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1 Introduction.

In cryptology, the study of message digest algorithms leads naturally to the
study of secure hash algorithms. For background and motivation on these
topics the reader is urged to consult [7] [9] or [4]. By a hash or compression
algorithm we mean a function h such that for a message M of length |M |,
|h(M)| < |M |. Usually M is represented as a bit-string. More formally we
have:

Definition 1.1 A hash algorithm is a (partial) function h : Zk2 −→ Z l2
where l < k.

A hash function is secure if it is computationally infeasible to find col-
lisions. There are a variety and hierarchy of collision problems one can
consider. Of primary importance to us are the following three collision
problems:

Type I. Find M 6= M ′ such that h(M) = h(M ′).

Type II. Given M and h(M), find M 6= M ′ such that h(M) = h(M ′).

Type III. Given c, find M 6= M ′ such that h(M) = c = h(M ′).

It is apparent that exhibiting a solution to a Type II collision problem also
furnishes a solution to a Type I collision problem.

By a trapdoor hash function we mean a hash function that has an intrin-
sic weakness known only to the designer of the hash function, a weakness
which allows he or she to find collisions that would be concealed from, and
presumably difficult to discover by, other “expert” designers or “attackers”
analyzing the system.

In this paper we systematically consider examples representative of the
various families of public-key cryptosystems to see if it would be possible
to incorporate them into trapdoor hash functions, and we attempt to eval-
uate the resulting strengths and weaknesses of the functions we are able to
construct. We are motivated by the following question:

Question 1.2 How likely is it that the discoverer of a heretofore un-
known public-key cryptosystem could subvert it for use in a plausible secure
trapdoor hash algorithm?
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In subsequent sections, our investigations will lead to a variety of con-
structions and bring to light the non-adaptability of public-key cryptosys-
tems that are of a “low density.” More importantly, we will be led to con-
sider from a new point of view the effects of the unsigned addition, shift,
exclusive-or and other logical bit string operators that are presently used in
constructing secure hash algorithms: We will show how the use of public-
key cryptosystems leads to “fragile” secure hash algorithms, and we will
argue that circular shift operators are largely responsible for the security of
modern high-speed secure hash algorithms.

2 RSA and Proof of Concept

In this section, we document the first crude example that inspired our sub-
sequent research on this topic. We begin with a brief review of the most
well-known public-key cryptosystem, the RSA cryptosystem, a member of
the family of algorithms based on modular exponentiation.

Let p and q be odd primes, and set n = pq. Choose e such that
(e, ϕ(n)) = 1, where ϕ is the Euler ϕ-function, and use the Euclidean Algo-
rithm to solve

ed ≡ 1 (mod ϕ(n)).

Publish e and n as the public key, and reserve p, q and d as the private key.1

Encrypt a message M , where 0 < M < n, using encryption function E given
by

E(M) = M e (mod n),

and decrypt ciphertext C using decryption function D given by

D(C) = Cd (mod n).

We are ready for our first example.

Example 2.1 Let e1 and e2 be a pair of public keys with corresponding
private keys d1 and d2 for the same RSA modulus n. We assume n is on
the order of k bits (i.e., n ∼ 2k) so that a message M may be viewed as a
bit-string of length k, and we consider

h : Z2 × Zk2 −→ Zk2
1In presenting the mathematical essence of RSA, we omit such implementation issues

as the need for large, “safe” primes of fifty to one hundred decimal digits, small public
exponents, etc.
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defined by
h(b,M) = bM e1 + (1− b)M e2 (mod n).

To solve the Type II collision problem, given the bit-string (0,M) of length
k + 1 and its hash h(0,M) = M e2 , we find

h(1,M e2d1) = M e2d1e1 = (M e1d1)e2 = M e2 (mod n).

Similarly, given (1,M) and its hash h(1,M) = M e1 , we have

h(0,M e1d2) = M e1d2e2 = (M e2d2)e1 = M e1 (mod n).

Moreover, to solve the Type III collision problem, given c we observe that

h(1, cd1) = c = h(0, cd2).

What is disturbing about this example is the trivial Type I collision

h(1,M e2) = M e1e2 = h(0,M e1),

and the transparency of the compression function itself due to the fact that
it is just simple modular exponentiation. This is even made more apparent
as the equivalent formulation

h(b,M) = M be1+(1−b)e2 (mod n)

more clearly reveals how exponent selection occurs.

Since the compression achieved in our first example is merely a one bit
compression, it is easy understand why we regard this as “proof of concept.”
To improve upon it, we must find some way to package it in a more classical
style, one that incorporates the canonical operators found in message digest
algorithms such as the exclusive-or operator, which we denote by ⊕, and the
bitwise logical-or operator, which we denote by |.

Example 2.2 Let k, n, e1, e2, d1, d2 be as in Example 2.1 above, and let
s and t be fixed but arbitrary (invertible) elements in Zn. Consider the
(2k + 1)-bit to k-bit compression function

h : Z2 × Zk2 × Zk2 −→ Zk2

given by

h(b,M1,M2) = (M e1s
1 ⊕M e2s

2 ) | (bM t
1 + (1− b)M e2d1t

2 ) (mod n).
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Evidently, we may write

h(b,M1,M2) = f(M1,M2) | g(b,M1,M2) (mod n).

Since for any M1,M2,

f(Md1e2
2 ,Md2e1

1 ) = Md1e2e1s
2 ⊕Md2e1e2s

1 = M e2s
2 ⊕M e1s

1 = f(M1,M2),

we will have found as a solution to the Type II collision problem

h(1− b,Md1e2
2 ,Md2e1

1 ) = h(b,M1,M2)

provided we can verify

g(1− b,Md1e2
2 ,Md2e1

1 ) = g(b,M1,M2).

Case 1. If b = 1, then

g(1,M1,M2) = M t
1 (mod n),

and
g(0,Md1e2

2 ,Md2e1
1 ) = (Md2e1

1 )e2d1t = M t
1 (mod n)

as desired.

Case 2. If b = 0, then

g(0,M1,M2) = M e2d1t
2 (mod n),

while
g(1,Md1e2

2 ,Md2e1
1 ) = Md1e2t

2 (mod n),

and the verification is complete.

We wish to remind the reader that the use of the exclusive-or operator
was for convenience and other commutative binary operators such as or-
dinary unsigned addition or multiplication in Zn would serve just as well.

If we overlook the trivial solution to the Type I collision problem

h(0, 0, 0) = 0 = h(1, 0, 0),
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the following “tests” that check for obvious collisions provide some evidence
to bolster the assertion that the previous example appears to be more resis-
tant to a Type I attack.

h(0,M,M) = (M e1s ⊕M e2s) | M e2d1t (mod n)
h(1,M,M) = (M e1s ⊕M e2s) | M t (mod n),

h(0, 0,M) = M e2s | M e2d1t (mod n)
h(1, 0,M) = M e2s | 0 = M e2s (mod n)
h(0,M, 0) = M e1s | 0 = M e1s (mod n)
h(1,M, 0) = M e1s | M t (mod n),

h(0,M1,M2) = (M e1s
1 ⊕M e2s

2 ) | M e2d1t
2 (mod n)

h(1,M1,M2) = (M e1s
1 ⊕M e2s

2 ) | M t
1 (mod n)

h(0,M2,M1) = (M e1s
2 ⊕M e2s

1 ) | M e2d1t
1 (mod n)

h(1,M2,M1) = (M e1s
2 ⊕M e2s

1 ) | M t
2 (mod n).

The question that arises when looking at the pervasive use of exponents
in this system, all related to the same RSA modulus n, is whether any “in-
formation leakage” might occur. Specifically, how secure are the exponents
e1, e2, d1 and s in view of the fact that e1s, e2s, and e2d1 are plainly visible.
An attacker may not know how the designer explicitly labels the exponents,
but since it is true that (e1s)(e2s)−1 = e1d2 = (e2d1)−1 (mod ϕ(n)), what
assumptions can an attacker make about the exponents, and what can an
attacker conclude based on his or her assumptions?

If we now demand that our exponent t be invertible in Zn, then we can
construct a third exponent pair e3 = t and d3 = t−1, and we can solve the
Type III collision problem for our previous example as follows.

Example 2.3 With hypotheses as above, and

h : Z2 × Zk2 × Zk2 −→ Zk2

given by

h(b,M1,M2) = (M e1s
1 ⊕M e2s

2 ) | (bM e3
1 + (1− b)M e2d1e3

2 ) (mod n)
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we know that h satisfies

h(b,M1,M2) = h(1− b,Md1e2
2 ,Md2e1

1 ).

For the Type III collision problem, given c we must find two messages that
hash to c. We have

h(1, cd3 , ce1d2d3) = (ce1d3s ⊕ ce1d2d3e2s) | cd3e3 = c

while

h(0, cd3 , ce1d2d3) = (cd3e1s ⊕ cd2e1d3e2s) | cd2e1d3e2d1e3 = c.

Certainly this also is an unsatisfying, seemingly artificial solution to the
Type III collision problem, but since we do not know of any general tech-
niques for solving exponential equations involving the exclusive-or operator,
it is the best we can offer.

3 The Knapsack Family and the Significance of
Density

After the exponentiation family, the next most widely studied family of
public-key cryptosystems are those based on knapsack problems. Even
though there is ample evidence in the literature to suggest that knapsack
cryptosystems are weak and should be avoided, they are still of consider-
able theoretical interest. It was not possible to construct some version of
a secure trapdoor hashing scheme for every knapsack cryptosystem we con-
sidered. When we examined the two most popular knapsack examples, the
original Merkle-Hellman Knapsack Cryptosystem and the Graham-Shamir
Knapsack, we concluded that they probably could not be incorporated into
trapdoor hash functions at all. To pinpoint the reasons for this let us con-
sider the Merkle-Hellman Knapsack in more detail.

Recall that a super-increasing knapsack S is a set {x1, ..., xk} of posi-
tive integers, the knapsack vectors, which satisfy 2xi < xi+1 for all i < k.
Given such a knapsack, there is an efficient algorithm for finding the binary
coefficients εi in any linear combination of the form x =

∑
εixi. For Merkle-

Hellman, we choose u such that 2xk < u and w relatively prime to u so that
we can form public instances wS = {x′1, ..., x′k} of S. If we let < X,Y >u
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denote X · Y (mod u), then the encryption function associated to wS is
E : Zk2 −→ Zu described by the equation

E(M) =< M,wS >u .

The decryption algorithm is just the algorithm for recovering coefficients
applied to the linear combination w−1E(M) =< M,S >u.

Based on our experiences with previous examples, we might expect that
a naive attempt to create a secure trapdoor hash, such as

h : Zk2 × Zk2 −→ Z l2,

given by
h(M1,M2) =< M1, w1S >u ⊕ < M2, w2S >u,

where l = dlg ue is the least number of bits required to write an integer in
Zu in binary, would furnish Type II collisions according to the computation:

h(w−1
1 w2M2, w

−1
2 w1M1) = < (w−1

1 w2M2, w1S >u ⊕ < w−1
2 w1M1, w2S >u

= < M2, w2S >u ⊕ < M1, w1S >u

= h(M1,M2).

But closer inspection reveals that there is a flaw, because we have no as-
surance that w−1

1 w2M2 (respectively w−1
2 w1M1) is a message vector since

w−1
1 w2 (respectively w−1

2 w1) is not zero or one. In fact, such a product can-
not equal zero, and it equals one provided w1 = w2 (mod u), which occurs
precisely when w1 = w2, since 0 < w1, w2 < u.

Therefore we see that when working with standard operators such as
exclusive-or and unsigned addition applied to knapsack vectors there are
two issues that one must consider: the density of the knapsack and the
representation of the message vectors. Specifically, if we try to “decouple”
h(M) = c as c = c1 ⊕ c2 then we must verify that c1 and c2 are in the
image space of h which, for the particular case at hand, means that they are
linear combinations arising from message vectors. We remark that in our
present context, density of a knapsack algorithm can be precisely defined as
the ratio 2k/u, the ratio of the possible 2k knapsack sums

∑
εivi to u, the

size of the “space.”
To give an example of a successful trapdoor hash based on knapsacks,

we turn to a knapsack system based on complementing sets due to Webb
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[10]. Though the system seems neither to be widely known nor to have been
analyzed for cryptographic weaknesses, it is of interest to us because it has
density one! For the details on the construction of complementing sets we
refer the reader to Webb’s paper.2

Example 3.1 Let A1, A2, ..., Aj be complementing sets for the positive
integer n. If we write Ai = {ai,0, ..., ai,mi−1}, then any “message” M , 0 ≤
M < n is uniquely decomposed as

∑j
i=1 xiNi where 0 ≤ xi < mi, and fast

decryption of the “private” encryption cd =
∑
ai,xi is possible. Note that xi

is an index to an element in the set Ai. The idea now is to “disguise” each Ai
to a set Gi so that the decryption of the “public” encryption ce =

∑
xigi,xi

is infeasible, but one can (privately) transform ce to cd. The construction
of Gi takes place in two steps. First, let Fi = r1(Ai + ti) (mod u1) where
u1 > n, and then let Gi = r2Fi (mod u2) where u2 > ju1. For n large,
choosing u1 = n+ 1 will not effect the density, but the choice of u2 reduces
the density to 1/j.

To envision what this system would look like in more concrete terms, we
are forced to use a prohibitively small example.

Instance #1.
n = 12, j = 2.
A1 = {0, 1, 6, 7} so m1 = 4.
A2 = {0, 2, 4} so m2 = 3.
N1 = 1, N2 = 4.
u1 = 13, r1 = 3, t1 = 4, t2 = 6.
F1 = {12, 2, 4, 7}.
F2 = {5, 11, 4}.
u2 = 27, r2 = 7.
G1 = {3, 14, 1, 22}.
G2 = {8, 26, 1}.

Instance #2.
n = 12, j = 2.
A1 = {0, 4, 8, 1, 5, 9} so m1 = 6.
A2 = {0, 2} so m2 = 2.
N1 = 1, N2 = 6.
u1 = 13, r1 = 5, t1 = 2, t2 = 3.

2The reader is forewarned that we found it necessary to completely change Webb’s
notation in order to maintain consistency in our presentation.
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F1 = {10, 4, 11, 2, 8, 3}.
F2 = {2, 12}.
u2 = 27, r2 = 4.
G1 = {13, 16, 17, 8, 5, 12}
G2 = {8, 21}.

The weakness in this example is easily observed since G1 and G2 are not
disjoint in each instantiation. To implement the hash, consider

h : Z12 × Z12 −→ Z6
2

given by
h(M1,M2) = E1(M1)⊕ E2(M2),

where Ei invokes the public encryption algorithm using the i-th instantia-
tion. For example, h(1, 8) = 010110 ⊕ 100110 = 110000, because E1(1) =
E1(1 · 1 + 0 · 4) = 14 + 8 = 22 and E2(8) = E2(2 · 1 + 1 · 6) = 17 + 21 = 38.
There is now a probabilistic scheme for searching for collisions: Decouple
h(M1,M2) = ce1 ⊕ ce2 to h(M1,M2) = c′e1 ⊕ c′e2 and transform the compo-
nents c′e1, c

′
e2 to c′d1, c′d2. Find the corresponding x′i1 and x′i2 coefficients and

then try to verify that their images give c′e1 and c′e2.

4 Idempotent Transformations and Fragility

In our quest to consider a wide variety of public-key cryptosytems, we ex-
amined knapsack algorithms using polynomials over finite fields, including
the Cooper-Patterson public-key cryptosystem [1] and the Chor-Rivest Al-
gorithm [5]. Eventually we were attracted to a knapsack system introduced
by Seberry and Pieprzyk [8] which, though it seemed suspect to us regarding
its decryption algorithm, led us to reconsider our RSA examples in a more
general context.

Example 4.1 As usual, fix an RSA system using modulus n of k bits
and public keys e1, e2 with respective private keys d1, d2. Consider

h : Zk2 × Zk2 × Zk2 −→ Zk2

defined by

h(M1,M2,M3) = M e1
1 M3 ⊕M e2

2 (1−M3) (mod n).
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It is routine to verify the solution to the Type II collision problem

h(Md1e2
2 ,M e1,d2

1 , 1−M3) = h(M1,M2,M3),

and the solution to the Type III collision problem

h(cd1 , 0, 1) = c = h(0, cd2 , 0).

The previous example hinges upon the introduction of an idempotent
transformation which can be applied to M3. Formally, for I : Zk2 −→ Zk2
satisfying I2 is the identity function (e.g., I(x) = 1−x (mod n) or I(x) =
x−1 (mod n) for the integer interpretation of bit strings and I(x) = x for
the boolean interpretation of bit strings), the 3 : 1 compression function
hI defined in terms of encryption (respectively decryption) functions Ei
(respectively Di) and binary operators ◦i is given by

hI(M1,M2,M3) = (E1(M1) ◦1 M3) ◦2 (E2(M2) ◦1 I(M3)).

For collisions, we find

hI(M1,M2,M3) = hI(D1(E2(M2)), D2(E1(M1)), I(M3)),

and
hI(D1(c), 0, 1) = c = hI(0, D2(c), I(1)),

are solutions to the Type II and Type III problems respectively.
Such generalized constructions begin to suggest that we are discovering

“building blocks” for use in secure hash algorithms that are more in tune
with the fast, commercial hashes like MD-5 or SHA [7]. However, even a ten-
tative and optimistic comparison reveals that there is one glaring weakness
— it is possible to adjust or slightly modify the commercial grade algo-
rithms through the use of additive constants, additional exclusive-or terms
and, most importantly, circular shifting constants. This observation leads us
to conclude that the secure trapdoor hashing components we are considering
are fragile in the sense that the introduction of any (circular) shift opera-
tor destroys their trapdoor features. To further understand this, denote by
S(M) a positive integer in the interval [0, k − 1] to be used as a shifting
“constant.” We remark, however, that we do not rule out the possibility
that S(M) is an autokey function, meaning that S(M) could depend on M
in a mild way such as being a weight function or a parity function. Then,
if we denote the left circular shift operator on a bit string x by y positions
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as x << y, a seemingly innocuous circular shifted version of Example 2.1
would be

h(b,M) = b(M e1 << S(M)) + (1− b)M e2 (mod n).

Given (b,M), the Type II collision with b = 1 is easily found to be

h(1,M) = M e1 << S(M) = h(0, (M e1 << S(M))d2),

but finding the Type II collision for h(0,M) = M e2 requires one to solve

h(1,Mx << S(y)) = (Mx << S(y))e1 << S(Mx << S(y)
= M e2 (mod n)

for both x and y. Since this appears daunting, there seems to be little hope
for solving collision problems using a more realistic circularly shifted variant,
such as the following one patterned after Example 4.1 but incorporating shift
constants u1 and u2:

h(M1,M2,M3) = ((M e1s
1 << u1)⊕ (M e2s

2 << u2)) |
(M t

1M3 +M e2d1t
2 (1−M3) (mod n)).

Of course the problem we are facing is that circular shift compatibility is
counter to the “diffusion” and “substitution” goals of classical cryptography.
Thus we are led to the following extremely interesting question which we
have been unable to resolve.

Question 4.2 Does there exist a public-key cryptosystem with encryp-
tion equation E(M) together with some shifting constant u for which it is
possible to relate E(M << u) to E(M), u, or E(M) << u?

5 Cellular Automata PKC, Our Best Example

Another public-key cryptosystem whose cryptological significance is also un-
clear provides interesting possibilities for trapdoor hashing. It is the perhaps
slightly misnamed “cellular automata” public-key cryptosystem of Guan [2].
The system requires a carefully constructed boolean vector-valued public
encryption function E : Zk2 −→ Zk2 which we will write in terms of its coor-
dinate functions e1, ..., ek as E(x) = (e1(x), ..., ek(x)) where x = (x1, ..., xk).
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The associated private decryption algorithm which we denote by D(x) de-
pends on the order these coordinate functions are considered. The complete
details governing the construction are beyond the scope of this paper.

Example 5.1 Let B : Zk2 −→ Zk2 be any vector valued boolean function.
By using De Morgan’s Laws

a+ b = a · b

and
a · b = a+ b,

we are able to write
B(x) = B(x)

and thus we are able to construct a trapdoor hash function

h : Zk2 × Zk2 −→ Zk2

by letting
h(M1,M2) = B(E(M1)) +2 B(M2),

where we have used the unsigned binary addition operator +2 (i.e. binary
addition with carry), though in fact any commutative binary operator such
as exclusive-or, logical-or, logical-and, or even unsigned multiplication will
work. To see why this formulation satisfies our trapdoor criteria, observe
that

h(D(M2), E(M1)) = B(E(D(M2))) +2 B(E(M1))
= B(M2) +2 B(E(M1))
= B(M2) +2 B(E(M1)).

Hence we have exhibited a solution to the Type II collision problem.

We contend the construction found in Example 5.1 is our best construc-
tion because of its believability. Recall, our scenario is that a public-key
system might be inserted into a hash algorithm and go undetected. This
could never happen with the modular exponentiation examples which we
have presented: They are quite transparent. The resulting fast and efficient
hashing system that would result from the construction above, however,
masks the deception much better. To exhibit a concrete instantiation, we
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use k = 5 and continue with an example found in Guan [2]. To simplify its
description, we write

E(x1, x2, x3, x4, x5) = (y1, y2, y3, y4, y5),

and
B(y1, y2, y3, y4, y5) = (z1, z2, z3, z4, z5).

Following Guan, we let

y1 = x1x2 + x5

y2 = x1x3 + x4

y3 = x1x2x3 + x1x2x4 + x2x3x5 + x4x5 + x2

y4 = x2x1 + x2x5 + x3

y5 = x1 + x2.

For our arbitrary boolean function B, we let

z1 = y1y3 + y2y5

z2 = y1y2 + y1y4

z3 = y1 + y2 + y3 + y4y5

z4 = y1y2y3 + y4

z5 = y3 + y5.

This gives (B ◦ E)(x) as

z1 = x1x2x4 + x1x3x5 + x1x2 + x1x2x3x5 + x2x3x5 + x4x5 + x2x5 + x1x3 + x1x4 + x2x4

z2 = x1x2x5 + x1x2x4 + x1x3x5 + x4x5 + x1x2 + x1x2x3 + x2x5 + x3x5

z3 = x5 + x1x2x3 + x1x2x4 + x2x3x5 + x4x5 + x2 + x1x2 + x1x2x5 + x2x5 + x2x3

z4 = x4x5 + x2x4x5 + x1x2 + x2x5 + x3

z5 = x1x2x3 + x1x2x4 + x2x3x5 + x4x5 + x1.

Next, we compute B(z) = B(z) as follows:

z1 = y1 · y2 + y1 · y5 + y2 · y5 + y3 · y5

z2 = y1 + y1 · y4 + y1 · y2 + y2 · y4

z3 = y1 · y2 · y3 · y4 + y1 · y2 · y3 · y5

z4 = y1 · y4 + y2 · y4 + y3 · y3

z5 = y3 · y5,
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and therefore finally obtain, B(x) = (w1, w2, w3, w4, w5) as

w1 = x1x2 + x1x5 + x2x3 + x3x5

w2 = x1 + x1x4 + x1x2 + x2x4

w3 = x1x2x3x4 + x1x2x3x5

w4 = x1x4 + x2x4 + x3x4

w5 = x3x5.

The reason for writing the z’s and w’s in terms of x’s is that they are the
equations one needs to implement our hash construction i.e., the z’s receive
the bits of M1 as x’s and the w’s receive the bits of M2 as x’s.

6 Nested Encryption Methods

In this section we shall exploit the potential for trapdoor hashing arising
from nested encryption. The first example does not give the full generality
for reasons we shall subsequently explain.

Example 6.1 Let E1, E2 : Zk2 −→ Zk2 be public-key encryption algo-
rithms, and consider

h : Zk2 × Zk2 −→ Zk2

defined by
h(M1,M2) = E1(M1)⊕ (E1 ◦ E2)(M2).

We have the solution to the Type II collision problem

h(E2(M2), D2(M1)) = E1(E2(M2))⊕ E1(E2(D2(M1)))
= E1(E2(M2))⊕ E1(M1),

where D2 refers to the algorithm for decrypting E2(x). Moreover, given c
and any decomposition of c, c = c1 ⊕ c2, we have the solution to Type III
collision problem given by

h(D1(c1), D2(D1(c2))) = E1(D1(c1)))⊕ (E1 ◦ E2)(D2(D1(c2)))
= c1 ⊕ c2 = c.

The cellular automaton cryptosystem enjoys the property that the com-
position of vector-valued boolean functions is again a vector-valued boolean
function. Therefore, this nesting scheme is particularly significant because
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of the “form” the required composition E1 ◦ E2 would assume. It would be
of interest to perform some computations to compare E1 with E1 ◦ E2 if,
say, E1 = A1 ◦ A2 and E2 = A3 ◦ A4 were based on four “s-fold” invertible
linear transformations A1, A2, A3, A4 : Zk2 −→ Zk2 in the sense of Guan [2].

We should also observe that the RSA version of Example 5.2 is

h(M1,M2) = M e1
1 ⊕M

e1e2
2 (mod n),

with solution to the Type II collision problem

h(M e2
2 ,Md2

1 ) = M e1e2
2 ⊕M e1e2d2

1 = M e1e2
2 ⊕M e1

1 (mod n).

And we should remark once more that from a design viewpoint there is
nothing sacrosanct about using exclusive-or operators. Other commuting
binary operators would also be acceptable.

The principal reason for focusing on nesting of encryption algorithms is
their applicability to a set of encryption algorithms that, unlike RSA, are
noncommuting viz., EiEj 6= EjEi for some i 6= j.

Example 6.2 Consider g instances E1, ..., Eg of public encryption schemes,
and let

h : Zg
2k
−→ Z2k

be defined by

h(M1,M2, ...,Mg) = E1(M1)⊕ (E1E2)(M2)⊕ ...⊕ (E1E2...Eg)(Mg).

Then the solution to the Type II collision problem is found using the identity

h((E2...Eg)(Mg), D2(M1), D3(M2), ..., Dg(Mg−1)) =
(E1E2...Eg)(Mg)⊕ E1(M1)⊕ (E1E2)(M2)⊕ ...⊕ (E1...Eg−1)(Mg−1),

and there is an “easy” solution to the Type III problem obtained by de-
crypting componentwise

c = c1 ⊕ ...⊕ cg.

Note that the succinct way to write h is

h(M1, ...,Mg) = ⊕gi=1 (E1...Ei)(Mi).
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7 Matrix Methods

We were dismayed to find that there was no viable word-problem public-key
cryptosystem that we could lay hands on, and that another widely touted
example of a probabilistic public-key cryptosystem (a system where the en-
cryption of a message results in a set of ciphertexts from which to choose),
the McEliece PKC based on Goppa codes [8], was unsuitable because of the
severe expansion that encryption produced. Unexpectedly, the probabilistic
system that we found to be adaptable for a trapdoor hash system was a ma-
trix system invented by Varadharajan and Odoni [11]. It is a system that
uses both RSA style exponents and randomly chosen elements. We give a
brief description.

Following [11], over Zm we let g divide the exponent of the group of n×n
nonsingular upper triangular matrices3, and choose e, d such that ed ≡ 1
(mod g). To encrypt a message M consisting of n(n− 1)/2 elements of Zm,
fill in the upper triangular entries of a matrix U row by row with these
elements, choose random diagonal entries relatively prime to m, and use the
RSA equation E(U) = U e for encryption and D(U) = Ud for decryption.

Example 7.1 We construct a trapdoor hash function

h : Zn+n(n−1)/2 × Zn+n(n−1)/2 −→ Zn+n(n−1)/2

for pairs (ei, di) of such matrix exponents via

h(U1, U2) = U e11 · U
e2
2 ,

where the n× n upper triangular matrices U1, U2 are each formed from the
n+n(n− 1)/2 message entries by filling in the matrix row by row, diagonal
entries included.

If all the diagonal entries of both such matrices are relatively prime to
m, then for any upper triangular invertible matrix P

h((U e11 · P )d1 , (P−1 · U e22 )d2) = (U e11 · P ) · (P−1 · U e22 ) = h(U1, U2)

and we have a solution to the Type II collision problem.

To make sure that the diagonal entries are relatively prime to m, one
would like to apply an algorithm that re-assigns the elements of Zm to Z∗m
without revealing the factorization of m. We do not know if this is possible.

3In [11], it is shown that for m = Π prii , g is a divisor of lcm(ϕ(prii )prii ).
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The trapdoor feature to this hash is wholly dependent on the randomness
of the diagonal entries since if the diagonal entries were fixed then, for
example, (U e11 ·P )d1 , would almost surely not be an admissible message. It is
therefore clear that this trapdoor hash is another very fragile one: Potential
“improvements” such as commingling diagonal entries in order that some
of the entries from U1 are appropriated for the U2 diagonal, and conversely,
would destroy the trapdoor nature of this construction.

8 Conclusion

We have attempted to survey the spectrum of public-key cryptosystems for
the purpose of constructing secure trapdoor hashing algorithms. We have
exhibited our constructions, analyzed their strengths and weaknesses, and
explored their ramifications. We have demonstrated that such constructions
are theoretically possible but that they are likely to depend on the density
of the encryption algorithm, and that they are most often fragile in a very
explicit sense. Though not all the public-key cryptosystems we reviewed are
considered in this paper — elliptic curve methods [3], methods grounded in
class number fields, and finite group mapping methods [6] for example, all
required computational overhead that made them totally inappropriate for
adaptation to our hashing context — we believe those we have drawn from
are a representative sample from which to extract ideas suitable to our task.

Whether we have indeed provided convincing evidence that it might be
possible to conceal a public-key cryptosystem in a secure hash algorithm the
reader will have to decide for himself or herself.
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