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Abstract

 

THE EFFECTS OF CYCLIC STRAIN ON RAT TAIL TENOCYTES 

Richard Crockett, Michael Centrella, Thomas McCarthy, J. Grant Thomson.  Section of 

Plastic Surgery, Department of Surgery, Yale University, School of Medicine, New 

Haven, CT. 

 

 The purpose of this study was to examine the effects of cyclic tension on the 

expression of hyaluronic acid, its receptor (CD44), and total glycosaminoglycan content 

in tendon fibroblasts.  An in vitro model was used to analyze tenocytes from the tail 

tendons of rats.  Tenocytes in the experimental group were exposed to cyclic mechanical 

stress, and using ELISA, western blot, and colormetric dye-binding assays, the effect of 

strain on cultured tenocytes was examined. 

Tenocytes exposed to mechanical strain produced 1528 ± 58 ng/mL (mean ± 

SEM) of hyaluronic acid, while those in a control environment produced only 730 ± 27 

ng/mL; nearly a two-fold difference (p<.0001, n=44).  CD44, the receptor for hyaluronic 

acid, was also detected in higher concentrations.  Tenocytes under mechanical strain 

increased their concentration of CD44 by 62.5%, with tenocytes exposed to strain having 

an optical density of 26 · 103 ± 2 · 103 compared with 15 · 103 ± 1 · 103 in controls (p<.05, 

n=6).  The total glycosaminoglycan content of the two groups did not differ significantly; 

strained cells produced 10.2 ± 0.6 µg/mL and controls producing 15.3 ± 3 µg/mL 

(p=0.103, n=44). 



We conclude that mechanical strain in tendon fibroblasts is sufficient to induce 

the production of hyaluronic acid and increase the expression of its receptor, CD44.  The 

results of our study suggest that the beneficial effects on tendon adhesion formation seen 

with both mechanical strain and hyaluronic acid may be related in their mechanism. 
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Introduction 

 

 

No subject has created more challenges, interest, or discussion in the field of hand 

surgery than flexor tendon injuries.  Controversies on the proper approach to tendon 

surgery began as early as Galen and Avicenna, and by the 1930s, Bunnell had coined the 

term “No Man’s Land” to describe a portion of the hand in which tendon injuries caused 

particular tribulation.(1) 

 The great difficulty with repairing flexor tendons surgically is the frequent 

creation of fibrotic adhesions between the tendon and surrounding tissues.  These 

accumulations of scar tissue prevent the smooth gliding of the tendons, limiting 

movement and causing debilitating contractures that are the bane of hand surgeons. 

The challenge presented by adhesions has been the focus of many research 

endeavors.  Unfortunately, to date these have met with limited success.  Are they truly a 

“biologic inevitability” as some authors(2) have described them? 

 

Adhesions have long been an obstacle to proper healing after tendon injury or 

repair(3) and have many causes.(4)  They differ in their degree of density, and different 

types of adhesions may be caused by independent regulatory pathways.  This has led to 

attempts by some researchers to develop a standard methodology of measuring adhesion 

biomechanical strength.(5)  Dense adhesions, for example, are characterized not only by 

an increased quantity of collagen than loose adhesions, but also with an increase in the 

ratio of type III to type I collagen and their ratio of cross-linking.(6)  In tendons, 
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fibroblasts from the fibro-osseous sheath have biochemical and cellular differences which 

may enable them to migrate and contribute to their role in adhesion formation.(7) 

Many techniques have been developed to mitigate the development of adhesions 

in tendons including: enveloping the repaired tendons within silicone sheathes(8), fibrin 

glues(9, 10), iontophoresis(11), pulsed electromagnetic fields(12, 13), and thermal 

preconditioning to induce the formation of cytoprotective heat shock proteins(14, 15).  

The results have not translated into successful clinical applications. 

A number of biochemical agents have also been used to thwart the formation of 

adhesions.  Non-steroidal anti-inflammatory agents that inhibit cyclooxygenase (COX) 

and in turn, prostaglandin synthesis, have received some attention.  Indomethacin has 

been shown to be beneficial at reducing adhesions(16-19), and some work shows that 

ibuprofen can also reduce adhesions in both oral(20) and injectable(21) form.  

Conversely, prostaglandins are known to cause or facilitate adhesion formation.(22)  

Corticosteroids(23, 24) and promethazine(25, 26) have also been seen to exert a favorable 

effect.  Some of the benefits to pharmacological anti-inflammatory therapy may be due to 

the decreased edema in tissues.  This is supported by biomechanical animal studies which 

examine the time course of gliding function after injury and reveal a significant 

impediment to gliding within hours of injury, long before adhesion formation can 

occur.(27) 

Intraoperative exposure of repaired tendons to 5-fluorouracil has been shown to 

diminish adhesion formation in rabbit(28, 29) and chicken(30) models, as well as 

reducing the level of TGFβ1 (thought to be involved in the formation of adhesions).(29)  

Later research has shown that this does not decrease the strength of the tendon repair.(31)  
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This may be due to its inhibitory effects on matrix metalloproteinases (particularly mmp2 

and 9).(32)  Aprotinin, another protease inhibitor, has similarly been shown to be 

effective in reducing adhesion formation(33) as has halofuginone, an inhibitor of collagen 

I transcription(34) and Beta-aminopropionitrile (BAPN), an inhibitor of collagen 

maturation.(35)  The effect of these chemicals is to hinder collagen production, a needed 

component for the creation of adhesions.  Collagen itself, when added topically to injured 

tendons, induces the upregulation of collagenase to mediate these effects.(36-38) 

Although some of these have shown promise, the data are usually limited to small 

case series or animal models with clinical trials often yielding disappointing results.  

Despite some indications to the contrary(39, 40), physical barriers to adhesion formation 

such as PTFE have also not proven a useful technique(41-45).  The use of an anti-

adhesive membrane (ADCON-T/N) was evaluated in human flexor tendon repair in a 

prospective double-blind randomized control trial (RCT), and total active motion was 

evaluated at 3, 6, and 12 months after the repair.  Although the length of time taken to 

achieve the final range of motion was shorter in treated patients, the total range of motion 

achieved was not improved.(46)  The failure of ADCON-T/N to prevent adhesions has 

been supported by other researchers.(47) 

As a whole, these studies emphasize that there are a variety of factors which may 

influence the formation of adhesions after tendon surgery.  Along with these biochemical 

signals, mechanical strain also seems to be important for the proper functioning and 

healing of tendons.  The tension-bearing property of tendons is important for the normal 

mechanics of joint motion.  Unfortunately, after surgery tendon motion is limited by pain 

and rupture rates can be high if motion is allowed.  Depending on the particular repair 
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technique and mobilization protocol, the rupture rates of digital flexor tendons range 

from 4%(48) to 46%(49) and 17% for thumbs(50).  On average, the rupture rate 

approaches 10%(48, 50-65), and the rate of “excellent” or “good” results (using 

Strickland’s revised scoring technique, a commonly used tool to evaluate outcomes of 

hand surgery(53)) is often below 75%, although individual results vary considerably. 

Historically, hand immobilization was used to protect flexor tendons after repair.  

This period often lasted three or more weeks, and while effective at minimizing the risk 

of tendon rupture, it had the disadvantage of maximizing the formation of adhesions.  

More recently, a substantial body of literature describing the beneficial role of early hand 

mobilization has been published.  We now know that mobilization is beneficial to the 

smooth gliding of tendons and prevention of adhesions.  And although active 

mobilization can result in rupture(66) or gap formation(67) in animal models, most data 

suggest a positive role.  Overall, animal models using active rehabilitation mobilization 

protocols have been shown to decrease adhesion formation without undue risk of rupture 

when compared to immobilization.(68)  This translates into repairs which are stronger, 

have a more efficient healing process(69) and greater range of motion(70) in the joints 

that they affect. 

The timing of when tendon mobilization is started after surgery is also an 

important factor.  In a study that examined canine flexor tendons after surgical repair, 

immediate mobilization was superior to delayed mobilization in returning range of 

motion (a 50% increase) and dramatically better than immobilized tendons (more than a 

five-fold improvement in angular rotation).(71)  This benefit has been corroborated by 

other studies.(72) 
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There is still some discussion on which protocols maximize the beneficial effects 

of mechanical strain while introducing the least risk of rupture.  It is known that several 

parameters play a role in determining outcome.  The frequency of motion, for example, is 

an important factor, with increased frequency correlated with improved tensile 

strength.(73)  A prospective multi-center RCT was performed to examine the effects of 

daily passive motion and whether increased duration of motion could improve tendon 

gliding after flexor tendon repair.  The authors report that there was a significant benefit 

to increased duration of controlled motion on the range of motion, increasing the angle of 

rotation by 19 degrees.(74) 

This has also translated into clinical research(74-76), and it is now clinically 

accepted practice to apply these protocols to patient care as the most effective method of 

preventing adhesions(4) even in the presence of concurrent digital nerve injuries.(77)  

Previously, it was thought that active mobilization protocols (involving the 

contraction of muscles in continuity with the repaired tendons) would lead to 

unacceptable rupture rates.  Mobilization however, both active and passive, helps tendon 

healing and decreases adhesion formation.  Animal studies have supported a benefit to 

tendon strength and smooth gliding by using controlled passive movement(78) as well as 

active movement.  Prospective trials in humans have shown an advantage in patients who 

have passive(79) and active(57-59) post-operative mobilization.  Although some authors 

report an advantage to active motion(62), at least some data suggest that neither is 

superior to the other.(49)  Active motion can result in higher rupture rates, but an analysis 

of different protocols shows that the risk can be comparable to passive motion if 
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performed judiciously(63) and if the patient avoids imprudent acts which account for half 

of all tendon ruptures.(50) 

Cyclic mechanical loading of tendons to mimic strains encountered during 

mobilization protocols reveals that tenorraphy failure rates may depend on the repair 

technique used.(80)  Indeed, there is an entire body of literature which examines the 

surgical techniques of tendon repair(42) which will not be discussed at length here except 

to say that after tendon injury or repair, there is an increase in the friction of tendon 

gliding which remodels with time.(81)  High friction suture techniques(82) and many 

other factors(83) may centrally contribute to adhesion formation and possibly rupture. 

 

Fibroblasts show a response to mechanical strain in vitro at both a cellular and 

biochemical level.(84)  Tendons in vivo exposed to extracorporeal shock waves after 

injury have been shown to have an increased number of capillaries and decreased 

formation of adhesions, with a correspondingly higher force required to cause 

rupture.(85) 

Cyclical mechanical strain, in particular, seems to be important.  When exposed to 

cyclic mechanical strain, flexor tendons fibroblasts proliferate and align in the direction 

of tension to form a thicker growth layer.(86)  Constant strain,  however, appears to be of 

lesser benefit in healing tendons.(87, 88) 

One question that exists regarding the effect of mechanical strain on healing 

tendons is the degree to which strain actually contributes to the improvements seen with 

active and passive motion rehabilitation protocols.  One theory might argue that only 

motion is important, as the primary mechanism is the mechanical separation of fibrotic 
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bridges which are putative adhesions.  Another view is that the strain is primarily 

important, as the host of growth factors regulated by and affecting strain certainly plays a 

role. 

The question was addressed by a study which examined in vivo chicken flexor 

tendons.  Motion and strain each had an independent roll in generating tensile strength, 

and the combination of the two was greater than either alone.  An increase in collagen 

production, however, was seen only when tendons experienced some type of strain.(89)  

Other studies have shown that the degree of excursion (change in joint angle) is of 

minimal importance in determining the extent of adhesion formation or whether a repair 

will have good range of motion.(90) 

The effect of mechanical strain on the growth factor milieu of tendons is 

paramount.  After tendon injury or repair, a host of growth factors are upregulated.  

Microarray analysis of rat flexor tendons under strain demonstrate an “antifibrotic” 

pattern of gene regulation, with decreased transcription of collagen I and III, FGF, PDGF, 

and IGF1.(91)  IGF has been shown to promote fibroblast growth in culture.(92-94)  In 

contrast, TGFβ1 (which is often associated with increased adhesion formation) was found 

to be upregulated during strain in this study.(91)  The import of this is somewhat unclear. 

The regulation of the TGFβ pathway seems to be particularly important in the 

pathogenesis of fibrosis and formation of adhesions.  It has been shown to be associated 

with adhesion formation, and some studies show that the addition of TGFβ to tenocytes 

in vitro can increase collagen production(95), while neutralizing antibodies to TGFβ can 

decrease collagen production(96).  The role of individual isoforms of TGFβ (TGFB1, 2, 

and 3) are not yet clear.  Most evidence points to TGFβ1 acting to contribute to adhesion 
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formation, and less so for TGFβ2 and 3.  This has been supported by research showing 

decreased adhesion formation in the presence of TGFβ1 blocking antibodies(97) and the 

observation that although TGFβ1 is expressed in healthy tenocytes, the levels rise sharply 

after tendon injury.(98) 

Some research suggests that the site of action of individual growth factors varies 

significantly.  In one study which examined the effect of a tendon injury on growth factor 

regulation at ten days after injury, TGFβ was detected around the repair site and just 

proximal to it, while other factors such as VEGF and PDGF were expressed throughout 

the tendon.  Some growth factors such as EGF, IGF, and bFGF were not seen in 

tenocytes; only in pro-inflammatory cells in the repair site.(99)  This increase in TGFβ 

activation is most pronounced in the tendon sheath and epitenon, peaking within two 

weeks of injury or repair.(100) 

The expression of VEGF in injured tendons suggests that the supply of nutrients 

and oxygen may be an important factor in determining the adhesion forming response of 

healing tendons.  When tendons are examined after repair, progressive changes in the 

microvasculature can be observed.(101)  Revascularization of tendons following injury 

occurs progressively over a 7-21 day window, forming an extrinsic vascular supply.(102)  

In one study, the authors noted a decreasing density and more longitudinal orientation of 

vessels associated with an increasing range of motion after the acute healing phase of the 

first 21 days had passed.(103) 

Other vascular signaling intermediaries have been implicated as well.  Nitric 

oxide synthase (NOS) levels double after an acute tendon injury, and appear to be 

integral to the repair process.  Blocking NOS production creates a persistent, chronic 
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inflammatory response that leads to an increased incidence and severity of 

adhesions.(104)  Lactate can also modulate early wound healing and can stimulate 

collagen production after injury.  Cultured tendon cells exposed to lactate have been 

shown to increase collagen production(105), suggesting that lactate levels may directly 

modulate collagen production during tendon wound healing or repair. 

As newer molecular biology techniques become available, they will advance our 

understanding of the complex growth factor regulation that plays a critical role in the 

biology of adhesion formation and tendon healing.  Adenovirus mediated gene transfer 

appears to be an efficient, dose dependent method of delivering transgenes to flexor 

tendons and at viral concentrations of less than 109, does not appear to engender a 

significant inflammatory response.(106)  Also, antisense oligonucleotides to procollagen 

have been shown effective at reducing collagen production in human tenocytes.(107) 

In sum, many applications for the prevention of adhesions after tendon repair 

have been tried.  Unfortunately, few have met with clinical success.  To understand the 

biological basis of adhesions, a closer look at tendon biology is warranted. 

 

Tendon is specialized connective tissue specifically designed to withstand tension 

and allow the smooth gliding of tissues.  On gross examination, tendons themselves are 

bright white cord or band-like structures that form the structural connections between 

bone and muscle.  Water constitutes approximately 70% of tendon mass(108) with 

collagen I accounting for the majority of the dry mass.  Tendons contain additional 

structural elements, including bone attachment and insertion sites, blood vessels, and a 

dense extracellular matrix.  The primary role of tendons is structural, which is reflected in 
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their decreased metabolic activity.  Oxygen consumption, for example, is 7.5 fold lower 

when compared with skeletal muscles.(109)  This property allows them to function in 

relatively ischemic environments; an important adaptation as tendons are commonly in 

compact anatomical regions with limited tissue perfusion and often under enormous 

tension which would otherwise cause tissue necrosis.  However, the decreased metabolic 

rates also contribute to slower healing after a traumatic insult.(110) 

Although tendons contain some elastin, they are comprised predominantly of 

thick collagen type I fibers and spindle-shaped tenocytes interspersed in a columnar 

fashion among the fibers.  The glycosaminoglycan hyaluronic acid (hyaluronan, 

hyaluronate) is present in small quantities.  External to the collagen fibers is a layer of 

paratenon fibroblasts.  The internal fibroblast may be responsible for the bulk of the 

collagen synthesis, whereas the external cells may provide lubrication for tendon gliding 

during motion.(111) 

At a micro-structural level, tendons are formed by the successive grouping of 

larger and larger bundles of fibers.  At the smallest level, a triple-helix polypeptide chain 

forms “primary bundles” of tropocollagen which are only 15 angstroms in diameter.  

Several small fibers of tropocollagen together form a 35 angstrom microfibril, many of 

which unite to form a subfibril of 100-200 angstroms in width.  Subfibril groups form 

500-5000 angstrom fibrils, and eventually the 50-300 µm fascicles of tendons.(112) 

Each bundle of tendon collagen is covered by an endotenon.  The septa of these 

endotenon form together to constitute an external epitenon that covers the three-

dimensional surface of the tendon.  This is further complemented in the hand by a thin 

adventitia known as the paratenon within a synovial-like fluid environment.(42) 
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This arrangement is coupled by a complex waveform or crimp structure of 

different topographies that forms a dynamic rope-like tendon capable of tremendous 

tensile strength.  Biomechanical analyses, for example, reveal that tendons can withstand 

forces equivalent to thousands of Newtons.(113)  The capacity to produce such a robust, 

complex structure lies in the equally intricate arrangement of cellular subtypes. 

Tendons contain several types of cells.  Tenocytes (or tendon fibroblasts) account 

for 90 to 95% of tendon cells.  Synovial cells, chondrocytes located near osseous 

insertions sites, endothelial cells, smooth muscle cells of arterioles, and immunologic 

cells form the remainder.  Collectively, they are responsible for the formation, 

maintenance and interactions of the extracellular matrix. 

Along with the previously mentioned cellular components, extracellular fluid, and 

collagen and elastin fibers, the extracellular matrix (ECM) contains a fourth component – 

the ground substance.  Ground substance is the portion of the extracellular matrix 

comprised of glycoproteins and proteoglycans – large molecules which are formed by the 

union of a glycosaminoglycan through a trisaccharide link to a protein core.  

Glycosaminoglycans (or GAGs) are synonymous with “mucopolysaccharides” and exist 

independently in the extracellular matrix as the most plentiful heteropolysaccharides in 

the body.  GAGs are formed as long polymers of modified disaccharides and uronic acid.  

Because of their large size (molecular weights in the tens of millions) and predilection for 

absorbing water, glycosaminoglycans often play a structural role in lubrication or 

minimizing mechanical compression. 
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One glycosaminoglycan of particular interest is hyaluronic acid (HA).  

Hyaluronic acid is a high molecular weight glycosaminoglycan first described in 

1934.(114)  It is formed by the repeating disaccharide N-acetylglucosamine and D-

glucuronate.(115)  Because of its high molecular weight, random coiled structure, and 

ability to attract water, hyaluronic acid is hydrodynamic and forms solutions that have 

high viscosity, elasticity, and propensity for filtration.(114) 

Hyaluronic acid is unique in that it is not sulfated and not covalently bonded to a 

protein, though it does complex with other proteoglycans.  It lubricates tendon tissues and 

is thought to play an important role in the early stages of connective tissue healing and 

scarless fetal wound healing.(116-119)  In an experimental model involving fetal lambs, 

tendons which were injured healed with no subcutaneous scaring, no adhesions, and 

regained a smooth gliding surface with well organized collagen architecture, although 

adult sheep controls experienced significant dense scarring and adhesions.(120) 

Interestingly, it has been shown that acellular amnion membrane (which contains 

elevated concentrations of hyaluronic acid(121)) can prevent the adhesion of tendons 

after repair without compromising tendon healing.(122, 123)  In one study, the combined 

effect of amniotic membranes applied in conjunction with hyaluronic acid was examined.  

Although the researchers reported that this was greater than either amniotic membrane or 

hyaluronic acid alone, it did not reach statistical significance.(124)  Other studies, 

however, have shown in animal models that topical amniotic fluid alone applied during 

tendon repair is sufficient to both decrease adhesion formation and improve the tensile 

strength of the repair.(125) 
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In animal models of osteoarthritis, the addition of hyaluronic acid has been shown 

to provide a lubricating effect, decreasing the friction of tissues.(126)  Even in healthy 

joints, the lubricating effect of hyaluronic acid can be seen.(127) 

It has been suggested that the molecular weight of hyaluronic acid plays an 

important role in determining its effect on adhesion formation.(128)  Some investigators 

have attempted to examine whether the molecular weight affects the mechanical friction 

in joints.  In one study, the researchers injected 1% hyaluronic acid of two different 

molecular weights into the joint spaces of rabbits and determined that molecular weight 

did not play a role in determining the lubricating characteristics.(129)  Unfortunately, the 

molecular weights chosen by the researchers were both similar (one and two million 

Daltons) and relatively low.  As a consequence, they may not have been sufficiently 

different to allow for detection of lubricating or signaling potential.  Moreover, it may not 

be the lubricating role of hyaluronic acid that is central to its effects on tendon healing.   

Hyaluronic acid was previously thought to be an inert molecule that provided 

mechanical compression support in connective tissues.  It is now understood that 

hyaluronan is an active ligand that exerts important regulatory and healing effects 

through hyaluronan-binding proteins, also known as hyaladherins.(114)  These 

interactions make hyaluronic acid an important player in regulating cell mobility, 

adhesion, and proliferation; all important cellular functions in tendons.  Hyaluronic acid 

is also present intracellularly and may be incorporated from extracellular stores(130), or 

produced de novo from within the cell(131) where it is thought to influence cell 

proliferation and motility.(114) 
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 CD44, the primary receptor for hyaluronic acid(132), was first cloned in 

1989.(133)  Antibody mediated activation of the CD44 receptor produces an anti-

inflammatory response(134) and organisms which are engineered to eliminate CD44 gene 

expression (-/-) are unable to properly respond to injury.(114)  In addition, hyaluronic 

acid and its primary receptor, CD44, have been implicated as important cell adhesion 

mediators in the pathogenesis of cancer(135). 

Of the many roles hyaluronic acid is thought to have, the most germane to 

tendons is its role as a structural lubricant and metabolite in the regulation of cell 

proliferation and adhesion formation.  Applied topically during flexor tendon repair in 

animal models, hyaluronic acid has been shown to decrease adhesions at the repair site 

and synovial sheath.  In a study involving the flexor tendons in dogs, for example, 

hyaluronic acid was applied topically to the second and fifth flexor tendons which had 

been transected and repaired.  After five weeks of immobilization, the tendons exposed to 

hyaluronic acid had a significant decrease in both gross and histological adhesions.(136)  

This has also been seen in other studies of rabbits.(137) 

After flexor tendon repair, canine tendons exposed to a hyaluronic acid-

containing solution showed reduced excursion resistance.(138, 139)  By decreasing the 

friction and force on the repaired tendon, increased gliding occurs, which decreases 

adhesion formation(140) and the likelihood of rupture. 

Multiple in vitro and in vivo animal studies have supported a role for hyaluronic 

acid at preventing adhesions.(141, 142)  Collagen contents (adhesions) in peri-tendon 

tissues are decreased, smooth gliding is improved(143), and range of motion is 

greater.(144)  Hyaluronic acid has been shown to increase expression of VEGF and 
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collagen IV when applied to healing tendons after repair, both potential anti-adhesive 

mediators.(140) 

Although some studies have not shown hyaluronic acid to decrease adhesion 

formation(145-147), they are in the minority.  During tendon repair in a rabbit model, 

Seprafilm, a bioresorbable membrane containing hyaluronic acid and carboxymethyl 

cellulose, worked as well as hyaluronic acid gel in the prevention of adhesions and 

improvement of range of motion when compared to controls who received no hyaluronic 

acid.(148)  Benefits are also observed for tenolysis of existing adhesions in a chicken 

model(149) and in dogs.(136)  Other preparations of hyaluronic acid such as Healon and 

viscoelastic gel have been shown to be effective at reducing adhesion formation, even 

when injected into zone II flexor tendon repairs in immobilized primates.(150)  The 

addition of a phospholipid lubricant, dipalmitoyl phosphatidylcholine, has also been 

shown to augment the action of hyaluronic acid, decreasing the friction coefficient and 

formation of adhesions in rabbit flexor tendons.(151)   Exogenously applied hyaluronic 

acid has also been shown to inhibit tendon fibroblast proliferation involved in the 

formation of adhesions in rabbit models.(152) 

A potential role for hyaluronic acid to mitigate adhesion formation is of particular 

interest in hand surgery as adhesions can cause significant functional impairment after 

surgical tendon repair.  Hyaluronic acid, although effective at reducing adhesions 

experimentally, has been disappointing clinically.(153, 154) 

One of the challenges of applying hyaluronic acid as a therapy is its rapid 

absorption in the body.  Hyaluronic acid can be degraded within a matter of hours, and 

within 24 hours, significant dilution may take place.  Higher molecular weight 
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preparations and those that contain a higher initial concentration of hyaluronic acid 

experience a slower decline.(155, 156)  This is further supported by evidence showing 

that hyaluronic acid which has been modified to persist longer has a beneficial effect.  

One group of researchers using a chicken model mixed hyaluronate with 

carboxymethylcellulose and prevented the formation of dense adhesions.(157) 

A rabbit study which reported a beneficial effect from hyaluronic acid, decreasing 

adhesion formation from 95% to 45%, also noted that when adhesions did form in the 

presence of hyaluronic acid, they were less severe.(158)  The authors show in a later 

study that improved function may have been a result of increased viscosity of the 

hyaluronic acid preparation.(159)  Using ex vivo canine tendons as a model, a derivatized 

form of hyaluronic acid, which through chemical modification persists longer than native 

hyaluronate, maintained a lower gliding resistance over many repeated cycles of tendon 

movement than hyaluronic acid or saline.(82) 

Clinically, some researchers have reported beneficial results with hyaluronic 

acid(160), but the vast majority have not.(42)  This disparity between the very promising 

in vitro and animal study findings, and the disappointing clinical observations, is an area 

of great interest.  A better understanding of the biology and regulation of hyaluronic acid 

is needed. 

 It has been shown that removing the tensional loading from tendons either 

experimentally or surgically changes matrix characteristics including increases in total 

glycosaminoglycan content.(111)  Conversely, adding motion to repaired tendons has 

been shown to be beneficial to tendon healing, resulting in fewer adhesions, increased 

strength of repair, and more longitudinal alignment of collagen bundles compared with 
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healing tendons without movement.(54, 71)  How tendon cells perceive changes in 

tensional loading, however, is not well understood.(161) 

While the effects of tensional loading on a variety of protein expression products 

in tendon are known(159-168), the effect of mechanical strain on hyaluronic acid 

production and its receptor, CD44, is uncharacterized in tendons.  Do these two important 

mediators of adhesion formation and tendon healing share a common pathway? 

There is some evidence that suggest they might.  In fibrocartilage tissue, 

mechanical strain has been shown to increase hyaluronic acid production and several of 

its upstream mediators.(162)  If tendon fibroblasts react in a similar way, it would support 

the view that the beneficial effects of mechanical strain, the cornerstone of current 

clinical management of tendon healing and adhesion prevention, are acting at least in part 

through hyaluronic acid, arguably the most promising biochemical player in the 

prevention of adhesions.  With a better understanding of the biochemistry of hyaluronic 

acid and mechanical strain, a more elegant solution to the problem of adhesions may one 

day be in hand.  

 

Purpose 

 

The objective of this study was to isolate rat tendon fibroblasts (tenocytes) and to 

investigate the effect of cyclical mechanical strain on matrix component production, 

specifically hyaluronic acid (HA), its receptor (CD44) and total glycosaminoglycan 

(GAG) production. 
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Materials and Methods 

 

Note on individual performance of research tasks: 

All actual labor for the project including, but not limited to, all procedures, cell 

culture work, animal cell and tissue harvesting, all methods and experiments, generation 

of data, analysis of data, production of reagents, design and selection of assay systems, 

use of assay systems including ELISA, western blots, and colormetric dye-binding 

assays, preparation of cell lysates, and antibody utilization were performed personally by 

Richard Crockett.  In addition, Richard Crockett was personally responsible for the use, 

configuration, and repair of the FlexCell unit, as well as the selection, evaluation, 

procurement and price negotiation of all required reagents and materials, budget 

management, and project timeline planning. 

 

Certain elements of the research relied on personnel other than Richard Crockett: 

Training of Richard Crockett in the use of western blot technique and photographic film 

use was performed by Dr. Michael Centrella. 

 

Training of Richard Crockett in surgical dissection techniques for rat tail tendons was 

performed by Dr. J. Grant Thomson. 

 

Training of Richard Crockett in the culture of tenocytes was performed by Dr. Martijn 

van Griensven in Hannover, Germany. 
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Certain elements of the conceptual and pragmatic research plan relied heavily on the 

creative input of personnel other than Richard Crockett: 

Development of laboratory strategies to efficiently obtain data involved discussions with 

Dr. Thomas McCarthy and Dr. Michael Centrella. 

 

Development of strategies involved in design of the strain protocol and overall research 

goals involved discussions with Dr. J. Grant Thomson. 

 

Methods Summary: 

The research involved several stages, which are explained in detail below.  

Briefly, rat tail tendons were surgically dissected and the tendon fibroblasts were 

removed and cultured.  After two passages, these cells were transferred to flexible 

membrane culture dishes and assigned to an experimental or control group.  The 

experimental group was exposed to a cyclical mechanical strain, while the control (or 

static) group was not.  The cells were then analyzed for changes in three targets of 

interest: hyaluronic acid, the receptor for hyaluronic acid (CD44), and total 

glycosaminoglycan content. 

 

Harvest of Tendon Cells:  

The tendon fascicles were harvested from 12 adult Sprague-Dawley rats (Charles 

River Laboratory; Wilmington, MA).  All animal care complied with the IACUC and 

NIH protocols for the care and use of laboratory animals.  The rats were sacrificed with 

an overdose of isofluorane and cervical dislocation.  The tail and hindquarters were 
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immersed in 95% ethanol then thoroughly rinsed in sterile saline.  After transecting the 

tail, the skin was removed and discarded.  The transected tail was transferred to a 150mm 

Petri dish (Corning; Corning, NY) and using sterile technique, tendon fascicles from 

dorsal, ventral, and lateral tendon groups in the anterior two-thirds of the tail were 

removed.  After the paratenon was removed, the tissue was divided into 3-5mm2 samples 

and placed in 60mm Petri dishes (Corning).  For each piece of tissue, a small area of the 

dish was abraded with a number 11 scalpel blade.   The tissue was allowed to partially air 

dry for several minutes in a sterile laminar flow hood in order to increase adherence.  3-

5mL of culture medium was then slowly added.  The culture medium consisted of 

Dulbecco’s modified Eagle’s Medium (DMEM) with Ham’s F-12 (1:1) and L-glutamine 

(Gibco; Grand Island, NY) supplemented with 10% fetal calf serum (Gibco).  

Penicillin/streptomycin species (100 U/mL) was also added to the medium. 

 

Culture of Tendon Cells: 

In a 37°C non-moving 5% CO2 incubator, the tissue was left undisturbed for 2-3 

days.  Tenocytes migrated from the clumps of tendon tissue.  After tenocyte growth 

reached 75-80% confluence, the tendon tissue was removed.  The medium was removed 

by suction and the dish was bathed in 1-2mL 0.25% trypsin with EDTA (Gibco) at 37°C 

for 10 minutes.  The trypsonized cells were placed in a 15 mL Falcon tube to which 

culture medium was added.  The cells were then collected by sedimentation, resuspended 

in culture medium and plated in the culture medium on 25cm2 filter-top culture flasks 

(Nunc; Roskilde, Denmark).  The cells were observed daily under an inverted phase-

contrast microscope (Olympus; Melville, NY).  Medium was changed every other day. 
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When the cells had reached 75-80% confluence, the medium was discarded and 

the cells were freed with trypsin as described above.  Cells were then split and plated 

onto three 80cm2 filter-top culture flasks.  When these cells had reached 75-80% 

confluence, they were plated on Bioflex® plates (Flexcell International; McKeesport, 

PA); culture dishes containing a flexible silastic membrane bottom.  These culture dishes 

contained 6 wells, with each well bottom consisting of a flexible membrane which had 

been previously coated with fibronectin to facilitate fibroblast cell adhesion. 

Cultured cells were plated on the same type of Bioflex plate, irrespective of group 

(strained or static).  Only after the cells had been cultured and were ready for the strain 

protocol were the culture dishes assigned in a random fashion to either the strained or 

static group.  This was done to prevent any selection bias based on cell line.  Cell density 

was determined using a hemocytometer and cells were plated at approximately 10,000 

cells/57.75cm² Bioflex plate. 

 

Strain Protocol: 

The Flexercell® Strain Unit applies cyclic strain to cells cultured to confluence on 

flexible membranes (Flexcell International).  The unit exerts a vacuum pressure on a 

silastic membrane at the bottom of each 6-well plate that has been pre-coated with 

fibronectin.  The unit fits inside a standard CO2 incubator and the duration, frequency, 

and magnitude of stress can be adjusted.  A 5% change in the size of the membrane 

approximates a 2% change in the length of cells on the membranes; similar to the amount 

of elongation collagen experiences under physiologic conditions.(161)  To select an 

appropriate strain regimen, we attempted to mimic active rehabilitation protocols, which 
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involve periods of repeated strain followed by comparatively longer periods of rest and 

recovery.  Previous studies have shown that the magnitude and duration of strain(163), as 

well as the length of the rest between stain periods are important parameters(164), but the 

frequency of strain is less important.(163)  Accordingly, cells were strained at 1 Hz for 

five minutes and allowed to rest for 55 minutes.  This was repeated over the course of 8 

hours, after which the cells were allowed to rest for 24 hours before collection so that any 

translational or post-translational events would have sufficient time to occur.  Both the 

medium and cells were collected for analysis. 

Cultured tenocytes were divided into two groups – an experimental group, which 

was exposed to the mechanical strain regimen, and a control or static group which was 

not exposed to any strain.  Both groups were extracted and cultured in identical 

conditions at the same time and each replicate was derived from an independent cell 

lineage.  During the strain regimen, strain cells which had been cultured on the Bioflex 6-

well plates were placed in the strain unit.  Static cells were placed in the same incubator 

at the same time as the strained cells but were not exposed to any strain. 

 

Hyaluronic acid content 

Hyaluronic acid concentration was measured using an enzyme linked protein 

assay (Corgenix; Westminster, CO).  Using a capture molecule called Hyaluronic Acid 

Binding Protein (HABP) which is bound to horseradish peroxidase (HRP), the assay is 

visualized with a chromogenic substrate and measured in optical density with a 

spectrophotometer.  Because hyaluronic acid is primarily secreted into the extracellular 
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tissue matrix, we compared the concentration in the media from strained cells to that 

found in the media of static cells. 

 

CD44 receptor expression 

Immunolabelling for CD44 was performed using a polyclonal rabbit antibody to 

CD44 (Santa Cruz Biotechnology; Santa Cruz, CA).  After the medium had been 

removed from the Bioflex plates, the cellular layer was collected and homogenized using 

a sonicator.  The homogenate was normalized for total protein content and separated by 

charge to mass ratio using SDS polyacrylamide gel electrophoresis.  The proteins were 

electroblotted onto PolyScreen polyvinylidene difluoride transfer membrane 

(PerkinElmer Life Sciences, Wellesley, MA).  The western blot was then probed using 

primary antibody (as described above) in TBST with milk at 20°C overnight.  The 

secondary antibody was goat, anti-rabbit conjugated to HRP (Santa Cruz) and 

immunocomplex formation was visualized with chemiluminescence and exposure to 

photographic film. 

 

Total glycosaminoglycan (GAG) content 

To measure the amount of glycosaminoglycan (GAG) present in the medium, a 

colormetric assay was used which involves the binding of a dye (dimethyl-methylene 

blue) to GAGs (Biocolor Assays; Newtownabbey, Northern Ireland).  A dye solution 

which includes DMB dye and an inorganic solvent are added to the sample. The dye is in 

excess and binds with GAGs, precipitating out of solution.  After centrifugation, the 

resulting pellet contains the dye-GAG complex, and the supernatant contains unbound 
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DMB dye and solvent.  Resuspension of the pellet in propanol to disassociate the dye 

from the GAGs allows the concentration of solublized dye to be read on a 

spectrophotometer. 

 
 
Data Analysis 
 

An unpaired two-tailed Student’s t-test was used to compare strained and static 

groups.  A value of p < 0.05 was considered significant.  Western blots were optically 

scanned and analyzed using ImageJ (NIH; Bethesda, MD).  
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Results 

 

 During the harvest of the tendon fibroblasts, 12 animals were dissected and the 

tendons were removed.  Two additional animals were used solely for practice of the 

tissue harvest and culture and were not part of the experiment.  Although it was initially 

challenging to separate the tendon from the surrounding tissue (including the paratenon), 

once the technical elements were refined the process became straightforward.  Each 

animal yielded a sufficient quantity of tendon tissue such that each control and 

experimental cell line consisted of tenocytes with a distinct cell lineage from the others.  

These were cultured in parallel, under identical conditions.  One culture developed a 

fungal infection before assignment to either the experimental or control group and was 

discarded. 

 

Hyaluronic Acid Content 

 Since hyaluronic acid is produced by fibroblasts and found primarily in the 

extracellular environment, the medium in which the cells were cultured was analyzed 

quantitatively for hyaluronic acid content.  The removed media were normalized for total 

protein content before analysis.  Using an ELISA assay, 44 medium samples (22 

experimental, 22 control) were analyzed.  The medium of tenocytes which had 

experienced cyclical mechanical strain had a greater concentration of hyaluronic acid 

(1528 ± 58 ng/mL (mean ± SEM)) compared with the medium of tenocytes that had not 

been subject to strain (730 ± 27 ng/mL).  This constitutes nearly a two fold increase in 

hyaluronic acid content (p <.0001).  (See Table 1). 



26 

Table 1 

 
 

    Assay   
Group Hyaluronic Acid CD44 Receptor Glycosaminoglycans
 ng/mL O.D. µg/mL 
Strained 1528 +/- 58 25525 +/- 2461 10.2 +/- 0.6 
Static 793 +/- 27 15454 +/- 1443 15.3 +/- 3.0 
    
p value < .0001 0.024 0.103 

 
Comparisons between strained and static cells for hyaluronic acid, CD44, and 
glycosaminoglycan content.  Values are mean ± standard error of the mean. 

 

CD44 receptor expression 

 Hyaluronic acid as a signaling molecule acts primarily through its receptor, 

CD44.  To assess whether there were changes in the population of the CD44 receptor, the 

cell membranes of the tenocytes were analyzed for the presence of CD44.  To allow for 

the transcription and membrane translocation of the receptors, a delay of 24 hours 

between the end of the mechanical strain regimen and collection was instituted.  Using a 

western blot analysis, 6 (3 experimental, 3 control) cellular homogenate samples from 

independent cell lineages were analyzed for expression of CD44.  (See figure 1).  

Tenocytes under mechanical strain increased their concentration of CD44 by 62.5%, with 

tenocytes exposed to strain having an optical density of 26 · 103 ± 2 · 103 compared with 

15 · 103 ± 1 · 103 in controls (p<.05).  (See table 1). 
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Figure 1  
 

 
   Strain1   Strain2   Strain3   Static1  Static2  Static3 

 
Inset of western blot for CD44.  Lanes 1 through 3 represent the increased 
signal in experimental cells exposed to cyclic strain compared to control lanes 
4 through 6 which shows CD44 production in static cells. 

 

 

Total glycosaminoglycan content 

 The total amount of glycosaminoglycan produced by tenocytes in both the 

strained and static groups was measured to examine what effect mechanical strain had on 

the production of these structural polysaccharides.  Using a commercially available 

colormetric dye-binding assay, 44 medium samples (22 experimental, 22 control) were 

analyzed for content of glycosaminoglycans.  No significant differences were detected in 

glycosaminoglycan content between the media of tenocytes which had been cyclically 

strained versus cells which were not, with strained cells producing 10.2 ± 0.6 µg/mL and 

controls producing 15.3 ± 3.0 µg/mL (p = 0.103).  (See Table 1). 
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Discussion 

 

Proper tendon healing after repair requires a balance between appropriate fibrous 

connective tissue formation to provide tensile strength and the formation of excessive 

scar tissue, fibrosis, which impedes the smooth gliding of structures and leads to 

adhesions and impairment of function.  Mechanical strain has been shown important in 

this collagen production and the linear organization of collagen fibrils(54).  Its role both 

in animal models and clinical settings is widely accepted.  The active rehabilitation 

protocols used for hand surgery patients currently employed are designed to tread 

between these two extremes: too little activity or strain can result in the formation of 

adhesions, while excessive strain can result in rupture at the site of tenorraphy. 

Understanding the effects of mechanical strain on tendon fibroblasts is important 

in finding adjunct medical therapies which would mitigate fibrosis and adhesion 

formation without weakening tendon repair.  One such candidate is hyaluronic acid—a 

high molecular weight polysaccharide found throughout the body that provides 

lubrication in joints and the smooth gliding of tendons.  More recently, research has 

shown that in addition to its structural and lubricating role, hyaluronic acid as an 

important signaling molecule for cell motility, adhesion, and proliferation. 

Hyaluronic acid has been shown to be beneficial in preventing or decreasing 

adhesions in animal models including chicken(142, 144, 149), rabbit(137, 143, 148, 152, 

158), canine(136), horse(141), and primate.(150)  Unfortunately, this success in animal 

models has not translated into clinical applications.(42, 153, 154)  This disappointing gap 

suggests that a closer look at hyaluronic acid may be warranted. 
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Our study examined whether mechanical stress might directly influence 

hyaluronic acid regulation.  The model we chose was one in which rat tail tenocytes were 

exposed to cyclic strain in vitro.  One question that this raises is whether this is a valid 

model for examining the effects on tendon fibroblasts. 

Dissociated cells and tendon explants do appear to be good models for examining 

the effects of mechanical strain on tenocytes.  Dissociated tenocytes bond well to 

fibronectin as demonstrated in biomaterial studies which examine adhesion strength.(165) 

Tendon explants and dissociated fibroblasts grown in culture retain their ability to 

respond to mechanical stress.(111, 161, 166-171)  Moreover, the effects seen correlate 

well with the effects of mechanical strain seen in vivo.(172-176) 

Part of the difficulty in teasing apart the role of hyaluronic acid is that it seems to 

behave differently based on its molecular weight, concentration, and the presence of other 

growth factors.  In fact, despite evidence that hyaluronic acid is a key molecule in tissue 

healing, cell migration, and adhesion formation, we know little about how it is regulated. 

 Probably the most important regulator of hyaluronic acid is hyaluronic acid 

synthase (HAS), particularly the second isoform, Has2(177, 178).  In a study that 

examined wound healing with cell lines that expressed sense and anti-sense Has2, the 

increased cell migration and faster healing seen with sense Has2 was absent in cells 

expressing anti-sense Has2.  The anti-sense Has2 cells were also associated with an 

increase in adhesive plaques.  Exogenous hyaluronate was not able to overcome the 

deficiency, suggesting that activation of Has2, more than the quantity of hyaluronic acid, 

is the key determiner of how adhesions are formed and regulated by the hyaluronan 

pathway.(179) 
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This raises the question: if hyaluronic acid is beneficial to tendon healing, would 

inhibiting the enzymes which degrade it (hyaluronidases) be beneficial as well?  The 

answer in tendons has not been explored.  In intra-peritoneal adhesions however, where 

some data suggest that hyaluronic acid is helpful in reducing the adhesion 

formation(180),  the effect has been examined(181, 182) and some researchers have seen 

a benefit.(183) 

In sum, it seems that hyaluronic acid has more than one role as a signaling 

molecule.  At a molecular level, hyaluronidase can suppress the rapid interactions that 

occur early in cell adhesion formation.  When a small amount of hyaluronic acid exists, it 

can serve to facilitate cell-matrix adhesion, whereas excess hyaluronic acid strongly 

inhibits cell adhesion.(184)  Thus, it seems that hyaluronic acid may help to allow cells to 

interact, move and bind together, while at the same time, larger amounts may help 

prevent adhesion formation. 

  This study showed a significant increase in both hyaluronic acid and its receptor 

(CD44) when tenocytes were exposed to cyclical mechanical strain in vitro.  Our study is 

the first to examine the effects of mechanical strain on the regulation of hyaluronic acid 

in tendons.  It is clear from our study that mechanical strain, which is an integral part of 

the repair process, plays a role in the regulation of tendon fibroblast hyaluronic acid 

production.  How that translates into adhesion formation still needs to be explored, 

however. 

When we examined the total glycosaminoglycan content, it was not found to be 

significantly altered by mechanical strain, though other investigators have shown 

previously that many stimuli including in vitro culture alone can alter total and sulphated 
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GAG content(111).  The increase in hyaluronic acid, but not total glycosaminoglycan 

content, may reflect the preferential effect of mechanical strain on the hyaluronan 

pathway.  Another possibility is that we did not observe any change in 

glycosaminoglycan content in response to mechanical strain because of limitations of the 

assay, which performed poorly even during calibration of standards.  Additionally, the 

assay we performed examined the presence of glycosaminoglycans in the supernatant.  

The predominance of glycosaminoglycans may have been intimately associated with the 

cell membranes and not readily present in the supernatant. 

Hyaluronic acid is a promising target for mitigating adhesion formation.  

Unfortunately, the clinical applications to date related to post-operative tendon repair 

have been disappointing(153, 154).  In addition to the complexities of its regulation and 

mechanisms of action, use of hyaluronic acid has been challenged by its rapid catabolism 

and dilution in the body. 

Newer, derivatized formulations of HA show longer persistence and less friction 

in tendons after repair(185) and have been used for a variety of purposes(186) from 

coating metallic artificial joints(187) to forming biologically compatible hydrogels.(188)  

Other researchers have created cross-linked hyaluronic acid films which contain DNA 

encoding hyaluronan synthase 2 (HAS2).  The goal of these biofilms is to provide a 

physical barrier while at the same time delivering hyaluronan and upregulating HAS.  

The films are subject to the same catabolism by hyaluronidases as native hyaluronic acid, 

and as such subject to breakdown, but cross-linked hyaluronic acid-collagen sheets which 

are resistant to hyaluronidase over several weeks have been developed.(189)  Hopefully, 

these promising discoveries will translate into viable clinical applications. 
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The future role of hyaluronic acid as an adjunct medical therapy to prevent the 

formation of adhesions after tendon surgery is unclear.  The current challenges in 

understanding how hyaluronic acid fits into the larger process of wound healing are 

interesting avenues of research, however, and as the details of its regulation and 

mechanisms of action are revealed, perhaps a clearer path to preventing tendon adhesions 

will be as well.
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