then 

1) Perimeter(ll) < 27t; 

2) H(all) is the interior of the triangle having vertices v1®v2, v2®v3, and v3®v1 ; 

3) Area(H(all)) = 27t - Perimeter(ll) . 

Proof. The assumption of non-degeneracy means that vi, v2, and v3 do not lie on a great 

circle. These three points are certainly coplanar in 9t3 however. Let d > 0 be the distance 

from the origin to this plane. Then v., v2, and v3 lie on a circle of radius .../(l-d2) and 

Perimeter(ll) < 27t.../(l-d2) < 27t. 
Without loss of generality, write v1 = (1, 0, 0), v2 = (cos(u), sin(u), 0), and v3 = 

(cos(v)cos(w), sin(v)cos(w), sin(w)), with 0 < u < 27t, 0 < v < 27t, and 0 < w < 7t/2. From 
the previous theorem, we know the set of hemispheres containing an arc is a half-lune 
with included angle (7t-£), where£ is the length of the arc, and poles ±(v1x v2), where v1 
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and v2 are the endpoints of the arc. When we consider the three arcs of aA, we see that 

H(aA) is the intersection of three half lunes. Since each pair of arcs of a A shares a vertex, 
the half lunes are created from three great circles instead of six, with each half lune that 
corresponds to an arc of aA sharing a great circle with another half-lune. 

The pairwise intersections of the three great circles yield six intersection points, 
namely ±(v1®v2), ±(v2®v3), and ±(v3®v1), because they are the poles of the lunes 

created. We can use n·x > 0 to find which of the six vertices define the region H(aA). We 

compute (v1 x v2)-v3 = sin(w). Our range for w gives sin(w) >O, and since (v1 x v2)-v3 = 

(v2 x v3)-v1 = (v3 x v1)-v2, the points v1®v2, v2®v3, and v3®v1 are the vertices of H(aA). 

Hence Cl(H(aA)) is a triangle and has area equal to the sum of its interior angles minus 7t. 

Writing the length of the arc vivj as .eu, the corresponding interior angle is (7t - .fu). From 
this we compute 

Area (H(aA)) = (7t - £12) + (7t - £23) + (7t - £31) - 7t = 27t - Perimeter(A). 

Covering the arc in Theorem 4.1 twice and considering the new arc as the 
boundary of a degenerate triangle A having perimeter 2£, we see that the measure of the 

set of hemispheres containing the arc is once again given by 27t - Perimeter(A). This 
interpretation unifies 4.1 and 4.2. We may also unify these results by noting that in each 
case the set of hemispheres containing the original figure has vertices given by cross 
products of the vertices in the original figure. We consider the new figure Cl(H(A)) to be 

the "dual" of the original figure A, since the vertices of Cl(H(A)) correspond to edges of 

A and the edges of Cl(H(A)) correspond to vertices of A. Thus we are led to conjecture 
that the set of hemispheres containing a spherical polygon has vertices that are spherical 
cross products of consecutive vertices in the polygon. In the following theorem we treat 
the case of a spherical quadrilateral, showing that if some care is taken in the placement of 
vertices then this conjecture holds true. It will be apparent in the proof of the theorem 
that the notion of convexity is vitally important (see Figure 1). 

4.3. Theorem. Let Q be a spherical quadrilateral having consecutive vertices v J· .. v 4. 

Suppose that 
a) the arc VJv2v3 has included angle less than n and is oriented so that 
VJ ·v2 ® v3 is positive; 

b) v4 lies in the open half lune with vertices ±vi and edges VJV2 and v2v3; 
and c) v4 lies in the hemisphere determined by v3vJ that is opposite v2. 

Then 
1) Perimeter(Q) < 2n; 

2) H(o Q) is the interior of the spherical quadrilateral having vertices v;® V;+J 
(with v5 = VJ by convention); 

and 3) Area(H(o Q)) = 2n - Perimeter(Q). 
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Proof. We first prove Perimeter(Q) < 27t. Consider the triangle L\v1v3v4 c L\v1v3(-v2). 

Clearly, Area(H(L\v1v3(-v2))) < Area(H(L\v1v3v4)). By the previous theorem, this implies 

Perim~ter(L\v1v3v4) < Perimeter(L\v1v3(-v2)). Thus, length (v3v4) +length (v4v1) <length 

(v3(-v2)) +length ((-v2)v1) = 27t - length (v1v2) - length (v2v3). Therefore, length (v1v2) + 

length (v2v3) +length (v3v4) +length (v4v1) = Perimeter(Q) < 27t. 

For convenience, we refer to the spherical quadrilateral with vertices vi® Vi+ I as 
the quadrilateral dual to Q, denoting this dual quadrilateral by Q*. The set of points in 

the interior ofQ* may be written as Li=l 4 µiYi / llLi=l 4 µiYill where Lµi = 1, µi> 0, 

and Yi= vi® Vi+I· Similarly the points in the Cl(Q) may be represented in the form 

Li=l 4 Aivi / llLi=l 4 ~viii with LAi = 1, and~~ 0. 

To prove that H(oQ) contains the interior of Q*, we must show the dot product 
of these two terms is positive. Since the lengths won't contribute to the sign, they are 
ignored and we're left to show 

(Li=l 4 A.ivi }(Li=l 4 µiYi) > O. 

The cyclic nature of scalar triple products allows the above expression to be simplified to 

2[(A1µ2+A3µ1) V1·(V2 ® V3) + (A2µ3+A4µ2) Vr(V3 ® V4) + (A1µ3+A3µ4) V3·(V4 ® V1) + 

(A2µ4+A4µ1) V4·(V1 ® V2)]. 
By assumption a) in the statement of the theorem, the four scalar triple products are all 
positive. Moreover, the coefficients of these scalar triple products are nonnegative. So, 
the only concern is that the above expression may equal zero. However, since µi > 0 for 

all i and at least one ~> 0, we are assured of at least one (actually two) positive terms. 

Now we want to show H(oQ) is contained in the interior ofQ*. We'll do this by 
showing they have the same boundary. A point on the boundary ofQ* lies on an arc 

joining a pair of consecutive dual vertices vi® vi+ I and Vi+ I ® Vi+2. Such a point clearly 

has dot product zero with Vi+l E oQ, showing that it also lies on the boundary ofH(oQ). 
Thus, the two regions do share the same boundary. 

Finally, we compute the area of Q*. Recall that 

Area of a geodesic n-gon on the sphere= Sum of the interior angles - (n - 2) 7t. 

As in the proofs of Theorems 4.1 and 4.2, the interior angle of Q* at vi® Vi+1is7t - length 
(vivi+1). Therefore, the area of the spherical quadrilateral is given by 

Anglesum - 27t = 47t - Perimeter (Q) - 27t = 27t - Perimeter (Q). 
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5. Convexity on S2 

Examining Figure 1, we see that a quadrilateral Q which satisfies the hypotheses 
of 4.3 has the following property: ifx and y are points of Q, then the shorter of the great 
circle arcs joining x to y is contained in Q. Thus Q is "convex". In order to avoid any 
ambiguity in the phrase ''the shorter of the great circle arcs joining x toy," and because 
subsets not contained in a hemisphere play no role in the remainder of this paper, we 
adopt the following definitions concerning convexity. Our definition of the convex hull of 
T is motivated by a theorem of Caratheodory ([C], p.264) which states that the convex 
hull of a subset ofR2 is the union of (possibly degenerate) triangles whose vertices lie in 
the subset. 

5.1. Definition. Let T be a subset of S2 that is contained in some hemisphere H0 • T is 
convex iffor every pair of points x and yin T, the shorter of the great circle arcs joining x 
and y is contained in T. The convex hull of T is the union of all geodesic triangles whose 
vertices lie in T. 

The results in the remainder of this section concern intersections of great circles 

with a given convex subset of S2• Since the subset is assumed to lie in some hemisphere, 

H0 , we may perform a central projection x -7 x/(n.x) of the hemisphere onto the tangent 

plane to S2 at n. Under this projection, the image of any great circle arc lying in H0 is a 
straight line segment. Thus central projection preserves the types of intersections we 
wish to study. We choose to work in the image plane so that we may apply our 
knowledge of plane topology (as found, for example in [B]). 

5.2. Proposition. Let T be a closed, bounded, convex subset of the plane and let f be a 
line. Then the number of points inf n dTis either 0, 1, 2, or oo. 

Proof. We may assume that Tis not contained in a line, since the result is obvious in that 

case. Suppose .f naT contains three points, Pi. P2, and p3, with P2 between Pt and p3 on 

.e. We claim that .e naT contains the entire segment [pi, p3]. Since Tis convex, [pi, p3] c 
T. If there were a point q of [p., p3] lying in the interior ofT, then an open neghborhood 
of q would contain points x and y in T lying on either side of .e. But then the quadrilateral 
p1x p3y would contain p2 as an interior point ofT, contradicting the fact that p2 lies on 
the boundary of T. 

5.3. Definition. Let T be a closed, convex subset of the plane. A line .e is a support line 
for T if .e nT is nonempty and Tis entirely contained in one of the closed half-planes 
determined by .e. 



From the previous argument, we see that a support line for T intersects aT in 
either a single point or a single closed interval. It is customary to write lines in the plane 
as solution sets to equations of the form 

cos(a) x + sin(a) y = p. 

Here, the vector (cos(a), sin(a)) is a unit normal to the line and p represents the directed 
distance from the origin to the line. This representation shows that the space whose 
points are lines of the plane is a Mo bi us strip: we may represent each line by a point in 
the set {(a, p): 0::;; a::;; 1t, -oo < p < oo} with points (0, p) and (1t, -p) representing the 
same line. 
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5.4. Proposition. Let T be a closed, bounded, convex subset of the plane and let t be a 

line. Then to each(} in [O, nj, there corresponds at least one and at most two support lines 
for T. 

Proof. Choose coordinates in the plane such that the origin lies in T. For each a, 
consider the function f0 that assigns to each point (a,b) ofT its directed distance to the 

line having normal direction (cos(a), sin(8)) and passing through the origin. Since fa(a, b) 

=(a, b)-(cos(a), sin(a)) is continuous and Tis compact, fa attains both a maximum and a 

minimum value on T. It is clear that the lines 

x cos(a) + y sin (a) = min fa 

x cos(a) + y sin (a)= max fa 

are support lines for T. If Tis contained in a line, the extreme values of fa may coincide 

(both being 0), but in any case we see that there is at least one support line corresponding 
to a. 

If the extreme values of fa are distinct, then there are distinct points Pmin and Pmax 

(necessarily on the boundary of T) with fa(Pmin ) = min fe and f0(pmax ) = max f9. Let v 

be a value of fa with min fa < v < max fa. By the intermediate value theorem, there is a 

(unique) point Pv of the segment [Pmin' Pmax] c T with fa( Pv) = v. Since min fa :t. max 

fa, the line cos(a) x + sin(a) y = v must intersect [Pmin• Pmax] transversally, so it cannot 

be a support line for T. 

5.5. Corollary. The set of support lines for T has measure zero. 

Proof. The union of the graphs (8, min fa) and (8, max fa) forms a single curve on the 

Mobius strip representing all lines in the plane. We call this curve the support curve of 
the convex set T (see Figure 2). The two-dimensional measure of a one-dimensional 
curve is zero. 



6. Main Theorem and Comments 

By the results of Section 5, if T is a closed, convex subset of Hn that is not 

contained in a great circle arc, then only the great circles meeting dT in exactly 2 points 

contribute to the Cauchy-Crofton integral for the length of dT. This is the key to the 
proof of our main result. 

6.1. Theorem. Let y be a piecewise differentiable closed curve on s2 having finite length, 
which is contained in some hemisphere H,,. Let y- be the convex hull of y. Then 

1) H(y) is an open and convex subset of each hemisphere H» XE y; 

2) H(y) = H(y); 

3) Area(H(y)) = 27t - Perimeter(y). 

Proof. That H(y) is contained in each Hx, XE y, follows from the condition m·x > 0 that 

determines whether mis in H(y). Convexity ofH(y) follows from the distributive 

property for dot products: the great circle arc joining m, m' E H(y) may be written as 

{((l - t) m + m'y) I I (1 - t) m + tm' I: 0::;; t::;; 1 }, showing that each point on this arc 

corresponds to a hemisphere containing y. As in the proof of 3 .1, a small rotation of a 

great circle not meeting y also yields a great circle not meeting y, showing that H( y) is 
open. 
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Since y c y- any hemisphere containing y- also contains y. Since y is compact, we 

see that ifHm :::> yand g is the great circle orthogonal tom then dist(y,g) is bounded below 

by some positive number 8(m). Let p be a point in y*. Clearly, dist(p,g) is no less than 

the minimum, over all geodesic triangles containing p and having vertices on y, of the 
distance from that triangle to g. But the distance function on each triangle assumes its 
minimum at a vertex of the triangle, so that dist(p,g) ~ dist(y,g) = 8(m) > 0. From this we 

see that y* is also contained in Hm. Thus H(y) = H(y). 

The convex hull of a closed set is closed, so the image of y- under the central 

projection x -7 x/n.x is a closed, bounded, convex set in the image plane. A reference is 
given in [S 1] (p. 1) for the fact that the boundary of such a set is piecewise differentiable 
and has finite length. Since the inverse of the central projection map is differentiable and 
length decreasing, we see that d y- satisfies criteria that insure that the Cauchy-Crofton 
integral for its length converges. Applying Proposition 5.3 and Corollary 5.5 to evaluate 
this integral we have 

2 length (d y-) = 1/2 JJE N(n) dA, with E ={normals to great circles intersecting d y- }, 

= JJF dA, F = {normals to great circles intersecting() y- in 2 points}, 

= 47t - JJo dA, with G ={normals to great circles not intersecting ay- }. 
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From this it follows that length (<ff) = 27t - Area (H(•f)) because only one of each pair of 

normals in G corresponds to a hemisphere containing a ''f. This completes the proof of 
the theorem. 

In this theorem, y may be replaced by any closed set K. An approximation of K

by a convex polygon yields an approximation of H(K) by the dual polygon (K)*. We 
conclude by noting that Theorem 6.1 has a probablistic interpretation. The probability 
that a random great circle fails to meet the set K is equal to 1 - Perimeter (K) I 27t. 
Further results of this type appear in [S 1] (p. 318). 

The authors would like to acknowledge several useful conversations and e-mail 
correspondences. Support for this work was provided by NSF grant BIR-9510228. 
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Figure 1. Only the spherical quadrilateral on the right 
satisfies the hypotheses of 4.3. 

Figure 2. A convex set and 
its support curve on the Mobius 
strip of lines in the plane. 
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