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ABSTRACT 

GALNT11 IS A NOVEL GALNAC-TRANSFERASE THAT GLYCOSYLATES NOTCH1 

RECEPTOR TO SPECIFY BETWEEN MOTOR AND SENSORY CILIARY FATES IN 

THE VERTEBRATE LEFT-RIGHT ORGANIZER.  

Marko T. Boskovski, Mustafa Khokha and Martina Brueckner. Section of Cardiology, 

Department of Pediatrics, Yale University, School of Medicine, New Haven, CT. 

 

Heterotaxy is a disease of abnormal left-right (LR) body patterning associated with 

congenital heart disease that has very poor outcomes. Despite advances in surgical 

management, the two most severe forms of heterotaxy, right and left atrial isomerism, have a 

29% and 64% 5-year survival rate, respectively. Through copy number variant analysis of 

heterotaxy patients, GALNT11 was recently identified as a novel gene important in human 

LR development. However, the mechanism by which Galnt11 causes heterotaxy has not been 

elucidated.   In order to discover the mechanism of GALNT11 in patterning the LR axis, I 

performed loss of function and gain of function studies in Xenopus tropicalis and expression 

analysis in Mus musculus.  In Xenopus, knockdown of galnt11 = induced heart looping 

defects that were successfully rescued with human GALNT11 mRNA indicating that the 

phenotype was specific to Galnt11. Via immunohistochemistry, Galnt11 protein strongly 

localizes to the crown cells surrounding the LRO. Manipulations of Galnt11 altered the 

density of ciliated epidermal cells, but based on gliding assays and ultrastructural analysis did 

not alter the cilia. Galnt11 and Notch effects on epidermal ciliated epidermal cell density, 

heart looping, as well as PitX2 and Coco expression were very similar, and Galnt11 

morphants were rescued with Notch ICD and Su(H)-Ank, but not Delta suggesting that 



  

galnt11 acts in the notch pathway downstream of the ligand. GALNT11 RNA no longer had 

any effect on heart looping or PitX2 expression following a conservative point mutation of its 

catalytic glycosylation domain. Galnt11 morphants had significantly narrower LROs, and 

much stronger expression of motile ciliary markers FoxJ1 and RFX2, while GALNT11 RNA 

injected embryos had almost no detectable FoxJ1 and RFX2. Taken together, these results 

indicate that Galnt11 is a GalNAc-transferase that is necessary for proper left-right axis 

establishment and heart looping. Its function is to specify between motile and sensory cell 

fates at the Left-Right Organizer by glycosylating Notch receptor and modifying Notch 

signaling.  
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I. INTRODUCTION 

I.1. Heterotaxy Syndrome 

 The heart is the most visibly asymmetric organ in the human body. It is positioned in 

the left chest, and is tilted such that the apex points in a left antero-inferior direction, thereby 

placing the right ventricle most anterior and the left atrium most posterior but anterior of the 

trachea. Following the blood flow, the heart has asymmetric venous drainage into the atria. 

The superior and inferior vena cava drain into the right atrium, while four pulmonary veins 

drain into the left atrium. The blood then goes through the asymmetrically coiled semilunar 

valves – the bicuspid mitral valve on the left and the tricuspid valve on the right to enter the 

ventricles, which are not only asymmetrically oriented, but also anatomically and 

functionally distinct. The ventricles then pump blood through the aortic and pulmonary 

valves into the asymmetrically coiled great vessels. It is obvious then, that precise 

developmental asymmetry across the left-right (LR) axis is essential for proper heart 

function.  

 Failure to properly develop LR asymmetry leads to a group of disorders that are 

collectively referred to as heterotaxy syndrome. In heterotaxy, organs or asymmetric 

structures within organs fail to properly align relative to each other. Given the highly 

asymmetric structure of the heart itself, and the structures surrounding the heart, failure of 

these processes results in a plethora of congenital heart disease.  

 Positioning along the LR axis can be divided into three broad categories (Fig. 1). 

Situs solitus refers to the proper alignment of organs across the LR axis. Situs inversus, with 

an incidence of 1 in 8500 in the general population, refers to a mirror image arrangement of 

organs across the LR axis when compared to situs solitus, and is not usually associated with 
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intra-cardiac defects. Heterotaxy covers the spectrum of LR axis malformations that fall in 

between situs solitus and situs inversus. It has an incidence of 1 in 10,000 in the general 

population, and has a very high association with intra-cardiac defects.1 

 

 

Heterotaxy itself represents a range of disorders. In minor cases there is partial development 

of asymmetry where there is discordance between organs (e.g. isolated dextrocardia with 

abdominal situs solitus) or discordance within one organ  (e.g. isolated levo transposition of 

the great vessels with a levo-ventricular loop and normal atrial and abdominal situs). The 

most severe cases result from complete failure to develop asymmetry across the LR axis in 

the whole body, thus leading to Ivemark syndrome, also referred to as right and left atrial 

isomerisms. In essence, in right atrial isomerism the body has two “right” sides (with 

bilateral right atria), while in left atrial isomerism the body has two “left” sides (with bilateral 

Right

Lung

Situs

Solitus

Right Atrial

Isomerism

Left Atrial

Isomerism

Heterotaxy Spectrum

Situs

Inversus

Heart

Liver

Stomach

Spleen

Left

Lung

Figure 1. A schematic representation of the spectrum of heterotaxy disorders. Situs solitus 
on the left represents normal organ arrangement across the LR axis, while situs inversus on 
the right is its mirror image. Any organ or intraorgan arrangement in between situs solitus 
and situs inversus is considered heterotaxy, represented by right and left atrial isomerism in 
the middle two panels. Reproduced with permission from Martina Brueckner.  



 

  

3 

left atria). The intracardiac anatomy in isomerism is highly complex, with intracardiac 

defects found in 83% of left atrial isomerism and 100% of right atrial isomerism diagnosed 

prenatally.2 The most prevalent defect across both left and right atrial isomerism is an 

atrioventricular septal defect, affecting from 60% to 100% of patients. Complex 

abnormalities of systemic and pulmonary venous drainage, along with malposition of the 

great vessels and subpulmonary or aortic obstruction, coexist in the majority of cases. The 

long-term outcome for patients with isomerism has remained poor despite improvements in 

the medical and surgical management of other congenital heart disease: the 5-year survival 

for patients with left atrial isomerism and right atrial isomerism is reported to be only 64% 

and 29%, respectively.3 

 Given the prevalence and severity of disease in heterotaxy, an understanding of LR 

patterning in vertebrate model organisms is essential. Such understanding has the potential to 

not only help us delineate the pathogenesis of different heterotaxy cases, but with recent 

advances in genetic sequencing, also inform us about the prognosis and treatment of these 

patients. 

 

I.2. Overview of vertebrate left-right asymmetry development 

In vertebrates, the LR axis develops through a highly organized and regulated series 

of events. In simple terms, this process can be divided into three broad stages. The first 

involves the LRO, a transient, ciliated organ present early in development, which creates 

asymmetric cilia driven flow. This event represents the initial symmetry breaking point 

across the LR axis. The second stage involves asymmetric gene expression, which is induced 

by the asymmetric flow. This differential gene expression is then propagated throughout 



 

  

4 

embryo development to instruct the third and final event in embryo development: asymmetric 

organogenesis.  

As is the case with all of biology, this simple scaffold is overlaid with a myriad of 

regulatory mechanisms, including Notch, Nodal, Hedgehog, FGF, Wnt and BMP.4-7 In the 

past decade, Notch signaling has emerged as a central regulatory component at several points 

during the LR developmental cascade.  

This introduction will first cover in detail the three broad stages of LR development, 

followed by a discussion on Notch signaling in general and more specifically as it applies to 

LR development. The focus will then shift to the genetics of heterotaxy and how recent 

findings from heterotaxy patients have revolutionized the field of LR development. The 

introduction will conclude with a discussion on Galnt11, a novel glycosylation factor that 

was identified through a copy number variant analysis of heterotaxy patients which I have 

demonstrated to affect LR patterning via the Notch pathway.  

 

I.3. The LRO is a conserved ciliated signaling center that breaks LR asymmetry 

Despite the significantly different anatomy of various vertebrate species, central to 

the first stage of LR development is a conserved, homologous vertebrate structure called the 

Hensen’s node in chick,8 node in mouse,9 posterior notochord (PNC) in rabbit,10,11 Kuppfer’s 

vesicle (KV) in fish,10 and gastrocoel roof plate (GRP) in frog,12 which we will collectively 

refer to as the left-right organizer (LRO) (Fig.2). The LRO forms towards the end of 

gastrulation and is composed of 50-250 monociliated cells. The synchronized rotation of the 

cilia on these cells creates a leftward laminar fluid flow of the extracellular fluid above the 

LRO (Fig. 3).13 Using high-speed video microscopy, in the mouse the LRO cilia have been 
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observed to rotate at a speed of 600 rpm to drive a flow of ~15-20 µm/second.13 Similarly, 

the LRO flow has been observed in frog by tracking fluorescent beads.12 The end result of 

this leftward flow is the induction of the second stage of LR development, asymmetric gene 

expression.  

 

 

There are several lines of evidence supporting that the LRO is a homologous structure 

that is conserved throughout vertebrate species. A ciliated LRO organizer has been identified 

in every major vertebrate model system (Fig. 2), although it has been difficult to definitively 

Figure 2. Comparison of the LRO in different vertebrate species. A-C Diagrams of 
developing mouse, frog and fish embryos. The location of the LRO is outlined in red. D-F 
Immunofluorescence pictures of the corresponding LRO. Monocilia are labeled with 
acetylated tubulin (red) and cell nuclei are labeled with Hoechst (blue). 
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identify the ciliated LRO in chick.14 In each case, the cilia have been documented to be 

motile, and consequently, to produce leftward flow. Furthermore, it is always derived from 

the superficial mesoderm and has flanking expression of homologs of the gene Nodal 

(discussed below). Finally, mechanical destruction of LRO precursor cells in frog,15 or the 

LRO itself in zebrafish10 yields laterality defects (i.e. situs inversus and heterotaxy) in the 

face of normal AP and DV development, indicating that the LRO is not only a conserved 

structure, but also one that is required for normal LR development.  The ciliated LRO has not 

actually been visualized in the human embryo for obvious ethical reasons; however, a 

combination of the remarkable conservation of a cilia-driven flow mechanism for initiating 

LR asymmetry in vertebrates, and the association between human ciliopathies (see below) 

and situs abnormalities, makes it highly likely that there is an LRO in the early human 

embryo also.   

 

 

Figure 3. Schematic of the mouse LRO.  Motile cilia on pit cells (shown with green arrows 
on dark gray cells) generate leftward flow of extracellular fluid (shown as blue arrow).  
Sensory cilia on crown cells (shown as red arrows on light gray cells) transduce flow 
information into asymmetric signals, including increased intracellular calcium in the cells 
at the left.  This leads to subsequent asymmetric gene expression. 
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I.4. LRO cilia are chiral organelles that induce LR asymmetry from positional cues derived 

from the AP and DV axes  

The LR axis is unique in that it is defined with respect to the anteroposterior (AP) and 

dorsoventral (DV) axes.  Therefore, the embryo must have mechanisms to both create 

asymmetry and to consistently align the asymmetry with the existing AP and DV axes.  This 

predicts that failure to create asymmetry results in retained bilateral symmetry, manifesting 

as left or right atrial isomerism.  In contrast, inability to align the asymmetry manifests as 

random asymmetry, such as the 50% incidence of situs inversus totalis observed in patients 

with primary ciliary dyskinesia. Wilhelmi originally proposed that the organism has an 

underlying mechanism that generates random asymmetry.16  Brown and Wolpert 

hypothesized that this asymmetry is biased in a consistent direction by the presence of a 

handed asymmetric molecule or macromolecular structure that can align with the AP and DV 

axes, which they represented by the letter "F".17 

Extensive work in model systems including zebrafish, Xenopus and mouse indicates 

that the initial handed reference structure is the cilium, a highly chiral organelle that is found 

on almost all cells.  Specifically, it is the cilia positioned on the ventral surface of the LRO 

that orient the LR axis relative to the established AP and DV axes. This is established 

through the rotational angle of the cilia, which in separate studies have been found to be 

tilted 40 ± 10° and 15–35° posteriorly in mouse.18,19 Hemodynamic principles dictate that if 

cilia are uniformly tilted in a specific direction, then it is possible to create unidirectional 

flow with rotational ciliary motion through a no-slip boundary effect.20 When cilia move 

closer to the surface, the movement of the fluid they drive will be retarded by the viscous 

forces of the stationary fluid that is in immediate contact with the surface. Conversely, when 
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the same cilia move in the opposite direction away from the surface, they can freely drive the 

fluid with no opposing forces due to static surfaces.21-24 The end result is unidirectional 

motion in the direction of the halfstroke when the cilium is oriented away from the cell 

surface. In the case of the LRO, the cilia are tilted posteriorly and they rotate in a clockwise 

direction. According to the principles described above, almost no fluid flow is generated on 

the rightward half-stroke when the cilia are close to the surface, and robust fluid flow is 

generated on the leftward half-stroke when the cilia are away from the surface, thereby 

creating the overall leftward fluid flow that is observed.  

It becomes apparent then, that proper development of both the AP and DV axes are 

required for correct LR patterning. The DV axis instructs the protrusion of cilia on the ventral 

side of the LRO,9 while the AP axis is necessary for proper posterior tilt. The answer to how 

a posterior tilt is achieved lies in the spherical shape of the LRO cells containing motile cilia. 

A careful examination of these cells in both mouse and frog reveals that the basal bodies and 

the cilia are located posteriorly, thereby forcing a posterior tilt of the cilium as it protrudes 

outside.18,19  

 

I.5. Structure and Function of Cilia 

Essential for normal LRO function and subsequent normal LR development is the 

proper function of the LRO monocilia. Cilia, in general, are large, complex organelles that, 

depending on the tissue they are found in, protrude up to 20µm beyond the cytoplasm.25 They 

are composed of the ciliary axoneme surrounded by the ciliary membrane, which is 

contiguous with the plasma membrane.  The axoneme comprises the microtubule skeleton 

consisting of 9 microtubule (MT) doublets with attached intraflagellar transport (IFT) 
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proteins. Since there is no protein synthesis in cilia, IFT proteins are required to selectively 

transport the structural and functional components of cilia from the cytoplasm into the 

axoneme, and to return products of ciliary signaling to the cytoplasm (Fig. 4). 

 

 

Figure 4. Schematic representation of a cilium. The microtubule based structure is 
assembled at the basal body (epithelial cilia) or the mother centriole (monocilia). Proteins 
necessary for proper ciliary function go from the Golgi to the base of the cilium via IFT 
proteins where they are transported up the cilium in anterograde fashion by kinesin motor 
proteins, and down the cilium in retrograde fashion by the dynein motor proteins. Inset A 
Electron micrograph (EM) of a monocilium lacking a central microtubule pair B EM of a 
motile epithelial cilium with a central microtubule pair. 
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Cilia can be subdivided into epithelial cilia and primary cilia. Epithelial cilia, such as 

those found on the apical surface of epithelial cells of the trachea, choroid plexus and 

oviduct, contain motor proteins, as well as a central pair of MTs linked by radial spokes to 

the outer 9 doublets. The motor proteins – a combination of outer and inner arm dynein 

motors – along with their associated dynein regulatory proteins, hydrolyze ATP to generate 

ciliary movement. Typically there are many cilia per epithelial cell that arise from basal 

bodies beneath the cell membrane, which themselves originate from the template of the 

mother centriole. The concerted action of large numbers of closely spaced motile cilia 

transports surrounding fluid, such as tracheal secretions or cerebrospinal fluid. 

In contrast to the highly specialized epithelial cilia, almost all cells (with the 

exception of a few myeloid and lymphoid lines) can carry primary cilia (also known as 

monocilia). As the name suggests, there is only one monocilium per cell, which arises 

directly from the mother centriole. Like the cilia found in ciliated epithelia, the axoneme of 

primary cilia is constructed on a scaffold consisting of 9 MT doublets. Unlike the 

stereotypical arrangement of microtubules, motors and structural proteins found in epithelial 

cilia, the contents of monocilia are extremely varied. As such, monocilia can serve different 

functions depending on the proteins they are loaded with. For example, by displaying 

specialized receptors, these cilia are adapted to function as light photoreceptors in the retina, 

or as olfactory receptors in the nose.  Primary cilia are also signaling centers at the interface 

between the cell and the extracellular environment.  For example, they are essential for 

hedgehog signaling, and absent or defective cilia in mouse embryos result in a spectrum of 

defects including neural tube defects, polydactyly and cardiac defects.26,27  
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In the LRO, there are two different types of primary cilia: motile and sensory (Fig. 3). 

The motile primary cilia, which populate the center of the LRO, are equipped with dynein 

motor proteins, enabling them to create a leftward fluid flow and break LR symmetry. The 

non-motile monocilia are more abundant at the lateral edge of the LRO in mouse, and lack 

dynein motor proteins, but contain polycystin-2, the product of the gene mutated in type 2 

dominant polycystic kidney disease.28 It is a cation channel that is required to sense the flow 

generated by the motile monocilia.29 In the presence of leftward LRO flow, polycystin-2 

induces an increase in calcium concentration on the left LRO border, and therefore translates 

the LRO flow into an asymmetric calcium gradient.28  

There is significant evidence to support the model outlined above that 1) flow 

generated by LRO monocilia is required for proper LR patterning and 2) that sensory cilia 

detect this leftward flow. First, regarding the requirement for motile cilia at the LRO, altered 

function (i.e. mutations, knockdown or knockout) of any of a number of ciliary genes 

including components of the dynein motor complex or genes necessary for ciliary biogenesis 

such as the IFTs results in LR patterning defects.13,30-33 Initial evidence for a role of cilia in 

development of LR asymmetry came from study of patients with Primary Ciliary Dyskinesia 

(Kartagener syndrome), which manifests as respiratory disease, male infertility and a 50% 

incidence of situs inversus.34 Respiratory compromise and male infertility in PCD are due to 

defective dynein function in the tracheal cilia and sperm axoneme, while randomization of 

SS and SI is secondary to improper LRO motile cilia function. Similarly, mice with a point 

mutation in the left-right dynein (lrd) gene, which renders cilia immotile, also have 

randomization of SS and SI.30 LRO flow in these mice is absent, but artificial application of 

leftward flow across the LRO can re-establish SS, while application of flow to the right can 
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induce SI.35 This indicates that LRO flow itself is the event that breaks LR symmetry. 

Second, regarding the requirement for sensory cilia at the LRO, mice that lack LRO flow due 

to immotile cilia have been shown to lack increased calcium levels on the left border of the 

LRO. This is also the case in mice with normal LRO flow that lack the polycystin-2 gene, 

indicating that there are no asymmetric calcium levels in the absence of leftward LRO flow, 

and that detection of LRO flow requires the presence of the polycystin-2 receptors in the 

surrounding sensory cilia.28  

 

I.6. Asymmetric gene expression downstream from the LRO 

The result of asymmetric LRO flow is a downstream cascade of asymmetric gene 

expression that propagates the asymmetric signal and ultimately results in asymmetric 

organogenesis. This cascade is outlined by asymmetric expression of Coco, Nodal, Lefty-1, 

Lefty-2 and PitX2, all of which are observed prior to visible asymmetry of heart looping (Fig. 

5).  

Nodal is a left-side determinant that is initially expressed symmetrically around the 

LRO.36-39 It subsequently becomes asymmetrically expressed at both the LRO and the left 

lateral plate mesoderm (LPM), a structure lateral to the LRO that later contributes to the 

mesenchyme of various visceral organs. Cells in the left LPM that receive Nodal signaling 

contribute to various visceral organs, such as the lung and heart, that develop left-side 

specific morphologies. On the other hand, in the absence of Nodal expression, both the left 

and right LPM specify right-sided organogenesis by default. In normal development peri-

LRO Nodal expression induces its own expression at the left LPM through a positive 

feedback loop, thereby changing the default state of the left LPM from right to left-sided 
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organ development. With that in mind, complete absence of Nodal expression at both LPMs 

leads to the development of right atrial isomerism, while bilateral Nodal expression results in 

left atrial isomerism.  

 

 

Figure 5. Schematic representation of the asymmetric gene cascade. 1. At the LRO, 
leftward flow inhibits Coco (shown in yellow) expression on the left but not on the right.  
2. Coco inhibits Nodal (shown in dark blue) expression on the right but not the left.  3. 
Left-sided Nodal expression at the LRO induces Nodal expression at the left LPM.  4. 
Nodal induces its own expression, as well as the expression of Lefty-1 and Lefty-2 (shown 
in orange.  5. Lefty-1 and Lefty-2 contain the expression of Nodal to the LPM.  6. Left-
sided Nodal expression induces left-sided PitX2 expression (shown in light blue). 
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While leftward LRO flow is required for left LPM Nodal expression, Nodal itself 

does not directly respond to flow.40 The transition from symmetric to asymmetric Nodal 

expression is mediated by Coco – a secreted antagonist of Nodal.41-43 Before LRO flow is 

established, Coco and Nodal have overlapping, symmetric, peri-LRO patterns of expression. 

Unlike Nodal, Coco is directly inhibited by LRO flow. As a result, Coco is suppressed on the 

left, but still maintained on the right. Consequently, Coco releases its negative inhibition of 

the co-expressed Nodal protein, such that Nodal becomes asymmetrically expressed on the 

left, but not the right.40  

 Lefty-1 and Lefty-2 are also Nodal inhibitors that are responsible for keeping the 

Nodal positive feedback loop in control, and its expression localized to the LPM.44-46 They 

are induced by Nodal and are expressed at the midline (Lefty-1) and the left LPM (Lefty-2). 

In the absence of either gene, Nodal expression begins normally in the left LPM, but 

subsequently leaks to the other side.  

 The feedback inhibition of Lefty-1 and Lefty-2 not only limits the area of Nodal 

expression, but also the time. In the mouse, Nodal expression is present for only 6 hours. 

Once Nodal expression at the LPM ceases, it passes on the left-side determinant baton to 

another asymmetrically expressed gene PitX2.47-49 PitX2 is induced by Nodal at the LPM. 

However, it persists much longer, and once Nodal disappears its expression is maintained by 

Nkx2. As a left side determinant, similar to Nodal, complete absence of PitX2 yields right 

atrial isomerism, while bilateral presence results in left atrial isomerism.  

 In this introduction, we have reviewed the roles of ciliary and TGF-beta signaling on 

LR development. Another critical pathway for LR patterning is the Notch pathway and is 

particularly relevant for the work in this thesis.  
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I.7. Molecular basis of Notch signaling 

 The notch signaling pathway was first identified almost 100 years ago in mutant flies 

with “notched” wings.50 It represents a local communication system between neighboring 

cells that is evolutionarily conserved and pervasive throughout development. Often 

responsible for the development of cell fate boundaries, such as the boundary between the 

anterior and posterior drosophila wing, and patterned structures such as the ciliated 

epithelium of Xenopus, Notch signaling is involved in a diverse range of biological processes 

such as cell-fate specification, self-renewal, differentiation, proliferation and apoptosis.  

 At the most basic level, the Notch signaling pathway consists of three core 

components which were originally discovered in mutant animals that phenocopied Notch 

mutants: 1) a Delta-type or Jagged/Serrate family ligand, 2) a Notch receptor, and 3) a CSL 

family transcription factor. Different species have a different number of each of these 

components. For example, there are four Notch receptors in human and mouse, three in 

Xenopus and one in drosophila. However, at least one ortholog of each of the three core 

components has been identified in all metazoan organisms studied to date.  

The signaling process begins through the interaction of a delta-type or Jagged/Serrate 

ligand with a Notch receptor. In the majority of cases Notch ligands act as agonists, where 

they induce a complex series of proteolytic cleavages that release the Notch intracellular 

domain (NICD), which then translocates to the nucleus and binds to a CSL family 

transcription factor to affect target gene transcription. However, both types of ligands have 

also been described to act as antagonists of Notch signaling, although the mechanism of 

action is not as clearly understood as that for Notch activation.51-57 It appears to be strictly 
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cell autonomous, such that cells expressing high levels of ligand can activate Notch signaling 

in neighboring cells, but prevent Notch activation in the cell they are expressed in.  

 Both Delta, Jagged/Serrate and Notch are single pass transmembrane proteins, with 

extracellular domains that contain arrays of multiple epidermal growth factor (EGF) - like 

repeats that mediate the interaction between the two proteins.58 Next to the EGF repeats, 

Notch receptors also contain a negative regulatory region (NRR) and a heterodimerization 

(HD) domain, which serves to prevent Notch cleavage in the absence of ligand.59 The full 

length Notch protein matures in the secretory pathway where it is cleaved by furin proteases 

at the S1 site located within the HD domain.60,61 Subsequently, it is reassembled into a 

functional heterodimeric receptor at the cell surface where it is held together by non-covalent 

interactions.  

 The intricate process of Notch receptor activation and NICD release involves a series 

of four proteolytic cleavage events termed S1, S2, S3 and S4. Following interaction with a 

Notch ligand, the NECD-ligand complex gets endocytosed by the ligand-expressing cell, 

thereby applying a mechanical force that results in dissociation of the NECD/Notch 

transmembrane complex. The dissociation exposes the S2 site, which is located 12 amino 

acids proximal to the transmembrance domain of NTMIC,62-64 thus enabling cleavage of the 

S2 site by ADAM10 or ADAM17 metalloproteases, which create a membrane tethered 

intermediate Notch extracellular truncation (NEXT).65 Finally, a  𝛾-secretase complex 

(composed of presenilin-1or -2, Aph1, Pen2, and Nicastrin) first cleaves the S3 site within 

the transmembrane domain, and then the S4 site, thereby releasing the NICD.66,67 

Once released NICD translocates to the nucleus where it interacts with CSL, a family 

of sequence specific DNA binding proteins. In an unbound state, CSL proteins act as co-
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repressors,68 but once bound to NICD, they transform into co-activators.69 This is achieved 

through distinct CSL co-activator and co-repressor complexes that are coordinated by NICD, 

such that in the absence of NICD CSL proteins associate with co-repressors, whereas in the 

presence of NICD they associate with co-activators. The use of co-repressor/co-activator 

complexes also allows for cell-type and time specific Notch signaling by requiring additional 

co-factors that are specific for different Notch target genes.  

This type of Notch signaling control can lead to unexpected and counterintuitive 

results during experimental manipulation. A decrease in Notch signaling via knockdown or 

knockout of Notch components would be expected to lead to lower expression of Notch 

target genes, as has been observed in Notch mutants. However, CSL mutants can have a 

milder phenotype than Notch mutants, because of the cancelling effects of removing both the 

co-repressive and co-activating function of CSL proteins. In some cases, CSL mutants have a 

higher level of Notch target gene expression because of dual regulation by both CSL 

proteins, as well as other transcription factors that become upregulated when Notch signaling 

is compromised.70 Similar results have been observed in Notch ligand mutants where the 

dominant action of the ligand is as an antagonist and not agonist.51-57 Finally, overexpression 

of NICD leads to ectopic expression of Notch target genes only sometimes, because certain 

Notch target genes require additional co-factors (that may be lacking in ectopic tissues) for 

proper CSL co-activator complex function.71,72  

 

I.8. Notch forms cell boundaries and patterned structures 

 While Notch signaling is used for many different cell-fate decisions, most instances 

fall into one of three categories: lateral inhibition, decisions on cell lineage and inductive 
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signaling.73-76 Lateral inhibition yields a “dotted” pattern of a particular cell fate among a 

surrounding group of cells of a different cell fate, as seen, for example, on the surface of the 

ciliated frog epidermis. A group of equipotent cells signal to each other via Notch signaling 

to inhibit each other from adopting a specific cell fate. In the case of the ciliated frog 

epidermis, a ciliated cell ends up expressing greater quantities of Notch ligand, which 

induces Notch signaling in neighboring cells that inhibits cilia formation. Additionally, it also 

leads to down-regulation of Notch ligand in the surrounding, non-ciliated cells, in order to 

prevent induction of Notch signaling in the ciliated cell.  

 Lineage decisions typically occur through asymmetric cell divisions. One daughter 

cell has activated Notch signaling, while the other does not. As a result the two cells adopt 

different cell fates. Finally, inductive signaling is often responsible for the creation of 

borders, such as the border between the anterior and posterior portions of the drosophila 

wing. One group of cells of a distinct lineage signals a bordering group of cells and 

“induces” a different cell fate, thereby creating a border.77 The border is maintained through 

unidirectional Notch signaling and feedback loops, similar to the scenario described in lateral 

inhibition. One group of cells expresses a high level of Notch ligand and receives very little 

Notch signaling, while the neighboring group of cells has a high level of Notch signaling that 

induces a different cell fate, and inhibits expression of Notch ligand.   

  

I.9. Regulation of Notch signaling via glycosylation 

 While most extracellular proteins undergo N-linked glycosylation, the extracellular 

domain of Notch also undergoes a unique form of O-linked glycosylation that is essential for 

Notch signaling and its modulation. Two different types of O-glycosylation have been 
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observed on Notch, either with O-linked glucose or O-linked fucose. While the significance, 

if any, of O-linked glucose is still unclear, O-linked fucose can influence Notch signaling.78-

80  

 O-glucoylation and O-fucosylation were first discovered on a different class of 

proteins that, like Notch, also carry repeating EGF domains – serum glycoproteins that are 

involved in regulating blood clotting and fibrinolysis.81 This led to the observation that the 

extracellular domain of Notch also carries O-glucose and O-fucose, which can then extended 

by glycosyltransferases to form trisaccharide and tetrasaccharide chains, respectively.82 The 

initial glycosylation of Notch by O-fucose is essential for Notch signaling, while the 

subsequent addition of the second, third and fourth sugars is not required, but can modulate 

the sensitivity of the Notch receptor to different ligands.  

The enzyme O-FucT-1, encoded in mammals by the gene protein O-

fucosyltransferase 1 (POFUT1), catalyzes the initial addition of O-fucose to an EGF 

domain.83,84 There is a single POFUT1 gene in mammals, C. elegans, and Drosophila.84 O-

FucT-1 requires a properly folded EGF domain as a substrate. O-fucosylation then occurs at 

a single unique residue, within a loose consensus sequence.83-87 The first indication of this 

process came after the observation that there is decreased expression of a Notch reporter gene 

in cells that are deficient in GDP-fucose, the substrate used by O-FucT-1.88,89 It was 

subsequently demonstrated that mutation or knockdown of Ofut1 in Drosophila results in 

complete loss of Notch signaling, with phenotypes as severe as those in mutants with 

completely absent Notch receptor.90-92 In mice, Pofut1 mutants phenocopy mutants for the 

only murine CSL gene,93 or double mutants for the two murine presenilin genes,94,95 which 

are required for the proteolytic processing of Notch and subsequent NICD release. 
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Interestingly, the mouse Pofut1 mutant phenotype is more severe than the phenotype 

observed for single Notch mutants (mouse has four different types of Notch receptors), 

indirectly indicating that O-fucosylation is required for the function of all Notch receptors. 

Detailed phenotypic analysis has also shown that O-fucosylation is required for all three 

main modes of Notch signaling: lateral inhibition, cell-lineage decision and inductive 

signaling. Finally, rather than simply being a permissive factor that is required for proper 

Notch signaling, recent evidence suggests that regulation of the distribution of O-FucT-1 

controls the pattern of Notch activation. Even though both the Drosophila Ofut1 gene and the 

murine Pofut1 gene are broadly expressed, the mRNA transcripts are tightly regulated both 

spatially and temporally.84,90,96 Ectopic expression Ofut1 in Drosophila and OFUT1 in cell 

culture has been observed to have both positive and negative effects Notch signaling, 

indicating that transcriptional regulation of Ofut1 itself modulates Notch signaling.90-92  

Following the addition of O-fucose to an EGF domain on Notch, the monosaccharide 

can be elongated to a disaccharide by Fringe. Initial evidence that Fringe may be involved in 

the synthesis of O-glycans on Notch came from observations that 1) bioinformatically, there 

is a weak similarity between Fringe and a bacterial galactosyltransferase, lex-1,97 2) Fringe 

influences the Notch pathway,98-100 and 3) Notch contains consensus sequences for O-glycan 

modifications.82,101 Biochemical characterization confirmed that Fringe catalyzes the second 

step in the synthesis of the O-fucose tetrasaccharide found on Notch EGF domains by 

transferring a GlcNac onto fucose in a 1,3 linkage.88,102 Fringe uses fucose-O-EGF as a 

substrate, and prior fucosylation of the EGF domain by O-FucT-1 is required for proper 

Fringe activity. Like O-FucT-1, Fringe also has a preference for specific EGF domains,88,103 

and can glycosylate both the Notch receptor and Notch ligands.86,88,102 It contains a highly 
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conserved DXD motif that is known to be essential for enzymatic activity in other 

glycosyltransferases.104 Mutation of this motif eliminates the enzymatic activity of Fringe 

both in vivo and in vitro.88,89,102,105 The ability of Fringe to influence Notch signaling is 

impaired in cells that are deficient in the synthesis of fucose-containing glycans, indicating 

that Fringe requires a fucose substrate.88,89 Mutation of the gene fringe connection, which 

encodes a transporter for UDP-GlcNAc, the Fringe donor sugar, phenocopies fringe 

mutants.106,107 This data conclusively demonstrates that Fringe is a glycosyltransferase that 

influences Notch signaling. 

Fringe activity is both ligand and receptor specific. In general, Fringe acts as a 

positive regulator of Delta signaling and a negative regulator of Serrate/Jagged signaling, 

although there are exceptions that have been found in human cell culture experiments. In the 

Drosophila wing, Fringe potentiates the ability of Delta to activate Notch,98 and at the same 

time inhibits the ability of Serrate to activate Notch.98-100 Similarly, in cultured human tissue 

cells, Lunatic Fringe increases the signaling from Delta1 to Notch1,108 and decreases the 

signaling from Jagged1 to Notch1.88,89,108 However, Lunatic Fringe has been reported to 

potentiate the signaling of both Delta1 and Jagged1 to Notch2,108 while another study 

reported decreased signaling by Jagged1 to Notch2, and no effect of Delta1 signaling to 

Notch2.109  

Unlike O-FucT-1 activity, which is required for all three major modes of Notch 

signaling (lateral inhibition, cell-lineage decision and inductive signaling), Fringe appears to 

only affect inductive signaling.100,110 This is best illustrated by its effects on Drosophila wing 

development, where Fringe creates a stripe of Notch signaling at the border of the anterior 

and posterior wing through opposing effects on Delta and Serrate.51,111  
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Even though O-linked glycans exert their influence on Notch activation at the cell 

surface, the actual act of glycosylation occurs in the Golgi. This is supported by two lines of 

evidence. First, a chimeric version of Fringe that is retained in the Golgi acts normally102 

while a secreted form has no activity, and second, the nucleoside sugar donors like GDP-

fucose or UDP-GlcNAc are synthesized in the cytoplasm and then transported into the Gogli 

by transporters such as Fringe connection.106,107 As a result, the extracellular concentration of 

the nucleoside sugar donors is too low to support glycosylation of Notch in its 

transmembrane location.  

 

I.10. Notch involvement in LR development 

 Notch appears to be involved in the regulation of several keys steps of the LR 

developmental cascade. To date Notch has been implicated in LRO morphogenesis, LRO 

ciliary length control, symmetric peri-LRO Nodal expression, asymmetric Nodal expression 

at the left LPM, and asymmetric PitX2 expression at the left LPM.  

 In mouse, concomitant loss of Dll1 and Baf60c, which binds to CSL and recruits the 

CSL co-activator complex, leads to disruption of the organization of the node.112-114 In 

zebrafish, increased Notch signaling by overexpression of NotchICD and deltaD resulted in 

longer cilia via foxj1a.115 Alternatively, decreased Notch signaling using mutant deltaD, a 

homologue of Dll1, led to shorter cilia and slow fluid flow in the LRO. However, Dll1 null 

mice have been shown to have normal leftward LRO fluid flow.112 Thus, the role of Notch 

signaling in LRO ciliogenesis and ciliary length control remains unclear.  

In mice, Dll1 or Notch1/Notch2 double mutants have defects in laterality secondary to 

suppression of symmetric peri-LRO Nodal expression.112,114,116 Symmetrically expressed 



 

  

23 

Nodal at the periphery of the LRO is required for left specific Nodal expression at the 

LPM.117,118 There are two specific enhancers for Nodal expression. Symmetric peri-LRO 

Nodal expression is regulated by an enhancer in the upstream region of the Nodal gene, while 

left-sided LPM Nodal expression is regulated by an enhancer of Nodal found within intron 

1.119,120 The LRO specific enhancer contains two CSL-binding sites, which are functionally 

important for peri-LRO Nodal expression.112,116 Additionally, Peri-LRO Nodal expression 

was also not detected in RBPjk (CSL) deficient mice.116 Similar results have been obtained in 

zebrafish116 and Xenopus.121  

In zebrafish, expression of cyclops and spaw, two Nodal-related genes, at the left 

LPM is regulated by Notch signaling, although it appears that the two genes are regulated by 

different mechanisms. Increase in Notch signaling resulted in randomized expression of both 

genes at the LPM, but increased peri-LRO expression only for Cyclops.116,122 Alternatively, 

decrease in Notch signaling by a ɣ-secretase inhibitor suppressed the expression of charon, a 

Cerebrus/Dan family member responsible for blocking transfer of spaw from the LRO to the 

right LPM.42,123 As a result, lack of charon led to randomization of Nodal expression at the 

LPM.122  

Dll1 has been reported to be asymmetrically expressed in chick, but not in other 

vertebrates, including mice and Xenopus.112,121,124 Asymmetric Dll1 expression, and 

subsequent asymmetric Nodal expression is inhibited with omeprazole, a pharmacologic 

inhibitor of H+/K+-ATPase, indicating that H+/K+-ATPase activity could be responsible for 

asymmetric regulation of Notch signaling and LR axis formation in the chick LRO.124 To 

date no LRO flow has been detected in the chick. Given that asymmetric Dll1 expression 

appears to be unique to the chick, it is plausible that the chick LR developmental cascade 
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may have diverged from that of other vertebrate model organisms, with Notch signaling 

providing a unique mode of LR axis formation.  

Finally, in Xenopus Notch signaling has recently been implicated in PitX2 expression 

at the LPM through the action of the transcriptional repressor B-cell lymphoma 6 (BCL6) 

and its co-repressor BCL6 co-repressor (BCoR).121 Repression of Notch signaling by BCL6 

and BCoR is required to allow PitX2 expression at the left LPM. Knockdown of either BCL6 

and BCoR resulted in abnormal heart looping, abnormal PitX2 expression at the LPM, but 

normal expression of Xnr1, a homologue of Nodal, at the left LPM. 

Altogether, there is convincing evidence that Notch signaling is involved in the 

regulation of peri-LRO expression of Nodal, and asymmetric expression of PitX2 at the left 

LPM. However, there is conflicting evidence from different model organisms whether Notch 

signaling is involved in LR axis development via asymmetric Dll1 expression, or whether it 

is involved in the regulation LRO ciliary length, and left specific expression of Nodal at the 

LPM.  In my work, I identify yet another mechanism for notch signaling at the LRO which 

unites ciliary cell fate, ciliary flow, and asymmetric nodal activation providing a simple 

mechanism for the relation between notch signaling and nodal activation.  I obtained this 

result by the analysis of a novel gene, Galnt11, identified from a patient with heterotaxy, that 

has an important new role in notch signaling. 

 

I.11. Genetics of heterotaxy 

The genetics of human heterotaxy is characterized by two salient features: a high 

degree of locus heterogeneity combined with tremendous phenotypic variability.2  In 

addition, the complexity of the associated heart disease results in a high degree of lethality 
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prior to reproductive age, thus limiting the number of extended pedigrees.125,126 Familial 

cases of heterotaxy have shown tremendous phenotypic variability within many heterotaxy 

pedigrees, with the co-existence of situs solitus, situs inversus and isomerism syndromes 

within one family. Although these features complicate attempts to delineate the genetic 

contributions to heterotaxy, the wealth of gene information gleaned from studies of left-right 

development in model organism systems provides a singular opportunity to dissect the 

underlying genetic etiology. 

At the current time, gene mutations have been associated with 10-20% of cases of 

heterotaxy.127,128 These can be divided into syndromes with a known genetic etiology that 

have heterotaxy as an associated feature and isolated heterotaxy cases with an identified 

single-gene mutation.  Consistent with the prominent role cilia play in the development of 

LR asymmetry, syndromes associated with defects in cilia structure and function can 

manifest with heterotaxy as part of the clinical spectrum (Table 1).   

 

Primary Ciliary Dyskinesia 

The syndrome with the most prominent association with heterotaxy is Primary Ciliary 

Dyskinesia (PCD or Kartagener syndrome).  PCD consists of sino-pulmonary disease, male 

infertility and a 50% incidence of abnormal cardiac situs.34 A minimum of 6.5% of patients 

with PCD have intracardiac disease consistent with heterotaxy.129  PCD is caused by 

mutations in genes affecting function of motile cilia in the airway, the sperm flagellum and 

the motile cilia found on the left-right organizer during development.  At this time, defects in 

12 distinct genes have been associated with PCD (Table 1), and the repertoire is increasing as 

genomic analysis of affected patients becomes more sophisticated.  Inheritance is 
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predominantly recessive, although rare dominant and X-linked pedigrees have been 

identified. 

 

Bardet-Biedl Syndrome 

Bardet-Biedl syndrome is a rare genetic disorder characterized by renal and hepatic 

cystic disease, retinitis pigmentosa, polydactyly, developmental delay and obesity.  The 

cardiac manifestation is rare and shows situs inversus.  14 BBS genes have been identified to 

date, and they all focus on biogenesis and function of the centriole upon which the cilium is 

built. 

Other syndromes that have been classified as “ciliopathies” also include cardiac 

disease that is part of the heterotaxy spectrum.130 These include Meckel-Gruber syndrome, 

Short-Rib Polydactyly Syndrome and Ellis-van Creveld Syndrome.  Ellis-van Creveld 

syndrome is a skeletal dysplasia associated with a high incidence of common atrium and 

systemic and pulmonary venous anomalies that are frequently seen in the context of Htx.  

Mutations in two genes, EVC and EVC2 underlie approximately 70% of cases; EVC and 

EVC2 interact at the cilium to affect hedgehog signaling.131  Dextrocardia has been seen in 

the context of VACTERL-H syndrome, and one possible molecular etiology for VACTERL-

H is a deletion encompassing the Zic3 gene, which also causes X-linked non-syndromic 

heterotaxy.132  

Table 1. List of syndromes involving heterotaxy and associated gene mutations 

Syndrome Cardiac 

Disease 

Other clinical 

Features 

Gene(s) and 

References 

Molecular/Cellular 

Ontology 

Primary Ciliary Situs Inversus Chronic sinusitis, DNAI1, Structure and function of 
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Dyskinesia 

(PCD) 

Totalis 

(50%), 

Heterotaxy 

(6.5%) 

bronchiectasis, 

neonatal respiratory 

distress, male 

infertility 

Occasional: female 

infertility, 

retinopathy 

DNAI2, 

DNAH5, 

DNAH11, 

RSPH9, 

RSPH4A, 

LRRC50, 

RPGR, 

TXNDC3, 

KTU, CCDC40, 

CCDC39, 

motile cilia 

Bardet-Biedl 

Syndrome 

(BBS) 

Rare situs 

inversus, up 

to 50% with 

minor cardiac 

abnormalities 

Renal 

abnormalities, 

polydactyly, retinal 

dystrophy, hearing 

loss, obesity, 

developmental 

delay, 

hypogonadism,  

BBS1,2,4,5,7-

10,12 

Arl6(BBS3) , 

TRIM32 

(BBS11) , 

BBS14   

Centriole/Basal body 

structure and function 

Meckel-Gruber 

Syndrome 

20% CHD 

including rare 

situs inversus 

Encephalocele, 

polydactyly, 

polycystic kidneys, 

hepatic 

abnormalities 

MKS1, 

TMEM216 

(MKS2), 

TMEM67 

(MKS3), 

Primary Cilium and 

basal body 
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RPGRIP1L, 

CC2D2A  

Nephronopthisis Situs 

inversus, 

VSD 

Cystic kidney 

disease, retinal 

degeneration 

NPHP1, INVS 

(NPHP2), 

NPHP3, 

NPHP4, 

NPHP5, 

CEP290, 

(NPHP6), 

GLIS2, 

(NPHP7) , 

NEK8 (NPHP8)  

Cilium, Centriole, Cell 

cycle 

VACTERL-H VSD, 

Dextrocardia 

(rare) 

Vertebral 

anomalies, anal 

atresia, 

tracheoesophageal 

fistula, limb 

abnormalities, 

hydrocephalus, 

renal hypoplasia 

Zic3  Unknown 

Ellis-Van-

Creveld 

Syndrome 

Atrio-

venytricular 

canal, 

Short ribs, 

polydactylay, 

ectodermal 

EVC1, EVC2  Hedgehog signaling, 

cilium 
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Common 

Atrium, 

LSVC  

dysplasia, renal 

abnormalities 

 

 

I.12. Non-syndromic heterotaxy and the role of CNVs in causative heterotaxy genes 

A major limitation in identifying causative genes in heterotaxy is the paucity of 

families segregating highly penetrant alleles, and the high locus heterogeneity, which has 

limited the ability to map disease loci. Because of marked impairment in reproductive fitness, 

some fraction of heterotaxy could be caused by very rare, highly penetrant, dominant 

mutations. Although such mutations have historically been difficult to identify, recent 

advances have improved the ability to detect these. For example, the use of quantitative 

interrogation of dense sets of SNPs has dramatically improved the ability to detect small 

copy number variants (CNVs). The significance of such rare mutations can be difficult to 

establish in the setting of high locus heterogeneity, as is the case for heterotaxy, where 

discovering a second hit in the same gene in a small cohort is unlikely.  

This obstacle has recently been overcome by using X. tropicalis as a high-throughput 

model system to test the validity of rare genes identified through CNVs.133 X. tropicalis has a 

mechanism of LR development that is highly conserved throughout vertebrate species, can 

produce large numbers of embryos that complete asymmetric heart and gut looping in a short 

time frame (4-5 days), and has a relatively compact diploid genome that retains substantial 

synteny to human, simplifying the identification of orthologous genes.12,15,134 High-resolution 

genotyping of 262 heterotaxy subjects and 991 controls revealed 38 small CNVs that 
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encompassed 61 genes, 38 of which have X. tropicalis orthologs (in the most recent genome 

assembly, 22 in the previous genome assembly). 7 genes had favorable in situ expression 

patterns in ciliated organs and/or the heart, and 5 of them affected LR development when 

knocked down with MO. One of the five genes identified was Galnt11, a putative 

glycosylation factor that has not been characterized previously.133  

 

 

I.13. Galnt11 

 Galnt11 is part of a family of twenty distinct GalNAc-transferases (Galnts), which 

play an essential role in O-GalNAc glycosylation in eukaryotes. O-GalNAc glycosylation is 

found on more than 10% of human proteins and more than 50% of the proteins passing 

through the secretory pathway.135,136 This process of O-GalNAc sugar chain addition to 

G
al
nt
11

Figure 6. Deletion of Galnt11 in a patient with heterotaxy. Genes located in the segment 
are shown at the top, followed by the results of Illumina genotyping in the middle, and 
qPCR at the bottom of the figure. Both genotyping and qPCR results indicate a deletion in 
the first 3 exons of GALNT11. 
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proteins is catalyzed by a complex set of enzymes localized at the Golgi apparatus.137,138 The 

Galnt family catalyzes the first step of this cascade where they add a GalNAc residue onto 

Ser/Thr amino acids in proteins.139,140 Following the addition of a GalNAc residue, different 

core-forming enzymes generate various core O-glycan structures, which can themselves then 

be further extended before being capped with histo-blood group-related structures or sialic 

acid.141 Extensive in vitro studies have identified various substrates for Galnt enzymes. 

Members of the family appear to have different, but somewhat overlapping, substrate 

specificity.141,142 However, direct in vivo protein targets have only been identified for several 

Galnt enzymes. In humans, Galnt3 is required for O-glycosylation of a specific site in 

fibroblast growth factor 23 (FGF23) that prevents proprotein convertase inactivation of 

FGF23, and loss of Galnt3 function leads to familial tumoral calcinosis.143,144 Galnt2 appears 

to O-glycosylate a specific proprotein convertase site in angiopoietin-like protein 3 that is 

involved in in maintaining normal levels of plasma lipids.145-148 In mice, Galnt1 is necessary 

for O-glycosylation of osteopontin and bone sialoprotein.149 Finally, in Drosophila Galnt3 is 

important for O-glycosylation of the integrin-binding ligand tiggrin, which plays an essential 

role in the adhesion of dorsal and ventral cell layers in the basal matrix of the Drosophila 

wing.150 However, to the best of our knowledge, to date there have been no in vivo protein 

targets identified for Galnt11.  

 I set out to discover the function of Galnt11 in LR patterning.  Prior to my studies, we 

knew that Galnt11 was strongly expressed in the kidney (a ciliated structure) and that 

knockdown of Galnt11 led to LR defects recapitulating the human disease, heterotaxy.  

However, other than sequence relation to a family of GalNAc-transferases no functional role 
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for Galnt11 had been identified, the mechanism of Galnt11 in LR patterning was unknown, 

and no known targets of galnt11 had been identified. 
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II. HYPOTHESIS 

Galnt11 is a GalNAc-transferase that is necessary for proper left-right axis 

establishment and heart looping. Its function is to specify between motile and sensory cell 

fates at the Left-Right Organizer by glycosylating Notch receptor and modifying Notch 

signaling. 
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III. METHODS 

III.1. In vitro fertilization and embryo injection 

 In vitro fertilization was performed according to Khokha et al.151 Briefly, male and 

female frogs were primed with 20 units of human chorionic gonadotropin (hCG; Chorulon) 

12-36 hours before IVF. A boosting dose of 200 units hCG was injected 3–4 hours before 

IVF. Crushed male testes and female eggs were mixed in dishes coated with standard 1x 

MBS solution with 0.1% bovine serum albumin (BSA), and subsequently allowed to fertilize 

in 0.1x MBS solution (pH = 7.8–8.0). Once fertilized, the one-cell embryos were de-jellied 

using 3% cysteine in 1/9x MR (pH = 7.8–8.0), washed with 0.1x MBS, and put at 20 °C in a 

3% Ficoll in 1/9x MR solution to retard the cell division process. 

 Embryos were injected at the 1- and 2-cell stage using an Narishige microinjection 

apparatus. Drop size was calibrated to 8nl per injection using micrometers to measure 

diameter of droplet. Injection doses for both MO and RNA were titrated to minimize toxicity. 

Following injection, embryos were allowed to rest for one hour at room temperature. 

Normally dividing embryos were then sorted and allowed to develop in 1/9x MR with 1x 

gentamycin (100 µg/ml) at 22-28 °C, depending on desired development rate.  

 

III.2. MO design 

 Morpholino oligonucleotides were designed against the start and splice site of X. 

tropicalis Galnt11 (start site MO sequence 5’ to 3’: GCGCTGCCCATCGTCCCCCTAGCA 

T; splice site MO sequence 5’ to 3’: AGTAGGTGCCCTTCTCTCTGACCTG), as well as 

against the start site of X. tropicalis Notch1 (sequence 5’ to 3’: GAACAAGCAGCCCGATC 

CGATACAT). 
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III.3. Heart looping scoring 

 Following injection of MO or RNA, X. tropicalis embryos were incubated at 28 °C 

until they reached Nieuwkoop and Faber (NF) stage 45. Tadpole hearts were scored as either 

D-looped, for normal outflow tract looping from right to left, L-looped, for mirror image 

looping from left to right, or A-looped, for hearts that lacked either D- or L-looping (Figure).  

 

III.4. GRP dissection  

 Neurula stage X. tropicalis embryos were used to dissect the GRP according to Blum 

et al.15 All dissections were performed in 0.1x MBSH in agarose-coated plates. A transverse 

cut perpendicular to the AP plane was used to open the embryo. At this point the gastrocoel 

cavity was visualized, with the neural folds being positioned dorsally, and located ventrally. 

The left and right edges of the gastocoel cavity were then dissected towards the posterior tip 

of the embryo until the two dissection planes met and the ventral yolk side was removed.  

 

III.5. In situ hybridization 

 Whole mount embryos and dissected GRPs were fixed in MEMFA for 1-2 hours. If 

LacZ/RedGal staining was used, embryos were fixed in MEMFA for 1 hour, followed by 

staining in RedGal mix (variable time, until red stain appears), followed by re-fixation with 

MEMFA for 1 hour. Digoxigenin-labeled (Roche) RNA probes were prepared from 

linearized plasmids using SP6 or T7 RNA polymerase (Ambion, NEB respectively) We used 

a standard X. tropicalis whole-mount in situ hybridization protocol. 
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III.6. Immunohistochemistry 

 Whole mount embryos and dissected GRPs were fixed in 4% paraformaldehyde 

(PFA) in 1x PBT solution for 1 hour, followed by cold ethanol fixation at 4 °C for 4 hours. If 

the embryos had been injected with GFP or RFP, they were fixed in 4% PFA in 1x PBT 

solution for 4 hour with no cold ethanol fixation. Primary antibodies used were mouse 

monoclonal antibody directed against acetylated alpha tubulin (1:1000; Sigma), mouse 

monoclonal antibody directed against Galnt11 (1:1).139  

 Fixed embryos and GRPs were permeabilized with 0.2% Triton in PBS (PBT), 

blocked in 2% BSA in PBT, and subsequently incubated with primary antibodies and Texas 

red- and Alexa Fluor 488-conjugated secondary antibodies (Invitrogen). Embryos were 

mounted in Pro-long antifade (Invitrogen) and imaged on a Zeiss Axioskop. 

 

III.7. Electron microscopy  

 Whole mount embryos and dissected GRPs were quickly washed in 1x PBS (Ca2+ 

free) with 1mM EDTA and fixed in 2.5% glutaraldehyde, 50mM Hepes, 2mM MgI and 1mM 

EDTA for one hour at room temperature, followed by one hour at 4 °C. The samples were 

then washed with 50mM Hepes and delivered to the Yale Electron Microscopy Laboratory 

for further processing.  

 

III.8. Video-tracking of tadpoles 

Embryos were unilaterally injected at the 2-cell stage with 1.0ng Galnt11 MO and 

Alexa Fluor 488 lineage tracer (Invitrogen). Specimens were raised to stage 32 in 1/9x MR + 

Gentamycin. To circumvent muscle contractions (active swimming), which would 



 

  

37 

compromise cilia-based motion, embryos were anesthetized with benzocaine. After 

validation of unilateral lineage tracer expression, embryos were placed individually in 

agarose-coated Petri dishes with 1/9x MR + benzocaine. Embryo motion was recorded for 10 

min at 0.1 fps using a Canon EOS 5D MarkII and DSLR Remote Pro 1.3 (Breeze Systems). 

Subsequently, each embryo was flipped over to the other side and motion was similarly 

recorded. Movies were analyzed using ImageJ (NIH). Individual images were superimposed 

onto each other to create a path line that was used to calculate the total distance travelled. 

Embryos which showed no movement or movement that was interrupted artificially (e.g. 

caused by unevenness of the agarose) were excluded from the analysis. The uninjected side 

served as internal control. Determination of statistical significance was performed by 

Wilcoxon matched pairs test (Microsoft Excel). 

 

III.9. Roles 

 All work presented in this thesis was performed by the author, Marko T. Boskovski. 
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IV. RESULTS 

IV.1. Galnt11 is required for proper heart looping  

 

 

 To determine whether knockdown or overexpression of Galnt11 affects proper LR 

axis formation, we injected a start-site Galnt11 MO, a splice-site Galnt11 MO and 

GALNT11 RNA at the one-cell stage, and examined the resulting embryos for heart looping 

defects at NF stage 45. Uninjected control embryos had 2.9% looping abnormalities (1.1% 

A-loops and 1.8% L-loops, n = 252). By contrast, start-site Galnt11 MO injected embryos 

had 22.8% looping abnormalities (22.1% A-loops and 0.7% L-loops, n = 145), splice-site 

Galnt11 MO injected embryos had 27.9% looping abnormalities (26.5% A-loops and 1.5% 
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Figure 7. Knockdown of Galnt11 with a start- and splice-site MO results in a significant 
number of looping abnormalities, compared to uninjected control. These looping 
abnormalities can be rescued by coinjection of Galnt11 splice-site MO and human 
GALNT11 RNA. Overexpression with GALNT11 RNA also produces abnormal looping. 
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L-loops, n = 223), and GALNT11 RNA injected embryos had 37.3% looping abnormalities 

(15.7% A-loops and 21.6% L-loops, n = 187) (Fig. 6). This suggests that a very specific dose 

of Galnt11 transcript is required for proper LR axis development, and that either knockdown 

or overexpression leads to heart looping defects.  

 

  

IV.2. Galnt11 MO induced heart looping defects can be rescued with human GALNT11 

RNA 

 

 

The similarity in phenotypes between the start- and splice-site Galnt11 MOs 

suggested that both MOs are specific. To test this more rigorously, we attempted to rescue 

the Galnt11 splice-site MO with a human GALNT11 RNA construct by injecting a constant 
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Figure 8. Looping abnormalities induced by Galnt11 MO can be rescued with human 
GALNT11 RNA in a dose dependent fashion.  
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dose of 0.5ng of MO and titrating the GALNT11 RNA dose. Compared to 31.4% looping 

defects (26.5% A-loops and 1.5% L-loops, n = 93) after injection of Galnt11 MO only, co-

injection of Galnt11 MO with 25pg of GALNT11 RNA resulted in 30.4% looping defects 

(15.2% A-loops and 15.2% L-loops, n = 96), co-injection of Galnt11 MO with 12.5pg of 

GALNT11 RNA resulted in 13.3% looping defects (7.2% A-loops and 6.0% L-loops, n = 

119), and co-injection of Galnt11 MO with 6.25pg of GALNT11 RNA resulted in 4.2% 

looping defects (0% A-loops and 4.2% L-loops, n = 103) (Fig. 7). This demonstrates that the 

splice-site Galnt11 MO is specific and can be rescued in X. tropicalis with a human 

GALNT11 construct. All other experiments requiring knockdown of Galnt11 were 

performed using the Galnt11 splice-site MO.  

 

IV.3. Galnt11 affects Coco and PitX2 expression 

 To test where along the LR axis developmental pathway Galnt11 acts, we looked to 

see if abnormal levels of Galnt11 lead to abnormal Coco or PitX2 expression patterns using 

whole mount in situ hybridization. Coco is the earliest asymmetrically expressed gene in the 

LR cascade where the right side has stronger expression than the left, and PitX2 is the last 

asymmetrically expressed gene before asymmetric organogenesis. PitX2 is normally 

expressed at the left LPM and not the right. As expected uninjected control embryos had only 

4.5% abnormal PitX2 expression (0% expression on the right side only; 2.2% absent 

expression on either side; 2.2% bilateral expression, n = 69) (Fig. 8). However, Galnt11 MO 

injected embryos had 22.2% abnormal PitX2 expression (0% right side only; 14.8% absent; 

7.4% bilateral, n = 64), and GALNT11 RNA injected embryos had 29.4% abnormal PitX2 
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expression (8.8% right side only; 2.9% absent; 17.6% bilateral, n = 69), indicating that 

Galnt11 acts upstream of PitX2.  

  

 

 

For Coco expression, GRPs from uninjected control embryos also had low percentage 

of abnormal expression (95.2% right greater than left; 4.8% right equal to left; 0% left 

greater than right; 0% no expression, n = 33). Galnt11 MO injected embryos had 20.9% 

abnormal Coco expression (20.8% R = L; 0% L > R; 0% no expression, n = 32), and 

GALNT11 RNA injected embryos had 39.1% abnormal Coco expression (21.7% R = L; 

13.0% L > R; 4.3% no expression, n = 37), indicating that Galnt11 also acts upstream of 

Coco. Since Coco is asymmetrically expressed in direct response to LRO flow, abnormal 
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Figure 9. Both Galnt11 MO and GALNT11 RNA yield abnormal Coco and PitX2 
expression patterns.  
 



 

  

42 

Coco expression in the presence of abnormal Galnt11 levels suggests that Galnt11 is 

involved either in the process of flow generation or flow sensation.  

 

IV.4. Galnt11 is expressed in the X. tropicalis GRP and kidneys, and Galnt11 protein is 

present in the mouse node 

 

 

 Given that Galnt11 appears to be acting at the level of the LRO where asymmetric 

flow is created and sensed, we hypothesized that Galnt11 would be expressed during X. 

tropicalis stages 14 – 20 when the LRO cilia form and start functioning to break LR 

asymmetry. Whole mount and GRP in situ hybridization of wild type embryos during these 

Sco
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Figure 10. Immunofluorescence pictures demonstrating that Galnt11 localizes to the 
crown cells surrounding the pit cells in the LRO. A. The mouse LRO with cilia in red and 
no Galnt11. B and C. The mouse LRO with cilia in red and Galnt11 in green. D-F. Close 
up of the border between the crown and pit cells where Galnt11 localizes. 
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stages revealed strong Galnt11 expression during stages. Interestingly, during later stages 

Galnt11 was also strongly expressed in the kidneys, which is another ciliated organ like the 

LRO. We also used a mouse monoclonal antibody against Galnt11 in E8.0 mouse embryos. 

Galnt11 protein was strongly present in the crown cells surrounding the pit cells of the LRO 

(Fig. 9), further suggesting that Galnt11 affects LRO cilia. 

 

IV.5. Galnt11 is only required on the left side for proper heart looping 

 

 

 To further investigate the role of Galnt11 in LR axis formation, we exploited an 

experimentally useful property of Xenopus – at the two-cell stage, one of the two cells 

approximates the left side of the developing tadpole, while the other cell approximates the 

right side. This allowed us to test whether Galnt11 is required on the left, right, or both sides 
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Figure 11. Only injection of Galnt11 MO on the left produces heart looping defects. 
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for proper heart looping. When we injected Galnt11 MO on the right there were 26.2% heart 

looping defects (23.8% A-loop, 2.4% L-loop, n = 144), while when we injected Galnt11 MO 

on the left there were 5.3% heart looping defects (3.9% A-loop, 1.3% L-loop, n =121) (Fig. 

10), indicating that Galnt11 is only required on the left side for proper heart looping.  

 

IV.6. Galnt11 does not appear to affect the ultrastructure of epidermal cilia 

 

 

 Since Galnt11 is strongly expressed in ciliated organs like the GRP and the kidneys, 

we wondered whether knockdown of Galnt11 would lead to abnormalities in the 

ultrastructure of cilia which we can study with electron microscopy.  The epidermis of X. 

tropicalis is ciliated, with several hundred cilia present on ciliated epidermal cells 

interspersed relatively evenly among non-ciliated epidermal cells. Scanning electron 

microscopy revealed no differences between cilia clumps on uninjected control embryos and 

those injected with Galnt11 MO. Transmission electron microscopy also revealed no 

differences, and cilia on Galnt11 MO injected embryos had a normal arrangement of nine 

microtubule pairs with outer and inner dynein arms, and a central microtubule pair in the 

Figure 12. Transmission electron microscope images of uninjected control and Galnt11 
morphant embryos reveal no differences in ciliary ultrastructure. 
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middle (Fig. 11). However, lower magnification SEM images suggested that the cilia clump 

density of Galnt11 MO injected embryos might be higher than that of uninjected control 

embryos. 

 

IV.7. Galnt11 and Notch1 affect epidermal cilia density 

 To more closely evaluate whether Galnt11 influences cilia-clump density at the 

epidermis, we again performed two-cell injections with Galnt11 MO or GALNT11 RNA, 

and compared the injected side with the uninjected. GFP was co-injected as a tracer, and the 

cilia were labeled fluorescently with anti-acetylated tubulin antibody. Similar to our 

observations with EM, the Galnt11 MO injected side appeared to have an increased cilia-

clump density compared to the uninjected side. Conversely, injection of GALNT11 RNA on 

one side significantly decreased the cilia-clump density compared to control (Fig. 12).  

 

 

Figure 13. Immunofluorescence pictures illustrating that Galnt11 and Notch affect the 
epidermal cilia clump density in a similar manner. On the left, knockdown of either 
Galnt11 or Notch1 produces an increase in cilia clump density, while on the right, 
overexpression of either Galnt11 or Notch1 results in a decrease in cilia clump density. 
Acetylated tubulin marks cilia in red, and GFP in green marks the embryo side that was 
injected. 
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 There is an extensive literature that epidermal cilia density is regulated by Notch 

signaling. Indeed, similar to our Galnt11 results, cilia-clump density increased when we 

injected Notch1 MO, and decreased when we injected Notch ICD, which constitutively 

activates the Notch pathway. These results suggest that Galnt11 and Notch either interact or 

act in parallel pathways to affect cilia-clump density.  

 

IV.8. Galnt11 affects cilia driven embryo gliding 

 

 

Figure 14. Composite images of tadpole epidermal cilia gliding videos. Tadpole gliding 
over a fixed time period can be seen as a white line. Overexpression with GALNT11 RNA 
retards ciliary gliding, while knockdown with Galnt11 MO significantly speeds it up. 
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 Given that Galnt11 affects cilia-clump density, we wondered whether manipulation of 

Galnt11 levels and cilia-clump density has any functional significance. To evaluate this, we 

used a tadpole-gliding assay originally devised by Vick et al., which evaluates the ability of 

epidermal cilia to propel an otherwise paralyzed tadpole across an agarose coated petri dish. 

Again, embryos were injected at the two-cell stage in identical fashion as when evaluating 

cilia density. When injected with Galnt11 MO, the tadpoles glided significantly faster on the 

injected side compared to the uninjected side suggesting that at the very least the function of 

these cilia are normal. Conversely, when injected with GALNT11 RNA, the tadpoles glided 

significantly slower on the injected side compared to the uninjected side (Fig. 13).  To be 

clear, glide speed seemed to relate inversely with the dose of Galnt11; higher doses of 

Galnt11 led to slower glide speeds which appeared to correlate nicely with cilia clump 

density. Thus, different levels of Galnt11 do not appear to affect the function of individual 

cilia, but do affect the ability of cilia clumps to collectively push fluid near the epidermis or 

propel the tadpole on a hard surface based on the number of cilia clumps present.  

 

IV.9. Galnt11 and Notch1 affect Coco and PitX2 expression and heart looping in a similar 

manner 

 The epidermal results suggest that Galnt11 and Notch act in a similar manner. We 

examined this possibility further by comparing the effect of each gene on the LR 

developmental cascade, namely Coco and PitX2 expression, as well as heart looping. MO 

knockdown of both Galnt11 and Notch1 yielded similar rates of heart looping defects that 

were significantly higher than uninjected controls (Fig. 14). UC embryos had 2.9% heart 

looping defects (1.1% A-loops, 1.8% L-loops, n = 112), compared with Galnt11 morphants 
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which, had 28.0% heart looping defects (26.5% A-loops, 1.5% L-loops, n = 100) and Notch1 

morphants, which had 23.5% heart looping defects (20.6% A-loops, 2.9% L-loops, n = 103). 

Overexpression with GALNT11 RNA yielded 34.1% heart looping defects (17.6% A-loops, 

16.5% L-loops, n = 104), and NotchICD RNA 28.0% heart looping defects (26.0% A-loops, 

2.0% L-loops, n = 116), , indicating that the overall rate of heart looping defects is similar, 

but the proportion of A-loops vs. L-loops is different. GALNT11 overexpressed embryos had 

an almost equal number of A-loops and L-loops, while Notch ICD overexpressed embryos 

had mostly A-loops.  

 

 

 PitX2 expression at the LPM was also similarly affected by knockdown of Galnt11 

and Notch1. Compared to UC embryos which had 4.45% abnormal PitX2 expression (0% 

right, 2.2% absent, 2.2% bilateral, n = 59), knockdown with Galnt11 MO yielded abnormal 

PitX2 expression in 22.2% of embryos (0% right, 14.8% absent, 7.4% bilateral, n = 50), 

while knockdown with Notch1 MO yielded abnormal PitX2 expression in 28% of embryos 

(0% right, 24.0% absent, 2.0% bilateral, n = 65). Overexpression with GALNT11 RNA and 
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Figure 15. Galnt11 and Notch affect heart looping, as well as Coco and PitX2 expression 
in a similar manner.  
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NotchICD RNA yielded abnormal PitX2 expression in 29.4% (8.8% right, 2.9% absent, 

17.6% bilateral, n =68) and 23.3% (0% right, 23.3% absent, 0% bilateral, n = 72) of 

embryos, respectively. The PitX2 expression patterns at the LPM parallel the heart looping 

patterns. Knockdown of either Galnt11 or Notch1 produces indistinguishable results with 

similar rates of right, absent and bilateral expression. However, while overexpression with 

GALNT11 and NICD RNA resulted in similar overall rates of abnormal PitX2 expression, 

the relative ratios of right, absent and bilateral expression differed. GALNT11 

overexpression resulted in mostly bilateral PitX2 expression defects, with smaller numbers of 

absent and right expression. Notch ICD overexpression on the other hand only resulted in 

absent PitX2 expression.  

 Coco expression at the GRP was similarly affected both by knockdown and 

overexpression of Galnt11 and Notch. UC GRPs had 4.8% abnormal Coco expression (4.8% 

R = L, 0% L > R, 0% absent, n = 35), compared with 21.8% abnormal Coco expression 

(21.8% R = L, 0% L > R, 0% absent, n = 43) for Galnt11 MO injected GRPs, 27.6% 

abnormal Coco expression (24.1% R = L, 3.4% L > R, 0% absent, n = 45) for Notch1 MO 

injected GRPs, 39.4% abnormal Coco expression (21.7% R = L, 13% L > R, 4.3% absent, n 

= 50) for GALNT11 RNA injected GRPs, AND 50.0% abnormal Coco expression (18.2% R 

= L, 27.3% L > R, 4.6% absent, n = 41) for NICD RNA injected GRPs. This suggests that 

both Galnt11 and Notch affect LR development upstream of Coco expression at the level of 

the ciliated GRP. Interestingly, there was no divergence in Coco expression phenotype with 

overexpression of Galnt11 and Notch as was seen with PitX2 expression and heart looping. 

  

IV.10. Galnt11 MO can be rescued with Notch ICD and Su(H)-Ank, but not Delta 
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 Components of the Notch pathway, including Notch ligands and receptors are targets 

for glycosylation. While glycosylation of Notch ligands has an unknown role, glycosylation 

of Notch receptors acts to modify their sensitivity to ligand. Since Galnt11 is a 

galactosyltransferase with no known target protein to date, we hypothesized that Galnt11 

glycosylates Notch receptor to modify Notch signaling. To test whether Galnt11 affects the 

function of Notch receptor we carried out a series of epistasis experiments.  

 

 

We injected one-cell embryos with Galnt11 MO and evaluated for PitX2 expression 

at the LPM. We then tried to rescue the abnormal PitX2 expression patterns induced by 

Galnt11 MO by injecting RNA constructs for one of three basic Notch components in one of 

two cells at the two-cell stage: Delta, Notch ICD, or Su(H)-Ank (Fig. 15). Positive control 

embryos that were only injected with Galnt11 MO had 18.0% abnormal PitX2 expression 
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Figure 16. Abnormal PitX2 expression at the LPM in Galnt11 morphants can be rescued 
with NotchICD and Su(H)-Ank, but not Delta. 
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(3.8% right, 10.3% absent, 4.0% bilateral, n = 76). When Galnt11 MO rescue was attempted 

with Delta RNA there was 16.9% abnormal PitX2 expression (7.7% right, 4.6% absent, 4.8% 

bilateral, n = 72). When Galnt11 MO rescue was attempted with Notch ICD RNA there was 

7.0% abnormal PitX2 expression (1.2% right, 5.8% absent, 0% bilateral, n = 69). When 

Galnt11 MO rescue was attempted with Su(H)-Ank RNA there was 3.2% abnormal PitX2 

expression (1.6% right, 0% absent, 1.6% bilateral, n = 50). This suggests that knockdown of 

Galnt11 can be rescued with Notch ICD and Su(H)-Ank, both downstream factors of Notch 

receptor, but cannot be rescued with Delta ligand. The implications from these data are 

twofold: 1) Since the Galnt11 MO phenotype cannot be rescued by Delta ligand, Galnt11 and 

Notch are part of the same pathway, and not two separate parallel pathways, and 2) Galnt11 

appears to be acting at the level of Notch receptor.  

 

IV.11. Galnt11 MO phenotype can be rescued with Notch ICD on the left side 

 Given that for normal LR development Galnt11 is required on the left, but not right 

side, we hypothesized that Notch ICD would preferentially rescue the Galnt11 MO 

phenotype when injected on the left side. To test this we injected Galnt11 MO at the one-cell 

stage and then co-injected Notch ICD RNA together with Alexa Fluor 488 fluorescent tracer 

in one of two cells at the two-cell stage. The embryos were sorted based on whether Notch 

ICD was injected on the left or right, and they were then evaluated for abnormal PitX2 

expression at the LPM. Embryos that were injected with Notch ICD RNA on the right side 

had 44.4% abnormal PitX2 expression (7.4% right, 3.7% absent, 33.3% bilateral, n = 67), 

compared to those injected with Notch ICD RNA on the left side, which had 16.7% abnormal 

PitX2 expression (0% right, 0% absent, 16.7% bilateral, n = 78) (Fig. 16). UC embryos had 
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9.1% abnormal PitX2 expression (1.6% right, 0% absent, 1.6% bilateral, n = 57). This data 

shows that when Galnt11 is knocked down, Notch signaling only needs to be upregulated on 

the left side downstream of Notch receptor. Since Galnt11 appears to only be necessary on 

the left side for proper heart looping, this further strengthens the argument that Galnt11 and 

Notch are part of the same pathway.  

 

 

IV.12. The conserved glycosylation enzymatic domain of Galnt11 is required for proper 

function 

 Galactosyltransferases contain a conserved DSH domain that is essential for their 

enzymatic function. To further test the hypothesis that Galnt11 glycosylates Notch receptor, 
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we identified a putative DSH enzymatic domain in Galnt11 and introduced a conservative 

point mutation from histidine to alanine at amino acid 247. This substitution is predicted to 

not affect the tertiary structure of Galnt11, and allowed us to test whether the enzymatic 

galactosyltransferase function of Galnt11 is required for its role in LR development.  

 

 

We injected one-cell embryos with either wild type (WT) GALNT11 RNA or 

mutated H247A GALNT11 RNA, and evaluated their PitX2 expression at the LPM, as well 

as their heart looping. Consistent with our previous results, UC embryos had 4.4% abnormal 

PitX2 expression (0% right, 2.2% absent, 2.2% bilateral, n = 57) and 2.9% abnormal heart 

looping (1.1% A-loops, 1.8% L-loops, n = 145), while embryos injected with WT GALNT11 

RNA had 29.4% abnormal PitX2 expression (8.8% right, 2.9% absent, 17.6% bilateral, n = 
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Figure 18. A conservative point mutation in the catalytic glycosylating domain of 
GALNT11 results in no abnormal heart looping or PitX2 expression.  
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53) and 34.1% abnormal heart looping (17.6% A-loops, 16.5% L-loops, n = 58). However, 

embryos injected with mutated H247A GALNT11 RNA had 2.5% abnormal PitX2 

expression (0% right, 2.5% absent, 0% bilateral, n = 137) and 5.3% abnormal heart looping 

(2.3% A-loops, 3.0% L-loops, n = 124), indicating that the DSH catalytic domain of Galnt11 

is required to affect asymmetric LR development and further strengthening the argument that 

Galnt11 and Notch not only act in the same pathways, but that Galnt11 glycosylates Notch.  

 

IV.13. Galnt11 knockdown and overexpression results in abnormal LRO cilia morphology 

 Notch is instrumental in cell-fate specification in many tissues, including the Xenopus 

epidermis where it specifies between ciliated and non-ciliated epidermal cells under the 

influence of Galnt11. Given that Galnt11 protein is strongly localized at the LRO in crown 

cells directly surrounding pit cells, we investigated any evidence of cell fate specification 

changes in the LRO of Xenopus embryos injected with Galnt11 MO. Indeed, the maximal 

LRO width in Galnt11 morphants was significantly less than that of control embryos (UC = 

181.9 ± 21.4µm vs. Galnt11 MO = 142.1 ± 29.9µm, p < 0.0001), suggesting that Galnt11 

controls specification between crown cells and pit cells at the LRO. 

 

IV.14. Galnt11 affects FoxJ1, and RFX2 expression at the LRO 

 Mouse evidence suggests that there are two sets of primary cilia at the LRO, motile 

and sensory, with motile cilia primarily located in the pit cells and sensory cilia primarily 

located in the surrounding crown cells. Our evidence indicates that manipulation of Galnt11 

leads to changes in LRO width. To see if these changes in LRO morphology result in 

changes in cell fate specification, we looked at expression patterns of the motile ciliary genes 
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FoxJ1 and RFX2 (Fig. 19). In situ hybridization revealed that compared to UC, both FoxJ1 

and RFX2 had significantly decreased expression at the LRO in embryos injected with 

GALNT11 RNA, while Galnt11 morphants had significantly stronger expression patterns of 

both genes. Given that immunohistochemistry of the LRO in both overexpressors and 

morphants of Galnt11 shows that cilia are present, these results indicate that the fates of these 

cilia changes with changing levels of Galnt11. When overexpressed, motile cilia are 

suppressed, and when knocked down, motile cilia are upregulated.  

 

 

Figure 18. In situ hybridization pictures illustrating that Galnt11 affects ciliary motility 
genes FoxJ1 and RFX2. With overexpression of Galnt11, both FoxJ1 and RFX2 
expression nearly disappears, while knockdown of Galnt11 results in much stronger 
expression of both genes. Gene expression is in blue, while RedGal injection tracer is in 
red.  



 

  

56 

  

V. DISCUSSION 

Galnt11 is a previously uncharacterized putative glycosylating agent that was 

identified through a CNV analysis of patients with heterotaxy. We have shown that Galnt11 

is a galactosyltransferase that glycosylates Notch to regulate the development of the LR axis 

by specifying between motile and sensory ciliary cell fates at the LRO. 

 

V.1. Galnt11, Notch and LR patterning 

There is extensive evidence that Notch signaling is regulated by glycosylation. Pofut1 

is a permissive factor that is required for Notch signaling,83,84 while Fringe is a modifying 

factor that can potentiate or attenuate Notch signaling based on the specific ligand/receptor 

interaction.98-100 Our data establishes that Galnt11 modifies Notch signaling, but it is unclear 

whether Galnt11 glycosylation is absolutely necessary for Notch signaling. However, 

because both knockdown and overexpression of Galnt11 results in LR axis defects, it appears 

that Galnt11 is an instructive and not a permissive factor. To our knowledge, Galnt11 is the 

first enzyme identified to modify Notch with an N-galactose sugar. We pinpointed the action 

of Galnt11 at the level of Notch receptor through a series of epistasis experiments which 

showed that the Galnt11 morphant phenotype can be rescued with NotchICD and Su(H)-Ank, 

both downstream factors of Notch receptor, but not Delta, which is an upstream ligand. 

Additionally, the lack of phenotype following a conservative mutation of the catalytic 

domain of Galnt11 indicates that the glycosylating function of Galnt11 is necessary for 

interaction between the two proteins. Finally, unlike Fringe glycosylation, which only affects 

Notch inductive signaling, Galnt11 glycosylation appears to also affect lateral inhibition, as 
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demonstrated by the varying epidermal cilia clump density. To our knowledge Galnt11 is the 

first non-permissive Notch glycosylation factor to do so.  

Previous work implicates Notch signaling at several steps in the LR developmental 

cascade. Notch is required for peri-LRO expression of Nodal,112,116 and suppression of Notch 

signaling is necessary for PitX2 expression at the LPM.121,152 Data that Notch signaling may 

be required for Nodal expression at the left LPM,116,122 may influence LRO ciliary length,115 

and may induce asymmetry through asymmetric Dll1 expression at the LRO is more 

controversial.116 Here we show that in addition to regulating the expression of Nodal and 

PitX2, Notch is also involved in the specification of motile and sensory cilia at the LRO.  

There are several lines of evidence to support this conclusion. Mouse work indicates 

that mutants that lack motor ciliary components (e.g. dynein motor proteins) develop 

predominantly either situs solitus or situs inversus,30,153 while mutants that lack proteins that 

are required for the formation of cilia in general (e.g. intraflagellar transport proteins) also 

develop heterotaxy in significant numbers.13,33,154,155 While not yet demonstrated directly, this 

difference is presumably because in the case of motor cilia mutants flow is impaired but 

sensation is intact, and solitus develops based on random fluid perturbations that direct the 

LR axis towards either SS or SI. It may seem improbable that such small fluid currents would 

be able to induce the LR cascade, but recent evidence suggests that LRO sensory cilia are 

sensitive to flow created by as few as two cilia.156 On the other hand, when all cilia are 

impaired, no sensory signal of any kind can be transmitted, thus resulting in lack of 

asymmetric specification and subsequent formation of heterotaxy.  

Interestingly, our data shows that manipulations of Galnt11 can produce both 

phenotypes. Knockdown produces approximately the same proportion of A- and L-loops, 
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while overexpression yields almost exclusively L-loops. Mouse data suggests that such 

phenotypes are consistent with manipulations of motile or sensory cilia at the LRO, and 

indeed that is what we have found. The alterations in LRO morphology and almost complete 

absence of motile cilia markers FoxJ1, RFX2 and DNAH11 in the presence of normal 

appearing LRO cilia with overexpression of Galnt11 indicates that there is a decreased 

number of motile cilia. The alternative case with knockdown of Galnt11 is more difficult to 

deduce. Even though the presence of both A-loops and L-loops combined with alterations in 

LRO morphology and changes in FoxJ1, RFX2 and DNAH11 suggests a decrease in sensory 

cilia, to the best of our knowledge there are currently no exclusively sensory cilia markers. 

Pkd2 has been shown to be involved in the sensation of LRO flow in the mouse, but 

immunohistochemistry revealed that the channel is present in all LRO cilia, both motile and 

sensory. Loss of sensory cilia can most directly be demonstrated with a combination of LRO 

flow analysis and Coco expression patterns at the LRO. Since Coco, the first gene to become 

asymmetrically expressed in direct response to LRO flow, has abnormal expression patterns 

in Galnt11/Notch1 morphants, a demonstration of normal flow would indicate absence of 

sensory function in the LRO cilia. While we did not perform LRO flow analyses, our 

epidermal tadpole glide assays show normal epidermal ciliary function in Galnt11, indirectly 

suggesting normal LRO flow function. Epidermal ciliary function has previously been shown 

to correlate with LRO ciliary flow, suggesting that even though Galnt11 morphants have 

appropriate flow, they develop abnormal Coco expression patterns (and consequently 

abnormal LR axis) because of lack of sensory LRO cilia.  

Inhibition of Notch signaling by BCL6 and BCoR has recently been shown to be 

necessary for proper PitX2 expression at the LPM.121 This effect appears to be independent 
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of Nodal signaling at the LPM, which is generally thought to be required for PitX2 

expression. Our in situ data supports these results. Coco expression patterns are 

indistinguishable between manipulations of Galnt11 and Notch. However, the PitX2 

expression patterns at the LPM diverge, such that overexpression with GALNT11 RNA 

results in a significant amount of bilateral PitX2 expression, while overexpression with Notch 

ICD RNA results in uniformly absent PitX2 expression. This indicates that even though 

Notch signaling is involved in the regulation of the LR developmental cascade at multiple 

steps, Galnt11 only regulates Notch signaling and influences LR development at the level of 

the ciliated LRO. This is further supported by our in situ and immunohistochemistry data 

which shows that Galnt11 is present in the LRO, and later in the tadpole kidneys, but not in 

the LPM.  

 

V.2. Galnt11 and the genetics of heterotaxy 

Recent advances in genetic analysis, including quantitative interrogation of dense sets 

of SNPs to identify small CNVs, whole exome sequencing, and as of late whole genome 

sequencing, have given us the opportunity to investigate the genetic contribution of a variety 

of complex disease processes. Using such approaches, studies have identified a myriad of 

potential disease causing genes for conditions as diverse as heterotaxy,133 congenital 

diaphragmatic hernias,157 and hypertension.158 However, determination of functional 

significance, if any, of these potential gene candidates is severely complicated by the high 

degree of locus heterogeneity, tremendous phenotypic variability and incomplete penetrance 

of the diseases in question.  
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With our work we clearly demonstrate that model organisms such as X. tropicalis 

provide a powerful tool for functional validation of sequence variants. Previous work in the 

lab identified 38 small CNVs encompassing 61 potential disease-causing genes.133 X. 

tropicalis retains substantial synteny to human, and 38 of these identified genes have X. 

tropicalis orthologs (unpublished data). This number is likely to increase, as the X. tropicalis 

genome becomes better assembled. The previous assembly of the genome, for example, 

yielded only 22 ortholog genes. 7 of those genes were deemed as highly likely to be disease 

causing, based on expression patterns in the heart or ciliated organs such as the LRO or 

kidneys. Knockdown of 5 of the 7 genes resulted in heart looping abnormalities, indicating a 

significant level of functional significance. However, MO knockdown can result in non-

specific phenotypes. By delineating in detail the mechanism of action of one of those genes, 

namely Galnt11, we have definitively demonstrated its functional significance in the 

pathogenesis of heterotaxy.  

Generalizing from my work, we our one of the first to demonstrate that novel 

activities and mechanisms can be a productive of human genetics especially for 

developmental biology.  Traditionally, model organisms have been used to understand 

developmental processes such as LR patterning and inform us about human development and 

disease. That approach has been only moderately successful. For example, all of the genes 

that are currently implicated in LR patterning through the study of mice, chick, rabbit, frog 

and zebrafish, account for only 10-20% of genetic malformations in patients with 

heterotaxy.127,128 Instead, we would argue that aggressive analysis of the genetic variations in 

patients with congenital malformations such as Htx may be an extraordinary alternative to 

model system discovery especially since we can directly then address human disease.  This 
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will require forging new alliances between high-throughput model organisms embryologists, 

clinicians, and human geneticists.  The challenges for the human geneticists for studying 

congenital malformations is not trivial.  The genetics of congenital malformations are fraught 

with locus heterogeneity, complex and variable phenotypes, and relative rarity without 

extensive pedigrees due to severely reduced fitness that make it very difficult to prove 

disease causality on the basis of genetic analysis alone.  However, the extraordinary power of 

genome sequencing has simply changed the game making even these complex genetic 

phenotypes tractable.  Also, we anticipate that much of the disease burden is likely to be 

genetic as opposed to environmental, and the disease is severe so that mutations are not likely 

to be carried within the populations (ie rare or de novo) which can be used as a powerful 

filtering method amongst the many variations found in human genomes.  Our results would 

suggest that the genetics can be analyzed and be highly fruitful.  Finally, my results would 

suggest that even rare patients may lead to extraordinary discoveries into the nature of our 

embryonic development that is critical for our understanding of human disease. 

On the other hand, the process of LR patterning also influences how we view human 

heterotaxy. So far, any malformation of the LR axis in between SS and SI has been simply 

classified as heterotaxy. The disease specifics are then specified through a description of the 

macroscopic manifestations, such as left atrial isomerism or isolated dextrocardia with 

abdominal situs solitus. Our work suggests that heterotaxy is not a single disease process, but 

rather a group of diseases that all affect LR patterning. With that in mind, we believe that 

heterotaxy should be redefined based on the genetic abnormality in question, such as cilia 

motility disorders, cilia sensation disorders, TGF-beta disorders, etc. Data that Down’s 

syndrome patients with AV canal malformations have significantly better short- and 
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medium-term outcomes compared to non-Down’s syndrome patients with AV canal159 

suggests that the specific genetic background of the disease can produce varying outcomes 

for what appear to be a macroscopically identical disease processes. Classifying heterotaxy 

patients as suggested may produce similar results and lead to better understanding of 

prognosis and management. For example, a heterotaxy patient with a sensory cilia 

malformation is much more likely to have kidney dysfunction than a heterotaxy patient with 

a TGF-beta mutation affecting Nodal signaling.  

Clinically, this has a number of implications. First and foremost, our analysis can 

provide needed information to families with children that suffer from congenital 

malformations who often simply want answers. For the first time, we may be able to provide 

some. Second, by assigning disease causality, we can determine if the mutation is de novo, 

recessive, or inpenetrant in parents, which will provide critical genetic counseling 

information.  Finally, clearly we are simply scratching the surface of the genes that affect 

embryonic development.  Improving our understanding will surely lead to better 

prognostication, tailored therapies per genetic lesion, and new drug targets.   
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