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ENVIRONMENTAL RISK FACTORS FOR BRONCHOPULMONARY DYSPLASIA 
(BPD). Jessica Berger, Paulomi Mehta, Emily Bucholz, James Dziura, and Vineet 
Bhandari. Section of Neonatology, Department of Pediatrics, Yale University, School of 
Medicine, New Haven, CT. 
 
 
We hypothesized that early intubation would decrease the hazard of BPD and BPD/death 

in premature infants regardless of need for reintubation. Specific aims included assessing 

rates of BPD and BPD/death in infants first extubated between day of life (DOL)1-3 

versus 4-7, 8+ and impact of re-intubation. We included infants with gestational age 

≤28weeks, birth weight ≤1000g, and intubation on DOL1. Proportional hazards 

regression modeled time to BPD and BPD/death, adjusting for potential confounders. Of 

262 infants, 101 (38.55%), 41 (15.65%) and 120 (45.80%) were extubated between 

DOL1-3, 4-7, and 8+, respectively. Extubation between DOL4-7 versus DOL1-3 was 

associated with an increased hazard of developing BPD (HR 1.7; 95%CI 1.0-2.8; 

p<0.05). Extubation on DOL 8+ was associated with a significantly increased hazard 

compared to extubation between DOL1-3 (16.9; 10.5-27.1; <0.0001) or DOL4-7 (10.0; 

6.1-16.3; < 0.0001).  Similar results were noted with BPD/death.  Re-intubation did not 

affect BPD and BPD/death. Delaying extubation beyond the first 3 and 7 days was 

associated with an increased risk of BPD and BPD/death.  Re-intubation did not impact 

outcomes.
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INTRODUCTION 

Disease Overview 

Bronchopulmonary dysplasia (BPD) is one of the most common co-morbidities of 

premature birth. In 1967, William H. Northway, Jr. published the earliest known 

description of BPD, a “chronic pulmonary syndrome” which he believed to be a 

consequence of therapy for neonatal respiratory distress syndrome (RDS). Northway 

characterized BPD by the radiographic and histopathologic changes occurring in the 

neonatal lungs after a period of rigorous invasive mechanical ventilation and high-

concentration supplemental oxygen. In a retrospective and post-mortem (when 

applicable) study of 32 premature infants, Northway observed that those treated with 

prolonged invasive ventilation and supplemental oxygen therapy had difficulty breathing 

in room air when weaned from the ventilator. In those infants with evolving chronic lung 

disease, the lungs appeared bullous on chest x-ray. The radiographic appearance was 

reflected pathologically as well, with areas of bullous emphysema surrounded by areas of 

atelectasis. Histologically, there was also evidence of a thickened, fibrotic basement 

membrane and bronchial smooth muscle hypertrophy. Clinically, many of the infants also 

had concurrent pulmonary hypertension and cor pulmonale 1.  

 Since Northway’s initial characterization of BPD, scientists and clinicians have 

gathered a wealth of knowledge about the disease using animal models, retrospective 

clinical analysis, and randomized clinical trials. From a basic science perspective, these 

studies have broadened our understanding of the disease’s etiology and pathogenesis. 

Recent histologic investigation has offered a “new” pathologic definition of BPD. “New” 

BPD is characterized by decreased alveolar septation and irregular development of the 
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pulmonary microvasculature rather than pulmonary fibrosis 2,3. In addition, “new” BPD 

does not always evolve from RDS 4. 

Clinical criteria for diagnosis have also evolved over time. Prior to 2001, BPD 

was diagnosed only by a need for supplemental oxygen at 36 weeks’ post-menstrual age 

(PMA). In 2001, a collaborative effort by the National Institute of Child Health and 

Human Development, the National Heart, Lung, and Blood Institute, and the Office of 

Rare Diseases yielded a set of new diagnostic criteria, known colloquially as the NIH 

Consensus Definition. The NIH Consensus Definition categorizes BPD by severity using 

a scale based on the number of days of supplemental oxygen use, as well as oxygen and 

positive pressure ventilation requirements at 36 weeks’ PMA. Any diagnosis of BPD 

requires a minimum of 28 days of supplemental oxygen use. Infants with mild BPD no 

longer require supplemental oxygen at 36 weeks’ PMA or time of discharge, whereas 

infants with moderate and severe disease require a fraction of inspired oxygen (FiO2) < 

30% or FiO2 > 30% supplemental oxygen, respectively. A diagnosis of moderate or 

severe disease may be made if an infant requires positive pressure ventilation at 36 

weeks’ PMA even if FiO2 requirements are not met 2. Walsh et al proposed a 

“physiologic definition of BPD” based on FiO2 and oxygen saturations during an oxygen 

reduction test at 36 weeks’ PMA in order to reduce discrepancies in diagnosis between 

physicians 5. 

Disease Epidemiology 

Previous studies have estimated rates of BPD between 22% and 68% of pre-term 

neonates 6,7. This variability in incidence may be attributed to the range of gestational age 

(GA) and birth weight (BW) of the study populations and the use of differing definitions 
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of BPD. Of note, the 2001 definition includes babies who would not have been diagnosed 

with BPD using earlier criteria. Consistently lower rates of BPD were seen across centers 

that used the physiologic definition of BPD 8. Lower BW and/or lower GA are correlated 

with an increased incidence of BPD 6,7, with 97% of BPD diagnoses occurring in infants 

weighing < 1250 g at birth 9.  

Management of BPD 

Inherent to the definition of BPD is the prolonged use of positive pressure 

ventilation and supplemental oxygen. Conventional mechanical ventilation and high-

frequency oscillatory ventilation are two modalities frequently used to support infants 

with BPD. Guidelines based on ventilator settings and arterial blood gases dictate when 

an infant may be extubated. In some severe cases, infants fail several attempts at 

extubation due to severity of disease or anatomical reasons, which may result in a 

tracheotomy for long-term respiratory support. Supplemental oxygen therapy aims to 

achieve an appropriate balance between hypoxia and hyperoxia, both of which may be 

detrimental 10. To date, there remains a paucity of evidence as to what oxygen saturation 

range is optimal, though > 90% and < 95% are commonly-used thresholds 3,10. Some 

infants may be discharged from the hospital with supplemental oxygen by nasal cannula 

for ongoing support, growth and development 10.  

In addition to supplemental oxygen and assisted ventilation, there are many 

therapies used to mitigate the effects of BPD. Post-natal steroids are often used to 

facilitate extubation, particularly in infants who have been invasively ventilated for long 

periods or who have had repeated extubation failures. In previous studies, dexamethasone 

worked well for this purpose. Steroid use has been associated with poor long-term 
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neurocognitive outcomes 3. Diuretics are commonly used to reduce pulmonary edema, a 

frequent occurrence in infants with BPD. Data are mixed as to the appropriate classes of 

diuretics that should be used and their long-term efficacy, but one meta-analysis has 

shown a short course of a thiazide diuretic combined with spironolactone to reduce 

mortality and aid with lung compliance 11. Concurrent pulmonary hypertension may 

require pulmonary vasodilators such as inhaled nitric oxide or sildenafil 10. 

Long-Term Morbidity 

Prevention of BPD has substantial implications for reducing health care 

expenditures and long-term morbidity of premature infants. 

Health care costs: Many of the comorbidities commonly linked to preterm birth are 

associated with increases in health care costs. High costs in the setting of BPD are 

primarily a consequence of prolonged respiratory support and increased length of 

intensive care unit stays 12.  

Respiratory sequelae: Long-term respiratory sequelae of BPD may persist into childhood 

and even adulthood. One analysis of infants with BPD demonstrated 50% and 36% rates 

of re-hospitalization in the first and second years of life, respectively. Further, infants 

with BPD were at increased risk for pulmonary infections and reactive airway disease 13. 

Analyses of long-term respiratory outcomes suggest that subjective respiratory symptoms 

such as cough and wheeze continue well into adulthood 14,15. The EPICure study showed 

an association between extreme prematurity and reduced lung function by the age of 11. 

The study demonstrated an even greater reduction in lung function for children with a 

history of BPD 16.  
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Neurocognitive outcomes: Short et al. showed neurocognitive deficits on validated 

assessments in 8-year olds with BPD. Increased severity of BPD was correlated with 

poorer neurocognitive outcomes. It was also observed that Attention Deficit-

Hyperactivity Disorder was more common in the BPD group than control groups. Use of 

post-natal steroids as part of therapy for BPD was also associated with poorer outcomes 

17,18.  

Disease Etiology and Pathogenesis 

Studies done in animal models and in human subjects have shown that the 

etiology of BPD is multi-factorial.  

Genetic susceptibility: Previous studies have discovered a genetic component to the 

etiology of BPD. A detailed discussion of these studies and techniques used to elucidate 

genes of interest can be found in Chapter 2. 

Antenatal Factors: There is also evidence that environmental factors play a role in BPD 

pathogenesis. Intrauterine infection, or chorioamnionitis, has been associated with the 

development of BPD. Intra-amniotic infection drives pro-inflammatory changes 

including increased cytokine concentrations that may predispose infants to prematurity as 

well as impaired lung maturation 4. Ureaplasma urealyticum is a frequently-studied 

bacterium associated with BPD 19. 

Postnatal Factors: Though invasive ventilation and supplemental oxygen are mainstays 

in the early management of preterm neonates, paradoxically, prolonged exposure to these 

therapies is a known cause of BPD. Invasive mechanical ventilation damages lung tissue 

by several mechanisms. Mechanical stretch from over-inflation, atelectasis from low tidal 

volumes, and predisposition to infection from foreign body colonization contribute to 



10	  

	  

excess inflammation in the developing lungs. Inflammation and the subsequent tissue 

remodeling ultimately lead to a disruption of normal lung architecture 13,20. Prolonged 

exposure to hyperoxic conditions may damage lung tissue through free radical formation 

13. 

Minimizing Invasive Ventilation 

Given the known impact of prolonged ventilation on the incidence of BPD, 

reduction of ventilator trauma early in post-natal life remains an important subject for 

inquiry. Two large trials, the Continuous Positive Airway Pressure or Intubation at Birth 

(COIN) Trial and the Surfactant, Positive Pressure, and Oxygenation Randomed 

(SUPPORT) Trial, investigated the incidence of BPD or death in infants randomized 

shortly after birth to either nasal continuous positive airway pressure (NCPAP) or 

endotracheal intubation. The investigators of the COIN Trial found that infants 

randomized at five minutes of life to CPAP had significantly lower rates of death or 

oxygen use by day of life (DOL) 28 and spent fewer days on the ventilator overall. 

However, there was no significant difference in the rates of BPD or death between the 

CPAP group and the intubation group at 36 weeks’ PMA. Nearly half (46%) of infants in 

the CPAP group required intubation by DOL 5. Additionally, infants initially receiving 

CPAP had higher rates of pneumothorax 21. The SUPPORT Trial randomized infants to 

NCPAP or intubation with surfactant administration by one hour of life. There was no 

significant difference in the primary outcome of BPD or death at 36 weeks’ PMA. When 

stratified by gestational age, post-hoc analysis did reveal a significant reduction in BPD 

or death at 36 weeks’ GA for infants born between 24 weeks 0 days and 25 weeks 6 days. 
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The CPAP group also had lower rates of death and intubation by DOL 7 and fewer days 

of ventilation overall 22.  

Many premature infants are too critically ill at birth for NCPAP to be a viable 

option. For those infants, reducing the number of days spent invasively ventilated is 

crucial to preventing or minimizing adverse outcomes. In a study of infants < 1500 g 

invasively ventilated up to DOL 7, DOL 14, and beyond DOL 15, Gonzaga et al. 

demonstrated that the hazard of developing BPD is correlated directly with prolonged 

invasive ventilation 23. Though invasive ventilation beyond week one has been associated 

with development of BPD, few investigators have studied the impact of ventilator use at 

different points during the first week of life.  

One such study, by Dumpa et al., demonstrated that predominant use of non-

invasive forms of ventilation (NCPAP or non-invasive intermittent positive pressure 

ventilation (NIPPV)) during the first week of life significantly reduced the incidence of 

BPD compared to endotracheal intubation. In addition, this study showed that babies 

extubated to NIPPV by DOL 7 were at a reduced risk of BPD or death compared to 

babies who remained invasively ventilated through the end of the first week of life. The 

sample size was not adequate, however, to study the effect of reintubation on BPD 24. 

Concerns about potential reintubation continue to play a major role in the decision to 

extubate despite a lack of evidence directly linking reintubation with poor long-term 

outcomes 25.  
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STATEMENT OF PURPOSE/ SPECIFIC AIMS 

Based on the existing literature and clinical experience, we predicted that early 

extubation would reduce the incidence of BPD. Given that many early attempts at 

extubation fail, we also examined whether neonates who fail early extubation and need to 

be reintubated would still have a decreased incidence of BPD as compared to babies 

successfully extubated later in life. 

To explore these hypotheses, we aim to: 

(1) Identify infants at the greatest risk of developing BPD who were hospitalized at 

Yale-New Haven Children’s Hospital between January 2006 and December 2011. 

(2) Collect retrospective clinical data about these infants, particularly with respect to 

mechanical ventilation and DOL of extubation. 

(3) Use clinically accepted criteria to group infants by outcomes of BPD, no BPD, or 

death. 

(4) Use appropriate statistical methods to assess for statistical differences in the 

hazard of BPD or death across study groups. 
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METHODS 

Patient Population 

Retrospective clinical data were collected on all infants hospitalized in the Yale-

New Haven Children’s Hospital Neonatal Intensive Care Unit (NICU) between January 

1, 2006 and December 31, 2012. Criteria for inclusion were all of the following: GA ≤ 28 

weeks, BW ≤ 1000 g, and intubation on DOL 1. Infants who died on DOL 1, lacked any 

attempts at extubation, or were born with significant congenital cardiopulmonary 

anomalies were excluded. If a pair of twins met the inclusion criteria, one infant from the 

pair was randomly included to preserve the independence of study subjects for analysis 

and to avoid inclusion bias by birth order. Outcomes for the study included diagnosis of 

BPD, as defined by NIH consensus,2 and a composite outcome of BPD or death from any 

cause prior to 36 weeks’ PMA. 

Data collection 

Data were collected from the Yale NICU database and supplemented with the 

electronic medical record. The study was approved by Yale University’s Human 

Investigation Committee. 

Demographic data included maternal, fetal, perinatal, and neonatal variables. 

Maternal data included race, prenatal care, and antenatal steroid administration. As in 

previous studies, antenatal steroids were only recorded if given at least 12 hours prior to 

delivery 24. Fetal variables included multiple gestation, gender, GA, and BW. Perinatal 

variables were collected on mode of delivery, APGAR scores at 1 and 5 minutes post-

partum, delivery room resuscitation details including use of supplemental oxygen (O2), 

bag and mask ventilation (BMV), ETT intubation, chest compressions, and/or 
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epinephrine, and diagnosis of respiratory distress syndrome (RDS) documented by 

clinical and radiographic findings. Use of NCPAP prior to ETT intubation was also 

documented.  

 Neonatal variables included surfactant use either at delivery or at any point during 

hospitalization and data on common co-morbidities and treatment where applicable. 

These included retinopathy of prematurity (ROP), intra-ventricular hemorrhage (IVH), 

sepsis documented by positive blood culture, necrotizing enterocolitis (NEC), patent 

ductus arteriosus (PDA) and treatment with indomethacin, ibuprofen, and/or ligation, 

gastrointestinal perforation, periventricular leukomalacia (PVL), and pneumothorax or 

pneumomediastinum documented by chest radiograph. Post-natal steroid use was also 

recorded.  

 Definitions of neonatal comorbidities used were previously outlined by our 

research group 24. ROP stage was assigned using the international classification scheme 

26. IVH was staged using the system described by Papile 27. Cases of NEC satisfying 

stage II or greater by Bell’s criteria were included 28. Diagnosis of PDA was confirmed 

by echocardiography. PVL was identified by observation of echogenicity and cystic 

lesions in the periventricular white matter on cerebral ultrasound 29.  

During the study period, there were standard guidelines in place in our NICU for 

delivery room (DR) management, intubation, surfactant administration, extubation, non-

invasive ventilation support, re-intubation and postnatal steroid use.  In brief, our 

approach after initial stabilization in the DR was to support neonates on NCPAP, to a 

maximum 6 cmH2O, in the NICU. If requiring ≥0.35 FiO2, infants were intubated and 

surfactant administered, if indicated for those with RDS (based on clinical/radiographic 
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criteria) 30. All infants were started on caffeine, prior to any extubation attempt, usually 

within the first 24h of life, and continued till they were off respiratory support.  Infants 

were weaned on the ventilator settings and extubated to NIPPV, as per standard practice 

in our NICU, based our published guidelines 31. Specific instructions were in place in our 

NICU for NIPPV use, and specific criteria were used for re-intubation, if required 31. Use 

of postnatal steroids was mostly restricted to a 5-day course of dexamethasone to 

facilitate extubation, utilized after 4 weeks of postnatal life.  As the infants improved, as 

per our published guidelines, they were weaned off NIPPV, to NCPAP and then nasal 

cannula 31. All infants underwent an oxygen-reduction test at 36 weeks PMA to assess the 

presence and/or severity of BPD.          

Variables concerning the infant’s postnatal course were collected from medical 

and respiratory therapy records, such as DOL of first attempted extubation, need for 

reintubation, DOL of all subsequent extubation and reintubation attempts, number of 

days on each ventilator modality, number of days receiving supplemental O2, and length 

of stay in the NICU. Supplemental O2 was defined as FiO2 > 0.21.  

 Infants were divided into three study groups by DOL of first attempted 

extubation: DOL 1-3, DOL 4-7, and DOL 8+. These groupings were based on those 

previously studied by Dumpa et al 24. Extubation attempts were defined as purposeful 

attempts to remove the ETT. We included accidental extubation only if a decision not to 

replace the ETT was documented. Reintubation was defined as non-elective replacement 

of ETT at any time after extubation. Reintubation for elective or semi-elective surgical 

procedures such as ROP laser surgery, hernia repair, or bowel re-anastomosis were not 

included, as the majority of these cases occurred after 36 weeks’ PMA. Additionally, 
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elective reintubation has not been shown to affect respiratory outcomes in infants 

previously diagnosed with BPD 32. 

Statistical Analyses 

Baseline maternal, fetal, perinatal, and neonatal characteristics were compared 

across our three study groups using chi-squared tests or Fisher’s exact test, where 

appropriate, for categorical variables and one-way ANOVA for continuous variables. We 

used chi-squared tests or Fisher’s exact test to compare crude rate of BPD/death between 

the three groups. We used these same tests to compare crude rates of BPD/death based on 

DOL of extubation and need for reintubation, as well as the breakdown of BPD severity 

by extubation group. 

We used Kaplan-Meier curves to model the unadjusted probability of survival 

without BPD/death between the DOL of first extubation and 36 weeks’ PMA. We set 

time “0” at DOL of first extubation, which varied by infant, and modeled the time course 

from extubation to an outcome (“BPD,” “no BPD,” or “death”). For infants hospitalized 

at our institution through 36 weeks PMA, data collection was discontinued at 36 weeks’ 

PMA and outcomes were assessed at that time. An outcome of “death” was assigned at 

the DOL that the event occurred prior to 36 weeks’ PMA. The log-rank test was used to 

compare the probability between the three groups of disease-free survival as a function of 

time from DOL of first extubation to an outcome of BPD/death. 

In a minority of cases, infants were discharged from the NICU either to home or 

to another institution prior to 36 weeks’ PMA (N = 31). If at time of discharge prior to 36 

weeks’ PMA the infant had already received ≥ 28 days of supplemental oxygen, an 

outcome of BPD was assigned at the DOL equivalent to 36 weeks’ PMA (N=15). Sixteen 
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infants who were discharged or transferred prior to 36 weeks’ PMA had not received at 

least 28 days of supplemental oxygen by time of discharge. Three of these infants were 

discharged to home because the infant was deemed healthy enough for discharge; the 

likelihood of a subsequent BPD diagnosis was miniscule and these infants were 

designated as “no BPD.” For the 13 infants transferred to outside institutions prior to 36 

weeks PMA, we used clinical judgment, including DOL of transfer, and status at time of 

transfer, including cumulative days of O2 therapy, ventilator modality, and FiO2 at time 

of transfer to assign the most probable outcome at 36 weeks’ PMA. Based on clinical 

judgment, we assumed that their clinical course at another institution would categorize 

eight as “no BPD” and five as “BPD.” To assess for potential bias based on transfer of 

infants and use of clinical judgment to designate outcomes for a minority of subjects, we 

also performed the proportional hazards analyses discussed below with these 13 infants 

omitted. 

Cox proportional hazards models were used to calculate the unadjusted hazard of 

developing one of the primary outcomes based on DOL of extubation. Cox proportional 

hazards regression was used to model the hazard of developing BPD and BPD or death 

by adjusting for potential confounders and known contributors to BPD and/or death. 

Covariates were selected a priori using a combination of clinical judgment and statistical 

testing. They included antenatal steroid use, race, gender, multiple gestation, GA, 

APGAR at 5 minutes, mode of delivery, delivery room resuscitation efforts, RDS, 

surfactant use, ROP, IVH, NEC, sepsis, PDA, bowel perforation, PVL, pneumothorax, 

pneumomediastinum, and need for reintubation. Variables inherent to the definitions of 

the study groups or the definitions of BPD, such as days intubated, days on supplemental 
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O2, or post-natal steroid use, were excluded. Given the degree of correlation between GA 

and BW, we compared models fit with each variable using Akaike Information Criterion 

(AIC) values and concluded that GA produced a better-fit model than BW, though both 

models produced similar estimates. To evaluate whether reintubation modified the 

association between DOL at extubation and development of BPD or death, we included 

interaction terms between extubation DOL and reintubation in our model.  

Data are shown as hazard ratios (HRs) with 95% confidence intervals (CI). A p-

value of 0.05 was used to determine statistical significance. 

 For analysis of patient demographics and rates of reintubation, we used GraphPad 

PRISM software, Version 6.0a (GraphPad Software Inc., San Diego, CA). For Kaplan-

Meier analysis and proportional hazards modeling, we used SAS software, Version 9.3 

for Windows (SAS Institute Inc., Cary, NC). For Kaplan-Meier analysis, we used the 

lifetest procedure. For unadjusted and adjusted proportional hazards modeling, we used 

the phreg procedure. To study the interaction of extubation DOL and reintubation, we 

used the phreg procedure with customized contrast statements.  

Division of Efforts 

The student was responsible for selection of study subjects, data collection and 

analysis of data. Statistical advice was provided by James Dziura, PhD (Yale Center for 

Analytical Sciences) and Emily Bucholz, MPH/PhD candidate (Yale School of Public 

Health). Our statistical advisors offered advice regarding which procedures to use and 

how to develop the initial code for the SAS software. The student then used the code 

provided to analyze the data and apply changes to the code when necessary.  
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RESULTS 

Patient Categories 

After applying inclusion and exclusion criteria, the final cohort included 262 

infants (Supplemental Fig. 1). Of these, 101 (38.5%) were extubated between DOL 1-3, 

41 (15.6%) were extubated between DOL 4-7, and 120 (45.8%) were extubated DOL 8+.  

Patient Characteristics 

Table 1 shows the characteristics of the sample by DOL at extubation.  There 

were no significant differences in maternal variables. Multiple gestation and RDS were 

significantly more common in the late extubation group. The babies who were extubated 

earlier tended to be older and heavier, with higher APGAR scores at 5 minutes. 

Comorbidities including IVH, ROP, and PDA occurred with greater frequency in the late 

extubation group. Infants who were extubated later were significantly more likely to have 

received postnatal steroids. Additionally, infants who were extubated later had longer 

hospital stays. 

 Unadjusted rates of BPD and BPD or death increased with duration of initial 

intubation (Table 2A). Forty-seven (46.5%) babies extubated between DOL 1-3, 31 

(75.6%) babies extubated between DOL 4-7, and 112 (93.3%) babies extubated DOL 8+ 

were diagnosed with BPD, respectively. Additionally, 11 infants extubated between DOL 

1-3, 1 infant extubated between DOL 4-7, and 4 infants extubated DOL 8+ died prior to 

36 weeks’ PMA.  

Rates of reintubation did not differ significantly between the three groups (Table 

2A). Unadjusted rates of BPD and BPD or death were higher among reintubated infants 

in the DOL 1-3 and DOL 4-7 study groups compared to non-reintubated infants (Table 
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2B), but this only achieved statistical significance for the infants extubated between DOL 

1-3 (BPD: p < 0.05; BPD or death: p = 0.0004). This did not hold true for infants 

extubated between DOL 4-7 (BPD: p = 0.008; BPD or death: p = 0.05) or DOL 8+ (BPD: 

p = 0.4; BPD or death: p = 1.0). We did not identify any significant differences in the 

severity of BPD by DOL of extubation (Table 3). 

Unadjusted Time to BPD or Death 

Kaplan-Meier survival curves for our cohort modeled the probability of 

BPD/death-free survival following the DOL of initial extubation (Fig. 1A-B). The BPD 

plot (Fig. 1A) shows a significant difference in BPD-free survival across study groups (p 

< 0.0001). The plot shows that infants extubated on DOL 8+ are more likely to develop 

BPD in a shorter period of time following initial extubation than infants extubated DOL 

1-3 or DOL 4-7. This reflects the fact that these infants are extubated later in life, far 

closer to 36 weeks’ PMA than infants in the other study groups, and are developing BPD 

at a higher rate. This difference is also seen between the curves for infants extubated 

DOL 1-3 and DOL 4-7. For the BPD-only analysis, the 16 infants who died prior to 36 

weeks’ PMA were censored at DOL of death, represented by a hash mark on the plot. All 

other infants with an outcome of “no BPD” or “no BPD or death” were censored at 36 

weeks’ PMA, also represented by a hash mark. The BPD or death plot (Fig. 1B) also 

shows significant differences in event-free survival over time (p < 0.0001). The early 

downward slope in the DOL 1-3 curve reflects the 11 deaths in the DOL 1-3 group in the 

first weeks of life. The curve for the DOL 1-3 group subsequently plateaus, showing a 

greater probability of event-free survival over time than the other study groups, in 

particular DOL 8+. Both the BPD and BPD or death plots also reflect the GA of each 
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infant, as the number of days to 36 weeks’ PMA is variable based on GA of each infant 

in addition to DOL of extubation. 

The unadjusted hazard of BPD increased with greater length of initial intubation 

(Table 4A). Infants who were first extubated between DOL 4-7 had an increased, though 

not significant, risk of developing BPD compared to babies who were first extubated 

between DOL 1-3 (p = 0.09). Extubation on DOL 8+ was associated with a significantly 

increased risk of BPD compared to extubation between DOL 1-3 (p < 0.0001) or 

extubation between DOL 4-7 (p < 0.0001).  Similar results were observed when the 

composite outcome of BPD or death was modeled (Table 4B). Extubation between DOL 

4-7 was associated with a non-significantly increased hazard compared to extubation 

between DOL 1-3 (p = 0.3). Extubation on DOL 8+ was associated with a significantly 

increased hazard compared to extubation between DOL 1-3 (p < 0.0001) or between 

DOL 4-7 (p < 0.0001). 

Adjusted Time to BPD or Death 

After adjustment for maternal and infant characteristics, differences in outcomes 

between extubation groups became more pronounced (Tables 4A and 4B). Extubation 

between DOL 4-7 was associated with an increased hazard of developing BPD compared 

to extubation between DOL 1-3 [HR (95% CI) 1.7 (1.0-2.8), p < 0.05], but not 

significantly so with BPD or death [1.3 (0.8-2.2), p=0.3].  Extubation on DOL 8+ was 

associated with a significantly increased hazard of BPD and BPD or death compared to 

extubation between DOL 1-3 [BPD: 16.9 (10.5-27.1), p<0.0001; BPD or death: 10.7 

(7.0-16.5), p<0.0001] or extubation between DOL 4-7 [BPD: 10.0 (6.1-16.3), p<0.0001; 

BPD or death: 8.1 (5.0-13.0), p<0.0001]. 
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To evaluate whether reintubation modified the association between time at first 

extubation and development of BPD or death, we examined interactions terms in our 

model. The predictor variable was DOL of first extubation and the modifier was 

reintubation. Successful first extubation between DOL 4-7 was associated with an 

increased hazard of BPD when compared to unsuccessful extubation between DOL 1-3 

but was not statistically significant [BPD: 1.4 (0.5-4.0), p = 0.6; BPD or death: 1.0 (0.3-

2.9), p = 1.0]. Successful first extubation on DOL 8+ was associated with a significantly 

increased hazard of BPD and BPD or death compared to unsuccessful extubation between 

DOL 1-3 [BPD: 25.0 (13.4-46.5), p < 0.0001; BPD or death: 12.0 (6.8-21.1), p < 

0.0001] or unsuccessful extubation between DOL 4-7 [BPD: 14.4 (7.8-26.8), p < 0.0001; 

BPD or death: 9.5 (5.2-17.3), p < 0.0001].  

As described in the methods, cox proportional hazards modeling and adjusted 

analyses of interactions terms were also performed after omission of the 13 infants 

transferred or discharged prior to 36 weeks’ PMA who did not meet criteria for BPD 

upon discharge. In this separate analysis, the magnitude and statistical significance of the 

hazard ratios were qualitatively similar.   
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DISCUSSION 

Our retrospective analysis demonstrated that early extubation of preterm neonates 

is associated with a significantly reduced hazard of BPD when compared to extubation 

later in life. Importantly, we also show that babies who failed early extubation and 

needed to be reintubated remained at a lower hazard of BPD than babies who were first 

extubated later in life and did not need to be reintubated. Delayed extubation was also 

associated with increased hazard of BPD or death, though the association was not as 

strong as for BPD alone.  

Compared to the previous literature, our study takes a novel approach by studying 

the interaction effect crossing the variables extubation DOL and reintubation to model the 

risk of BPD/death. In addition, we used a different statistical approach than previous 

work in this area. The use of survival analysis allowed us to model time to BPD and BPD 

or death and to account for censoring. This was useful, as time to BPD and BPD or death 

vary by extubation DOL and also by GA. 

Our study builds upon previous work done in the field. We confirmed the 

conclusion by Dumpa et al that delayed extubation in the first week of life is associated 

with increased risk of BPD/death 24. This observation is also consistent with studies in 

animal models. Thomson et al have shown that preterm baboons extubated to NCPAP at 

DOL 5 needed more oxygen and had a greater degree of hypercapnea than baboons 

extubated at 24 hours of life. An equal number of animals in both groups required 

reintubation, but those in the delayed extubation group had more reintubation events on 

average and spent more cumulative days on the ventilator 33.  
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Few studies have looked at the effect of early extubation on the rate of 

reintubation and the rate of BPD. In a retrospective analysis, Booth et al showed success 

rates of 66% of extubations to NCPAP on DOL 1 and 80% on DOL 2. However, the 

study lacked an adequate sample size to predict success for extubations after DOL 2. 

Booth et al observed a statistically significant difference in rates of BPD for infants 

extubated by DOL 2 compared to those still on conventional ventilation. This result 

correlates to the reduced hazard of BPD we found in our DOL 1-3 study group, but the 

Booth et al study did not analyze reintubation with respect to BPD 34. In a randomized 

control trial, Danan et al selected preterm infants for extubation immediately or after 36 

hours of life. There was no significant difference in reintubation rates between groups. 

Rates of BPD at 36 weeks’ PMA were also not significantly different between the groups 

35. We also showed no significant difference in extubation failure based on DOL of first 

extubation. Both of Danan et al’s study groups would fit within our DOL 1-3 study 

group, which may account for the absence of difference in BPD between groups. The 

differences we observed for BPD across study groups may be further attributed to our use 

of the NIH Consensus to define BPD and our larger sample size. One unpublished study 

by Robbins et al showed an inverse correlation between DOL of first extubation and 

BPD. Using linear regression and correlation analysis, this group showed a significant 

correlation between DOL of extubation and need for reintubation, but found no 

association between need for reintubation and BPD 36.  

Predicting extubation readiness in neonates in order to reduce extubation failures 

is important, but imprecise. Though investigators have studied different measures to 

predict success, there is no consensus as to the best method to predict successful 
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extubation 37-41. One method, the 3-minute spontaneous breathing trial (SBT), was shown 

to be safe and feasible by a prospective, non-randomized control study. However, 

outcomes for the SBT in days invasively ventilated, rates of extubation failure, and rates 

of BPD do not differ significantly from clinical judgment alone 42. Other efforts to reduce 

extubation failure vary in their efficacy. A trial of a new model of ultrathin-walled two-

stage twin ETT did result in significantly fewer reintubations compared to a conventional 

ETT, yet did not significantly reduce the overall number of days ventilated or the rates of 

BPD 43.  

Data on the long-term impact of reintubation in neonates are limited. Studies 

suggest that the long-term impact of reintubation varies based on the number of events 

and the technical skills of the clinician. Prolonged invasive ventilation itself is a risk 

factor for extubation failure 25, which supports the case for early extubation. We showed 

similar rates of extubation failure across all study groups. Though we found that a 

successful, delayed extubation was associated with an increased hazard of BPD or death 

when compared to a failed early extubation, further study is needed to confirm this 

observation. Early extubation combined with better methods to prevent extubation failure 

would likely improve outcomes for all infants. Aside from improving respiratory 

outcomes, other benefits of early extubation may include reduced exposure to painful 

procedures and smaller cumulative doses of analgesic medications 44. 

One possible explanation for our observations is that early extubation reduces 

harmful systemic inflammation during the first 72 hours of life. In neonates ≤ 30 weeks’ 

GA, Chang et al measured the levels of pro-inflammatory cytokines interleukin (IL)-6, 

IL-8, and granulocyte- colony stimulating factor (G-CSF) between DOL 1-42. 
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Remarkably, levels of these three cytokines, which are commonly elevated during 

periods of active infection, were elevated between DOL 1-3 in infants in the absence of 

clinical, bacteriological or placental histological evidence of infection 45. These first few 

days of postnatal life may represent a critical temporal window of a propensity to an 

exaggerated inflammatory response in neonates exposed to intensive care.  It may be that 

extubation during this critical period reduces the burden of inflammation and subsequent 

lung damage even if the infant is eventually reintubated.  Most studies of pulmonary 

biomarkers have shown an early increase in pro-inflammatory cytokines from tracheal 

aspirate samples obtained from infants subsequently developing BPD 46. Given the major 

drawback in these studies of the absence of samples from non-intubated infants, further 

study is needed to sequentially track inflammatory markers (perhaps, in nasopharyngeal 

secretions 47) in response to invasive versus non-invasive ventilation to test the 

speculation.  

Our study has limitations. Since our study is retrospective, our conclusions are 

only observational. Though much of our data were provided by the Yale NICU database, 

we relied upon the accuracy of the electronic medical record for extubation and 

reintubation DOL, as well as FiO2 levels, which were needed to assess our outcomes. As 

discussed in the methods, sixteen infants were discharged or transferred prior to the end 

of the study. While three of these infants were deemed healthy enough for discharge and 

were unlikely to ever develop BPD, thirteen infants were transferred to other facilities. 

Using clinical judgment, we assigned what we deemed to be the most likely outcome at 

36 weeks’ PMA. Though these assignments could not be made unequivocally, we based 

them on clinical data including DOL and respiratory requirements at time of transfer. 
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Only five of these infants were transferred while still receiving oxygen therapy. We 

believe that this small number of infants would be unlikely to significantly affect our 

results. We also sought to ensure that including or excluding these 13 infants would not 

bias our study and found no differences in the resulting data with these infants included 

or omitted.  

Our analysis of the effect of reintubation also has some limitations. For this study, 

we documented all necessary reintubations, with the exception of elective intubations for 

surgery after 36 weeks’ PMA. We did not perform separate analyses based on the reason 

for reintubation or based on the time to extubation failure. We recognize that an 

understanding of the reasons for and timing to extubation failure may provide important 

clinical information that can further elucidate our conclusions, and we aim to address 

these analyses in a subsequent manuscript. In our analysis, we investigated the impact of 

at least one reintubation on our outcomes. We did not study the effect of multiple 

reintubations as compared to a single reintubation. However, since the outcome of BPD 

and/or death was assessed at 36 weeks PMA, any potential impact of prolonged 

intubation due to multiple reintubations until that time point would have been 

incorporated.  

We employed several strategies to strengthen our study and overcome inherent 

limitations. We used a large sample size to increase the power of our observations, 

focused our study on the subset of premature infants most vulnerable to BPD, and used 

the NIH Consensus definition to assign our outcomes. To minimize potential inaccuracies 

in our database, variables were confirmed by crosschecking with the electronic medical 

record. We utilized consistent data collection methods throughout.  
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 In conclusion, delaying extubation beyond the first days of life, and certainly 

beyond the first week of life, is associated with an increased risk of BPD and BPD or 

death. We believe that we have controlled for the major confounding variables that could 

impact on the degree of illness in the infant – an important factor in keeping the neonate 

intubated.  Anecdotal evidence in our NICU suggests that despite guidelines to attempt 

extubation when specific ventilation settings are reached, this is not always done. We 

have previously reported that fear of “growth failure” on non-invasive ventilation should 

not deter one to attempt an extubation 48. Cooperation with trained respiratory therapists 

on therapist-driven weaning protocols shows promise in achieving more successful early 

extubations and decreasing the overall length of invasive ventilation 49.  

The high observed rate of reintubation for all infants in our study and the fact that 

reintubation was not associated with an increased hazard of BPD imply that potential 

need for reintubation should not necessarily impede early attempts at extubation. We 

recognize that other factors such as infection or need for surgery often affect the decision 

to extubate and that not all infants can be optimized for extubation in the first days of 

life. However, in the absence of extenuating circumstances, we recommend that 

extubation of infants who have been sufficiently weaned not be delayed, as our data show 

prolonged invasive ventilation to be associated with an increased hazard of BPD. 
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Table 1. Demographics of the Study Groups 

 Extubated DOL 
1-3 (N = 101) 

Extubated  
DOL 4-7 (N = 41) 

Extubated DOL 
8+ (N = 120) 

Antenatal steroids, n 
(%) 

91 (90.1) 36 (87.8) 109 (90.8) 

Race, n (%)    
Caucasian 43 (42.6) 15 (36.6) 47 (39.2) 
African American 35 (34.7) 18 (43.9) 41 (34.2) 
Asian, Hispanic, and 
Other 

23 (22.8) 8 (19.5) 32 (26.7) 

Male gender, n (%) 49 (48.5) 23 (56.1) 59 (49.2) 
Multiple gestation, n 
(%)† 

14 (13.9) 13 (31.7) 31 (25.8) 

Caesarean delivery, n 
(%) 

69 (68.3) 32 (78.0) 97 (80.8) 

Gestational age (wks)* 
† 

26.02 ± 1.0 25.7 ± 1.2 25.3 ± 1.3 

Birth weight (g)* † 809.4 ± 113.6 784.2 ± 127.4 694.5 ± 140.5 
APGAR 1 minute** 5 (1-8) 4 (0-9) 4 (0-9) 
APGAR 5 minutes**† 7 (2-9) 6 (1-9) 6 (0-9) 
DR Oxygen, n (%) 100 (99.0) 41 (100.0) 116 (96.7) 
DR BMV, n (%) 98 (97.0) 38 (92.7) 110 (91.7) 
DR Intubation, n (%) 94 (93.1) 33 (80.5) 104 (86.7) 
DR Chest 
Compressions, n (%) 

13 (12.9) 12 (29.3) 22 (18.3) 

DR Epinephrine, n 
(%) 

4 (4.0) 2 (4.9) 10 (8.3) 

DR Surfactant, n (%) 46 (45.5) 18 (43.9) 66 (55.0) 
NCPAP prior to ETT, 
n (%) 

9 (8.9) 8 (19.5) 15 (12.5) 

RDS, n (%)† 84 (83.2) 38 (92.7) 114 (95.0) 
Anytime surfactant, n 
(%) 

98 (97.0) 40 (97.6) 119 (99.2) 

Postnatal steroids, n 
(%)† 

17 (16.8) 9 (22.0) 62 (51.7) 

IVH, n (%)† 23 (22.8) 18 (43.9) 42 (35.0) 
ROP, n (%)† 54 (53.5) 25 (61.0) 101 (84.2) 
NEC, n (%) 26 (25.7) 9 (22.0) 23 (19.2) 
Bowel Perforation, n 
(%) 

6 (5.9) 3 (7.3) 18 (15.0) 

PDA, n (%)† 19 (18.8) 16 (39.0) 66 (55.0) 
Sepsis, n (%) 24 (23.8) 13 (31.7) 47 (39.2) 
PVL, n (%) 2 (2.0) 2 (4.9) 8 (6.7) 
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PTX or PM, n (%) 6 (5.9) 4 (9.8) 13 (10.8) 
Length of NBSCU 
Stay (d)*† 

85.9 ± 59.0 105.3 ± 44.6 144.5 ± 92.0 

*Mean ± standard deviation 
** Median (range) 
† p < 0.05 
DR, delivery room; BMV, bag and mask ventilation; NCPAP, nasal continuous positive 
airway pressure; RDS, respiratory distress syndrome; IVH, intra-ventricular hemorrhage; 
ROP, retinopathy of prematurity; NEC, necrotizing enterocolitis; PDA, patent ductus 
arteriosus; PVL, periventricular leukomalacia; PTX, pneumothorax; PM, 
pneumomediastinum. 
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Table 2A. Unadjusted Outcomes by Extubation DOL 

Extubation Group DOL 1-3 
(N = 101) 

DOL 4-7 
(N = 41) 

DOL 8+ 
(N = 120) 

P-value 

BPD, n (%) 47 (46.5) 31 (75.6) 112 (93.3) < 0.0001 
BPD or Death, n (%) 58 (57.4) 32 (78.0) 116 (96.7) < 0.0001 
Reintubation, n (%) 71 (70.3) 33 (80.5) 85 (70.8) 0.43 

DOL: day of life; BPD: bronchopulmonary dysplasia. 

 
Table 2b. Unadjusted Outcomes by Extubation DOL and Reintubation 

 Reintubated 
(N = 189) 

Not Reintubated 
(N = 73) 

P-value 

Extubated DOL 1-3 N = 71 N = 30  
BPD, n (%) 38 (53.5) 9 (30.0) <0.05 
BPD or Death, n (%) 49 (69.0) 9 (30.0) 0.0004 
Extubated DOL 4-7 N = 33 N = 8  
BPD, n (%) 27 (81.8) 4 (50.0) 0.08 
BPD or Death, n (%) 28 (84.8) 4 (50.0) 0.05 
Extubated DOL 8+ N = 85 N = 35  
BPD, n (%) 78 (91.8) 34 (97.1) 0.43 
BPD or Death, n (%) 82 (96.5) 34 (97.1) 1.0 

DOL: day of life; BPD: bronchopulmonary dysplasia.
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Table 3. Severity of BPD by Extubation DOL* 

Extubation Group DOL 1-3 
(N = 38) 

DOL 4-7 
(N = 26) 

DOL 8+ 
(N = 107) 

P-value 

Mild BPD, n (%) 21 (55.3) 12 (46.2) 41 (38.3) 0.16 
Moderate BPD, n (%) 4 (10.5) 5 (19.2) 14 (13.1) 0.60 
Severe BPD, n (%) 13 (34.2) 9 (34.6) 52 (48.6) 0.19 

* Infants with BPD of unknown severity (transferred prior to 36 weeks’ PMA) excluded 
from table; DOL: day of life; BPD: bronchopulmonary dysplasia; PMA: post-menstrual 
age.
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Table 4A. Unadjusted and Adjusted Risk of BPD by Extubation DOL 
 Unadjusted  Adjusted* 
Extubation Group HR (95% CI) p-value HR (95% CI) p-value 
DOL 4-7 vs. DOL 1-3 1.5 (0.9-2.3) 0.09 1.7 (1.0-2.8) <0.05 
DOL 8+ vs. DOL 1-3 7.1 (4.9-10.1) < 0.0001 16.9 (10.5-27.1) < 0.0001 
DOL 8+ vs. DOL 4-7 4.5 (3.2-7.3) < 0.0001 10.0 (6.1-16.3) < 0.0001 
 
Table 4B. Unadjusted and Adjusted Risk of BPD or Death by Extubation DOL 
 Unadjusted  Adjusted* 
Extubation Group HR (95% CI) p-value HR (95% CI) p-value 
DOL 4-7 vs. DOL 1-3 1.2 (0.8-1.9) 0.34 1.3 (0.8-2.2) 0.26 
DOL 8+ vs. DOL 1-3 5.3 (3.8-7.5) < 0.0001 10.7 (7.0-16.5) < 0.0001 
DOL 8+ vs. DOL 4-7 4.3 (2.9-6.5) < 0.0001 8.1 (5.0-13.0) < 0.0001 
*Adjusted for antenatal steroid use, race, gender, multiple gestation, gestational age, 
APGAR at 5 minutes, mode of delivery, delivery room resuscitation efforts, respiratory 
distress syndrome, surfactant use, retinopathy of prematurity, intraventricular 
hemorrhage, necrotizing enterocolitis, sepsis, patent ductus arteriosus, bowel perforation, 
periventricular leukomalacia, pneumothorax, pneumomediastinum, and need for 
reintubation. 
BPD: bronchopulmonary dysplasia; DOL: day of life; HR: hazard ratio; CI: confidence 
interval.  
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Figure Legend 

 
Figure 1. Unadjusted Kaplan-Meier Survival Plot by Extubation day of life (DOL) and 

probability of no bronchopulmonary dysplasia (BPD) (1A) or no BPD or death (1B) in 

the 3 categories of infants. 
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Figure 1A. Unadjusted Kaplan-Meier Survival Plot by Extubation DOL (BPD) 

 

DOL: day of life; BPD: bronchopulmonary dysplasia; PMA: post-
menstrual age; * Censored subjects include infants with “no BPD” at 36 
weeks’ PMA or infants who died prior to 36 weeks’ PMA. 
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Figure 1B. Unadjusted Kaplan-Meier Survival Plot by Extubation DOL (BPD or 
Death) 

 

DOL: day of life; BPD: bronchopulmonary dysplasia; PMA: post-
menstrual age; * Censored subjects include all surviving infants with “no 
BPD” at 36 weeks’ PMA. 
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Supplemental Figure Legend 

Supplemental Figure 1.  Flow chart showing selection of our study cohort based on 

inclusion/exclusion criteria.  
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Supplemental Figure 1.  Flow chart of selection of our study cohort. 
 

 
 
DOL: day of life. 
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GENETIC RISK FACTORS FOR BRONCHOPULMONARY DYSPLASIA (BPD). 
Jessica Berger and Vineet Bhandari, Section of Neonatology, Department of Pediatrics, 
Yale University, School of Medicine, New Haven, CT. 
 
 

BPD is a complex respiratory morbidity affecting premature infants. The etiology is 

multifactorial, but several studies have shown BPD to have a genetic component. Few 

studies have successfully identified and confirmed specific single nucleotide 

polymorphisms (SNPs) associated with an increased risk of BPD. The objective of this 

study is to collect samples for future sequencing for confirmation of specific SNPs as a 

replication cohort. Infants born at ≤ 32 weeks’ gestational age were identified from 

neonates at Yale-New Haven Children’s Hospital and collaborating institutions. Genetic 

samples were collected by buccal swab from cases with BPD and controls. 

Comprehensive medical histories were collected for future genotype-phenotype 

correlation. 321 infants were sampled for inclusion in our study. Of these 321, 195 are 

BPD cases and 126 are healthy controls. Significant differences between cohorts were 

observed for race, gestational age, birth weight, APGAR scores, development of several 

common neonatal comorbidities, number of days of oxygen therapy, and number of days 

invasively and noninvasively ventilated. Genetic samples collected are reflective of the 

demographics of the neonatal population in the ICU setting. Given the racial 

heterogeneity of this population, the plan remains to use these samples for confirmation 

of specific SNPs reported by other investigators.  
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INTRODUCTION 
 
 Bronchopulmonary dysplasia (BPD) is a complex respiratory process that affects 

premature infants. As previously described, the etiology of this disease is known to be 

multifactorial, with a significant component attributed to an infant’s genetic composition. 

 Parker et al, in a population of 108 very low birth weight identical twins, showed 

an adjusted odds ratio of 12.3 (p < 0.001) for developing BPD in a second twin if the 

other twin is diagnosed, adjusting for birth order, APGAR score, and other potential 

confounders 50. Subsequently, Bhandari and Gruen examined concordance of BPD in 

mono- and di-zygotic twins, showing heritability rates of up to 58.4% 51. Lavoie et al 

independently confirmed the findings of Bhandari and Gruen using similar methodology 

and the updated NIH Consensus Definition of BPD. This group showed a 79-82% 

heritability of BPD, specifically for moderate to severe BPD 52. 

 These early studies identified a genetic component to the etiology of BPD that 

persisted after adjustment for key demographic and clinical factors. Subsequently, 

investigators aimed to identify specific candidate genes that might contribute to the 

development of BPD in the neonate. Numerous studies explored the potential role of 

genes for pro-inflammatory cytokines such as interleukin (IL)-4 and tumor necrosis 

factor (TNF), anti-inflammatory cytokines such as IL-10, and surfactant proteins. Many 

of these studies found no associations between single nucleotide polymorphisms (SNPs) 

in these specific alleles and the development of BPD in neonates 51. One study by Manar 

et al. found a slightly significant association between a particular isoleucine isoform of 

the gene encoding for glutathione-S-transferase-P1 (GST-P1), which degrades damaging 

reactive oxygen species (ROS). This result suggested that infants afflicted with BPD 
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were less efficient at removing ROS from the lung, thus increasing their risk for BPD 53. 

Though the results of this and other similar studies are exciting, they are mostly limited 

by small sample size and poor reproducibility in larger studies. Additionally, genetic 

variations between races may lead to different results when exploring the same genes. 

Wang et al, in a study of a the Chinese Han population, found statistically significant 

associations between SNPs of the GST-M1 and GST-T1 alleles, both of which were not 

significant in Manar et al’s study 54. The possibility remains that racial differences, the 

relative infrequency of certain SNPs in the population, or a combination of multiple SNPs 

(polygenetic effect) will make it difficult to identify single genes contributing to the 

development of BPD 51.    

 Given the mixed evidence from many small candidate gene studies pointing 

towards multiple SNPs playing a role in BPD, there is value to interrogating the entire 

genome in large populations. Use of genome-wide association (GWA) studies affords 

investigators the ability to survey the whole genome, encompassing exons and introns, 

for millions of SNPs. Since many SNPs are known to have high linkage disequilibrium, 

“tag SNPs” may be used to represent clusters of SNPs to reduce the number of SNPs 

scanned in a particular assay. On a population level, GWA studies use the respective 

frequencies of SNPs to identify significant differences between healthy subjects and 

those with disease phenotypes 55,56.  

The use of GWA study methodology can be applied to many study designs, 

including case-control, cohort, prospective clinical trial, and meta-analysis. GWA studies 

have many advantages, including speed, affordability, and applicability to complex 

diseases associated with a myriad of SNPs. There are drawbacks to this type of study, 
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including stringent significance thresholds requiring large sample sizes. One way to 

approach the need for a large sample size is to scan a large discovery population and then 

test SNPs with significant associations in one or more replication cohorts. Though the 

ideal would be to identify single gene causes for diseases of interest, the challenge of 

using GWA studies in complex diseases is that they may yield dozens of hits with no 

single SNP making a significant contribution in a large number of patients 55.   

To date, two large GWA studies have been conducted in neonates. Hadchouel et 

al used DNA pooling techniques to scan two small discovery populations, of African and 

white descent, respectively. The most significant polymorphism discovered in these 

populations, a variant of the SPOCK2 gene (p = 1.66 x 10-7), was replicated in a separate 

population by genotyping and also in a population of Finnish ancestry. This study group 

also studied mRNA levels of SPOCK2 in rat lungs in the alveolar stage of development 

and found increased levels of SPOCK2 mRNA in rats exposed to hyperoxia compared to 

normoxic controls. Based on their findings in GWA studies and in rat models, Hadchouel 

et al suggest that SPOCK2 may play a role in alveolar development and in the impaired 

alveolarization seen in BPD cases 57. In another GWA study, Wang et al used a large 

discovery population comprised of four racial groups. Using a significance threshold of 5 

x 10-8, Wang et al were unable to find a significant SNP in the discovery or replication 

populations. This group also investigated SNPs previously associated with BPD in other 

studies, including SPOCK2, but was unable to replicate the findings of previous studies. 

The variability in data may be attributed to racial differences in the study populations, as 

well as differences in sample size 58.      

  



43	  

	  

STATEMENT OF PURPOSE/ SPECIFIC AIMS 

Based on previous work studying heritability patterns of BPD in monozygotic twins, 

it is understood that there is a significant genetic component to the etiology of BPD. We 

propose to utilize a large library of DNA samples from premature infants at Yale-New 

Haven Children’s Hospital and other tertiary care centers to validate surveillance genes 

identified by other investigators that contribute to the development of BPD. Our specific 

aims are:  

(1) To identify infants with BPD (“cases”) and without BPD (“controls”) hospitalized 

in the NICU at Yale-New Haven Children’s Hospital and collaborating tertiary 

care centers who fit inclusion criteria and to collect DNA by buccal swab. 

(2) To isolate DNA from buccal swab samples using established extraction protocols. 

(3) To perform high-throughput sequencing of these DNA in collaboration with the 

lab of Dr. Richard Lifton in order to analyze the DNA from these infants. This 

sequencing is to be used for validation of SNPs identified by other investigators. 

(4) To perform genotype-phenotype analysis on these samples to identify genes 

contributing to development of BPD.  

Within the time frame of this study, we have completed objectives (1) and (2). 
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METHODS 

BPD Consortium 

Prior to the initiation of this study in 2005, a BPD consortium was formed to 

foster sharing of genetic samples and clinical information between participating centers. 

Participating NICUs in this GWAS include Yale-New Haven Children’s Hospital (New 

Haven, CT), Magee-Womens Hospital of UPMC (Pittsburgh, PA), Coastal Carolina 

Neonatology (Wilmington, NC), Montefiore Medical Center (Bronx, NY), Women & 

Infants Hospital (Providence, RI), Stony Brook Children’s Hospital (Stony Brook, NY), 

Cincinnati Children’s Hospital (Cincinnati, OH), and University of Kentucky Children’s 

Hospital (Lexington, KY). The study was approved by Yale University’s Human 

Investigations Committee, as well as by an equivalent committee at all participating 

institutions. 

Patient Population 

Our study population included infants of both genders and all races born at a 

gestational age ≤ 32 weeks. We included infants with BPD (“cases”), based on the 

physiologic definition at 36 weeks’ post-menstrual age (PMA) described by Jobe et al in 

2001 2, and infants without BPD (“controls”). Consent was obtained and samples were 

collected only after infants reached 36 weeks’ PMA. 

Previous studies and review articles have discussed the myriad benefits of 

studying the genetics of particular disease processes in genetically isolated populations, 

including Finnish populations 59. Given the size and racial heterogeneity of our study 

population, we concluded that our study would be most powerful if a genetically isolated 

population was used for discovery purposes and our population was used for replication 
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of findings. To that end, we have been in communication with the laboratory of Dr. 

Mikko Hallman, a neonatologist at the University of Oulu in Oulu, Finland, to use his 

population of Finnish neonates for a discovery population.  

DNA Collection and Extraction 

 DNA was collected via buccal swab using sterile, soft, cotton-tipped swabs 

inserted into the oral cavity and rubbed against the buccal mucosa 10 to 20 times. One 

swab was used for each cheek. Upon collection, samples were stored at -20 degrees 

Centigrade until extraction. Research team members at participating institutions utilized 

similar technique for sample collection; samples were overnight mailed on dry ice to 

avoid degradation of genetic material.  

 DNA was extracted from collected buccal swabs by proteinase-k/SDS lysis with 

phenol-chlorophorm extraction to degrade remaining protein material. Extracted DNA 

was precipitated with 70% ethanol and rehydrated with Tris-EDTA buffer. DNA was 

then stored at 4 degrees Centigrade prior to genotyping. We used spectrophotometry to 

quantify DNA concentrations in each sample. 

Clinical Data Collection 

In order to perform subsequent genotype-phenotype correlative analysis, we 

collected extensive demographic and clinical information about participating infants and 

families. At the time of initial consent, demographic information was gathered, including 

self-reported race. A thorough family history was obtained related to history of multiple 

gestations, cardiovascular disease, respiratory illness, and developmental disorders. 

Maternal medical history was also obtained, including questions concerning pre-natal 

care and pregnancy, gestational diabetes, hypertension, medications, smoking, alcohol 
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and drug use, miscarriages, abortions, premature births, and neonatal disease and losses if 

applicable. Maternal charts were consulted when necessary to confirm the diagnosis of a 

relevant disorder (i.e. chorioamnionitis), documentation by treating physicians, 

pediatricians, neonatologists, or specialists, and relevant imaging limited to X-Rays and 

CT scans.  

Neonatal data were also collected from the electronic medical record spanning the 

period from birth until discharge. Delivery room data included birth weight, gestational 

age, multiple gestation, APGAR scores at 1 minute and 5 minutes, delivery room 

resuscitation modalities including oxygen therapy, bag-and-mask ventilation, and 

endotracheal intubation, diagnosis of respiratory distress syndrome (RDS), and surfactant 

use. Data from the neonate’s clinical course, including intraventricular hemorrhage, 

retinopathy of prematurity +/- need for surgery, patent ductus arteriosus +/- need for 

surgical ligation, pneumothorax or pulmonary interstitial emphysema, sepsis, and 

necrotizing enterocolitis, were also documented. Clinical criteria used to make these 

diagnoses have been described in Chapter 1 of this thesis.  

The number of days on each ventilator modality and number of days of oxygen 

therapy were also recorded. At 36 weeks’ PMA, infants were designated as “cases” or 

“controls” using the NIH Consensus Definition of BPD as previously described 2. 

Strict confidentiality regarding this patient information was maintained 

throughout the duration of the study.  

Genome-Wide Association Analysis 

To date, genetic and clinical data collection is ongoing and the following methods 

are prospective. Collaboration with the laboratory of Dr. Richard Lifton in the 



47	  

	  

Department of Genetics has been arranged to validate any surveillance genes identified in 

a larger discovery population. Whole genome amplification (Qiagen kit) will be used for 

samples that do not meet the DNA threshold for genotyping of 500 ng. For genotyping, 

we will use the techniques as previously described 60. In brief, genome-wide genotyping 

will be performed using the Illumina Human 610-Quad BeadChip. Samples will be 

genotyped in two batches at the W.M. Keck genotyping facility of Yale University. 

Approximately equal number of cases and controls will be genotyped in each batch to 

protect against potential technical artifacts leading to differential bias in the analysis. 

Genotypes will be called using the automated clustering algorithm in the Illumina 

Genome Studio, Genotyping Module v.1.1.9. The genotyping will be performed with the 

Sequenom MassARRAY (MALDI-TOF) Spectrometry system at the W.M. Keck 

genotyping facility.   

Statistical analysis:  
 
Analysis of population stratification: We will control for potential population 

stratification by performing stratified Cochran-Mantel-Haenszel (CMH) analysis based 

on the strata defined by the cluster solution. As a confirmatory procedure, we will also 

adjust for two significant eigenvectors using logistic regression. For each analysis (crude, 

CMH, or PC-adjusted logistic), we will estimate a genomic inflation factor 60. 

Genotype-phenotype correlations: The top SNPs representative of the independent 

loci will be screened for associations with clinical phenotypes using age- and gender-

adjusted regression models. Linear regression will be used for quantitative phenotypes 

and logistic regression for binary traits. The genotypes of specific SNPs will be used as 
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predictors and coded under an additive model. All analyses will be performed using SPSS 

Statistics for Windows v17.0 (SPSS, Inc., Chicago, IL). 

Division of Efforts 

 Collection of samples and data for this project began in 2005 and has continued 

through the present date. Prior to June 2012 when this student joined the team at the Yale 

study site, the principal investigator, Dr. Bhandari, and other members of his research 

team obtained consent, collected the samples and recorded some clinical data. Haiying 

Meng, PhD, extracted DNA from Yale samples; these samples remain stored in the -80 

degrees Centigrade freezer in the lab. At participating institutions, our collaborators 

obtained consent, collected the samples, and recorded clinical data on institution-specific 

data sheets. 

 Since June 2012, this student has identified appropriate subjects, obtained 

informed consent, collected buccal swabs, and extracted DNA using the described 

methods. This student produced all reagents for proteinase-k/SDS lysis and phenol-

chlorophorm extraction. This student also quantified the extracted DNA using 

spectrophotometry. This student also compiled and organized extensive clinical data from 

infants previously enrolled in the study and newly enrolled infants. Additionally, this 

student is responsible for maintenance of Human Investigations Committee approval at 

the Yale site. 

 Once a minimum number of samples have been collected, samples will be 

transferred to our partners in the laboratory of Dr. Richard Lifton who will perform the 

genotyping and statistical analysis described above in collaboration with the W.M. Keck 

genotyping facility at Yale.   
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RESULTS 

Patient Population and Characteristics 

To date, 321 infants have been enrolled from Yale and partnering institutions. An 

additional 58 samples have been collected from first-degree relatives of study subjects, 

including parents, grandparents, and siblings. Of the 321 study subjects, 195 (60.7%) are 

“cases” and 126 (39.3%) are “controls.”  

 Tables 5 shows the demographics and key clinical features of the patient 

population sorted by BPD diagnosis. Of note, there are many significant differences 

between the BPD cohort and the control cohort. Infants with BPD were born at 

significantly lower gestational ages and birth weights and were found to have 

significantly lower APGAR scores at both one and five minutes in the delivery room. 

Additionally, racial differences were observed between the groups. The clinical courses 

of these groups of infants also varied, with infants with BPD also developing 

significantly more comorbidities, including ROP, PDA, sepsis, and pneumothorax. 

Infants with BPD received significantly more days of O2 therapy, as is appropriate given 

the clinical definition of BPD. Those with BPD also spent more days on several 

ventilator modalities, including invasive ventilation (IMV, HFOV) and nasal ventilation 

(NIPPV, NCPAP). 

DNA Quantification 

 Spectrophotometry was used to quantify the amount of DNA in the individual 

samples. Of the 206 samples extracted by this student since June 2012, 185 (89.8%) 

exceeded the minimum threshold of 500 ng needed for successful genotyping. These 

samples included swabs collected at Yale and at other institutions. Of the 21 samples that 
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did not meet the threshold, no single factor could be identified as the cause of low yield, 

though variable swabbing technique and inadequate cell collection are the most likely.  
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DISCUSSION 

We aimed to conduct a GWA study to identify single-nucleotide polymorphisms 

associated with the development of BPD, a respiratory comorbidity of prematurity with 

known genetic causes. Within the constraints of time, we were able to collect nearly 400 

samples from both neonates and their first-degree relatives. We were able to extract 

genetic material from these samples with a high degree of success in light of the fact that 

many samples had been frozen for more than one year. We also compiled a 

comprehensive database of clinical information about these neonates, which will be used 

in the future as part of genotype-phenotype correlation analysis. Given the rigid 

significance thresholds for this type of study, which we discussed previously, our sample 

size of approximately 400 is not large enough for a discovery population. To that end, we 

still plan on collaborating with other investigators to identify a population that is ideal for 

genetic discovery. 

One of the leading investigators we have identified is Dr. Mikko Hallman of the 

Oulu University Hospital in Oulu, Finland. This study group is ideal for a number of 

reasons. First, Dr. Hallman has been successful in amassing a large collection of 

approximately 1,000 samples. Second, Dr. Hallman’s study population is derived from a 

genetically isolated population. As described by Arcos-Burgos and Muenke, the Finnish 

population is ideal for genetic studies because of the founder effect, which suggests that 

the population originated from a small group of individuals. It is also believed that the 

Finns remained geographically isolated from other European populations for nearly two 

millennia, leading to inbreeding and the presence of many recessive disorders in the 

population 59. Many investigators have studied the Finnish population, successfully 
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identifying loci for metabolic, psychiatric, and autoimmune disorders 61-63. Genetic 

studies in Finnish neonatal populations have also been used to show allelic variation in 

respiratory distress syndrome (RDS) and prematurity in general. Investigators have 

shown genetic variants of surfactant proteins A and C in neonates with respiratory 

distress syndrome 64,65. Additionally, polymorphisms in the gene coding for Toll-like 

receptor 4 have been associated with preterm birth in Finnish neonates 66.  

One of the two previous genome-wide association studies conducted for BPD 

pooled DNA in the discovery population by race to eliminate confounding by race. Using 

one French population of African descent (N = 107) and one French population of white 

ancestry (N = 98), Hadchouel et al. identified a polymorphism in the gene for SPOCK2 

with the most significant polymorphism achieving a p-value on the order of 10-7. This 

study group then used a black and white French replication population (N = 212) and a 

small Finnish population (N = 213) to replicate their findings. Finally, Hadchouel et al. 

identified elevated SPOCK2 mRNA levels in newborn rat lungs after exposure to 

hyperoxia 57. Though this group aimed to eliminate race as a confounder by pooling DNA 

into two racially distinct groups, this served to shrink an already small discovery 

population. As a result, they were not able to achieve a p-value on the order of 10-8, a 

threshold used by other studies 58,60. Quantification of SPOCK2 levels in newborn rats in 

the alveolar stage after exposure to hyperoxia is a useful way to confirm changes in gene 

expression in one animal model of BPD. However, elevation of mRNA levels does not 

necessary correlate with increased protein levels. Use of tracheal aspirates to measure 

protein levels in the cells would show a more convincing association between a 

polymorphism in the SPOCK2 gene and changes in phenotype. 
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Wang et al. also conducted a GWAS to investigate genetic variants associated 

with BPD in neonates. The advantage of this study was its access to a very large 

discovery population of 1,726 very low birth weight infants born in the state of 

California. Their replication population comprised 795 infants of comparable 

demographics and clinical characteristics. Despite access to such a large population, this 

study group did not identify any significant polymorphisms associated with moderate-

severe BPD as compared to mild BPD or no BPD. Wang et al. note that variability in 

race, sample size, and other factors may have led to a negative result 58. Of note, several 

other differences exist between Wang et al.’s study and Hadchouel et al.’s study. 

Hadchouel et al.’s study was prospective, whereas Wang et al.’s study was retrospective 

and used blood samples previously collected for state-mandated newborn metabolic 

panels. Additionally, there was variability in the gestational ages of the populations used, 

both between the two studies’ discovery populations and also between Hadchouel et al.’s 

discovery and replication populations. Both of these studies used moderate-severe BPD 

as their case population, which does not reflect the current NIH consensus definition 

2,57,58. Wang et al. also used a requirement of at least three days of positive pressure 

ventilation (PPV) in both cases and controls so as to control for environmental exposures, 

though exposure to PPV is not part of the experience for many infants without BPD 58.    

 Though our study has not yet been carried through to completion, one advantage 

would be the availability of a large genetically isolated population for the discovery of 

candidate genes to replicate in our own diverse population. With respect to our 

replication population, the racial demographics are grossly different from those used by 
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Wang et al, reflecting the differences in racial group predominance in our consortium 

versus that of the California group 58.  

 Genome-wide association studies have proven valuable in the study of many 

diseases with purely genetic causes or multifactorial etiologies. Though these studies 

have had success in diseases such as IgA nephropathy 60, success has been mixed in BPD, 

suggesting a complex interplay of genetic and environmental risk factors. Nevertheless, 

convincing evidence pointing towards the genetic contribution to BPD indicates that this 

is a disease area ripe for ongoing study using the most advanced technology for genetic 

mapping. We aim to continue this project with the objective of identifying and validating 

important genes in the development of such a complex and morbid disease. 
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Table 5. Demographics of Genome-Wide Association Study Population  

 BPD Cases (N = 195) Controls (N = 126) p-value 
Antenatal steroids, n (%) 170 (87.2) 111 (88.1) 0.86 
Race, n (%) †   0.0016 
White 116 (59.5) 54 (42.9)  
Black 59 (30.3) 41 (32.5)  
Asian 1 (0.5) 3 (2.4)  
Hispanic 17 (8.7) 19 (15.1)  
Native American, Biracial or 
Other 

2 (1.0) 9 (7.1)  

Male gender, n (%) 102 (52.3) 68 (54.0) 0.82 
Multiple gestation, n (%) 74 (37.9) 55 (43.7) 0.35 
Caesarean delivery, n (%) 143 (73.3) 87 (69.0) 0.45 
Gestational age (wks)* † 26.2 ± 1.9 29.5 ± 1.7 < 0.0001 
Birth weight (g)* † 822.4 ± 243.4 1315 ± 333.9 < 0.0001 
APGAR 1 minute** † 4 (0-9) 7 (0-9) < 0.0001 
APGAR 5 minutes** † 7 (1-9) 8 (0-9) < 0.0001 
RDS, n (%) † 182 (93.3) 76 (60.3) < 0.0001 
Anytime surfactant, n (%) † 184 (94.4) 66 (52.4) < 0.0001 
Postnatal steroids, n (%) † 25 (12.8) 0 (0.0) < 0.0001 
IVH, n (%) 74 (37.9) 42 (33.3) 0.41 
ROP, n (%) † 134 (68.7) 15 (11.9) < 0.0001 
NEC, n (%) 18 (9.2) 10 (7.9) 0.84 
PDA, n (%) † 120 (61.5) 20 (15.9) < 0.0001 
Sepsis, n (%) † 90 (46.2) 16 (12.7) < 0.0001 
PVL, n (%) 13 (6.7) 3 (2.4) 0.12 
PTX, n (%) † 22 (11.3) 6 (4.8) < 0.05 
Duration of invasive 
ventilation (d)* † 

28.4 ± 35.2 2.2 ± 5.4 < 0.0001 

Duration of NIPPV (d)* † 3.3 ± 7.5  1.3 ± 3.4 0.01 
Duration of NCPAP (d)* † 20.9 ± 22.9  4.8 ± 7.0 < 0.0001 
Days supplemental O2 (d)* † 79.2 ± 47.6 7.3 ± 7.6 < 0.0001 
*Mean ± standard deviation 
** Median (range) 
† p < 0.05 
RDS, respiratory distress syndrome; IVH, intra-ventricular hemorrhage; ROP, 
retinopathy of prematurity; NEC, necrotizing enterocolitis; PDA, patent ductus 
arteriosus; PVL, periventricular leukomalacia; PTX, pneumothorax; Invasive ventilation 
includes synchronized intermittent mandatory ventilation (SIMV) and high frequency 
oscillatory ventilation (HFOV); NIPPV, nasal intermittent positive pressure ventilation; 
NCPAP, nasal continuous positive airway pressure; O2, oxygen. 
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