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THE ASSOCIATION BETWEEN ELEVATED HIPPOCAMPAL GLUTAMATE 

LEVELS AND COGNITIVE DEFICITS IN EPILEPSY. 

Michele S. Buragas.  (Sponsored by Idil Cavus.)  Departments of Neurosurgery and 

Psychiatry, Yale University School of Medicine, New Haven, CT. 

 

The purpose of this study was to investigate the association between extracellular 

basal hippocampal glutamate levels and cognitive function in epileptic patients.  We used 

the zero-flow microdialysis method to measure the extracellular concentrations of 

glutamate in the epileptogenic and non-epileptogenic hippocampus of 23 awake epileptic 

patients during the interictal period.  All patients underwent extensive 

neuropsychological testing to assess cognitive functioning prior to probe implantation.  

Basal glutamate levels in the epileptogenic hippocampus were significantly higher than 

the non-epileptogenic hippocampus (mean, 11.96 micromolar (µM) versus 2.92 µM, 

respectively).  Elevated basal glutamate levels in the epileptogenic hippocampus 

correlated with decreased scores on the Verbal Selective Reminding Test (V-SRT) (R2 = 

0.36, p = 0.0244).  When controlling for MRI-detected hippocampal atrophy within 

epileptogenic regions, elevated basal glutamate levels within atrophic hippocampus 

correlated with decreased cognitive functioning measured by both the V-SRT (R2 = 

0.7764, p = 0.0204) and Performance Intelligence Quotient (PIQ) (R2 = 0.7324, p = 

0.0297), but not within non-atrophic hippocampus (V-SRT: R2 = 0.1013, p = 0.4424; 

PIQ: R2 = 0.2303, p = 0.2288).  These data suggest that elevated basal glutamate levels in 

the epileptogenic hippocampus may be implicated in the pathogenesis of hippocampal 

atrophy and may contribute to impaired cognitive functioning involving verbal memory 

and visual-spatial skills in patients with temporal lobe epilepsy. 
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Introduction 

Glutamate as a Principal Neurotransmitter and Excitotoxin 

Glutamate is the principal excitatory neurotransmitter in the brain, and it is 

thought to mediate learning and memory (1).  Glutamate was first suggested to play a role 

in central nervous system metabolism in 1943, when Price and colleagues (2) reported the 

successful treatment of petit mal seizures with orally administrated glutamate.  Although 

this claim regarding the therapeutic effect of glutamate could not be substantiated by later 

studies, the report sparked interest in glutamate’s involvement in brain function and 

fostered an advent of research in this field (1).  The excitatory effect of glutamate on the 

central nervous system was first elucidated by Hayashi and colleagues (3), when the 

application of glutamate to the cortex of dogs and humans led to “clonic convulsions.”  A 

plethora of physiologic and biochemical evidence has since implicated glutamate as a 

fundamental excitatory neurotransmitter involved in clinically important neuroanatomical 

networks, including the hippocampal pathways of learning and memory (4). 

The extracellular concentration of glutamate in the healthy brain is normally kept 

very low due to efficient glutamate re-uptake mechanisms.  Meldrum and colleagues (5) 

report that although glutamate is found in high intracellular concentrations throughout the 

mammalian brain, the baseline level of extracellular glutamate approximates one 

micromolar (µM).  During neuronal transmission, glutamate is released into the synaptic 

cleft and the concentration of the neurotransmitter rises transiently to approximately one 

millimolar (mM) for the maximal activation of glutamate receptors.  Efficient neuronal 

and glial sodium-dependent excitatory amino acid transporters (EAATs) quickly remove 
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glutamate from the synaptic cleft to return extracellular concentrations to normally low 

baseline levels (6). 

 

In pathological conditions, abnormal elevation in extracellular glutamate levels 

may result in excitotoxic cell damage leading to neuronal cell death and impaired 

function (7).  In 1971, Olney and colleagues (8) introduced the term “excitotoxin” after 

demonstrating that systemic administration of glutamate resulted in toxic damage to the 

central nervous system, and that the excitatory properties of amino acids correlated 

positively with their ability to produce neurotoxic damage.  Both in vivo and in vitro 

studies (7, 9, 10) demonstrated that excitotoxicity occurs following abnormally elevated 

exposure to glutamate.  The pathogenesis of glutamate-induced excitotoxic cell death 

occurs via an acute sodium-dependent phase followed by a delayed calcium-dependent 

phase (11).  The acute component occurs within minutes of glutamate binding to the N-

methyl-D-aspartic acid (NMDA) receptor, during which the sodium influx is associated 

with passive influx of water and chloride with resultant neuronal dendritic swelling.  The 

delayed component occurs hours post-exposure and is triggered by excessive calcium 

influx, which produces a cascade-like effect leading to cell death  (11, 12).  This 

excessive calcium influx has been implicated in the glutamate-induced injury of 

hippocampal neurons (13).  Moreover, Mattson and colleagues (14) report that the 

hippocampal subpopulation of pyramidal cells in rats are particularly vulnerable to 

glutamate-induced neurotoxicity when compared to bipolar or stellate cells, and 

demonstrate that pyramidal cells in the CA1 hippocampal region show greatest 

vulnerability to excitotoxic damage, followed by cells in the CA3 region, the CA2 region, 

and finally the dentate gyrus. 
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The Hippocampus and Memory 

The hippocampus is a pivotal structure of the medial temporal lobe and its 

functional integrity is requisite for learning and memory.  Compelling evidence in 

support of this comes from the famous case report of patient H.M. who underwent 

bilateral hippocampectomy for treatment of medically refractory epilepsy, with resultant 

post-surgical profound anterograde amnesia (15) despite preservation of intelligence.  

While this memory impairment followed bilateral hippocampal loss, similar deficits have 

been reported in patients undergoing unilateral hippocampal resection with prior 

concomitant damage to the contralateral hippocampus, creating the functional equivalent 

of bilateral hippocampal lesions (16).  However, memory impairments are less severe in 

patients undergoing unilateral hippocampectomy with intact contralateral temporal lobe 

function (17).  Furthermore, memory impairments following unilateral hippocampal 

resection are dependent on surgical lateralization; verbal memory is more severely 

impaired following resection of the dominant (usually left) hippocampus, while visual-

spatial learning deficits occur following non-dominant (usually right) hippocampectomy 

(17).  These lesion studies have generated a body of evidence suggesting that the 

hippocampus is responsible for memory operations in the medial temporal lobe. 

 

Although hippocampal participation in cognition is well recognized, the precise 

role it plays in memory is still being elucidated.  Memory is divided into two broad 

classes; declarative (explicit) memory refers to the conscious recollection of facts and is 

subdivided into semantic memory (one’s general knowledge base) and episodic memory 

(one’s recollection of personal experiences), while non-declarative (implicit) memory 

involves the non-conscious recollection of skills and comprises procedural learning, 
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perceptual priming, and conditioning (18).  Non-declarative memory functions 

independently of the hippocampus, as Milner (19, 20) demonstrates that this form of 

memory may be acquired, maintained, and retrieved even by patients who are profoundly 

amnesic as a result of hippocampal damage.  In contrast, declarative memory is critically 

dependent on hippocampal function, although there is considerable debate regarding 

whether the hippocampus serves as either the temporary storage site of semantic and 

episodic information awaiting consolidation (21) or the permanent storage site of 

episodic memory as multiple memory traces (22, 23).   Moser and Moser (24) review 

numerous studies investigating the use of spatial memory for navigation in both rodents 

and humans, which collectively suggest the hippocampus is critically involved during the 

encoding and retrieval of spatial memory.  Moreover, isolated damage to the human 

hippocampus has been reported to produce global deficits of declarative memory, with 

greater disruptions in episodic memory than semantic memory (24).  Finally, functional 

imaging studies in healthy patients demonstrate hippocampal activation during encoding 

of verbal and visual information (25).  This growing body of evidence from imaging and 

task-learning studies in both animal and human models clearly suggests that the 

hippocampus is specifically involved in the encoding process of verbal and visual-spatial 

memory. 

 

Separate anatomical sub-regions of the hippocampus are differentially engaged in 

the learning process, however the exact role these different segments play has not yet 

been fully elucidated.  Moser and Moser (24) suggest that the anterior one-third of the 

hippocampus is functionally distinct from the posterior two-thirds.  Based primarily on 

animal studies, these investigators propose that episodic memory depends on the 
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posterior two-thirds of the hippocampus alone, while the anterior hippocampus functions 

in emotional control systems.  In contrast, Ros and colleagues (26) demonstrate via 

autoradiogram densitometry that the hippocampus is activated heterogeneously along its 

anterior-posterior axis during spatial learning tasks in mice.  The pattern of metabolic 

activation reveals increased activity in the intermediate and posterior CA1 region during 

early acquisition, and in the anterior and posterior CA1 region and the anterior dentate 

gyrus during late acquisition (26).  In a meta-analysis of positron emission tomography 

(PET) imaging studies, Lepage and colleagues (27) report the anterior hippocampus is 

engaged during the encoding of episodic memory while the posterior region becomes 

activated during retrieval.  Furthermore, human functional magnetic resonance imaging 

(fMRI) studies demonstrate that processing novel information involves the anterior 

hippocampus, while processing familiar material utilizes the posterior hippocampus (28-

30).  Moreover, fMRI studies in primates suggest that the posterior hippocampus 

mediates spatial information, in contrast to anterior regions which, in animals, appear to 

direct non-spatial information processing (31).  Similar fMRI studies in healthy humans 

demonstrate significant activation of the posterior hippocampus during verbal learning as 

compared to the anterior hippocampus (25, 32).  Taken together, this evidence suggests 

the anterior hippocampus is predominantly involved in the encoding process of novel 

information, while the posterior hippocampus is responsible for retrieval, processing 

familiar information, and the mediation of verbal and spatial information. 

 

The cellular basis for the storage of information is thought to depend upon a form 

of synaptic plasticity known as long-term potentiation (33).  Long-term potentiation 

(LTP) upholds that repeated neuronal stimulation leads to synaptic sensitization, such that 
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a constant level of stimulus evokes an augmented post-synaptic response which may last 

for days to weeks.  This strengthening of the synaptic connection between neurons 

promotes efficacy of information processing, which is appropriate for the acquisition and 

storage of memory (34).   The molecular mechanisms of  LTP are currently being 

elucidated; it remains controversial whether this synaptic strengthening is maintained by 

an augmented release of neurotransmitter from the pre-synaptic cell, an increased number 

of receptors in the post-synaptic cell, or a combination of both (35).   Moreover, it is 

debated whether these molecular mechanisms underlying LTP are the same as those 

responsible for memory (36), however there is considerable evidence suggesting this is 

the case.  LTP has been described in various hippocampal pathways, including the 

Schaffer collateral –  CA1 synapse and the perforant path – dentate granule cell synapse 

(18, 37).  It is well documented that LTP is mediated by the interaction of glutamate with 

its NMDA receptor (38).  Beck and colleagues (37) report numerous studies 

demonstrating that antagonists of NMDA receptors prevent induction of LTP and result 

in spatial learning deficits in rodents.  Furthermore, electrophysiological analysis of 

hippocampal specimens from patients with temporal lobe epilepsy (TLE) has revealed 

that activity-dependent synaptic plasticity for information storage similar to the rodent 

model is also present within humans (37).  These findings demonstrate that the excitatory 

properties of glutamate within hippocampal pathways are crucial to learning and 

memory. 
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Impaired Cognition in Temporal Lobe Epilepsy 

The hippocampal model of memory is exemplified by patients afflicted with 

temporal lobe epilepsy (TLE), in which hippocampal pathology is associated with deficits 

in learning in memory.  The epileptogenic focus in this form of epilepsy involves the 

medial temporal lobe, evidenced by studies demonstrating the localization of abnormal 

electrical foci to this region, as well as data from postoperative pathology specimens 

revealing histological abnormalities of the temporal lobe (39).  TLE has long been 

associated with cognitive deficits, particularly with impairments in intelligence quotient 

(IQ) and verbal memory associated with long duration of epilepsy and frequent tonic-

clonic seizures (40).  Multiple neuropsychological assessment tools have been used to 

quantify cognitive function specifically related to learning and memory in these patients.  

Briefly, the Wechsler Adult Intelligence Scale (WAIS) provides measures of general 

intellectual functioning broadly categorized into Verbal Intelligence Quotient (VIQ) and 

Performance Intelligence Quotient (PIQ); the Full Scale Intelligence Quotient (FSIQ) is a 

composite of the VIQ and PIQ.  The FSIQ is a broad-spectrum measure of cognition that 

is mediated by global cortical processes; the VIQ and PIQ divide the FSIQ into verbally-

mediated and nonverbally-mediated components, respectively.  The Verbal Selective 

Reminding Test (V-SRT) is designed to measure verbal learning and memory during a 

multiple-trial list-learning task, which is mediated by dominant (usually left) 

hippocampal function (41).  An alternate format exists which measures spatial memory, 

referred to as the Visual-Motor Selective Reminding Test (VM-SRT), and depends on 

non-dominant (usually right) hippocampal function. 
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 Verbal memory impairments associated with TLE have been specifically 

correlated to both pyramidal cell loss and MRI-detected hippocampal atrophy.  First, Sass 

and colleagues (42-46) examined the relationship between neuronal counts of pyramidal 

cells in various hippocampal subfields and neuropsychological measures.  They 

demonstrated that neuronal loss in the CA3 and hilar regions is associated with verbal 

memory impairment measured both by the verbal selective reminding test (V-SRT)  (42) 

and the intracarotid amobarbital procedure (IAP), in which one hippocampus is 

anesthetized to permit independent testing of the contralateral temporal lobe (43).  

Subsequent studies further elucidated that decreased pyramidal cell density correlates 

with verbal memory impairment measured specifically by the V-SRT but not to overall 

verbal intellectual functioning as measured by the VIQ (44), supporting the hypothesis 

that memory impairment results from hippocampus-specific cell loss as opposed to global 

dysfunction of the temporal neocortex.  Furthermore, the extent of hippocampal cell loss 

is correlated with the degree of verbal impairment in patients both without (45) and with 

(46) structural lesions.  Second, improvements in neuroimaging have permitted pre-

surgical detection of mesial temporal sclerosis (MTS), which is the most common 

pathological finding of TLE.  MTS is characterized by severe neuronal loss and gliosis, 

and its signature on MRI includes atrophy of the hippocampus on T1-weighted images 

and increased signal intensity on T2-weighted images (47).  This MRI-detected 

hippocampal pathology in TLE patients has been associated with verbal memory 

impairment.  Westerveld (47) reports the correlation between hippocampal volume loss 

and asymmetry of memory scores during the intracarotid amobarbital procedure (IAP); 

the difference in performance between right and left hemispheres indicates impaired 
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functioning of one hippocampus with preservation of contralateral performance.  

Moreover, hippocampal volume loss correlates with deficits in baseline 

neuropsychological functioning, particularly of verbal learning and recall.  Lencz and 

colleagues (48) report that among TLE patients with left-sided seizure foci, MRI-

determined left hippocampal volume correlates with Wechsler logical memory percent 

retention scores, and left temporal lobe measurements correlate with performance on the 

V-SRT.  Kilpatrick and colleagues (49) report a strong association between the degree of 

MRI-detected left hippocampal atrophy and severity of verbal memory and verbal 

memory retention deficits measured by the Rey auditory verbal learning task.  Taken 

together, these data correlating both decreased pyramidal cell density and hippocampal 

atrophy with impaired verbal memory in temporal lobe epilepsy patients clearly 

demonstrate the necessity of cellular and macroscopic hippocampal integrity for proper 

cognitive function. 

 

Patients with Temporal Lobe Epilepsy 

 

 Epilepsy is a common disorder affecting approximately 15 per 1000 people (50) 

with resultant significant morbidity and mortality.  Mesial temporal lobe epilepsy 

(MTLE) is the most common form of human epilepsy (51), and its underlying pathology 

is most often mesial temporal sclerosis (MTS), hallmarked by hippocampal neuronal loss 

and gliosis (52).  MTLE is resistant to antiepileptic medications in approximately 75% of 

cases (52).  Significant disability has been reported in such patients, including depression 

in approximately 50% of cases with suicidal ideation approaching 20%, and psychosis 

occurring 6- to 12-fold more frequently than healthy counterparts (53).  Further morbidity 
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and mortality results from seizure injury (including fractures, burns, and death from 

drowning and driving), in addition to death from status epilepticus, suicide, and sudden 

unexplained death in epilepsy patients (SUDEP) (53).  Moreover, the duration and 

severity of epilepsy are associated with cognitive dysfunction, including significant 

verbal memory decline (40, 54) and impairments of global intelligence measured by the 

WAIS-R (40, 55), which contribute to decreased quality of life in these patients.  

However, MTLE is surgically remediable by anteromesial temporal resection in 70 to 

90% of patients (51, 52, 56).  A landmark randomized controlled trial of temporal-lobe 

surgery for medically refractory TLE demonstrated that 58% of the surgical group was 

seizure free at one year postoperatively as compared to 8% in the medical group, with 

improvements in quality of life reported for seizure-free patients (57).  Although the cost 

incurred through preoperative evaluation and surgical resection approximates $100,000 

(56), it is comparable to the expense of antiepileptic drug therapy, medical intervention 

for illness secondary to treatment failure, laboratory studies, office visits, and lost income 

from unemployment.  Furthermore, surgical resection in the treatment of medically 

refractory epilepsy may improve quality of life and permit the patient to become a 

functional member of society. 

 

Microdialysis Measurements of the Glutamate Levels in the Epileptogenic Hippocampus 

 

  The technique of microdialysis has been applied to patients with refractory 

medical temporal lobe epilepsy undergoing intracranial depth electrode monitoring to 

identify seizure focus for possible resection.  In this technique, microdialysis catheters are 

implanted into the brain region of interest so that extracellular brain fluid may be sampled 
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and analyzed for composition and concentrations of neurotransmitters (58, 59).  Chemical 

substrates within the brain’s interstitial fluid diffuse down a concentration gradient across 

a semi-permeable dialysis membrane into the perfusion fluid inside the catheter.  The 

perfusion fluid is then collected and analyzed (58, 59). 

 Microdialysis techniques have been employed to study animal models of epilepsy, 

revealing an association between seizure activity and elevated glutamate levels (60-63).  

Ueda and colleagues (60) demonstrated an increase in extracellular hippocampal 

glutamate concentrations during the interictal period of freely-moving rats with chronic 

kainic-acid induced seizures.  Engstrom and colleagues (61) found spontaneous interictal 

glutamate elevations up to 8 times the basal level in 80% of rats with iron-induced 

chronic focal epilepsy.  Smolders and colleagues (62) report that during pilocarpine-

induced limbic convulsions in the freely moving rat, glutamate levels are significantly 

increased in the hippocampus. 

 

 Similarly, several human microdialysis studies report that glutamate levels in the 

hippocampus of TLE patients may be elevated to neurotoxic ranges (64-70).  Early 

intracerebral microdialysis studies revealed a dramatic increase of extracellular glutamate 

during the onset and occurrence of seizures (64, 65).  Wilson and colleagues (66) report 

that the glutamate increase during seizures in the human hippocampus is similar to the 

glutamate rise seen in the chronic kainate rat model of epilepsy.  In patients undergoing 

anteromesial temporal resection, microdialysis recovery of glutamate from spontaneously 

epileptiform hippocampus was significantly greater than glutamate recovery from non-

epileptiform hippocampus (67, 68).  A recent microdialysis study by Cavus and 

colleagues (69) comparing epileptogenic and non-epileptogenic hippocampus during 
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interictal periods demonstrates that while glutamate levels remain low in non-

epileptogenic regions, basal extracellular glutamate levels are elevated to potentially 

neurotoxic ranges in the epileptogenic hippocampus.  Moreover, During and Spencer (70) 

report that extracellular glutamate levels in the epileptogenic hippocampus rise further 

above baseline immediately preceding seizures and remain elevated for prolonged post-

ictal periods as compared to healthy brain, possibly exacerbating neurotoxic damage.  

Furthermore, extracellular glutamate concentrations have been found to increase 

significantly during the performance of complex figure memory tasks, and this elevation 

is both augmented and prolonged in epileptogenic hippocampus, suggesting that the 

epileptic brain is particularly vulnerable to the cognitive activation-induced glutamate 

release (71).  Recent evidence from microdialysis studies has further demonstrated that 

elevated basal glutamate levels in the epileptogenic hippocampus are correlated with both 

decreased neuronal density measured by histological analysis and MRI-detected 

quantitative hippocampal atrophy (Cavus, unpublished data), suggesting that glutamate 

elevation to neurotoxic levels may mediate the neuronal cell loss and sclerosis associated 

with cognitive deficits. 
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Statement of Purpose 

 The purpose of this study is to identify the relationship between basal 

hippocampal glutamate levels and cognitive function in patients with TLE.  In brief 

review, glutamate is the principal excitatory neurotransmitter and levels remain low in 

healthy brain, however concentrations may rise to neurotoxic levels in the epileptogenic 

hippocampus (1, 5, 7, 64-70).  The hippocampus is responsible for learning and memory 

(15-17, 24-27), thus impaired hippocampal function in TLE is associated with cognitive 

deficits (40, 54, 55).  Specifically, microdialysis evidence demonstrates that elevated 

glutamate levels are associated with cell loss and hippocampal atrophy (Cavus, 

unpublished data), and previous studies have demonstrated that both cell loss and 

hippocampal atrophy are associated with verbal memory impairment (42-49).  We 

therefore hypothesize that elevated basal glutamate levels in the epileptogenic (and often 

atrophic) hippocampus will be associated with poorer cognitive function.  Further, we 

hypothesize that elevated basal glutamate levels in the epileptogenic hippocampus are 

associated particularly with impaired verbal memory measured by a neuropsychological 

test specific for hippocampal verbal functioning, the verbal selective reminding task, but 

not with global intelligence measured by the Verbal IQ, Performance IQ, and Full Scale 

IQ, as these tests are more dependent upon cortical processes and less dependent on 

memory and hippocampal-specific processes.  Conversely, we hypothesize that the low 

basal glutamate level in healthy non-epileptogenic hippocampus will not be associated 

with verbal memory deficits. 
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Methods 

Patients 

 

Patients with drug-resistant epilepsy receive a phased evaluation of their illness to 

localize their seizure focus for possible surgical resection.  All patients undergo Phase I 

clinical evaluation, in which they are admitted to an epilepsy unit for continuous audio-

video/electroencephalogram (EEG) monitoring with interictal and ictal scalp recording 

during at least three typical seizures.  Patients also receive brain magnetic resonance 

imaging (MRI) with measurement of hippocampal volume, interictal and ictal single-

photon emission computed tomography (SPECT), interictal positron emission 

tomography (PET), and extensive neuropsychological assessment.  Phase II evaluation 

consists of the intracarotid amobarbital procedure to determine lateralized memory 

function and hemispheric dominance for language.  Those patients in whom the seizure 

focus could either not be localized by Phase I and II evaluations or if there was discordant 

data were offered intracranial EEG monitoring (Phase III study), which involved 

continuous audiovisual monitoring and EEG recording from a combination of depth, 

subdural strip, and grid electrodes implanted intracranially in brain regions suspected of 

being involved in seizure generation.  These patients undergoing Phase III evaluation 

were also invited to participate in the microdialysis study between 2000 and 2005.  

Patients who consented to the study received implantation of depth electrodes which were 

coupled to microdialysis probes, allowing for simultaneous electrophysiological 

recording and sampling of the extracellular fluid.  The recordings from the two depth 

electrode contacts flanking the microdialysis membrane were used to determine whether 

the microdialysis catheter was within or outside an epileptogenic area.  The epileptogenic 
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area was defined as the site of seizure origin in at least one seizure, whereas the non-

epileptogenic sites were either not involved or were only secondarily involved 

(propagated) during seizures.  Epileptogenic probes are defined as microdialysis catheters 

coupled to electrodes which recorded from epileptogenic areas, while non-epileptogenic 

probes are those catheters which recorded from non-epileptogenic brain areas. 

 Twenty-two patients participated in the study.  The mean age at the time of the 

Phase III study was 36.3 years (standard deviation (SD), 12.4 years), with 13 female 

patients: (mean age ± SD) 36.4 ± 12.1 years and 9 male patients: 36.2 ± 13.7 years.  The 

mean duration of epilepsy was 19.7 years (SD, 12.8 years), with the mean duration of 

epilepsy for females equal to 18.1 ± 12.9 years and the mean duration for males equal to 

22.1 ± 13.1 years (Table 1). 

 

The sample was confined to English-speaking patients without co-morbid medical 

conditions, 17 years or older, with a Wechsler Adult Intelligence Scale-Revised (WAIS-

R) full scale IQ of 70 or greater, and the intracarotid amobarbital procedure 

demonstrating left hemisphere speech dominance.  For patients with multiple intracranial 

microdialysis catheters, only data from probes located in the anterior hippocampus were 

included in the study, based on previous reports of differential involvement of the 

anterior and posterior hippocampus in cognitive processing (24, 26-32).  Furthermore, 

patients were excluded from the study if there was ambiguous probe placement (e.g. at 

the juncture of white and grey matter), tumor, or diffuse dysplasia at or close to the 

microdialysis catheters.  All patients gave informed consent to the research protocol that 

was approved by Yale University School of Medicine Human Investigation Committee.  

Demographic data of participating patients was obtained by this investigator through 
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medical chart review, and then recorded in a common database.  Table 1 summarizes 

patient information regarding gender, age of seizure onset and duration of epilepsy, probe 

location, and classification of disease state as epileptogenic versus non-epileptogenic.  

MRI findings of the hippocampus ipsilateral to the probe are reported, as well as 

pathology at the probe site following resection if available. 

 
 
Table 1.  Patient Data 

 

Case 
No. 

Sex Age 
(yr) 

Epilepsy 
Duration 

(yr) 

Probe 
Location 
(no. of 
probes) 

Epileptogenic vs.   
Non-Epileptogenic 

Clinical 
MRI 

Findings 

Pathology at 
Probe Site 

1 M 53 34.0 L hipp Epileptogenic Atrophy No surgery 
2 M 39 12.6 L hipp Epileptogenic Atrophy No surgery 
3 M 40 40.3 L hipp Epileptogenic Atrophy No surgery 
4 M 17 5.2 R hipp Epileptogenic Atrophy Hipp 

Sclerosis 
5 F 52 17.4 R hipp Epileptogenic Atrophy Hipp 

Sclerosis 
6 F 32 28.3 R hipp Epileptogenic Atrophy Hipp 

Sclerosis 
7 M 50 40.0 L hipp Epileptogenic No Atrophy No surgery 
8 F 38 2.0 L hipp Epileptogenic No Atrophy No surgery 
9 F 36 33.6 L hipp Epileptogenic No Atrophy No surgery 

10 F 49 47.8 L hipp Epileptogenic No Atrophy No cell loss 
11 F 46 9.1 L hipp Epileptogenic No Atrophy Mild WM 

gliosis 
12 M 23 23.2 R hipp Epileptogenic No Atrophy No cell loss 
13 F 17 8.0 R hipp Epileptogenic No Atrophy No surgery 
14 F 52 8.3 L & R 

hipp (2) 
Epileptogenic (1)   
Non-Epileptogenic (1) 

No Atrophy 
(2) 

No surgery 

15 M 27 11.0 L hipp Non-Epileptogenic Atrophy No surgery 
16 F 27 17.5 L hipp Non-Epileptogenic No Atrophy No surgery 
17 M 52 17.4 L hipp Non-Epileptogenic No Atrophy No surgery 
18 M 25 15.0 L hipp Non-Epileptogenic No Atrophy No surgery 
19 F 19 7.1 L hipp Non-Epileptogenic No Atrophy No surgery 
20 F 23 12.0 R hipp Non-Epileptogenic No Atrophy No surgery 
21 F 39 26.0 R hipp Non-Epileptogenic No Atrophy No surgery 
22 F 43 18.0 R hipp Non-Epileptogenic No Atrophy No surgery 

MRI = magnetic resonance imaging; M = male; F = female; L = left; R = right; hipp = 
hippocampus; WM = white matter. 
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Neuropsychological Assessment Techniques 

 Examiners in the Yale University School of Medicine Department of 

Neuropsychology administered both the WAIS-R to measure Intelligent Quotients 

(Verbal IQ, Performance IQ, and Full Scale IQ) and the Selective Reminding Tests 

(Verbal SRT and Visuo-Motor SRT) during the pre-surgical screening of all patients.  

Patients were treated with therapeutic ranges of anticonvulsant medication and 

maintained seizure-free during the 12-hour period prior to examination.  

Neuropsychological test results were obtained by this investigator through a review of 

patient charts and subsequently compiled into a common database. 

The WAIS-R (72) is a core measure of global intellectual functioning in which an 

examiner asks tests questions and displays puzzles.  The patient’s responses are recorded 

in an individual response booklet and scored.  The WAIS consists of 6 verbal subtests 

(Information, Digit Span, Vocabulary, Arithmetic, Comprehension, and Similarities) in 

addition to 5 performance subtests (Picture Completion, Picture Arrangement, Block 

Design, Object Assembly, and Digit Substitution).  Sub-scores on the Verbal Intelligence 

Quotient (VIQ) subtests and Performance Intelligence Quotient (PIQ) are combined to 

determine a composite Full Scale Intelligence Quotient (FSIQ) (41). 

 

The Verbal Selective Reminding Test (V-SRT) (73) consists of a list of 12 

unrelated words which are presented to the subject and must be recalled over multiple 

trials immediately following recitation.  The examiner will repeat only those words not 

recalled by the subject on the previous trial, permitting the assessment of both short-term 

and long-term memory.  Stimulus exposure continues until the patient recalls the entire 

list on two consecutive trials, or a total of 12 trials have been performed (41).  Standard 
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scoring yields measures of total recall, long-term memory storage, long-term memory 

retrieval, consistent long-term memory retrieval, and short-term memory retrieval, which 

are highly correlated (42).  Factor analysis by Westerveld and colleagues (74) has 

demonstrated that these measures constitute a single factor.  V-SRT scores are therefore 

reported as a single factor using a z-score distribution (average = 0, standard deviation = 

1), in which a score of 0.0 equals the average of non-epileptic samples studied by 

Westerveld.  Negative scores indicate performance below average, while positive scores 

are above average (45).  The Visual-Motor Selective Reminding Test (VM-SRT) is 

administered and scored in a similar fashion to the V-SRT, with visual stimuli replacing 

the list of 12 words and recall assessed through the drawing of stimuli after exposure. 

 

Microdialysis Procedure 

 

Microdialysis probes coupled to depth electrodes (Spencer probe; Ad-Tech 

Instrument, Racine, WI) were implanted stereotaxically in hippocampal regions 

suspected of seizure involvement.  All surgeries were performed by Drs. Dennis Spencer, 

Kenneth Vives, and members of the Yale-New Haven Hospital Department of 

Neurosurgery.  The design of the earlier Spencer probe has been modified (75).  Briefly, 

the probes are CMA custom-modified microdialysis probes (CMA/20 concentric flexible 

probe, 20 kDA membrane pore size, CMA, North Chelmsford, MA) which allow stable 

flow, recovery, and dialysate collection throughout the duration of intracranial EEG 

monitoring.  The dialysis probe is inserted into a polyurethane/silastic flexible depth-

electrode (1 mm i.d., Ad-Tech Instrument Co., Racine, WI), which has perforations 

between contacts 1 and 2 to allow for fluid exchange with the membrane.  The total 
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diameter of this combination microdialysis/depth electrode (Spencer probe) is 1.85 mm.  

The probes were sterilized by gamma radiation and flushed with sterile artificial 

extracellular fluid (AECF) to ensure patency prior to insertion.  After surgery, MRI was 

used to verify the location of the probes and distinguish between anterior and posterior 

hippocampal placement.  (See Fig 1, A-C.) 

 

Fig 1, A-C.  Microdialysis catheters prior to, during, and post-surgical implantation. 
(A)  Subdural grid electrode and Spencer depth electrode with microdialysis catheter 
prior to intracranial implantation.  (B) Intraoperative implantation of depth electrodes 
with attached microdialysis catheters and placement of subdural grid electrodes into the 
temporal cortex of a patient undergoing Phase III evaluation.  (C)  Magnetic resonance 
image from a patient with one Spencer probe in the right hippocampus, highlighted in 
red.  Depth electrode contacts 1 through 8 are visible.  The platinum contacts of the 
depth electrode generate significant artifact and appear much larger than their actual 
diameter of 1mm.  The microdialysis membrane, which is not visible on magnetic 
resonance imaging, lies between depth electrode contacts 1 and 2. 
 
A        
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Zero-Flow Study 

 

 The zero-flow microdialysis method provides an estimate of the true baseline 

substrate concentration in the extracellular fluid under steady-state conditions (76, 77).  

The study was conducted 2 to 5 days after surgical probe implantation, at least 6 hours 

from any intracranially recorded seizure activity and at least 2 hours post-prandially, with 

the patient quietly resting in the evening, to avoid the effects of acute probe implantation, 

anesthesia, ictal activity, behavioral stimuli, or food intake (78-80).  Patients were 

maintained on their anti-epileptic medications for the duration of the study.  Sterile 

artificial cerebrospinal fluid (ACSF) (composition: 135mM NaCl, 3mM KCl, 1mM 

MgSO4*7H2O, 1.2mM CaCl2*2H2O in 1mM sodium phosphate buffer at pH 7.4; Yale-

New Haven Hospital Pharmacy) was infused into the hippocampus of awake patients via 

the inlet tubing on the microdialysis probe using portable CMA107 syringe pumps 

(CMA, North Chelmsford, MA).  Chemical substrates in the hippocampal interstitial fluid 

diffuse across the dialysis membrane into the artificial CSF within the probe, which is 

then collected via the outlet tubing on the microdialysis probe into microvials.  A flow 

rate of 2.0 µl/min was initially infused over one hour to reach a steady state, at which 

point two consecutive 20 µl dialysate samples were collected.  The flow rate was then 

gradually decreased to 1.0, 0.5, and 0.2 µl/min, allowing a period of 60 to 90 minutes 

after each change in flow rate for equilibration; two consecutive 20 µl dialysate samples 

were collected at each flow rate.  The study was completed over 6 hours, and samples 

were stored initially over dry ice then placed in a -80ºC freezer for later analysis of 

neurometabolite concentration using high-performance liquid chromatography.  Basal 

levels of glutamate were determined using regression analysis with fit to second 
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polynomial order to a flow of zero, which corresponds to steady state.  The zero-flow 

studies were performed by this investigator in conjunction with M. Cassaday, D. Ocame, 

and S. Forselius. 

 

High Performance Liquid Chromatography Analysis of Glutamate Levels 

 Glutamate levels were analyzed using high-performance liquid chromatography 

(HPLC) modified from the method described by Bourdelais and Lakivas (81).  Briefly, 1 

µl of patient sample is added to 9 µl of an internal standard of alpha-aminoadipic acid 

(AAA).  This mixture is derivatized by adding 20 µl of an O-phthaldialdehyde.  After 

eight minutes, 20 µl of the derivatized sample is injected onto the column (3 um Phase II 

ODS column, 3.2 x 100 mm cartridge, Bioanalytical Systems, Inc., West Lafayette, IN).  

The mobile phase consists of 0.1M acetic acid (pH 6.0) with a 12 to 20% acetonitrile 

gradient at a 1 ml/min flow rate.  Within 30 minutes, chromatograms demonstrate 

adequate separation showing glutamate approximately at 6.9 minutes and AAA at 7.7 

minutes (see Fig 2).  The excitation and emission wavelengths on the florescence detector 

(Shimadzu Scientific Instruments, Columbia, MD) are set at 338nm and 425nm, 

respectively.  The sensitivity limit for glutamate is 0.1, based on a signal-to-noise ratio of 

10:1.  Peak areas of the neurometabolite on chromatograms are then compared with 

external standards to determine the concentration in the samples using EZCHROME elite 

software from ESA (Chelmsford, MA).  HPLC analysis was kindly performed by M. 

Cassaday and D. Ocame. 
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Fig 2.  High-performance liquid chromatogram 
High-performance liquid chromatogram sample showing the peak separations for 
aspartate (asp, 2.0µM), glutamate (glu, 1.7µM), the internal standard α-aminoadipic 
acid (AAA), and glutamine (gln, 80.5µM).  The standard curve graph for glutamine and 
glutamate is shown in the inset.  (Reprinted with permission from Cavus et al, Annal 
Neurol 2005.) 
 

 

 

Statistical Analysis 

 

 All statistical analyses were performed using JMP 5.0 Statistical Package (SAS 

Institute Inc., NC).  Data of neuropsychological results follow a normal distribution; 

glutamate data were transformed by log for normalization.  Data were analyzed by 

analysis of variance (ANOVA) in which the neuropsychological variables (VIQ, PIQ, 

FSIQ, V-SRT, and VM-SRT) were dependent measures in a two (disease state: 

epileptogenic and non-epileptogenic) by two (laterality: right and left) analysis of 

variance.  Analysis of co-variance (ANCOVA) was employed for the analysis of disease 

state (epileptogenic) controlling for clinical MRI findings (atrophy and non-atrophy).  

Linear regression models were used to investigate relationships between glutamate and 
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neuropsychological test performance based on a priori hypothesis.  Significance level 

was set at 0.05.  Data are reported as mean ± standard error of the mean.  This 

investigator organized the dataset, and all statistical analyses were performed by I. Cavus, 

M.D., R. Gueorguieva, and B. Roach in conjunction with this investigator.
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Results 

Twenty-two patients were implanted with a total of 23 Spencer probes in the 

anterior hippocampus.  Based on the intracranial EEG evaluation of spontaneous 

seizures, 14 hippocampal probes were classified as epileptogenic and 9 as non-

epileptogenic.  Of the 14 epileptogenic probes, 9 were located in the left hippocampus 

and 5 in the right hippocampus; 6 were in atrophic hippocampus, and 8 in non-atrophic 

hippocampus.  Of the 9 non-epileptogenic probes, 5 were located in the left hippocampus 

and 4 in the right hippocampus; only 1 was located in atrophic hippocampus while 8 were 

in non-atrophic hippocampus (Table 1.) 

 

The extracellular basal glutamate concentration from all microdialysis probes was 

estimated using the zero flow method and found to be 8.42 ± 10.47µM (mean ± SD), n = 

23.  The extracellular basal glutamate concentration in the non-epileptogenic 

hippocampus was 2.92 ± 1.37 µM (n = 9).  In contrast, the basal glutamate concentration 

in the epileptogenic hippocampus was significantly greater (11.96 ± 12.24 µM, n = 14, p 

= 0.0199, t-test on log-transformed data) than in the non-epileptogenic hippocampus (see 

Fig 3).  These results are consistent with prior studies that have demonstrated the 

epileptogenic hippocampus exhibits a higher basal level of glutamate compared to the 

non-epileptogenic hippocampus (69, 70).  Since glutamate levels in the epileptogenic and 

non-epileptogenic hippocampus are significantly different, and our a priori hypothesis 

predicts that the glutamate levels in the epileptogenic hippocampus may impair cognitive 

performance, we examined the relationship between glutamate and the 

neuropsychological tests in the epileptogenic and non-epileptogenic hippocampus 

separately. 
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Fig 3.  Basal extracellular glutamate levels in the epileptogenic and non-
epileptogenic hippocampus. 
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 * p = 0.0199 

Basal glutamate levels in the epileptogenic hippocampus are significantly higher than 
basal glutamate levels in the non-epileptogenic hippocampus. (* p < 0.05) 
 

 

There has been considerable evidence suggesting that right and left hippocampus 

play different roles in cognitive functioning (17), therefore we have analyzed the effects 

of laterality within the epileptogenic and non-epileptogenic hippocampus.  Within the 

epileptogenic probes, the basal glutamate level from the left hippocampus (12.06 ± 12.23 

µM, mean ± SD, n = 9) did not differ significantly from the right hippocampus (11.78 ± 

13.71 µM, n = 5), p > 0.05, t-test on log-transformed data).  Similarly, no difference was 

found between the non-epileptogenic probes in the left hemisphere (2.34 ± 1.47µM, n = 

5) and right hemisphere (3.64 ± 0.92µM, n = 4, p > 0.05, t-test on log-transformed data).  

(See Figure 4, A-B.) 
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Fig 4, A-B.  Basal extracellular glutamate levels in the left and right epileptogenic 
and non-epileptogenic hippocampus. 
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The basal extracellular glutamate levels are comparable (p > 0.05) within the (A) 
epileptogenic hippocampus and (B) non-epileptogenic hippocampus. 
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Further analysis was conducted to examine the effect of laterality on the 

relationship between individual neuropsychological assessment scores (VIQ, PIQ, FSIQ, 

V-SRT, and VM-SRT) and basal glutamate levels in the epileptogenic and non-

epileptogenic probes, using a linear regression model.  Within the epileptogenic probes, 

there were no significant correlations between basal glutamate concentrations and all 

neuropsychological measures for the right and the left hippocampus (p > 0.05 for all 

comparisons.)  Of note, some results (VIQ, PIQ, and FSIQ) for the right hemisphere were 

bordering statistical significance (VIQ: n = 6, R2 = 0.6139, p = 0.0652; PIQ: n = 6, R2 = 

0.6113, p = 0.0662; FSIQ: n = 6, R2 = 0.6581, p = 0.0501).  This finding may be spurious 

due to our small sample size, however the elucidation of laterality would benefit from 

further investigation in larger studies.  Within the non-epileptogenic probes, there were 

no significant correlations between the basal glutamate levels and the neuropsychological 

measures of VIQ, FSIQ, V-SRT, and VM-SRT for the right and the left hippocampus (p 

> 0.05).  However, only the extracellular levels in the left non-epileptogenic 

hippocampus correlated positively with the PIQ score (n = 7, R2 = 0.6662, p = 0.0251).  

We are not sure about the significance of this finding, as it was unexpected.  It is possible 

that this result within the healthy hippocampus may result from our small sample size.  

Conversely, increases in glutamate within physiologic ranges in the non-epileptogenic 

hippocampus may represent cognitive activation, which correlates with improved 

performance on the PIQ.  For this reason, further investigation may beneficial to clarify 

this finding.  Based on these data demonstrating little statistical significance between 

right and left hippocampal probes within both epileptogenic and non-epileptogenic 

probes, laterality effects will not be included during further analysis in this study. 
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Given evidence that elevated glutamate levels can be neurotoxic (7-9) and are 

associated with hippocampal neuronal loss and volume reduction (Cavus, unpublished 

data), and that these hippocampal pathologies are associated with verbal memory 

impairment (42-49), we sought to investigate whether elevated baseline glutamate levels 

in the epileptogenic hippocampus are associated with poorer cognitive function as 

compared to the non-epileptogenic hippocampus.  The extracellular glutamate levels in 

the epileptogenic hippocampus correlated inversely with neuropsychological 

performance scores only on the V-SRT (R2 = 0.36, p = 0.0244) (see Figure 5), but not for 

other tests (VIQ, PIQ, FSIQ, VM-SRT) (p > 0.05, linear regression model).  This result is 

consistent with our hypothesis; an increase in basal glutamate levels to abnormally high 

levels is correlated with impaired hippocampal functioning measured by lower scores on 

the V-SRT, which is a test specific for hippocampal function.  However, elevated basal 

glutamate levels in the epileptogenic hippocampus do not correlate with decreased scores 

on other neuropsychological assessments (VIQ, PIQ, FSIQ, and VM-SRT), which are 

less specific measures of hippocampal function.  In the non-epileptogenic hippocampus 

where basal glutamate levels lie within normal ranges, there were no significant 

correlations between extracellular glutamate levels and neuropsychological performance 

scores for any measure (VIQ, PIQ, FSIQ, V-SRT, VM-SRT) (p > 0.05 for all 

correlations).  This finding is consistent with our hypothesis given that physiologic levels 

of extracellular glutamate are not expected to impair cognitive processing, therefore 

further analysis within this study will be confined to the epileptogenic probes. 
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Figure 5.  The relationship between basal extracellular glutamate levels in the 
epileptogenic hippocampus and V-SRT scores. 
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Basal glutamate levels and performance scores on the V-SRT are significantly and 
inversely correlated within the epileptogenic hippocampus, where the extracellular 
glutamate levels are abnormally high.  Log transformation data were plotted according 
to the linear regression model.  (* p < 0.05) 
 
 
 

 

Thus far, our analysis of the relationship between basal glutamate levels and 

cognitive function has included all epileptogenic probes.  In light of evidence suggesting 

that MRI-detected hippocampal atrophy is associated with decreased performance on 

neuropsychological assessment of verbal memory (47-49), we sought to clarify the 

relationship between glutamate levels and cognitive function among epileptogenic probes 

by controlling for the presence or absence of hippocampal atrophy.  Of the 14 

epileptogenic probes, 6 were located in atrophic hippocampus and 8 in non-atrophic 

hippocampus (Table 1).  Within the epileptogenic probes, the basal glutamate level (mean 

± SD) in atrophic hippocampus (18.36 ± 16.30µM, n = 6) is much greater than in non-

atrophic hippocampus (7.15 ± 5.19µM, n = 8).  However, this difference did not reach 

statistical significance (p > 0.05, t-test on log-transformed data), which is likely the result 
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of our small sample size (see Figure 6).  Within the non-epileptogenic probes, the basal 

glutamate level (mean ± SD) from non-atrophic hippocampus was 2.92 ± 1.46µM (n = 8).  

Only one probe was located in the atrophic hippocampus, thus precluding further analysis 

within this group. 

 
 
Fig 6.  Basal extracellular glutamate levels in the atrophic and non-atrophic 
epileptogenic hippocampus. 
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Within epileptogenic hippocampus, basal glutamate levels in atrophic hippocampus were 
much higher than in non-atrophic hippocampus.  However this difference did not reach 
statistical significance (p > 0.05), likely due to small sample size. 
 

 

 

Further analysis was conducted to examine the effect of atrophy on the 

relationship between basal glutamate levels and individual neuropsychological 

assessment scores (VIQ, PIQ, FSIQ, V-SRT, and VM-SRT) within epileptogenic probes.  

Analysis of co-variance (ANCOVA) test was utilized with atrophy as a co-variant, basal 

glutamate levels as predictor, and neuropsychological test results as outcome, followed 

by linear regression analysis.  The relationship between glutamate levels and V-SRT 
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scores has been demonstrated to be significant within all epileptogenic probes; however 

when controlling for the presence of atrophy on ANCOVA tests it is revealed that this 

relationship is significant only within atrophic hippocampus (F(1,5) = 13.89, p = 0.0204), 

but not within non-atrophic hippocampus (F(1,7) = 0.68, p = 0.4424) (see Figure 7, A-B).  

In addition, although glutamate levels did not correlate significantly with the PIQ scores 

in the epileptogenic hippocampus, when controlled for the presence of atrophy, the 

glutamate levels correlated inversely with the PIQ scores within atrophic hippocampus 

(R2 = 0.7324, p = 0.0297), but not within non-atrophic hippocampus (R2 = 0.2303, p = 

0.2288) (see Fig 7, C-D).  These results indicate that within atrophic hippocampus, 

elevated basal glutamate levels are associated with significantly decreased cognitive 

performance as measured by both the V-SRT and PIQ tests.  There were no significant 

interactions with atrophy as a co-variant for any of the other neuropsychological 

measures (VIQ, FSIQ, and VM-SRT, p > 0.05). 
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Figure 7, A-D.  The relationship between basal extracellular glutamate levels in the 
atrophic and non-atrophic epileptogenic hippocampus and performance scores on 
V-SRT and PIQ tests. 
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Within epileptogenic hippocampus, the increase in the basal glutamate level in the 
atrophic hippocampus, but not the non-atrophic hippocampus, correlated significantly 
with lower performance on the V-SRT test (A and B) and on the PIQ test (C and D).  Log 
transformed glutamate data is plotted against the cognitive task scores according to 
linear regression model.  (* p < 0.05) 
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Discussion 

 This study explores the relationship between the extracellular glutamate level in 

the hippocampus and the cognitive performance of patients with medication-resistant 

localization-related epilepsies.  We used the zero-flow microdialysis method to estimate 

the basal extracellular concentration of glutamate in the epileptogenic and non-

epileptogenic hippocampus of conscious neurosurgical epileptic patients during the 

interictal period (Table 1).  The epileptogenic hippocampus had high basal glutamate 

levels (mean, 11.96µM; in some cases exceeding 35µM) which far exceeds neurotoxic 

glutamate levels of 5 micromolar or greater (82-84).   In contrast, the non-epileptogenic 

hippocampus maintained low glutamate levels (mean, 2.92µM), which were within the 

range of previous studies in humans (69) and animals (85).  We argue that the elevated 

basal glutamate levels in the epileptogenic hippocampus may be responsible for impaired 

cognitive functioning in patients with temporal lobe epilepsy. 

 

Previous studies have reported that elevated glutamate levels are associated with 

cell loss and hippocampal atrophy in animals (86-88) and humans (Cavus, unpublished 

data), and that both cell loss and hippocampal atrophy are associated with verbal memory 

impairment (42-49).  Our data demonstrate that elevated basal glutamate levels are 

associated with decreased performance on certain hippocampal cognitive tests.  

Specifically, elevated basal glutamate levels in the epileptogenic hippocampus are 

correlated with impaired verbal memory measured by the V-SRT, which is a 

neuropsychological assessment tool specific for hippocampal verbal functioning (44) (see 

Figure 5).  Furthermore, when controlling for the presence or absence of MRI-detected 

hippocampal atrophy within epileptogenic regions, our study reveals that elevated basal 
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glutamate levels within atrophic hippocampus are correlated with decreased cognitive 

functioning measured by both the V-SRT and PIQ tests, but not within non-atrophic 

hippocampus (see Figure 7, A-D).  No associations were elucidated between elevated 

basal glutamate levels in both atrophic and non-atrophic epileptogenic hippocampus and 

impaired cognitive performance measured by the VIQ, FSIQ, and VM-SRT.  In the non-

epileptogenic hippocampus, no associations were found between glutamate levels and 

performance on neuropsychological tests in agreement with our hypothesis.  Basal 

glutamate levels remained low within this group, suggesting that the synaptic release and 

reuptake of glutamate is predominantly intact.  Thus, it is reasonable to suggest that the 

activity-dependent synaptically-released glutamate is contained mostly within the 

synaptic cleft, and the low levels of extrasynaptic glutamate do not interfere with the 

glutamatergic signal processing that mediates cognitive functions (6). 

 

Our data correlating elevated basal glutamate levels with impaired cognition do 

not imply causation.  However, they are consistent with our proposed mechanism of 

neuropathology in which neurotoxic levels of glutamate damage the hippocampus and 

consequently impair cognitive functioning.  Within epileptogenic hippocampus, 

glutamate concentrations may rise to neurotoxic levels as a result of impaired reuptake, 

excess synthesis and release, or impaired glutamate-glutamine cycling (69).  Excessive 

concentrations of glutamate are known to produce excitotoxic cell death (7, 9), which 

may impair cellular functioning at the synaptic level, as well as mediate hippocampal cell 

loss and MRI-detected pathology (46, 47).  We found that within epileptogenic probes, 

correlations existed between elevated glutamate levels and decreased cognitive 

processing for the atrophic hippocampus, but not for the non-atrophic hippocampus (see 
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Figure 7, A-D).  This suggests that atrophy alone is not sufficient for impaired cognitive 

processing, but may require the concomitant elevation of glutamate concentrations.  We 

therefore propose that the aforementioned cognitive deficits occur as a result of elevated 

glutamate levels with resultant neurotoxicity, and not simply from the presence of 

hippocampal cell loss and atrophy. 

 

The association between elevated basal glutamate levels in the epileptogenic 

atrophic hippocampus and decreased scores on the V-SRT is consistent with our 

hypothesis, as this measure has been previously demonstrated to be specific for 

pyramidal cell loss (44).  However, the association between elevated glutamate and 

decreased performance on the PIQ was unexpected, as this test is a measure of overall 

intelligence which depends primarily upon global cognitive processes (41), and is not 

sensitive for hippocampal pathology (42).  This finding may be spurious given our small 

sample size (n = 6).  Alternately, although PIQ measures nonverbally-mediated global 

cortical function (42), the subtests of block design and object assembly measure aspects 

of visual-spatial ability, to which the hippocampus is believed to contribute.  Numerous 

studies have demonstrated hippocampal involvement in the encoding and retrieval of 

visual-spatial memory in animals (24, 89-91).  For example, rodents with specific lesions 

of the hippocampal formation demonstrate impairments in navigating to a goal location 

(89-91).  Defining the hippocampal role in visual-spatial memory within humans has 

been more complicated, since the method of memorizing a spatial location to reach a goal 

has been unique to rodent models (92).  However, in a recent functional magnetic 

resonance imaging (fMRI) study in humans, Astur and colleagues (92) demonstrated 

hippocampal activation occurs during the performance of a computer-generated virtual 
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reality 8-arm radial maze, thus mimicking the design of rodent studies.  Furthermore, the 

hippocampus has been implicated in other non-verbally mediated cognitive tasks in 

human fMRI studies, including face recognition (93) and picture recognition (94).  Given 

the role of the hippocampus in visual-spatial memory processing, elevated glutamate 

levels within the atrophic epileptogenic hippocampus may result in neuronal damage and 

subsequent impairment in visual-spatial learning, as detected by the PIQ.  However, 

further studies will be necessary to clarify the significance of this finding. 

No associations were found between glutamate levels and cognitive performance 

on measures of VIQ and FSIQ; this is consistent with our hypothesis given the V-SRT is 

more dependent upon hippocampal function than the VIQ (44), and the FSIQ is a 

composite score to which the VIQ contributes (41).  The VM-SRT measures visual-

spatial memory which is believed to be a non-dominant (usually right) hippocampal-

dependent task (41), however our results are not entirely consistent with this, as elevated 

glutamate levels do not impair function on this test.  We would expect that epileptogenic, 

right-sided, atrophic hippocampus would have elevated basal glutamate levels which 

might correlate with impaired VM-SRT performance.  However, only 3 patients within 

this study fulfill these criteria (Table 1); this small patient sample size may preclude 

emergence of statistical significance, therefore future studies are warranted. 

 

Our study sample consists of patients who are left hemisphere dominant for 

language as measured by the intracarotid amobarbital procedure.  As the dominant 

hippocampus has been implicated in verbal memory and the non-dominant hippocampus 

with visual-spatial learning (17), we would expect elevated glutamate levels in the left-

sided epileptogenic hippocampus to be associated with decreased performance on the V-
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SRT, and the right-sided epileptogenic hippocampus with impaired visual-spatial testing.  

However, our results do not demonstrate significant effects regarding laterality.  Of note, 

in the right (non-dominant) hemisphere, associations between glutamate levels and VIQ, 

PIQ, and FSIQ scores were bordering significance.  In addition, within healthy left-sided 

hippocampus where glutamate levels are maintained at physiologic levels, a significant 

correlation exists between glutamate levels and PIQ scores.  These data may be spurious 

given our small sample size, however the effects of laterality would benefit further 

investigation in studies involving more subjects. 

 

Our study was confined to probes located in the anterior hippocampus, as mesial 

temporal lobe epilepsy preferentially involves the anterior mesial lobe and intraoperative 

probe placement was determined by clinical suspicion of seizure focus.  Prior studies 

have reported differential involvement of the anterior and posterior hippocampus in 

cognitive processing (24, 26), such that the anterior hippocampus is believed to be 

involved in memory encoding of novel stimuli, while the posterior hippocampus is 

believed to mediate memory retrieval, familiar information processing, and verbal and 

spatial memory (25, 27-32).  In light of these prior studies, we would not expect to see a 

robust correlation between glutamate levels in the anterior hippocampus and verbal 

memory tests.  However, we noted a significant correlation (R2 = 0.7764, p = 0.0204) 

between elevated glutamate concentrations in the epileptogenic atrophic hippocampus 

and verbal memory measured by the V-SRT.  This suggests that verbal information 

processing is not confined to the posterior hippocampus, but may also involve anterior 

regions.  In addition, the heterogeneous function of the hippocampus along its anterior-

posterior axis predicts that little visual-spatial cognitive activity would occur in the 
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anterior hippocampus.  This may contribute to our data demonstrating no significant 

correlation between glutamate levels in the anterior epileptic atrophic hippocampus and 

visual-spatial activity measured by the VM-SRT.  Furthermore, our small sample size has 

precluded examination of both anterior and posterior hippocampus, thus the selective 

effects of glutamate levels within the anterior versus posterior hippocampus on cognitive 

functioning would benefit further study employing a larger sample size. 

 

Confounding Factors 

 

 There are several limitations to the present study.  First, the technique of 

intracerebral microdialysis was used to estimate extracellular glutamate concentrations in 

the conscious human hippocampus.  It is important to note that microdialysis sampling 

reflects a pooled measure of extracellular fluid in the immediate vicinity of the catheter, 

which may differ considerably from intra-synaptic concentrations of neurotransmitters.  

The small sampling tissue volume of the microdialysis may not reflect the overall 

chemical milieu in the hippocampus, where larger regions may be involved in a given 

cognitive task.  Nonetheless, microdialysis provides the closest in vivo look at 

neurobiological activity at the extracellular space in the awake human brain and permits 

the investigation of cognition at the level of neurotransmitters.  Second, because the 

investigational procedure employed in this study involves an invasive intracranial 

surgical procedure within a specific subset of patients with medically refractory epilepsy, 

there is a paucity of patients available for study, even in a large epilepsy center over the 

course of 5 years.  The small patient size examined in this investigation may have 

prevented the emergence of statistically significant results that would have been realized 
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in a larger study, and may have resulted in spurious results that would not be significant 

within a greater sample size.  Finally, this study is designed to examine the relationship 

between glutamate levels in epileptogenic and non-epileptogenic hippocampus and 

cognitive function measured by neuropsychological tests.  It would be presumably very 

difficult to control for the possible patient who has an intracranial probe in non-

epileptogenic (and presumably healthy) hippocampus, but has an additional vigorously 

epileptogenic hippocampal seizure focus not captured by probe sampling and which may 

impair cognitive function, thus generating inaccurate correlations. 

 

Clinical Implications 

 

Within neuropsychiatry, there exists an abundance of clinical disorders associated 

with hippocampal structural abnormalities.  As reviewed by Astur and colleagues (92), 

patients with schizophrenia and post-traumatic stress disorder often have smaller 

hippocampus than aged-matched controls, while patients with Alzheimer’s disease may 

experience the earliest signs of neurodegeneration within the hippocampus followed by 

subsequent development of amyloid plaques and neurofibrillary tangles.  Mesial temporal 

lobe epilepsy patients suffer most commonly from mesial temporal sclerosis, 

characterized by hippocampal atrophy and gliosis (51, 52).  Given the pivotal role of the 

hippocampus in learning and memory, these disorders occur concomitantly with deficits 

in cognitive functioning.  The present study demonstrates the association between 

elevated glutamate levels and impairment of certain forms of cognitive functioning in the 

setting of hippocampal atrophy.  The abnormally enhanced glutamatergic activity may 

result in excitotoxic cell damage and death to hippocampal structures, thus serving as a 
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possible mechanism of neuropathological injury and subsequent cognitive impairment.  

Meaningful clinical implications may therefore exist for potential treatment options of 

diseases mediated by glutamate neurotoxicity and subsequent hippocampal atrophy.  

Specifically, lowering the basal extracellular glutamate with medications may help to 

alleviate neuronal cell loss and sclerosis and preserve cognitive functioning.  In 

agreement, glutamate-receptor antagonists have been shown to possess both 

anticonvulsant and neuroprotective properties (70). 

To our knowledge, this is the first study to demonstrate the association between 

basal glutamate levels in conscious humans undergoing microdialysis and baseline 

neuropsychological functioning.  However, as our sample size was small (n = 22), future 

investigation is warranted to clarify points where our data revealed borderline statistical 

significance (i.e., glutamate levels in the right epileptogenic hippocampus versus PIQ, 

VIQ, and FSIQ), lack of significance where meaningful relationships were expected 

conceptually (i.e., glutamate levels in the right epileptogenic hippocampus versus VM-

SRT), and statistical significance where it was not initially hypothesized (i.e., glutamate 

levels in the epileptogenic atrophic hippocampus versus PIQ).  Although effects of 

laterality are not demonstrated in the present report, this finding is likely the result of our 

small sample size and would benefit further investigation in a larger study.  Furthermore, 

additional study exploring glutamate levels within both the anterior and the posterior 

hippocampus would be helpful to elucidate the function of the hippocampus along its 

longitudinal axis, as compared to neuropsychological measures. 
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Conclusion 

 

In summary, glutamate is the principal excitatory neurotransmitter and levels 

remain low in healthy brain, however concentrations may rise to neurotoxic levels in the 

epileptogenic hippocampus (1, 5, 7, 64-70).  The hippocampus is responsible for learning 

and memory (15-17, 24-27), thus impaired hippocampal function in TLE is associated 

with cognitive deficits (40, 54, 55).  Specifically, microdialysis evidence demonstrates 

that elevated glutamate levels are associated with cell loss and hippocampal atrophy 

(Cavus, unpublished data), and previous studies have demonstrated that both cell loss and 

hippocampal atrophy are associated with verbal memory impairment (42-49).  Our data 

demonstrate that basal glutamate concentrations within the epileptogenic hippocampus 

reach neurotoxic levels and are significantly higher than the non-epileptogenic 

hippocampus.  Elevated basal glutamate levels in the epileptogenic hippocampus are 

associated with decreased verbal memory performance measured by the V-SRT.  When 

controlling for atrophy, elevated basal glutamate levels in the epileptogenic hippocampus 

are associated with impairment on V-SRT and PIQ performance, but not in epileptogenic 

non-atrophic hippocampus.  We propose that the aforementioned cognitive deficits occur 

as a result of elevated glutamate levels with resultant neurotoxicity and subsequent 

hippocampal pathology.  This mechanism of injury may occur in epilepsy and other 

clinical disorders marked by hippocampal pathology such as schizophrenia, post-

traumatic stress disorder, and Alzheimer’s disease.  This provides the opportunity for 

treatment options aimed to medically maintain intrahippocampal glutamate at low levels 

to prevent neurotoxicity, which may in turn help patients preserve their cognitive 

function.
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