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DIGITAL IMAGE ANALYSIS OF GRAM STAINED CULTURE SPECIMENS

R. George Hauser III and Sheldon M. Campbell.  Section of Microbiology, Department of 

Laboratory Medicine, Yale University, School of Medicine, New Haven, CT.

Digital image analysis for the interpretation of images in clinical microbiology has many 

potential advantages over current practices.  Compared to traditional image 

interpretation by a medical technologist, digital image analysis offers standardization 

between laboratories, round-the-clock interpretation, and quantitative results.  In the 

first study of its kind known to the authors, a digital image analysis program was 

prototyped to interpret a slide containing Gram stained microorganisms.  The sample 

microorganisms were obtained from culture plates during routine processing and 

subjected to Gram’s stain.  An initial study learned from 11 Gram-stained slides and 

classified their microorganisms into the group: Gram-positive, Gram-negative, rods, 

coccus, and yeast.  The sensitivity of identification ranged from 66% to 99% and the 

specificity ranged from 78% to 99%.  The algorithm was next applied to a larger set of 78 

slides.   The accuracy rate for slide classification was 60 out of 78 or 77%.  After using 

this larger dataset to train the algorithm, the accuracy rate for individual objects was 

94% averaged over 5 trials.  This suggests the parameters used by the algorithm can 

differentiate between groups, and the lack of accuracy in classifying the larger database 

occurred due to limitations in the original training data.  Overall, the project 

demonstrates a unique application of digital image analysis to clinical microbiology.  
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Introduction

Digital image analysis is an established technique approved by the U.S. Food and 

Drug Administration for application to medical areas as diverse as Pap smear tissue 

screening and radiologic mammography interpretation.  To provide a general example, 

it involves digitizing an image either from a microscope or radiograph followed by 

interpretation using an algorithm to draw inferences about the image.  In clinical 

microbiology, the microscope has multiple uses through all stages of workflow, each 

providing a potential application for digital image analysis.  Digital image analysis has 

advantages over most new technology because it has no additional consumable costs 

and relies on mass-produced capital like computes and color sensors.  Compared to the 

current interpretation by trained specialists, it could operate nights and weekends, 

support untrained or non-specialist personnel, provide quantitative results, and 

enhance standardization across institutions.  At the present time, a shortage in the 

supply of trained medical technologists exists compared to the demand, which is 

predicted by the American Society of Clinical Pathologists to develop into a public health 

crisis in the next 5 to 10 years.  As the cost of labor increases because demand for skilled 

labor further outweighs the supply, increased automation becomes more economically 

feasible.    Substantial  automation of the current microbiology lab will necessarily 

involve digital image analysis because of the fundamental role played by microscopy in 

specimen processing, initial assessment, and continued workup of positive cultures (1). 

Alternative technologies, including mass spectrometry and nucleic acid amplification 
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may change clinical microbiology, eventually making the microscope and digital image 

analysis obsolete.  But, in the near future these technologies seem unlikely to 

outcompete the microscope’s speed and cost in all of its versatile applications. 

Consequently, projects in digital image analysis of microscope images will have useful 

applications in the clinical microbiology laboratory.

Microscopy plays an essential role in the processing of clinical microbiology 

specimens (2).  It is the first step in the processing of most specimens, guiding the 

selection of appropriate isolation media and the initiation of empirical antibiotic therapy 

(2).  Microscopy may also be used as an intermediate step in processing.  For instance, 

the microscopic interpretation of the Gram stained specimen is used to select the 

appropriate plate to inoculate for the Vitek2 biochemical identification system (3).  Final 

identification can also involve microscopy, particularly for fungi and parasites.  Overall 

microscopy is a fundamental technique of clinical microbiology (2).

Microscopy has widespread use in clinical microbiology, but the requirement for 

highly trained personnel for interpretation is a major drawback because hiring 

difficulties have existed for at least the past 20 years.  The vacancy rates for the staff-

level medical technologist was 13.8% in 1992(4), 12.5% in 2000(5), and 10.4% in 

2009(6).  Although the labor vacancy rate has remained historically high, it is also the 

anticipated increase in the absolute number of vacancies that has lead to the prediction 

of a healthcare crisis by the American Society of Clinical Pathology.  As explained by the 

United States Bureau of Labor Statistics in 2007, an additional 149,000 medical 
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technologists and technicians will be needed by 2014 to replace the retirees of the baby 

boom generation and meet their health care demands(7).  

The scarcity of trained personnel has particularly affected microbiology because, 

unlike clinical chemistry or hematology, it relies heavily on manual labor (1).  As a 

consequence of the increasing ratio of technologist labor demand to supply, the cost of 

available labor will presumably increase.  Thus, the relative scarcity of skilled labor in 

clinical microbiology and the predicted increases in labor costs motivate alternative 

solutions for microscopic interpretation.   

Digital image analysis is a potential adjunct or alternative to interpretation by a 

microbiology technologist.    The technology is not new.  In 1985 the U.S. Food and Drug 

Administration (FDA) approved an application to interpret antibiotic susceptibility discs 

using digital image analysis(8).  Since then it has permeated multiple specialties 

including anatomic pathology and radiology (9-11).  

Giles Scientific Inc. received approval from the FDA for antibiotics susceptibility 

disc interpretation using digital image analysis in 1985.  Their current systems, the 

BiomicV3 and TrinityV3, can read antibiotic susceptibilities from multiple sources 

including disc diffusion, D-test and the Etest.     Since their initial device capable of 

interpreting antibiotic susceptibility, they have expanded to organism identification and 

colony counting.  The system identifies organisms by interpreting biochemical panels 

and chromogenic agar(12).  Their system is likely one of the first applications of digital 

image analysis to clinical pathology.  
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Technology for image interpretation is also used in anatomic pathology.  For 

example, the decision to treat a breast cancer patient with Herceptin (Trastuzumab) 

depends on the quantified level of Human Epidermal growth factor Rector 2 (HER2). 

Digital image processing programs created by Aperio and another company, 

BioImagene, were approved by the U.S. Food and Drug Administration to aid a qualified 

pathologist in quantifying the immunohistochemical (IHC) stain for HER2 (11).  The 

interpretation of these stains was quite variable between pathologist, and the use of 

digital image analysis decreases inter-observer variability.  

Another implementation of the technology is used in the screening of the Pap 

smear.  NeoPath’s AutoPap System is approved by the U.S. Food and Drug 

Administration for automated screening of Pap smears used to detect cervical cancer 

(10).  In 1999 a prospective study using over 25,000 patient slides from 5 clinical 

laboratories, the AutoPap System outperformed the current practice with reduced false-

negative and false-positive results (10).  

In radiology, computer-aided detection (CADe) and computer-aided diagnosis 

(CADx) algorithms exist to aid the physician in detecting the presence of disease (9).  To 

validate and compare these algorithms, large databases of mammography images have 

been created by various institutions including the Digital Database for Screening 

Mammography (Massachusetts General Hospital, University of South Florida), the 

Mammographic Image Analysis Society’s Mammographic Database (United Kingdom), 

and B-Screen (Netherlands) among others(13).  
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Digital image analysis has demonstrated its usefulness across multiple medical 

disciplines, and it has numerous potential applications in clinical microbiology.  To begin, 

the technology could be incorporated into blood culture monitoring systems to 

automatically report positively-screened blood cultures.  A compact version of the 

system could be amenable to clinic use as a point of care test.  As a portion of a larger 

automated system, it could speed the flow of specimens through the microbiology lab 

by triaging positive culture plates.  Digital image analysis applications exist where the 

microscope is found, namely across a broad array of clinic and lab settings.  

In general, automation has arrived slowly to the clinical microbiology lab 

compared to other areas of laboratory medicine.  For example much of the work in 

clinical chemistry is fully automated(1).  Prior attempts at automation of microbiology 

have identified tasks involving visual recognition and manual dexterity as the primary 

impediments (1).  However, in the past decade, visual recognition technology has 

become relatively inexpensive, as color sensors and hardware for processing images 

exist at reasonable prices (1).  Additionally the cost for robotics capable of performing 

dexterous tasks continues to decrease (14).  As automation technology becomes 

inexpensive in absolute dollars and relative to the cost of labor, automation in clinical 

microbiology becomes cost-effective.  

While digital image analysis may fit within the current structure of the 

microbiology lab, other techniques have the theoretical ability to change the structure 

of the microbiology lab altogether, making the niche for digital image analysis obsolete. 
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A brief examination of these technologies is warranted before developing an application 

in digital image analysis for clinical microbiology.  Two of these developments are mass 

spectrometry and nucleic acid-based technologies.  

Mass spectrometry has many flavors, and only a few are amenable to bacterial 

identification (15).  Matrix-assisted laser desorption/ionization (MALDI) time-of-flight 

(TOF; hence, MALDI-TOF) mass spectrometry, unlike traditional mass spectrometry 

allows the ionization of large biomolecules required for bacterial identification. 

Traditional mass spectrometry destroys these large biomolecules during the ionization 

step resulting in unpredictable analytic results, a phenomenon termed “harsh 

ionization”.  MALDI-TOF mass spectrometry with its “soft ionization” step aerosolizes 

macromolecules without disrupting their structure.   The majority of these 

macromolecules are abundant ribosomal bacterial proteins, but other macromolecules 

are included as well (15).  The same isolate can produce different spectra depending on 

the growth media, growth state, and sample preparation (15).  Presumably the 

macromolecules detected by MALDI-TOF mass spectrometry are differentially expressed 

under various conditions.  

Despite this limitation, MALDI-TOF mass spectrometry system has the potential 

to replace the traditional biochemical profiles for bacterial identification.  Most isolates 

can be identified easily under growth conditions common in the clinical laboratory.  The 

system can usually operate on a single bacterial colony, but colonial growth typically 

takes 12-48 hours to occur, an inherent limitation of the technology at this time.   (15). 
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In addition, colony isolation is required to produce an analyzable spectrum, which adds 

to the labor required for interpretation.  Chemical treatment to disrupt the cell wall or 

trypsin-aided disruption of proteins may also be required to increase the ability to 

distinguish similar organisms (15).  Because it requires traditional growth and isolation 

of multiple organisms, it seems more likely to replace the current biochemical profiles 

for bacterial identification than fill the role of workflow triage performed by traditional 

microscopy.    

Nucleic acid amplification methods have become widely used in clinical 

microbiology, but are still primarily tools for detecting single, specific pathogens, as 

opposed to assessing the microbial flora of a primary specimen.  Multiplex PCR methods 

are becoming more widely-available, but still fail to detect the wide range of bacterial 

and fungal pathogens of the Gram stain, though the molecular methods provide more 

specific taxonomic information.  

In contrast to protein mass spectrometry, nucleic acid amplification followed by 

mass spectrometry analysis of nucleotide fragments is extremely sensitive and therefore 

does not require culture isolation or enrichment (15).  Its primary disadvantage is cost, 

typically 10 to 100 times more expensive than mass spectrometry of culture-amplified 

material (15).  It also requires an additional DNA purification step, and is in a 

comparatively early stage of development with significant unknowns.  While mass 

spectrometry of bacterial proteins or amplified nucleic acids may become the future, 

none have approval for use in diagnostic applications (15).  
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The continued reliance on the microscope to initiate empiric antibiotics and 

direction of microbiology workflow seems assured for the immediate future.  Therefore, 

the development of digital image analysis techniques will have a potential home in the 

microbiology laboratory either as an adjunct to current methods or as a component of a 

larger automation initiative.  

The digital interpretation of Gram-stained organisms from a culture plate is a 

reasonable first step to the introduction of digital image analysis to microbiology.  The 

Gram stain is the most commonly performed differential stain in microbiology (2).  It has 

the ability to distinguish major classes of bacteria and yeast.  The decision to use 

organisms removed from a culture plate simplifies the problem relative to a more 

complex direct specimen sample because the specimen taken from a culture has less 

interfering background material.  Furthermore, no literature currently exists on the 

classification of Gram-stained organisms using computational techniques.  The closest 

relative to digital image analysis of Gram-stained microorganisms were a handful of 

articles from the sewage treatment literature that apply image analysis to organisms 

found in sewage treatment plants, but they do not attempt to identify organisms (14-

16).  Thus a project involving digital image analysis of Gram-stained organisms from 

culture was pursued.

In summary, the microscope is a critical tool in clinical microbiology, used at 

multiple steps in specimen workflow from initiation of empiric antibiotics to specimen 

triage and even final diagnoses.  Limitations of microscopy include the relative scarcity 
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of specialized personnel capable of interpreting microscopic slides, increasing labor 

costs, the absence of off-hour interpretation, subjective interpretations, and incomplete 

standardization.  Digital image analysis potentially requires a modest investment in 

capital, no additional consumable costs, and would be operational at all hours by a non-

specialist to provide standardized, quantitative results.    Digital image analysis is an 

established technique approved by the U.S. Food and Drug Administration for use in 

clinical microbiology to interpret biochemical panels and quantify antibiotic 

susceptibility.  Although new technologies like mass spectrometry of bacterial proteins 

and nucleic acid amplification may eventually make the microscope obsolete, these 

technologies seem unlikely to compete with the microscope’s low cost, rapid results, 

and diversity of applications in the near future.  These systems appear more likely to 

replace conventional biochemical and other bacterial culture identification systems than 

to replace the microscope.  Thus, an investigation into the use of digital image analysis 

for the interpretation of microbiology images represents a worthwhile effort.  
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Purpose

The purpose of this study is to investigate the feasibility of microorganism classification 

using digital image analysis.    

 

Hypothesis

A prototype software program can correctly classify the microorganisms on a digital 

image into Yeast, Gram-positive cocci, Gram-positive rods, Gram-negative cocci, or 

Gram-negative rods.  

Specific aims

• Obtain Gram-stained slides with microorganisms taken from culture plates.  

• For each slide, capture representative images of the microorganisms contained 

within the slide.  

• Prototype a software program with the ability to distinguish major 

microorganism groups through the interpretation of digital images.

• Test the ability of the software to correctly identify the microorganisms given a 

set of images captured from the slide.  
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Methods

The methods section is separated into subsections detailing the slide database, 

classification program, and experiment design.  The set of slides used to capture images 

for the image processing experiments are referred to as the slide database.  

 Slide Database

A single set of Gram-stained slides were used to create two separate image 

repositories.  The first image repository used fewer slides and has fewer images 

compared to the second image repository.  It was created earlier in the project when 

the number of slides was limited.  The second image repository contains pictures of all 

available slides.  Experiment 1 uses the first image repository, while experiment 2 and 3 

use the second image repository.  A description of the slides found in the slide database 

is listed in Table 1.  

The slides for the first experiment included 11 in total: 2 yeast, 4 Gram-positive 

cocci, no Gram-negative cocci, 1 Gram-positive rod, and 4 Gram-negative rods. 

Experiments 2 and 3 used 78 slides: 15 Gram-negative rods, no Gram-negative cocci, 46 

Gram-positive cocci, 9 Gram-positive rods, and 8 yeasts.  The number of images in the 

first image database was 22 or 2 from each slide.  The second image database contains 

780 images or 10 from each slide.  Both databases contain true color images.  The 

images have pixel counts of 1360 by 1024.  They are stored in uncompressed tagged 
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image format, which is commonly known by the “.TIF” file extension.  The total data 

contained in the second library is approximately 4.14 gigabytes.  

Images for both image repositories were captured by an Olympus DP71 

Microscope Digital Camera mounted on an Olympus BX51 Microscope.  The slides were 

viewed with the 100x objective under oil immersion.   The image fields were selected for 

clearly-demonstrated morphology and well-separated organisms on the slide.  In 

general they avoided highly dense bacterial clusters found near the center of the slide, 

and instead focused on the periphery of the slide where isolated organisms were more 

likely to reside.  To abate a theoretical selection bias from image collection, learning 

algorithms were prevented from measuring quantities relevant to the overall image. 

Instead they were restricted to analyzing sub-images.  (The concept of sub-image is 

explained in the image analysis section.)  As an example, images of Gram-negative rods 

may have many more organisms on a slide compared to yeast.  The use of organism 

quantity per image may help in the classification of the slide into Gram negative rod or 

yeast, but could also occur as a confounding variable associated with the image capture 

method.  

The slides were collected by the VA Hospital in West Haven, Connecticut from 

November 2010 to March 2011.  They contained Gram-stained microorganisms 

transferred directly from culture plates to the glass slide.  The slides were made during 

the routine processing of specimens, and saved for this project instead of being 

discarded.  The slides came from all areas of the microbiology lab performing Gram 
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stains.  The Gram stain was performed in the conventional way following the clinical 

laboratory’s standard procedure (2).  Medical identification numbers were included with 

each slide to facilitate recording of the final identified organism present on the slide. 

When possible the microorganism on the slide was paired with a species level 

identification.  A portion of the slides did not receive species level classification.  For 

these slides only the interpretation of the Gram-stained microorganisms by the medical 

technologist was included in the database.  

Two slides were excluded from the study because their final identification did 

not match the organism type found on the slide.  For example, the final identification on 

one slide listed the organism as Staphylococcus aureus, while the Gram stain contained 

yeast.  Another slide was excluded from the study because it was damaged by repeated 

viewing under oil immersion.   All other slides were included, including a number of 

over-decolorized slides.  The inclusion of all available slides was meant to make the 

project more realistic to implementation in a typical microbiology lab.  

Digital Image Analysis

The image analysis program is a type of learning algorithm.  Analogous to human 

learning the program has two separate modes of operation: train and test.  The training 

phase is similar to studying before a test.  The program is provided a set of labeled data. 

One example in the labeled data would be an image of yeast and the label “yeast”.  The 

program studies the training data in the training phase to discover a classification rule. 

Next, the classification rule is put to the test.  A set of data without labels is provided to 
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the program, and the program generates labels.  For example, an image of yeast is given 

to the program and the program outputs “yeast”.   With the learning analogy in mind, 

let us be more concrete about the program details.

  The initiation of the training mode requires a set of sub-images with their 

corresponding labels.  These sub-images are not the original pictures captured by the 

digital camera.  Rather they are a processed version of the original picture.  The image 

captured directly from the camera is separated into these sub-images, which may 

contain the microorganisms.  The process of creating the sub-images from the original 

image is called segmentation.  The input and output of segmentation is shown in Figure 

1.  As shown in Figure 1, the output of segmentation includes sub-images that may 

represent microorganisms, smudges on the microscope optics, or concentrations of 

crystal violet stain.    

After the creation of the sub-images by segmenting the original image, a label is 

applied to each sub-image.  The label is provided by a curator, who painstakingly views 

each individual sub-image and assigns a label.  In the following experiments multiple 

labels were assigned to individual sub-images.  These labels correspond to categories in 

the algorithms classification scheme.  One label identified the shape: coccus, rod, 

“yeast-shape”, or undetermined.  Another label identified the color: Gram-positive 

bacteria, “yeast color”, Gram-negative bacteria, or undetermined.  In this labeling 

scheme yeast has a separate shape and color designation because both shape and color 

attributes distinguished yeast from bacteria.  For example, the shape of yeast is typically 
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more round than a coccus because they are larger cells.  Their color also distinguishes 

them from bacteria because the yeast nucleus typically retrains more crystal violet stain 

than the cytosol.  To designate an organism as yeast it must meet both the shape and 

color criteria.  At this point, the training data is complete because a set of sub-images 

exist with corresponding labels.  

 The training data is input into the learning algorithm to discover a classification 

rule.  In the process of learning, the algorithm calculates multiple features for each of 

the sub-images.  These features are similar to those used by microbiologists to classify 

microorganisms.  Examples include color, size, and shape.  At the conclusion of the 

training phase the algorithm has a method to classify any potential sub-image.

For this prototype program two separate learning algorithms were included.  The 

first identified the shape of the microorganism:   coccus, rod, “yeast-shape”, or 

undetermined.  The other identified the color: Gram-positive bacteria, Gram-negative, 

“yeast-color”, or undetermined.  

The test is the second phase of the learning algorithm.  Similar to the training 

phase, a set of sub-images is segmented from the original image.  Unlike the training 

phase, where each sub-images received a label for color and shape from a human 

curator, the sub-images used for the test did not.   Instead the learning algorithm 

provided the label.  
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The evaluation of the learning algorithm occurred by comparing its classification 

for each sub-image to the classification label of the slide from where the sub-image 

originated.  For instance, a slide of Gram-positive cocci had an image taken and 

segmented into sub-images.  The correct label for all sub-images would be “Gram-

positive” for the color classifier and “cocci” for the shape classifier.  

Overview of Experiment Design

Three experiments are performed.  Each experiment uses different training and 

evaluation methods to test the different aspects of the classification prototype.  

The first experiment evaluates the classification program in identifying the traits 

of shape and color in microorganisms.  It uses the smaller image database of 11 images. 

The images were segmented into sub-images.  A portion of the total sub-images were 

used as training data and the remainder saved for a test.  The training sub-images were 

labeled by a human curator.  Two labels were used for each sub-image.  A label was 

provided for color and a second label for shape.  One learning algorithm was trained to 

recognize color and another to recognize shape.  In the test phase the sub-images not 

used in training were classified by each learning algorithm.  The results were tabulated 

independently for each color or shape classification category by comparing the result of 

the two classifiers to the original label of the slide.  

The second experiment tests the classification program in assigning a label to an 

unknown slide.  It uses the larger image database of 780 images from 78 slides.  The 
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classifiers trained in the first experiment are used without additional training.  For each 

slide, a set of 10 images are segmented and their sub-images classified.  A classification 

label for the slide is derived by taking the mode of the separate categories for shape and 

color for the sub-images belonging to the slide.  

The third experiment evaluates the capacity of the learning algorithm to classify 

the sub-images in the larger image database given additional training.  The training 

dataset is a random selection of sub-images from the major categories: yeast, Gram-

positive cocci, Gram-positive rods, and Gram-negative rods.  The labels in the training 

dataset are the slide labels.  The test data is the unlabeled training data.  The learning 

algorithm is setup to prevent memorizing the training data.  The result is the proportion 

of sub-images correctly labeled in the test.  The test is repeated after selecting new 

training data.

The results of the experiments were compiled using standard validation 

techniques for learning algorithms.  Sensitivity and specificity for each category is listed 

for experiment 1, which is a standard technique for evaluating performance of a 

learning algorithm (16-19).  Confusion matrices are presented for experiments 2 and 3. 

This is also a standard method for validation of learning methods (20-23).  
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Results

Experiment 1:

In order to test the ability of the program to classify microorganisms, 2 

representative images were captured from each of 11 different Gram-stained slides for 

a total database of 22 images.  Next the background of the image was removed in the 

process of image segmentation.  The nonbackground portion of the images formed 

7,096 sub-images separated by 8-connectivity between pixels.  The total composition of 

the image library was yeast (4 images = 635 sub-images), Gram+ cocci (8 images = 1012 

sub-images), Gram- cocci (zero), Gram+ rods (2 images = 857 sub-images), and Gram- 

rods (8 images = 4592 sub-images).  These sub-images consisted of all types of non-

background objects: microorganisms, unidentifiable organism fragments, 

concentrations of crystal violet stain, and debris from the microscope optics.  

To train the algorithm, 50 objects were randomly selected from each image 

yielding a total training dataset of 1,100 objects.  These 1,100 objects were given two 

labels by the programmer to identify their group to the program.  The first label 

indicated the color of the objects: Gram-positive, Gram-negative, “yeast-specific color”, 

or undetermined.  The second label indicated the shape: “yeast-specific shape”, rod, 

cocci, or undetermined.   The sub-images were labeled individually, in contrast to the 

slide label, because objects between groups often appear quite similar.   For instance a 

cylindrical rod viewed in a perpendicular cross-section is a circle.  Many of these smaller 
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sub-images received the label of undetermined because the class could not be 

determined.  

After the training phase, the remaining 5,996 objects were used to test the two 

algorithms.  Of these classified objects 258 had a label of undetermined for both the 

shape and color.  Another 230 (4%) had inconsistent labels.  For example, if the color 

was labeled as yeast and the shape did not indicate yeast then the two labels were 

considered inconsistent.  Those objects with undetermined or inconsistent labels were 

excluded from the analysis.  The removal of these points from analysis was justified 

because some of the sub-images did not represent microorganisms.  For example, some 

sub-images were created by dust on the optics.  Other sub-images may have truly 

represented microorganisms, but their true classification is difficult, likely impossible, to 

determine.               

The true classification for the labeled objects was assumed to be the overall label 

for the slide from where the image was taken.  For example if an image of Gram-positive 

cocci had 52 objects then all of those objects were assumed to be Gram+ cocci.  An 

alternative approach would be to manually classify all of the test objects and compare 

the manual labels to the computer-generated labels, but this was not done for this 

study.  

The sensitivity and specificity of each of the five traits are listed in Table 2 of the 

Tables section.  The correct classification of a sub-image as Gram-positive as well as the 

classification of a sub-image as Gram-negative achieved a sensitivity of 99% and a 
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specificity of 99%.  The classification of yeast reached 90% sensitivity and 99% 

specificity.  The classification of rod had a sensitivity of 81% and a specificity of 78%. 

Finally, the identification of cocci had a sensitivity of 66% and a specificity of 87% for the 

set of sub-images. 

Experiment 2: 

In a second experiment, the program used in the first experiment was tested for 

the ability to classify a different larger and more diverse image library.  This database 

contained 780 images taken from 78 slides.   The database consisted of 15 Gram-

negative rods, 46 Gram-positive cocci, 9 Gram-positive rods, and 8 yeast.    No training 

data from the larger database was used to inform the program.  Therefore, the only 

training data used by this program was the training data used to train the program in 

experiment one, namely 1,100 objects taken from 2 yeast, 4 Gram-positive cocci, zero 

Gram-negative cocci, 1 Gram-positive rod, and 4 Gram-negative rods.  The outcome 

measure was the slide label.  The slide label was determined by classifying the sub-

images for 10 images per slide, and setting the slide class equal to the most common 

class of the classified objects.      

The results show the program classified 60 out of 78 (77%) of the slides correctly. 

The confusion matrix for the classification is shown in Table 3.  A confusion matrix 

tabulates the result predicted by the classifier to the true value.  

Experiment 3:
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The third experiment investigated the ability of the program to distinguish 

between classes given additional training.  Using the large database of 780 images, a set 

of 3,000 sub-images were randomly chosen.  A total of 750 objects were used from each 

of four classification groups: yeast, Gram-positive cocci, Gram-positive rods, and Gram-

negative rods.  The choice of random objects occurred anew for each of the five 

separate trials.  The label assigned to the sub-image was the label of the slide from 

where the sub-image originated.  

The training algorithm was configured to avoid memorizing the training data. 

The output of the classifier compared with the label of the original image determined if 

the classifier had correctly labeled the sub-image.  

The results of the experiment are shown as a confusion matrix.  The accuracy for 

the five trials ranged from 93% to 95% correct classification of the sub-image.  The 

average across the five trials was 94% with the standard error of the mean equal to 

0.21.  The confusion matrices for the experiment are included in Table 4.     
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Discussion

The purpose of this thesis was to investigate the feasibility of microorganism 

classification using digital image analysis.  To pursue this question a prototype program 

was created and tested against a library of images.  The hypothesis stated that a 

software program could accurately classify microorganisms into major classes.  The 

results of the first experiment demonstrated the ability to distinguish between major 

groups by classifying 5,500 unknown objects with high sensitivity and specificity.    A 

second experiment applied the algorithm trained in the first experiment to a larger 

database.  Reasons for its short-comings in the new setting include the limited quantity 

and diversity of its original training data compared to the dataset it attempted to 

classify.  Another reason, disproved in the third experiment, could be an inherent 

inability of the learning algorithm to distinguish between the groups of the larger 

dataset.  The third experiment demonstrated the learning algorithm could distinguish 

between the groups given sufficient training by classifying about 95% of the sub-images 

correctly.  Thus the limitations of the second experiment are most likely the quality 

and/or quantity of the training data.  Overall this project suggests that digital image 

analysis can classify microorganisms, but it will require training on large, diverse 

datasets that accurately represent the morphologic diversity in clinically relevant 

microorganisms.  

The prototype program used in this feasibility study had a number of limitations 

affecting its overall performance.  To begin it was trained using a set of only 22 images 
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representing 11 microorganisms.  These microorganisms had low overall diversity 

because they included two yeast, four Gram-negative rods, one Gram-positive rod, four 

Gram-positive cocci, and no Gram-negative cocci.  In practical terms this smaller set of 

images did not fully captured the differences in morphology of the bacteria and yeast in 

the testing data set.  When examining misclassified slides from experiment 2, the 

microorganisms had characteristics much different from those used in the training 

dataset.  As an example, the program misclassified two examples of Micrococcus, an 

organism not present in the training dataset and morphologically quite different from 

other Gram-positive cocci.  Because the training dataset was deficient in many 

microorganisms seen in the test, its ability to accurately classify the larger test dataset 

was limited.  

The differentiation of Gram-positive cocci into subgroups by morphology is 

routine in the interpretation of a Gram stain.  The morphologic distinction of “clusters” 

vs. “chains” is commonly thought to separate pathogenic Staphylococcus and 

Streptococcus/Enterococcus respectively.  When these features were detected by the 

program they did not correlation with the final identification of subgroups of cocci.  The 

interpretation of a Gram-smear as containing “clusters” or “chains” is useful because it 

implies a distinction between cocci.  Because the detection of these features did not 

provide any value for sub-classification of Gram-positive cocci in this instance, it was 

excluded from the study.   
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In clinical practice, microtechnologists use the catalase test and morphology to 

distinguish between Gram-positive cocci when interpreting Gram-stained slides from 

cell culture plates.  Unlike the typically longer chains found in blood culture smears, 

chain length from cell culture plates is variable.  In addition, multiple viewings of a 

particular slide can disrupt clusters to form chains, which was the case with the slides 

viewed in this experiment.  After controlling for these factors a future study should 

address this important area. 

An improvement to the protoype algorithm could occur by incorporating the 

current test data into its training dataset.  Different methods for how to incorporate the 

new data depend on the strategy chosen by the programmer.  In situations with limited 

data and computing power, the best choice would be to curate the dataset to remove 

controversial points.  Controversial points exist at the boundaries between groups.  If 

these points are labeled, it can create extra work for the classifier to figure out where to 

place the decision boundary.  In situations with limited computing power this can add 

significant time to the program.  This type of approach was used to prototype the 

program because of limited data and computing power.  A major downside to the use of 

curated data is the time required by the user to classify the data.  Another downside to 

curated data would be the constant requirement for human intervention to retrain the 

program on new data.    This would be an issue for a very large database.  

An alternative strategy to incorporate the new data would be to label all the 

microoganisms from a slide as belonging to the category of the whole slide.  The 
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drawback of this method is the increased computing time required to place the 

boundary.  For example, every image of a rod contains objects that resemble cocci 

because looking down the long axis of cylindrical rod is circular, and because many rods 

become short at the time of cell division.  The placement of a decision line between 

these groups with overlapping points was computationally prohibitive on my commodity 

laptop.  Fortunately relatively inexpensive access to powerful computers is available. 

For instance Amazon and Google both offer cloud computing options capable of running 

this type of program.       

Another improvement to the algorithm would be the incorporation of image 

level characteristics.  In the current algorithm parameters are generated solely from the 

microorganisms themselves and not from the characteristics of the image.  In essence 

each microorganism undergoes classification independent of near-by organisms.  This 

choice was consciously made to avoid the assumption that the “representative” images 

taken from the slides actually contained information to distinguish between classes.  For 

example images of yeast could be taken at low organism density compared to images of 

Gram-negative rods that were only taken at high organism density.  Image-level 

information can offer significant advantages over classification parameters calculated 

solely from the individual organisms.  For example, isolated cocci can provide ideal size 

and color characteristics that improve the algorithm’s ability to identify less than ideal 

cocci, which may be embedded in sputum or grouped together in clumps.  In a practical 

example of the use of image-level information to classify two groups, the receiver-
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operator curve for a single size parameter increased considerably when information 

from surrounding organisms was included in its calculation.  This is shown in Figure 2. 

As a second example, the crystal violet stain may not be equally retained by all the 

microorganisms in the slide.  Therefore the color classifier for Gram-positive may 

require an adjustment based on the more distinctly Gram-positive organisms in the 

slide.  

In the pursuit of automating the capture of images, a computer-controlled 

movement system was designed to fit on the current microscope.  The system uses a 

microcontroller to control the movement of three small servo motors.  The motors are 

attached to the three planes of the microscope to move the slide and focus the image. 

The microcontroller was successfully linked with the image analysis program to provide 

communication between the image analysis and movement of the slide.  The model 

drawing for the system is shown in Figure 3.  The system was built for well under $100 in 

raw materials.  In the future a dedicated system for slide interpretation would be 

needed to scan the slide for interpretable images.  

The majority of the project focused on classification of objects because the 

numbers of available slides was small.   As a future project, slide classification using 

object and image level parameters would make the system more practical.  A simple 

approach to slide classification would give each object a single vote towards a class with 

the class receiving the most points given as the slide name.   As a more complex and 

realistic interpretation, objects could receive a weighted score depending on the 
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distance of their parameters from the decision boundary.  Objects sitting closer to the 

decision boundary would be considered controversial and receive a lower score 

compared to objects farther away from the boundary.  This could prevent slide 

misclassification in a scenario where a large number of controversial objects outvotes a 

smaller number of easily classified objects.  

In the future, a confidence estimate for slide classification would be necessary to 

signal slides for operator review.  This type of analysis would require a much larger 

database of slides than currently available.  The morphology of microorganisms has 

numerous modifying variables before the sample reaches the laboratory as well as after 

it is processed.  Variables affecting morphology before the sample reaches the 

laboratory include site of infection, patient antibiotic use, transport time, transport 

conditions, and potentially regional variation in microorganisms.  Once the sample has 

reached the lab, culture duration, culture media, and incubator conditions could affect 

morphology.  Calculation of the relative importance of these variables necessitates a 

large and diverse slide database.  Thus the creation of a slide database is fundamentally 

important to the operation of a digital image analysis program.

Many questions remain open in the application of digital image analysis to 

microbiology.  For instance, how much taxonomic information can morphology provide? 

Do differences in slide preparation affect digital image interpretation?  How extensible 

is single software approach to the variety of microscope tasks?  How biased is a data 

curator’s opinion of a microorganism’s label?  Will image segmentation work in a more 
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complex background?  How much will a system cost and how long will it take to give a 

result?  The field is essentially wide open.   

In conclusion, digital image analysis is an FDA approved technique for the 

interpretation of medical images in other areas that has potential applications in clinical 

microbiology.  Overall, the prototype algorithm trained on a modest learning dataset 

was able to classify most slides in a larger slide database, which strongly suggests digital 

image analysis is a feasible approach to microbiology automation.  The foundation for 

future work requires a system capable of automated image capture and a large 

database of slides representing the diverse variables affecting microorganism 

morphology.  Many important questions in the application of digital image analysis to 

microbiology remain unanswered making this area fertile for future research.  
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Figures

Figure 1:  The process of segmentation.  (Left) Original image (Right) Segmented image 

Note:  The images are displayed at different scales.

Figure 2:  An image level parameter uses information from the entire image to calculate 
a parameter for an object, while an object level parameter calculates the parameter 
independent of other objects within the image.  This image level parameter (blue curve) 
outperforms the object level parameter (red curve).
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Figure 3:  Microscope modification for automated image capture.  
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Tables

Table 1:  Slide Database Catalog (GPC: Gram-positive cocci; GPR: Gram-positive rod, 
GNR: Gram-negative rod; NA:  Not available)

Catalog 
Number 

Gram Stain 
Interpretation Species 

1 GNR Serratia marcescens
2 GPC Enterococus faecalis
3 GNR Klebsiella pnemonae
4 Yeast Candida glabrata
5 GNR Enterobacter cloacae
6 GPC Streptococcus bovis
7 GNR Escherichia coli
8 GNR Pseudomonas aeruginosa
9 GPC Micrococcus
10 GPC Enterococcus faecium 
11 GNR Psuedomonas aeruginosa
12 GPC Enterococcus faecalis (VRE)
13 Yeast Candida glabrata
14 GPC Enterococcus faecalis
15 GPC Entercoccus faecalis
16 GPC Micrococcus
17 GNR Pseudomonas aeruginosa 
18 GPC Staphylococcus - Coagulase negative
19 Yeast Candida parapsilosis
20 GNR Escherichia coli
21 GNR Proteus mirabilis
22 GNR Haemophilus influenzae
23 GNR Citrobacter freundii
24 Yeast Candida albicans
25 GPC Staphylococus - Coagulase negative
26 GPC NA
27 GPC Staphyloccoccus lugdunensis
28 GPC Staphylococcus epidermidis
29 GPC Staphylococcus aureus
30 GPC Streptococcus viridans
31 GPC Streptococcus viridans
32 GPR Lactobacillus
33 GPR Corynebacterium striatum
34 GPC Staphylococcus - Coagulase negative
35 GPC Streptococcus agalactiae
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36 GPR NA
37 GPC Staphylococcus - Coagulase negative
38 GPC Staphylococcus - Coagulase negative
39 GPC NA
40 GPC NA
41 GPR NA
42 GPC Staphylococcus aureus
43 GPC Staphylococcus aureus
44 Yeast NA
45 Yeast NA
46 Yeast NA
47 GPR Propionibacterium
48 GPC NA
49 GPC Enterococcus
50 GPC Staphylococcus aureus
51 GPC NA
52 GPC Staphylococcus - Coagulase negative
53 GPC Staphylococcus aureus
54 GPC NA
55 GPC NA
56 GPC NA
57 GPC NA
58 GPR NA
59 GPC NA
60 GNR Haemophilus influenzae
61 GNR NA
62 GNR Prevotella oralis
63 GPR Staphylococcus - Coagulase negative
64 GPC Staphylococcus aureus
65 GPC Staphylococcus - Coagulase negative
66 GPC Staphylococcus aureus
67 GPR NA
68 GPC Staphylococcus aureus
69 GPC Staphylococcus aureus
70 GPR Propionibacterium
71 GPC NA
72 GNR NA
73 GPC NA
74 GPC NA
75 GPC NA
76 GPC NA
77 GPC NA
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78 Yeast NA

Table 2: Experiment 1 Sensitivity and Specificity of Binary 

Classifiers for Microorganism Traits (N = 5508).  (488 

points removed for undetermined or inconsistent labels.)

Sensitivity Specificity

Yeast 1.00 0.98

Cocci 0.94 0.84

Rods 0.89 0.93

Gram-Positive 0.99 0.99

Gram-Negative 0.99 0.99

Table 3: Experiment 2 Confusion Matrix For Slide Classification

(GPC: Gram-positive cocci; GPR: Gram-positive rod, GNR: Gram-negative rod)
Predicted

Yeast GPC GNC GPR GNR
Yeast 4 0 0 0 4
GPC 0 35 2 1 8

Known GNC 0 0 0 0 0
GPR 0 0 0 6 3
GNR 0 0 0 0 15

Table 4:  Experiment 3 Confusion Matrices for 3000 Objects Classified Over 5 Trials
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(GPC: Gram-positive cocci; GPR: Gram-positive rod, GNR: Gram-negative rod)

Trial #1   Predicted   

  Yeast GPC GPR GNR
 Yeast 690 25 23 12
 GPC 19 684 31 16
Known GPR 10 23 712 5
 GNR 9 16 10 715

Trial #2   Predicted   

  Yeast GPC GPR GNR
 Yeast 695 21 19 15
 GPC 14 698 22 16
Known GPR 17 15 714 4
 GNR 9 7 5 729

Trial #3   Predicted   

  Yeast GPC GPR GNR
 Yeast 700 28 9 13
 GPC 19 689 24 18
Known GPR 9 26 706 9
 GNR 10 10 10 720

Trial #4   Predicted   

  Yeast GPC GPR GNR
 Yeast 712 19 11 8
 GPC 19 677 33 21
Known GPR 15 9 721 5
 GNR 12 11 8 719

Trial #5   Predicted   

  Yeast GPC GPR GNR
 Yeast 701 21 19 9
 GPC 20 668 42 20
Known GPR 9 19 717 5
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 GNR 10 8 7 725
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