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ABSTRACT 

INTERACTIONS BETWEEN FMRI BOLD-ACTIVATION DURING READING 

TASKS AND MRS-MEASURED METABOLITE LEVELS. 

Hassana Aisha Ibrahim, Stephen Frost, Kenneth Pugh, Robert Fulbright.  Section of 

Neuroradiology, Department of Radiology, Yale University School of Medicine, New 

Haven, CT.  

 
Recent studies in the field of dyslexia have used magnetic resonance spectroscopy 

(MRS) to explore neurochemical manifestations of neurobiological differences in the 

brains of dyslexic adults compared to controls.  This study examines the potential 

relationship between functional magnetic resonance imaging (fMRI) BOLD (blood 

oxygen level demand) activation scores in response to cognitive tasks and MRS-

measured levels of a metabolite and a neurotransmitter, N-acetylaspartate (NAA) and 

gamma-aminobutyric acid (GABA) respectively, in the occipital region of brains of 

seven-year old children.  Preliminary results from this multi-arm, longitudinal study 

indicate a significant positive correlation between fMRI BOLD signal elicited in response 

to picture-cues in the occipital region of interest bilaterally, and both GABA (R2=0.477 

p=0.05, 2-tailed) and NAA (R2=0.587 p=0.01, 2-tailed) levels. The results suggest that 

the functional neuroanatomical circuitry involved in a cognitive task also has 

neurochemical indicators. 
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INTRODUCTION 

Background 

Developmental dyslexia, the most common learning disability, is a disorder 

characterized by an impairment in reading abilities, which is not explained by deficits in 

intelligence, learning resources, socio-cultural opportunities or sensory acuity (1).  

Although there are several theories regarding its etiology, it is widely accepted as arising 

from a core deficit in phonologic processing (2, 3, 4).  The neurobiological basis of the 

disorder has been explored through various approaches including from physiological, 

anatomical, genetic, and recently biochemical standpoints. 

From a neurophysiological standpoint, using functional magnetic resonance 

imaging (fMRI), positron emission tomography (PET) and electrophysiology, studies 

have shown that compared to controls who show left planum temporale, perisylvian 

region (including the superior and medial temporal gyri) and left temporo-occipital 

activity lateralization in response to phonologic tasks (5), dyslexic children show a more 

diffuse response to such tasks (4, 6) and in some studies even a right hemispherical 

lateralization (7). In addition, Shaywitz et al. (8) found relative under activation in 

posterior regions (Wernicke's area, the angular gyrus, and striate cortex) and relative over 

activation in an anterior region (inferior frontal gyrus) in dyslexics compared to controls 

in response to phonologic tasks using fMRI.  Paulesu et al. (9) found using PET a lack of 

concerted Broca’s and temporo-parietal cortical activation during phonologic tasks in 

dyslexics compared to controls, and also a complete lack of insula cortex activation.  The 

findings led the Paulesu group to hypothesize a dysfunctional connection between 

anterior and posterior language regions in dyslexics.  
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Neuroanatomic findings in dyslexics using neuroimaging and post-mortem 

analysis have included reduced volume of the posterior language area (10), cerebellar 

anatomic differences (11), symmetry of the usually asymmetric planum temporale 

(although more recently challenged), dysgenesis and glial scarring of the inferior 

temporal gyrus (12)  

As dyslexia tends to run in families, various candidate genes have been evaluated 

for heritability of the disorder (13, 14, 15).  More than 30% of adults with developmental 

dyslexia report that at least one of their offspring manifested reading problems.  

Monozygotic twins also display almost twice the concordance in the diagnosis of 

developmental dyslexia than dizygotic twins (16).  

Although relatively fewer studies have been conducted to explore biochemical 

differences between dyslexics and controls, nonetheless, these studies have found various 

dissimilarities in metabolites and neurotransmitters. Using magnetic resonance 

spectroscopy (MRS), Rae and others (17) found significant differences between dyslexic 

men and controls in ratios of choline-containing compounds (Cho) to N-acetylaspartate-

containing compounds (NAA) (p<0.01) in the left-temporo-parietal lobe and Cho to 

creatinine-containing compounds (Cr) in the cerebellum.   Specifically, there was a 

decreased Cho/NAA ratio in the left temporo-parietal lobe, no difference in Cr/NAA 

ratio, and also a decreased Cho/Cr ratio (non-significant) in dyslexic men compared to 

controls, suggesting that the decrease in the Cho/NAA ratio was from a decrease in Cho.  

There was also a significant and relatively lower Cho/NAA ratio in the left temporo-

parietal lobe of dyslexics compared to the right (p<0·02), which was lacking in controls.  

As hypothesized by previous authors concerning neuroanatomical differences (12), the 
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Rae et al group also suggests that the observed neurobiochemical differences reflect 

changes in cell density.  They further hypothesize that it is a result of abnormal 

development of cells or intracellular connections or both.   

A study by Richardson et al., using 31P-MRS in 1997 (18), found significant 

elevation in phosphomonoester (PME) peak area in dyslexics; consistent with a 

hypothesis that membrane phospholipid metabolism is abnormal in dyslexia. The PME 

peak predominantly consists of phosphoethanolamine (PE) and phosphocholine (PC), 

which are precursors of membrane phospholipids. And in 1999, Richards et al. (19), 

found that dyslexic children differ from controls in brain lactate metabolism when 

performing language tasks, but not in non-language auditory tasks. Other studies by 

Richards et al. (20) have examined changes in metabolite levels following behavioral 

interventions in children with dyslexia.  Their group found that prior to therapeutic 

intervention, the dyslexic group showed a significantly greater increase in lactate levels 

in the left frontal regions (including inferior frontal gyrus) during phonologic tasks. After 

treatment, the dyslexic group did not differ significantly from the control group in lactate 

levels in any brain region during tasks, but found that the treatment effect was due to the 

morphologic component of the tasks, rather than the phonologic component.   

The importance of metabolite differences lies in their use as a tool reflective of 

different brain cells and/or structures.  For example, the concentration of Cho is higher in 

white matter than in grey matter, and higher in glial cells than in neurons, whereas NAA 

occurs primarily in neuronal cells and is a marker of neuronal-cell density and neuronal-

mitochondrial activity in the brain.  These correlations have been confirmed by 

histochemical and cell-culture studies (17).  NAA has been associated with lower IQ in 
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such disorders as mental retardation and temporal lobe epilepsy.  White matter NAA has 

also been related to broad measures of cognition in normal young and elderly subjects, 

implicating NAA as a sensitive marker of brain–behavior relationships (21).  

In addition to metabolites, neurochemicals that function as neurotransmitters are 

also important potential candidates for understanding the biochemical manifestations of 

neurobiological disorders.  GABA is an inhibitory neurotransmitter that has been 

previously linked to epileptic seizures, among other neurological diseases.  In the context 

of reading disabilities, various GABA-modulating drugs have been shown to affect 

performance in learning tasks in rodents (21, 22). There is also growing evidence 

supporting a hypothesis that the GABAergic (and cholinergic) system plays a key role in 

neuronal plasticity necessary for repetition adaptivity (24).  Coupled with the fact that a 

number of GABA gene mutations have been found in the susceptibility region for 

dyslexia (25; 26), GABA appears to be a suitable neurotransmitter candidate for reading 

disabilities.  In a recent study by McLean et al. (27), the authors successfully measured in 

vivo levels of GABA using MRS and established a control range of GABA levels in the 

occipital lobes of volunteer participants. 

As discussed above, a number of interrelated neural systems have been proposed 

as key in reading ability.  One such system has been proposed in the left occipital-

temporal region.  It is hypothesized as a rapidly processing reading system that is 

important for the development of skilled reading, functioning as an automatic, instant 

word-recognition system. In addition, brain activation in this region increases as reading 

skill increases (28).  The MRS arm of this study focuses on an occipital region as the 

region of interest for the MRS voxel. Ideally, the MRS voxel would be placed in both left 
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and right regions for comparison, however, for practical purposes, the ROI will be chosen 

in a central location, described further in the methods section. 

The information gathered from using a non-invasive modality such as MRS is 

important not only to better understand the neurobiology, but also as a platform to design 

and monitor therapeutic interventions.  Also importantly, majority of studies on reading 

disability have been conducted using adult dyslexics, and the relative safety and non-

invasiveness of MRS and fMRI permits easier recruitment of pediatric subjects for 

studies, improving the ability to establish the neurobiological etiology of dyslexia, and 

increases the possibility of earlier intervention.   

 

STATEMENT OF PURPOSE AND HYPOTHESIS 

The study is part of a multi-dimensional, longitudinal project (by the Yale 

University School of Medicine Neuroradiology section of the Department of Radiology, 

Yale Reading Center and Haskins Laboratories) using MRS, fMRI, genetic and 

behavioral analysis to examine reading disability.  The preliminary result presented in 

this thesis explores interactions between both NAA and GABA levels in the occipital 

region of interest as measured using MRS, and fMRI BOLD activation scores in response 

to picture processing.  

 We hypothesize a correlation between MRS-measures of GABA, NAA and 

BOLD activation scores and also between GABA and NAA levels, and that these values 

will affect reading performances over time. 
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Introduction to MR 

Before presenting and discussing the results of this study, the basis of magnetic 

resonance will be reviewed to better understand the data and also the strengths and 

limitations of clinical MRS and fMRI. 

Without doubt, the concept of magnetic resonance (MR) has revolutionized 

medical diagnosis.  This is more commonly thought of as magnetic resonance imaging 

(MRI), however, nuclear magnetic resonance spectroscopy (NMR) or magnetic 

resonance spectroscopy (MRS) is another application that is increasingly being 

appreciated and applied in diagnostic medicine. The concept of MR has been applied in 

basic science laboratories for decades to identify chemical compounds and analyze 

molecular interactions, however it was only first used for imaging humans in the 1970s.  

And by the late 1980s, MRI had become the popular modality for assessing neurological 

disorders and evaluating vascular flow (29). In addition to its employment in identifying 

compounds and defining structures, one of the greatest appeals of MR modality in 

medicine lies in its use of non-ionizing radiation, thereby avoiding the more destructive 

nature of comparable imaging modalities such as computed tomography (CT). 

Both MRS and MRI essentially employ similar principles of MR. Whereas MRI 

uses the signal obtained to generate an image; MRS generates a frequency domain 

spectrum of the components of the object (30). From the image generated in MRI, 

structural anomalies can be detected, providing useful information about diseases.  MRS 

on the other hand provides biochemical information about pathology and may lend a 

better understanding of underlying pathological processes. Unlike MRI, which primarily 

observes hydrogen nuclei to obtain information about water and fat constituents of tissue, 



 7

MRS provides information on the nature and concentration of non-water protons present 

in metabolites and chemicals present in tissues.  Although 1H is highly abundant in 

organic compounds, the 1H MR spectral range is very narrow and signal obtained usually 

contains undesired noise signals from other molecules. However, MRS can also 

interrogate other nuclei such as 13C, 15N, 19F and 31P (31).  These nuclei are also 

important components of organic compounds.  For instance, nitrogen is found in proteins 

and deoxyribonucleic acid (DNA), and carbon is a crucial component of organic 

compounds. However, signals from such nuclei are usually obtained from molecules with 

much less concentration than water in tissues, and consequently one of the limitations of 

MRS is that spectra have to be acquired from relatively large volumes of tissue (>1cm3) 

compared to MRI.    

fMRI is a newer brain mapping technique that was first used in human 

experiments in the early 1990s.  It is based on MR and uses rapid imaging techniques to 

demonstrate regional blood flow changes in space and time in response to performance of 

various sensorimotor and cognitive tasks. The fMRI phenomenon is actually dependent 

on tissue fluctuations of paramagnetic deoxyhemoglobin and diamagnetic 

oxyhemoglobin, which causes changes in magnetic susceptibility.  It is assumed that 

blood flow changes provide an indirect measure of brain activity based on neurovascular 

coupling, i.e. increased blood flow in response to increased neural activity. fMRI 

provides excellent spatial resolution, enabling matching of blood flow changes to specific 

anatomic structures (29). The differences in MR signal intensity between two conditions 

are typically presented as a color scale, representing statistical significance, either 
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displayed over the original images or superimposed over a high-resolution anatomic 

image (32) 

 Recent improvements in hardware and measurement techniques have also 

contributed in making in vivo clinical MR studies practical by providing an acceptable 

signal/noise (S/N) ratio without unbearably prolonging patient time in the scanner, and 

also streamlining processing of data. 

Basic science of MR 

Magnetic resonance probes atoms and molecules based on their interaction with 

an external magnetic field (31).  It primarily relies on one of the characteristics of an 

atom – its nuclear spin.  To review, an atom is composed of protons and neutrons (which 

make up the core nucleus) and electrons (which surround the nucleus).  All atoms of an 

element have the same atomic number, i.e. the same number of protons in the nucleus.  

They can however differ in the atomic weight and are referred to as isotopes.  The 

difference in weight is essentially due to differences in number of neutrons, as electrons 

contribute relatively little to atomic weight.  This elemental characteristic is also 

important because the relative abundance of various isotopes affects the way the nucleus 

of an element can be examined using MRS.   

As mentioned above, the intrinsic motion of an atom - its nuclear spin is 

necessary for the concept of magnetic resonance.  This spin can be described using 

quantum mechanics or classical mechanics.  Classical mechanics assumes that a moving 

object being studied is a point particle, with negligible size, and its motion can be 

described by its position, mass and external force being applied to it.  This often suffices 

when describing larger size objects e.g. atomic level and larger, but becomes inaccurate 
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when examining objects at sub-atomic levels.  Quantum mechanics is a modern 

mathematical theory, which provides a more complete, accurate and precise description 

of elemental properties on atomic and sub-atomic levels, albeit more complex as 

compared to classical mechanics.  The term quantum refers to the assumption that certain 

physical properties can only assume discrete quantities, as in the case of nuclear spins.  

The quantum mechanics theory states that the discrete and quantized nuclear spin 

value is either zero (i.e. no spin), integer (e.g. 1, 2, etc) or half-integer (e.g. 1/2, 3/2, etc).  

A zero spin value is a result of an atom having an even number of protons and neutrons 

e.g. 12C, and as such cannot be studied using MR. An integer value is found in an atom 

with an odd number of protons and neutrons e.g. 2H, while a half-integer value is found 

in an atom with an even number of protons and odd number of neutrons or vice versa e.g. 

1H.  The half-integer spin value is the most commonly encountered in clinical 

spectroscopy, but both whole and half-integer values provide a nucleus a magnetic field.  

This magnetic field can be likened to a bar magnet with a magnitude (i.e. integer or half-

integer) and orientation (i.e. north and south poles).  The nuclear magnetic field can be 

measured to obtain information about that molecule and its surroundings.  This is done 

indirectly by manipulating the nuclear spin with a radiofrequency (RF) pulse, and 

measuring the resulting voltage.   

  To further explore why the radiofrequency pulse manipulation is necessary, 

consider a volume of tissue outside a magnetic field containing various nuclei, but all 

having a nuclear spin magnitude of 1/2.  Although each nucleus behaves like a tiny 

magnet, the net magnetization of the tissue is zero. This is because the nuclear 

magnetization effectively cancel each other out because they are oriented randomly i.e. 
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+
1/2n + -1/2n = 0 (where n = number of nuclei in that orientation).  If the same tissue is 

placed in a magnetic field, Bo, of a given magnitude and axis of orientation, the 

individual nuclei spins will start to rotate parallel to the axis of orientation of the external 

magnetic field.  They will however be slightly tilted away (precess) from the axis of the 

magnetic field because of the continuous interaction between the moving nuclear spins 

and the external magnetic field.  An analogy of precession is the wobbling of toy tops as 

they spin. 

Each nuclear spin has a z-axis component, which is parallel to that of the external 

magnetic field Bo, and constant with time, and x- and y-axis components referring to its 

precession, which is constantly changing and perpendicular to the external magnetic field 

(31).  The Larmor equation relates the strength of the magnetic field Bo to the rate of 

precession as follows:  

ωo = γBo /2π 

Where, ωo = Larmor frequency in Megahertz (MHz), Bo is the magnetic field strength 

that the spin experiences in tesla (T) and γ is the gyromagnetic ratio, a constant for each 

nucleus in units of reciprocal seconds, reciprocal tesla (s-1T-1).    

 When an external magnetic field is applied on a magnetic dipole, in this case the 

“nuclear magnet”, it will exert a rotational force (torque) and result in magnetic potential 

energy. The Zeeman interaction defines the possible values of the resultant energy states 

of the nuclear spin, in the z-axis.  For a given magnitude of spin, I, the possible values of 

the z component is equal to 2I + 1, symmetrically divided about 0.  In addition, the 

difference in z component values between adjacent orientations is equal to +1 or –1 (31).  

Therefore, for example a spin magnitude of 1/2 has only two possible values of the z 



 11

component, +1/2 and –1/2, also known as spin up (parallel) and spin down (antiparallel) 

respectively.  A similar interaction occurs for energy levels, where for most nuclei, the 

lowest energy state is at the largest positive z component (i.e. parallel to Bo) and the 

highest possible energy state corresponds to the largest negative z component (i.e. 

antiparallel to Bo).  The difference in energy level between each consecutive state is 

proportional to Bo, and the corresponding frequency is the Larmor frequency of the spin.  

And if energy is applied to the nucleus at the Larmor frequency (also known as the 

resonant frequency), the spin will go from one energy level to another through a process 

known as resonance absorption.   

 As the spins examined in clinical MRS are usually from a bulk of tissue, rather 

than individual nuclei, the Boltzmann distribution is useful in describing the energy states 

of a collection of spins: 

Ni = Ntotal e (-Ei/kT) 

Where Ni is the number of spins in state I, which has energy, Ei in Joules (J), Ntotal is the 

total number of spins in the volume, k is the Boltzmann’s constant (1.381 x 10 –23 J K-1) 

and T is the absolute temperature in Kelvin (K).  This relationship indicates that the 

largest number of spins will be in the lower energy states with gradually reduced numbers 

in higher energy states.   

 If an RF pulse is applied to a collection of spins, majority of spins (those in a 

lower energy state) will absorb energy, while a minority (those is a higher energy state) 

will emit energy.  The RF pulse is applied at a frequency ω1 (central frequency) and 

oriented at a magnetic field of B1 (which is perpendicular to Bo). If the RF pulse is 

applied at the Larmor frequency (ωo), the net magnetization of the tissue (Mo) will rotate 
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away from its equilibrium orientation towards the transverse plane.  And if applied long 

enough at the right amplitude, Mo will rotate completely to the transverse plane.  This 

transverse plane is perpendicular to both Bo and B1, and such an RF pulse is known as a 

90o pulse.   

When the RF pulse is discontinued, the spins will return to their original 

orientation and energy state, and will emit energy at the Larmor frequency, ωo, in the 

process.  During this precession, a voltage is emitted in the transverse place, and can be 

measured by a loop of wire in that plane.  The magnitude of the voltage is dependent on 

the value of Mo immediately prior to the 90o pulse and it will decay with time through a 

process known as relaxation.  This voltage is the MR signal, and is known as free 

induction decay (FID).   

It is important to remember that in a tissue sample, each individual spin will 

experience its own magnetic field; hence several voltages (MR signals) at different 

frequencies will be obtained following an RF pulse.  Therefore, the FID of a tissue 

sample actually contains many superimposed frequencies as a function of time.  In order 

to separate the individual frequencies, the amplitude of the voltage can be expressed as a 

function of frequency, rather than time (FID).  This is done via a mathematical process 

called Fourier transformation.  

 In addition, each voltage wave can be defined in terms of phase, i.e. its frame of 

reference or position in the cycle, along the time domain.  Most MR receivers examine 

two phases; one with the reference signal in phase with the original transmitter, and the 

other 90o shifted in phase.  These signals are called the real (dispersion) and imaginary 

(absorption) channels respectively.  The Fourier transformation actually produces spectra 
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containing a mixture of these two phases/modes; therefore, a process known as phase 

correction is employed. This enables further analysis to be performed on each spectrum, 

more commonly the absorption spectrum. 

 So how does one interpret the spectrum?  There are three characteristics of the 

spectrum that are of utmost interest: the integrated area, position (resonant frequency), 

and width of each resonance peak.  The peak area is proportional to the number of spins 

contributing to the MR signal.  The x-axis peak position has information about the type of 

spin and its molecular environment, reflecting the degree of “chemical shift” of the 

molecule. This is usually time independent, but can also vary with time.  The third 

characteristic of interest, the width, conveys information about whether the signal is from 

one type of spin, or multiple types.  This is most accurately performed by determining the 

shape of the spectral peak.  Most tissue MR spectra are composed of two types of line 

spectra shape, Lorentzian and Gaussian.  Lorentzian shapes have very broad bases, and 

are such that the line width [half-width at half-maximum height (hwhm)] is inversely 

proportional to the total transverse relaxation time, T2*.  These are usually from spins in 

a single molecular environment.  Gaussian line shapes on the other hand, are observed 

when multiple spins with very similar environments contribute to the resonance.   

Time-independent MR modifiers: chemical shift, spin coupling 

Thus far, the nuclear magnetic field has been described by its relationship to an 

applied magnetic field of known magnitude. However, the total magnetic field 

experienced by a nucleus is modified by the currents induced by electrons present in 

orbits around the nucleus, a concept referred to as chemical shift.  As such, there can be 

variations in NMR frequencies of the same type of nucleus, due to differences in electron 
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distribution in different molecules e.g. from different bond lengths, bond angles, binding 

patterns.  Chemical shift is usually expressed in parts per million (ppm), and is calculated 

from the difference in precession frequency between two nuclei (hertz) divided by the 

Larmor frequency of the magnet (Megahertz).  The size of the chemical shift is given 

with respect to a reference frequency, usually a molecule with a barely distorted electron 

distribution, such as tetramethylsilane (TMS).  For example, lactate (methyl group) has a 

chemical shift of 1.3 ppm, 2.0 ppm for NAA (methyl group) and 4.7 ppm for water, all 

relative to TMS.  

Another important time-independent modifier in magnetic resonance frequency is 

spin coupling.  This refers to the sub-division of a peak from a single proton into multiple 

peaks on the NMR spectrum as a result of interaction with nearby nucleic spins within a 

molecule.  This splitting of NMR lines conveys more detailed information about the 

structure of molecules.   Spin-spin coupling or J coupling is a sub-type of spin coupling, 

which denotes facilitation by nearby electrons.  Spin-spin coupling is different from 

chemical shift, because the former is independent of magnetic field strength and always 

involves another spin, while the latter is altered by magnetic field strength.  The number 

of multiple peaks (multiplets) arising from a proton is proportional to the number of 

similar protons connected by double or triple bonds to the proton being observed (31). 

Time-dependent MR modifiers: relaxation, spin echo 

Relaxation and spin echo are two examples of important time-dependent 

interactions in MR. As described earlier, nuclei with spins in lower energy states absorb 

energy or become “excited” when an RF pulse is applied.  Relaxation describes the 

release of the absorbed energy and return of the nuclei to their original states.  This 
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energy release can be measured in longitudinal and transverse directions, involving T1 

and T2 time constants respectively.  T1 relaxation time is the time required for the z 

(longitudinal) component of the magnetic field (M0) to return to 63% of its original 

energy value following excitation, and it follows an exponential curve.  T1 is also known 

as spin-lattice relaxation time because this relaxation generally occurs by interactions 

between the nuclei of interest and their environment or “lattice,” consisting of unexcited 

nuclei and electric fields in the surroundings.  Transfer of energy from excited nuclei to 

the lattice is facilitated by having unexcited nuclei with similar intrinsic frequency to that 

of the resonant frequency.  There is less discrepancy in these frequencies when 

macromolecules such as proteins with slower tumbling rates (lower frequencies) are 

considered, than in smaller molecules with faster tumbling rates such as metabolites.  

Hence protein nuclei generally have shorter T1 values than metabolites.   At a field 

strength of 1.5 Tesla (T), lactate (methyl group) and NAA (methyl group) metabolites 

from brain occipital lobe have T1 values of 1.55s and 1.45s respectively (31). 

T2 relaxation time is the time required for the transverse component of the 

magnetic field (M0) to return to 37% of its initial value following excitation, via 

irreversible processes.   As this is perpendicular to the ambient magnetic field, the decay 

occurs mainly due to interactions between the nuclei of interest and other excited nuclei.  

Hence T2 is also known as spin-spin relaxation. Immediately following a 90o RF pulse, 

spins will absorb energy, orient in the transverse plane, align in the same phase and 

precess at the same frequency.  This precession at the same frequency and phase 

facilitates energy transfer between adjacent nuclei, rather than to their environment (as in 

T1). However, an irreversible loss of transverse magnetization signal eventually occurs 
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because of local microscopic field inhomogeneities. An example is the fluctuation as a 

function of time of the local fields produced by electrons of molecules in motion relative 

to the spin of interest (33).  At a field strength of 1.5 tesla (T), lactate (methyl group) has 

a T2 value of 1040ms. 

T2 does not take into account the intra-voxel dephasing that occurs due to 

macroscopic field inhomogeneities.  This dephasing results in a much faster decrease in 

transverse magnetization, T2*, via free induction decay than predicted by T2.  T2* like 

T2, measures the time it takes for the transverse magnetization to decay to almost zero, 

but takes into account the faster decay resulting from dephasing.  As such, T2* is often 

referred to as the true “relaxation” time and is always less (shorter) than the T2 relaxation 

time. Both T2* and T1 are also greatly influenced by variations of field strength, unlike 

T2 (33). 

Sequences that accentuate T1 decay are generally referred to as T1-weighted 

images and those that accentuate T2 relaxation are referred to as T2-weighted images. A 

combination of these is usually employed in brain MR scans, as some abnormalities may 

be better displayed on one versus the other. Fluid such as cerebrospinal fluid is generally 

very bright on T2-weighted images and dark on T1-weighted scans. Whereas fat is bright 

on T1-weighted images and dark on T2-weighted images. The intensity of brain tissue is 

somewhere in the middle, and the intensity of blood vessels varies depending on velocity 

of blood flow (29). 

Spin echo refers to a maximal MR signal obtained when all the spins in a volume 

of interest have the same phase. This is obtained by applying a second rf pulse at 180o at 

a later time, following the initial 90o rf pulse, resulting in refocusing or rephasing of the 
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spins. A common analogy is by considering two runners A and B, who begin running at 

time zero from the same starting point in the same direction along the y-axis, at speeds of 

10 miles/hour and 20 miles/hour respectively.  If both runners are stopped after an hour, 

A will be at +10 miles and B will be at +20 miles along the y-axis.  However, if they are 

both allowed to run back toward the original starting point at previous respective speed 

along the y-axis, after an hour, both runners A and B will be back at the starting point.  

This illustrates that regardless of the local field inhomogenities that cause spins to precess 

at different rates, the spins are refocused following the 180o pulse.  Gradient echo unlike 

spin echo is obtained through application of a specifically calculated excitation pulse that 

removes necessitation of a rephasing rf pulse. There are differences in quality and 

contrast of images obtained using different approaches (34). 

Localization techniques: STEAM, PRESS 

Stimulated echo acquisition mode (STEAM) and point-resolved spectroscopy 

(PRESS) are two single-volume localization techniques employed in MRS. STEAM 

sequence is a form of spin echo which uses an initial excitation rf pulse (classically 90°, 

but could be anything other than 180o), followed by two rf pulses (classically 90°, 90°), 

producing the stimulated echo after a time delay (equal to the interval between the first 

two pulses) following the 3rd pulse.  The intensity of the resultant echo is partly 

dependent on the T1 relaxation time because the excitation is 'stored' as longitudinal 

magnetization.  PRESS uses a 90° rf pulse, followed by two 180o pulses. The 90° rf pulse 

rotates the spins in the yx-plane, followed by a 180° pulse in the xz-plane and another 

180° pulse in the xy-plane, producing the echo.  STEAM uses a shorter TE, has better 

suppression of water, and thus allows for visualization of more metabolites including 
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myoinositol, glutamate, glutamine, and GABA.  PRESS on the other hand uses a longer 

TE and results in loss of signal from most brain chemicals except NAA, creatinine, 

choline-containing phospholipids, and lactate; however, it is not as susceptible to motion, 

diffusion, and quantum effects and has a better signal to noise ratio than STEAM.  

Reduction of external magnetic field inhomogeneities: shimming 

Shimming is a technique of correcting the inhomogeneities of the external 

magnetic field caused by intrinsic imperfections of the primary magnet or from other 

ferromagnetic objects present in the surroundings.   It is done most commonly by using 

shim coils and making changes to their currents while obtaining the Fourier transform 

signal. 

Clinical applications of MRS, fMRI 

 Currently, MRS (specifically 1H) of the brain is the most commonly performed 

MRS patient examination. The brain is an ideal target organ for MRS compared to other 

organs because of more favorable characteristics, such as less motion artifact, relative 

ease of shimming, and lack of detectable (i.e. mobile) lipids in normal brain tissue. (31). 

Brain MRS studies have focused on metabolites such as N-acetyl aspartate 

(NAA), which is a neuronal marker; choline, an indicator of cell membrane turnover; 

creatine, a marker for energy metabolism; and lactate, a marker for anaerobic 

metabolism. Clinical CNS applications of MRS have included evaluations of tumors 

post-surgical resection to assess for residual or recurrent cancerous tissue (29). It is 

mostly used as an adjunct to MRI. 1H MRS has also been used to monitor treatment in 

patients undergoing chemotherapy for leukemia, by examining lumbar vertebral body 

bone marrow fat. Some studies have suggested future applications of MRS in assessment 



 19

of muscle disease by comparing signals from fat peaks and relative water/fat 

concentration (31).  

Clinical applications of fMRI have included presurgical mapping of important 

eloquent brain regions, to guide decision of candidacy for surgical resection of adjacent 

abnormal tissues such as tumors or epileptic foci (29). Future clinical fMRI applications 

are anticipated in the diagnosis and monitoring of probable Alzheimer's disease, learning 

disabilities and other neurological disorders.   
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MATERIALS AND METHODS 

Subjects 
 
 The subjects included in this analysis are the initial recruits of a longitudinal study 

to examine the neural circuitry for reading from the beginnings of instruction to more 

advanced skill levels (ages 7.5-10.5) in non-impaired (NI) and reading disabled (RD) 

children. Eighteen children were recruited prospectively over a 6-month period.  The 

subjects were 8 boys (mean age at fMRI testing = 8 years and 2 months; SD = 6 months; 

range from 6 years, 9months to 10 years, 3 months) and 10 girls (mean age at fMRI 

testing = 7 years and 10 months; SD = 1 year; range from 7 years to 8 years, 9 months).  

The definition of reading disability (RD) is based on the Wechsler Intelligence Scale for 

Children-III (35) Full Scale IQ and the Decoding (Basic Reading cluster) score from the 

Woodcock-Johnson Psychoeducational Test Battery-Revised (36).  To participate in the 

study, all children had a Full Scale IQ of 75 or above on the WISC-III.  Children will be 

defined as RD on the basis of a score below the 21st percentile on the Basic Reading 

cluster of the Woodcock-Johnson.  This definition specifically excludes children who 

have reading scores that are discrepant with IQ, but who have reading scores above 

achievement cutoff (22nd percentile and higher).  Decoding definitions are used because 

of evidence that these measures most reliably and validly define the largest group of 

children with RD (37, 38, 39).  Each child was evaluated behaviorally, with MR 

spectroscopy, and with fMRI, at the time of recruitment.  The MRS and fMRI studies 

were performed on different days, not more than 2 months apart from each other. 
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1H Magnetic Resonance Spectroscopy 

MRS was performed with a 4-Tesla magnet with a 94-cm bore and a Bruker 

Avance spectrometer. GABA was detected using a spin-echo J-editing measurement (40). 

A surface coil was placed against the back of the head.  For voxel positioning, 

gradient-echo scout images with a nominal axial orientation were acquired from slices 

1.5 mm thick, with no slice gap and a field of view of 200 mm, divided into 128x128 

pixels.  For each measurement, the water signal was used to calibrate the pulse power for 

the spin-echo sequences and the selective inversion pulse used for the J-editing of 

GABA. 

The GABA-editing sequence was run in blocks of 22 minutes, yielding 27 

twenty-second pairs of sub-spectra that were subtracted to obtain the edited GABA 

signal.  Briefly, one sub-spectrum was acquired with an inversion pulse applied to the 

GABA C4 proton, and one sub-spectrum was acquired without the inversion pulse.  The 

phase of the coupled GABA C4 proton resonance was inverted in one sub-spectrum 

relative to the other, but the other, uncoupled, resonances in the region (e.g., creatine and 

choline) were the same in both spectra.  When the two-spectra were subtracted, creatine 

and choline vanish, leaving the GABA.  The data were acquired in interleaved fashion, 

toggling between individual inverted and uninverted acquisitions in 20-second blocks.  

Each block was stored and the sequence was run for 22 minutes to yield 27 pairs of sub-

spectra. Sub-spectra were acquired with 1024 data points in a 410-ms acquisition, a 3-

second repetition time, and a TE of 68 ms. 

To adjust for cortical atrophy, it is necessary to quantify the content of GM, WM, 

and CSF in the MRS voxel that was used for GABA detection.  The T1 relaxation rate of 
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gray matter, white matter, and CSF differ significantly, with values of 787 ± 47, 1236 ± 

69, and 3320 ± 325 ms at 4T (n=6, mean ± SD).  Therefore, T1 can be used to 

discriminate among the different tissue types in the brain, through image segmentation by 

tissue type.  To permit image segmentation, quantitative images of T1 were obtained 

using an inversion-recovery measurement with the surface coil in the same experimental 

session.  However, the surface coil has very inhomogeneous B1 that must be measured in 

addition to the inversion-recovery images.  

A B1 map (Figure 1) consisting of 7 contiguous 3-mm slices were acquired 

perpendicular to the short axis of the voxel, to span the 1.5-to-2 cm thickness of the 

occipital or frontal GABA voxels, or 14 3-mm slices to span the 4-cm thickness of the 

13C voxel.  For the GABA voxel, the 4 slices more distant from the coil were acquired 

using 3 dB less power than what is used for the 3 slices closest to the coil.  The different 

pulse powers were selected to yield a nominal flip angle of 40°-50° for each of the slices, 

whether near or far from the coil.  The sequence works by the acquisition of two gradient 

echo images obtained with pairs of sinc pulse excitations separated by 20-30 ms. The 

ratio of the images yields an image of the cosine of the individual excitation angles.  

Given the sinc pulse parameters of the amplitude, time, and shape, an image of the B1 

(Hz) was determined from the image of the excitation angle.  Because B1 varies slowly 

across space, the two sets of images were acquired with a 240-mm field of view and 64 x 

64 resolution, with a total acquisition time of 1.5 min.  

An inversion-recovery MRI was acquired with 3-mm slices to span the MRS 

voxels.  For GABA, 7 contiguous slices were acquired, with a 240 mm field of view and 

256 x 256 resolution, spanning the 1.5-cm voxel thickness, using rapid inversion-



 23

recovery sampling method (41) optimized statistically for sensitivity (42). Briefly, a 

single global inversion pulse was applied using a 3-lobe hyperbolic secant pulse (43) and 

gradient echo acquisitions of individual lines of k-space were acquired over two seconds 

following the inversion to sample the inversion recovery curve of the tissue water.  Due 

to overlap of slice excitation profiles, it is necessary to acquire half the slices in one set 

and the other half of the slices in another set.  For example, the 7-slice image set consists 

of two sets of excitations (slices 1, 3, 5, 7, and slices 2, 4, 6).  The total acquisition time 

for the quantitative T1 imaging and segmentation was 8 min for GABA.  

The paired images were processed using software written in MATLAB.  After 

Fourier-transformation, the first image of each pair was phased so that each pixel is 

purely real, and the identical phase was applied to the second image of each pair.  Basing 

the phasing of the second image on that of the first permits the identification of flip 

angles whose cosine is negative.  The ratio of the second image to the first yields an 

image of the cosine of the effective pulse angle in each image pixel of each slice, and the 

arc cosine of the image provides the effective pulse angle.  The effective pulse angle was 

converted to effective B1 based on a product-operator simulation of the frequency 

dependence of the pulse angle across the slice, thereby creating an image of B1 for each 

slice across the MRS voxel.  

After Fourier-transformation, the images were phased and, pixel-by-pixel, fitted 

with a simulation of the IR pulse sequence, using the B1 measured in the B1 maps.  The 

result of the fitting is a multi-slices set of quantitative images of T1.  The quantitative 

images of T1 were converted to images of percent GM, WM, and CSF (44), called graded 

segmented images.  From the segmented images and the known dimension and position 
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of the MRS voxel used for GABA detection, the composition of the MRS voxel was 

determined as percentages of GM, WM, and CSF based on an empirical calibration curve 

of mixtures of GM, WM, and CSF.  Figure 2 is an example of this procedure.  

Spectral Analysis 

Using software written in MATLAB (the Mathworks, Inc.), each sub-FID was 

phase-locked using the water FID and frequency-aligned using the resonances of NAA, 

creatine, and choline.  The two sub-FID’s were subtracted to obtain an FID of the edited 

GABA signal, and for inspection of subtraction quality were Fourier-transformed.  If 

patients moved during any of the GABA editing scans, the much larger and sharper Cr 

and Cho resonances caused well-defined subtraction errors that prevented the 

measurement of GABA, and any pairs of sub-spectra with such patient movement was 

not processed further.  The remaining, good-quality pairs were used to determine the area 

of the GABA resonance at 3ppm from the differences using LCModel (45).  LCModel 

was also applied to an averaged subspectrum from each measurement to determine the 

area of the resonance of creatine that lies at 3ppm, in addition to resonances of glutamate 

and glutamine.  The concentration of GABA was determined from the ratio of GABA 

and total creatine resonances according to the equation [GABA] = 

GABALCModel/CrLCModel x [Cr].  Assuming a creatine concentration varying linearly from 

6 to 9 mM/kg wet weight with tissue type (46), the concentrations of GABA, glutamate, 

and glutamine, NAA and choline were calculated from the concentration of creatine 

determined for the measured tissue composition.  The resonance areas of GABA, and the 

other metabolites were also measured as fractions of the resonance area of the 

unsuppressed water peak as an additional outcome that was provided by the LCModel 
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software.  Figures 4 and 5 exemplify spectra that were obtained after this analysis was 

performed.  

Functional Magnetic Resonance Imaging 

Functional magnetic resonance imaging (fMRI) was performed on a Siemens 

1.5T Sonata scanner located at the Yale University School of Medicine.  Subjects' heads 

were immobilized within a circularly polarized head coil by using a neck support, foam 

wedges, and a restraining band drawn tightly around the forehead.  Prior to functional 

imaging, 20 axial-oblique anatomic images (TE (echo time), 11 ms; TR (repetition time), 

420 ms; FOV (field of view), 20 x 20 cm; 6 mm slice thickness, no gap; 256 x256 x 1 

NEX (number of excitations)) were prescribed parallel to the intercommissural line based 

on sagittal localizer images (TE, 7.7; TR, 500 ms; FOV, 25.6 cm; 5 mm slice thickness, 

no gap; 256 x 256 x 1 NEX).  Activation images were collected using single shot, 

gradient echo, echo planar acquisitions (flip angle, 80 degrees; TE, 50 ms; TR, 2000 ms; 

FOV, 20 x 20 cm; 6 mm slice thickness, no gap; 64 x 64 x 1 NEX) at the same 20 slice 

locations used for anatomic images.  High-resolution anatomical images were obtained 

for 3-D reconstruction (Sagittal MPRAGE acquisition, flip angle, 8 degrees; TE, 3.65 ms; 

TR, 2000 ms; FOV, 25.6 x 25.6 cm; 1 mm slice thickness, no gap; 256 x 256 x 1 NEX; 

160 slices total).   

fMRI Task 

A cue—target identity task was employed in an event-related design that requires 

making a match/mismatch judgment with a button press. A picture cue is presented in the 

upper central portion of the display (e.g., a picture of a dog) and is replaced by another 

picture approximately every quarter of the imaging run. On each trial, participants 
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compare the picture with one of the following six types of stimuli: [1] high-frequency 

words, presented visually, [2] high-frequency words, presented auditorily; [3] 

pseudowords, presented visually, [4] pseudowords, presented auditorily; [5] consonant 

strings, presented visually and [6] words semantically-related to the cue, presented 

visually. The majority of trials (80%) are mismatches and only data from mismatch trials 

are included in analyses so that we can compare brain responses with a common (no) 

decision. Because picture cue remain on the screen for the duration of multiple trials, 

each new picture cue is treated as a trial condition and initially presented on the screen by 

itself, allowing sufficient time to model separately the evoked responses to processing of 

the picture cues.  For the fMRI session, 1090 full-brain images were collected across 10 

runs (3 min, 38 sec each); a total of 340 trials [240 ‘no’; 60 ‘yes’; 40 picture] were 

presented at jittered trial durations (4, 5, 6, 7 sec), with occasional longer durations (null 

trials). This results in 40 trials per condition for each of the six main stimulus types and 

40 trials for the picture condition. 

Data analysis was performed using software written in MATLAB (MathWorks, 

Natick, MA).  Images were first corrected for motion with SPM-99 (47) and sinc-

interpolated to correct for slice acquisition time.  For single-subject event-related 

analysis, a regression-based method was used, which allows direct estimation of the 

hemodynamic response for each trial type, at each voxel separately, without prior 

specification of a reference function (48, 49). Time course estimates were made for 1-sec 

intervals from -3 to +15 sec relative to trial onset. To create subject activation maps of 

the evoked response for each condition, we obtained regression estimates of the mean 

difference in these time course estimates for an activation period (3–8 sec after trial 
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onset) relative to a baseline period (0–3 sec prior to trial onset). Linear contrasts for 

effects of interest, including the evoked response of each trial type, simple subtractions 

among trial types, main effects, and interactions, were applied to these regression 

estimates to obtain contrast images for each subject. Across subjects, each voxel in these 

contrast images was tested versus zero with an F-test, implementing a mixed-model or 

repeated measures ANOVA (50, 51, 52).  Prior to across-subjects analysis, anatomic 

images and subject activation maps were transformed into a common proportional three-

dimensional grid (53), first by in-plane transformation and then by slice interpolation into 

the ten most superior slices of Talairach space, centered at z = +69, +60, +51, +42, +33, 

+23, +14, +5, -5, and -16 mm.   
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RESULTS 

The GABA levels from an occipital region of interest (ROI) (see Figure 3) as 

measured using MRS, ranged from a minimum of 1.619mM/kg to a maximum of 

2.128mM/kg (n=18).  The mean GABA level was 1.823mM/kg with a standard deviation 

(SD) of 0.135 mM/kg.  NAA levels from the same ROI ranged from a minimum of 

12.840mM/kg to a maximum of 17.000 mM/kg (n=18).  The mean NAA level was 

14.762mM/kg with a standard deviation (SD) of 1.296.  Table 1 provides the GABA, 

NAA levels and fMRI BOLD-activation scores for each of the 18 participants. There was 

a significant positive correlation between MRS-measured GABA and NAA levels in the 

occipital ROI, with a Pearson’s correlation of 0.479 (p<0.05, 2-tailed, n=18), as shown in 

figure 6. 

Figure 7 shows a color map of the composite fMRI BOLD response to a picture 

task in the 18 subjects. There is notable activation in slices 12-19 in the midline of the 

occipital lobe.  This area includes the anterior aspect of the lingual gyrus in the occipital 

lobe, with possible involvement of the posterior cingulate gyrus. There is also significant 

activation in a variety of brain regions, including the thalami, the lateral occipital gyri, 

posterior middle and superior temporal gyri, the inferior frontal gyrus bilaterally and the 

anterior cingulate gyrus. 

Figure 8 is a correlation map between GABA as measured by MRS and fMRI 

BOLD activation during picture processing in the midline of the occipital lobe. Using a 

Pearson’s correlation statistical analysis, a significant positive correlation (R=0.610, 

p=0.007, 2-tailed) was found between GABA levels and fMRI BOLD activation scores in 

more superior slices of the occipital lobe, presented as a scatter plot in figure 9.  The ROI 
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is slightly superior to the ROI used in the MRS study.  It includes the superior aspect of 

the occipital lobe and spans slices +16 to +21 (on z-axis of Talairach coordinate system), 

with an ROI volume of 26,484mm3 (i.e. 3.125mm by 3.125mm by 6mm and 452 

functional voxels) and radius of 18.75mm.  Other brain regions that demonstrate GABA 

and fMRI BOLD correlation include the thalamus bilaterally, the right posterior superior 

and middle temporal gyri, the inferior parietal lobule, the right superior frontal gyrus and 

the posterior cingulate gyrus.  

NAA also demonstrated a strong correlation with fMRI BOLD activation in the 

occipital lobe as seen in the color map representation in figure 10.  Using an ROI in more 

inferior slices of the occipital lobe that was slightly posterior to the MRS ROI, significant 

correlations (R=0.553, p=0.017, 2-tailed) are demonstrated in a scatter plot in Figure 11. 

The inferior slices span slices +7 to +11, with an ROI volume of 19,863mm3 (i.e. 

3.125mm by 3.125mm by 6mm and 339 functional voxels) and radius of 18.75mm.  

Other brain regions with BOLD and NAA correlation include the thalami bilaterally, the 

right inferior parietal lobule, and the left lateral occipital gyrus.    

The correlations obtained in Figures 9 and 11 utilized ROIs for the fMRI 

activation that were from a slightly different part of the occipital lobe compared with the 

ROI used for the MRS study.  We then used an ROI to obtain fMRI BOLD scores that 

was similar to the occipital ROI used in the MRS study.  Significant correlations were 

also found between both GABA (Figure 12) and NAA (Figure 13) levels and BOLD 

activation scores during picture processing in the region approximating the MRS ROI 

(59,590mm3 volume [i.e. 3.125mm by 3.125mm by 6mm and 1,017 functional voxels] 

and 18.75mm radius expanding from slices +7 to +21).  For GABA, the Pearson’s 
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correlation was 0.477 (p=0.045, 2-tailed), and for NAA the Pearson’s correlation was 

0.587 (p=0.01, 2-tailed).  No correlation was seen between BOLD activation and 

glutamate or choline.   
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DISCUSSION 
 

The present study investigated the interactions between MRS-measured 

metabolite levels and fMRI-BOLD activation in response to a picture-processing task 

performed on separate days and on different magnetic resonance systems. The findings 

indicate a positive correlation between GABA and NAA levels with fMRI BOLD 

activation, not only in the midline occipital ROI, but also in other regions of the brain.  

These results demonstrate that a major neurotransmitter, GABA, and a metabolite 

important to mitochondrial function in neurons, NAA, are linked to brain activation in 

children as they perform a cognitive task. As significantly more studies have been 

conducted using fMRI to study reading disability, this MRS-fMRI relationship also 

serves as an important validation for the role of future MRS studies in dyslexia and other 

cognitive processes.    

GABA and Learning 

The neurotransmitter measured in this study, GABA, is a widely distributed 

neurotransmitter in the central nervous system, with about sixty to eighty percent of 

neurons having GABA receptors.  GABA is the major inhibitory neurotransmitter in the 

brain, and together with glutamate - the major excitatory neurotransmitter, act to regulate 

general brain activation. It is important to note that although GABA is viewed as an 

inhibitory neurotransmitter, neurons that produce GABA (GABAergic neurons) may 

have complex effects following activation.   For instance, inhibitory neurons may be 

organized to provide negative feedback, leading to oscillatory interactions and the final 

effect of GABAergic neurons may be disinhibition. Inhibitory interneurons, by 

controlling the precise timing of firing of target cells, may also act to synchronize activity 
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among different neuronal populations (54). GABAergic neurons have been shown to 

participate in higher order CNS functions including learning, memory, emotions, etc.  It 

is recognized as playing a significant role in the generation of coherent neural networks, 

exemplified by the fact that the visual cortex (the dominant sensory input area) has about 

fifty percent more GABA neurons than other cortical areas. GABAergic neurons have 

also been implicated in playing a role in neuronal plasticity in response to functional 

changes. For instance Floyer-Lea et al. (55) using MRS found that motor sequence 

learning in humans significantly decreased GABA concentration by almost 20% in the 

contralateral primary sensorimotor cortex within a 2 x 2 x 2-cm3 voxel.  Enzymes 

involved in GABA synthesis were also altered in mouse cortex following sensory 

learning in a study by Gierdalski et al. (56).   In humans, benzodiazepines (GABA 

receptor antagonists) are mainly used as anticonvulsants and anxiolytics, but manifest 

memory impairment as a side effect.  

The role of GABA in learning and memory is also modeled in animal 

experiments, where benzodiazepines have been shown to impair spatial learning and 

memory (57).  And these deficits have been successfully reversed by flumazenil, a 

benzodiazepine antagonist (58).  Other studies in rats have shown that inverse agonists at 

specific GABA receptor subtypes enhance learning and memory (59, 60).   Clinically, 

Piracetam (a cyclic derivative of GABA) has been documented to improve various 

cognitive impairments (61), including reading disabilities. Given the extensive indirect 

evidence, among other researchers, the authors involved in this study have proposed that 

a balance in excitatory and inhibitory neural impulses in specific regions in the brain is 

necessary for successful development of reading skills.  And there is evidence to suggest 
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that the concentration of GABA in the cerebral cortex may be reflective of inhibitory 

neuron function, especially given that diseases such as depression, alcohol withdrawal 

and epilepsy, which alter GABA concentration also significantly affect inhibitory neural 

impulses in the brain (62, 63). In a separate arm of this study, the authors also test the 

hypothesis that polymorphisms of GABA-related genes may manifest in differences in 

GABA concentration in posterior language-related areas. 

The development of non-invasive measurement of GABA levels using MRS has 

been critical in investigating the link between GABA concentration and inhibitory 

neuronal function, and subsequently exploring how this link may relate to reading 

disorders.  However, GABA is difficult to measure in vivo using MRS for several 

reasons, including the fact that its small coupled spectral peaks are overlapped by much 

more intense resonances due to N-acetyl aspartate (NAA), creatine (Cr), and glutamate 

and glutamine (Glx) (27), resulting in increased complexity of the spectral analysis.  And 

although methods to edit out these other signals have been developed (in our study we 

used a selective inversion pulse), the separation of coupled from uncoupled resonances is 

not absolute. Various studies have nevertheless established the feasibility of GABA 

detection and measurement using MRS including, Oz’s group (64) who used a 4T 

magnet, STEAM MRS and LCModel to measure 10 metabolites, including GABA from 

the unilateral substantia nigra.  The GABA/Glu ratio they obtained in the substantia nigra 

compared to the cortex, was in excellent agreement with established neurochemistry (in 

post-mortem studies). Other studies using MRS to measure GABA levels have included 

one by McLean et al. (27), where the authors successfully measured in vivo levels of 

GABA and established a control range of GABA levels in the occipital lobes of volunteer 
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participants; Epperson et al. (66) - found GABA levels to be reduced in post-partum 

women in the occipital cortex, compared to age matched controls; Floyer-Lea’s group 

(55) - studied alterations in GABA concentration following motor learning.  The GABA 

range obtained in the current study (1.619mM/kg to a maximum of 2.128mM/kg) is in 

reasonable agreement with ex-vivo measurements of human cerebral GABA with 

concentration as high as 2.1mM/kg (66).  

GABA and fMRI 

Since its use in human experiments in the 1990s, several studies have been 

conducted to investigate the mechanism of the fMRI BOLD phenomenon. In general, 

these studies have concluded that fMRI does not directly measure neuronal activity, but 

relies on a signal, which results from changes in oxygenation, blood volume and flow – 

hence BOLD (blood oxygen level demand). Neurons require energy in other to maintain 

and restore membrane potentials that is necessary for signaling.  The primary source of 

energy for the brain is ATP created from glucose and oxygen, which are not stored in the 

brain and have to be replenished by continuous blood supply.  Therefore increases in 

neuronal activity result in increase in local energy demand, which results in increase in 

blood flow.  In other words, it is actually the metabolic demands of active neurons that 

are measured indirectly by fMRI (67). The metabolic demands of increased neuronal 

activity lead to an increase in oxygenated blood primarily from increased blood flow.  

More oxygen is supplied to the area than is extracted.  This results in a decrease in the 

amount of deoxygenated hemoglobin in the active brain region.  Oxygenated hemoglobin 

does not dephase protons in contrast to deoxygenated hemoglobin, which results in 

dephasing and signal loss.  The MR signal of a brain region during a task compared to a 
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baseline condition will therefore increase due to its relative increase in oxyhemoglobin 

compared with deoxyhemoglobin.   

The finding of a positive correlation between GABA and fMRI BOLD in 

response to the picture processing task in the current study provides evidence for the role 

of GABA in cognitive processes. Interestingly, 13C MRS studies in rats and humans have 

shown a one-to-one relationship between the metabolism of glucose in the tricarboxylic 

acid cycle and the cycling of neurotransmitters including GABA, which is released by 

neuronal firing and cycled via astrocytes through glutamine.  There is also a one-to-one 

relationship between the rate of glucose oxidation and neuronal firing.  Putting these 

together, it may be that the brain regions with appropriately developed GABAergic 

neuronal activity are capable of optimal functioning in response to cognitive tasks.  This 

is evidenced by the correlation of increased GABA levels with increased fMRI BOLD 

signal.  As discussed previously, Shaywitz et al. (5) have shown that higher reading skill 

correlates with stronger BOLD activation in the left hemisphere ventral cortex.  Thus 

although GABA levels were not studied in relation to reading skill in the current study, 

this result suggests, albeit tentative that such a relationship may exist.   

NAA and Neuroenergetics 

As discussed in the introduction, NAA is an indirect measure of neuronal 

integrity. The results in the current study found that higher NAA levels correlated with 

higher regional blood oxygen demand in the occipital MRS-ROI during a task.  The 

correlation of NAA and BOLD is supported by a study demonstrating that compared to 

healthy controls, schizophrenic patients tend to have low NAA levels in the prefrontal 
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cortex, which correlate with significantly lower increase in blood flow during cognitive 

tasks (68). 

A potential for NAA use clinically has been raised by studies showing that NAA 

appears to be reduced in bipolar disorder (a disorder with mood and cognitive deficits), 

and lithium (an effective treatment for bipolar disorder) has been reported to increase 

NAA levels.  Other clinical uses for NAA include the evaluation of diseases that destroy 

or injure neurons, like neoplasms, infection, stroke, demyelination or trauma.  These 

processes can lead to marked decreases in NAA levels.   

In general, NAA is widely used as a neuronal “marker” because of its relatively 

high concentration in neurons and its generation of a readily visible single peak on NMR 

spectra.  Increased NAA levels are generally believed to represent an increased number 

of intact neurons.  However, the MRS-fMRI relationship seen with NAA may be more 

complex, given the potential role of NAA in metabolism, neuroenergetics and ultimately 

cognitive processes. Shulman & Rothman (69) summarized from studies in their book 

that although the exact biological function of NAA is still unknown, its slow leak and 

small quantity release from neurons is inconsistent with a neurotransmitter function. One 

author proposed that NAA aids transportation of water across the hydrophobic myelin 

sheath during axonal firing (74), enabling more rapid and synchronized neuronal 

conduction, and thus better cognitive performance (21).   As an indicator of neuronal 

integrity, a study (70) demonstrated that NAA not only correlates with neuronal loss in 

animal models of stroke, but also with neuronal dysfunction.  NAA’s role in energy 

metabolism and brain function is supported by the fact that it is synthesized by a 

mitochondrial enzyme (71). Animal experiments have shown a significant correlation 
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between ATP loss and NAA levels following traumatic brain injury, consistent with a 

role for NAA in neuroenergetics (72).  In addition, O’Neill et al’s (73) PET/MRS study 

demonstrated a positive correlation between the in vivo rate of glucose utilization and the 

level of NAA. The fact that the fMRI-BOLD signal is indirectly reflective of energy 

metabolism and NAA has also been implied in neuroenergetics suggests a key 

relationship.  In summary, the current study demonstrates that the fMRI signal during a 

task is directly correlated with NAA, which is a marker of neuronal function and is 

involved in neuronal energy metabolism.  NAA levels thus appear to be important for 

brain function during cognitive tasks.   

GABA-NAA Relationship 

An explanation for the positive correlation between GABA and NAA (Figure 6) is 

the fact that as presented above, NAA has been shown to correlate with neuronal volume.  

Therefore, areas of the brain with increased GABAergic neuronal density will be 

expected to have increased NAA levels and vice-versa.  However, NAA is more directly 

implicated in glutamate cycling.  But glutamate is also a GABA precursor and NMR 

studies indicate that GABA and glutamine cycling is an important part of GABA 

production.  Through its role in mitochondrial energetics in glutamine cycling, NAA may 

be an indirect correlate of GABA neurotransmitter production and release.   

This is also suggested in epilepsy studies, where brain regions involved in 

epilepsy have lower NAA levels, indicating suboptimal mitochondrial energetic function.  

There is also increased extracellular glutamate and a decreased rate of glutamate 

recycling.  

 



 38

Conclusion   

The preliminary results obtained in this study indicate a significant correlation 

between metabolic and hemodynamic measures in cognitive processes using two 

important magnetic resonance diagnostic modalities, MRS and fMRI.  The results also 

support the potential role for GABA in reading (dis)ability, which has important 

implications for understanding the pathophysiology and also in drug development and 

research.  It also raises the possibility for the role of NAA as an adjunct in fMRI studies 

and as a potential biomarker in cognitive disorders.  It is important to conduct additional 

studies in this area to further explore and confirm these findings.    
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Figure 3:  Localizer images in axial, sagittal and coronal planes demonstrating 
location of voxel used for MRS measurements.  The voxel was 3 cm right to left, 3 
cm superior to inferior and 1.5 cm anterior to posterior

Figure 1. B1 images.  To image the RF inhomogeneity as a B1 image, the two 
images are acquired with a delay of 51 ms between the two acquisitions using the 
same pulse angle (left and center).  The 2nd image is proportional to the first by 
the cosine of the excitation angle.  The pulse angle image can then be converted 
to an image of B1 (far right). (75) 

Figure 2. Imaging of T1 and tissue type.  After an inversion pulse is applied, a series of 
images is acquired to track the T1 recovery of the water magnetization (top row).  Least-
squares fitting is performed using a numerical simulation of the pulse sequence to obtain 
an image of the T1 values (instead of a T1-weighted image) (bottom left).  The T1 values 
are used to determine the percentage of WM, GM, and CSF in each pixel (bottom right 3 
images). (75) 
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Figure 5: Cortical GABA detected by J-editing. GABA, gamma-aminobutyric
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Figure 4: MRS measurements of brain metabolites.   NAA, N-acetyl 
aspartate. Glx, glutamate and glutamine.  Cr, creatine.  Ch, choline.   
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Figure 7.  Composite fMRI BOLD response to pictures in 18 subjects., p = 0.05.   
Note activation in the midline of the lingual gyrus on slices 12-19. 

Figure 6: Correlation between MRS measured NAA and GABA levels from 
the occipital ROI of Figure 3.  R=0.479 (p=0.044, 2-tailed, n= 18) 
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Figure 8: Correlation map between GABA levels and BOLD activation scores 
during picture processing.  p<0.01, 2-tailed.  

Figure 9: Correlation between GABA level and BOLD activation scores during 
picture processing using an occipital ROI placed in slices 16-21 in Figure 8.
R=0.610, p=0.007, 2-tailed. ROI volume of 26,484mm3 and 18.75mm radius. 
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Figure 10: Correlation map between NAA levels and BOLD activation scores 
during picture processing.  P<0.01, 2-tailed.  

Figure 11: Correlation between NAA level and BOLD activation scores during 
picture processing using an occipital ROI placed in slices 7-12 in Figure 10.
R=0.553, p=0.017, 2-tailed. ROI volume of 19,863mm3 and 18.75mm radius.  

-4

-3

-2

-1

0

1

2

3

12 13 14 15 16 17 18

NAA (mM/kg)



 50

 

Figure 12: Correlation between MRS measured GABA levels and fMRI 
BOLD activation scores during picture processing from an occipital ROI 
similar to the MRS ROI in Figure 3.  R=0.477 (p=0.045, 2-tailed). fMRI ROI = 
volume of 59,590mm3 and 18.75mm radius from slices +7 to +21.  
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Figure 13: Correlation between MRS measured NAA levels and fMRI BOLD 
activation scores during picture processing from an occipital ROI similar to 
the MRS ROI in Figure 3. R=0.587 (p=0.01, 2-tailed). fMRI ROI = volume of 
59,590mm3 and 18.75mm radius from slices +7 to +21.  
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Table 1: GABA and NAA concentrations from midline occipital ROI as measured by MRS,
and BOLD fMRI scores. Mean GABA level =1.823, SD =  0 .135.  Mean NAA level = 14.672,
SD = 1.296 (n=18).

Participant
# Gender

Age at
fMRI

testing
(yr)

GABA
(mM/kg)

NAA
(mM/kg)

Superior
slices
BOLD

Inferior
Slices
BOLD

"MRS
ROI"
BOLD

1 M 8.0 2.128 16.07 1.166900 1.43390 1.29880
2 F 7.8 1.644 14.57 0.021051 0.74152 0.37761
3 F 8.3 1.788 12.93 0.238820 0.13621 0.12027
4 F 7.7 1.806 15.64 0.344680 0.13508 0.21367
5 F 8.2 1.838 15.50 0.467240 0.59854 0.65097
6 F 7.0 1.764 14.44 1.676600 1.74680 1.70540
7 M 6.8 1.662 14.74 -0.913770 -0.23254 -0.61759
8 F 8.4 1.947 16.82 1.350400 0.10265 0.95373
9 M 7.6 1.933 13.50 1.826600 -1.01470 0.55795
10 F 8.8 1.917 17.00 0.610750 1.96570 1.21730
11 M 10.3 1.879 16.41 0.060588 0.91072 0.42578
12 F 7.4 1.750 14.38 -0.377120 -0.43925 -0.41757
13 M 9.0 1.619 13.99 -0.366840 -0.19705 -0.17445
14 M 7.9 1.833 13.36 -1.030500 -0.72188 -0.84625
15 F 8.3 1.665 13.45 -0.492940 -0.03167 -0.25903
16 M 7.6 1.827 12.84 -1.027100 -3.53450 -2.21390
17 M 8.1 2.029 15.35 2.015100 0.93011 1.74060
18 F 7.2 1.790 14.73 -1.164000 -1.11290 -1.19000
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