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Acute PM2.5 Exposure and Medicare Hospitalizations in Texas 

Abstract 

Rationale: Fine particulate matter (<2.5 um), or PM2.5, and Ozone has been linked to a number of respiratory 

and cardiovascular conditions and is a known trigger for acute events. Though previous studies have addressed 

these correlations, few have examined PM2.5’s acute effects on inpatient admissions and health care costs, by 

utilizing narrower time intervals than other research projects.  

Objectives: To identify whether trends in hospitalization spending in short time-intervals is associated with 

PM2.5 measures, and to create a predictive model for spending based on two major categories of outcomes: 

selected CV conditions and respiratory conditions known to be associated with PM2.5 exposure that we will 

identify by Medicaid charge codes. We also attempt to model inpatient admissions altogether as an alternative 

outcome. 

Methods: We link Medicaid charge information for all procedures in Texas to daily air-quality data sourced 

from 63 EPA sites in the state and fit a longitudinal mixed model to extrapolate costs and risks of additional 

inpatient stays due to respiratory conditions from particulate matter readings. Outcomes are identified by APR-

DRG codes listed in the Blue Ribbon Medicaid set and exposure measurements are sourced from the EPA’s 

monitoring stations’ data mart. Our study covered September 2010 to August 2011. We also adjust for other 

potential covariates and exposures like Ozone in later models. 

Measurements and Main Results: We find positive association between environmental PM2.5 and healthcare 

spending. Our simpler multilevel linear model gave us these cost estimates:  rates of Respiratory and CV 

charges to Medicaid increase $3.95 million dollars to each increase of ug/m^3 in PM2.5, under our simplest per 

capita model. A more sophisticated secondary-model states that ozone is the more significant predictor of 

costs/charges, and one of our models produced an annual $600,000 increase per additional 0.01 ppm of 

exposure over the year. We also find that modelling counts of hospitalizations fit our model better as an 

outcome. 

 

Conclusion:  The models suggest a positive association between Medicaid spending and PM2.5 or Ozone 

exposure. These measurements can be utilized to predict morbidities based off of air quality, as well as estimate 

the impact to Medicaid in terms of its financial strain. This information can be utilized in resource allocation in 

terms of hospital staffing and local medical needs, as well as on larger scale, aiding policy decisions.  
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Introduction 

Air Quality and fine particulate matter exposure affects peoples’ respiratory and cardiovascular health.  
His impact can be measured in admission rates and increases in medical costs. On an aggregate level, the CDC 
estimates that, inducing costly conditions like asthma that costs the US up to $56 Billion per annum* (CDC 
2011).  This increase in costs is in part due to hospital/ER admissions, and for our purposes we will isolate the 
spending trends in Medicaid-dependents of Texas, whose 3.5 million members account for $25 billion in annual 
healthcare spending.  Regulatory authorities in Texas consider PM2.5 level at acceptable at 12 μg/m3 average 
daily exposure over the year, compared to the 10 ug/m^3 standard set by the WHO and other international 
standards (WHO 2015). In the context of guiding future policy decisions, this type of research might provide 
some sort of financial guideline for resource allocation and policy reconsideration. 

 
Background and Prior research 

Although previous studies have found an association between air quality and health care spending, these 
studies had some limitations. Some analyses and bundled air measurements by month, which provided poor 
temporal resolution in modeling fine responses to air quality changes, and the resulting economic burden. Some 
analyses established a relationship between conditions and particulate matter in for a narrow number outcomes, 
like only measuring mortality’s association without accounting for nonlethal morbidities (Katsouyanni 1998). 
Looking at all hospital treatments at the daily level might provide better resolution to find more subtle 
associations. 

Research has been executed utilizing Medicare charge data joining datasets with EPA exposure data to 
do analyses over a wide geographical area, with separate models for different regions, (Peng 2008). These 
models tracked and measured hospitalizations compared to daily readings aggregated to the county level, 
providing both a more accurate assessment of the burden of the disease, as well as its geographical distribution. 
” (Peng 2008). Though originally evaluating PM10 exposure, larger particles that are more likely to be filtered 
out and caught before doing damage, they found that after controlling for PM2.5 the PM10 exposure associated 
become much more attenuated, and that the ultrafine PM2.5 particles were more likely to be causally associated 
with admissions for respiratory and cardiovascular diseases. These authors convincingly demonstrated higher 
Risk Ratios in respiratory and cardiovascular conditions in geographical areas with higher ambient particulate 
matter. Other analyses undertook similar analysis but utilizing indirect measurements like distance from roads 
as a proxy over direct air readings, requiring yet another set of assumptions that affect the precision of 
individual exposure estimates (Gilbert 2003). 
 
Contribution 

Through monitoring daily air-readings and inpatient admissions to the zip-code level, this paper adds to 
this literature by using more granular geographic areas to measure these associations.  I will refine the 
geography of exposures by linking environmental air quality measurements to patient rather than hospital data. 
Also, rather than simply tracking risk ratios, I will provide a predictive estimate to the social burden of these 
direct costs—by providing cost estimates for the medical procedures for conditions that are generally accepted 
to be associated with PM2.5, and how it is influenced by daily AQI environmental readings. 

This analysis is restricted to the state of Texas and uses patient level charge data to estimate fluctuations 
in spending on cardiovascular and respiratory diseases and how it is associated with changes in air quality.  By 
utilizing the EPA’s daily PM2.5 readings from 58 measuring stations in Texas (data from the AIR QUALITY 
SYSTEM DATA MART database spanning years 2010-2014), we can get a finer level of geospatial AND 
temporal precision that is required when measuring acute responses and costs.  

These measurements can be utilized to predict morbidities based off of air quality, as well as estimate 
the impact to Medicaid in terms of its financial strain. This information can be utilized in resource allocation in 
terms of hospital staffing and local medical needs, as well as on larger scale, aiding policy decisions. 
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Table 1: Descriptive Information of our overall Texas Medicaid Sample and Associated Measurements 
SITE:EPA Number 

CV/Resp 
Charges* 

Mean Cost 
per charge* 

Std Dev MeanPM* Std 
Dev 

Total Cost 
CV/breathing* 

1 110 4608.79 4049.1 9.966 5.124 $506,966.90 
2 155 5158.88 6125.93 9.632 5.149 $799,626.40 
3 1438 5074.01 3454.16 10.114 5.063 $7,296,426.38 
4 131 4673.9 11943.67 9.847 4.973 $612,280.90 
6 91 3835.7 2690.48 10.563 5.220 $349,048.70 
7 2 4120.83 2075.1 10.237 5.196 $8,241.66 
8 437 3435.05 2202.77 . . $1,501,116.85 
9 31 3562.31 1452.92 6.637 4.676 $110,431.61 

10 1123 3846.65 4565.87 10.867 5.266 $4,319,787.95 
11 38 3682.29 2566.37 10.987 4.552 $139,927.02 
12 6 2670.4 694.12177 6.664 5.525 $16,022.40 
13 2035 6126.57 9309.88 11.104 3.551 $12,467,569.95 
14 535 6091.99 5528.57 10.130 4.065 $3,259,214.65 
15 187 7425.72 11007.56 . . $1,388,609.64 
16 427 5606.25 5549.68 8.754 4.551 $2,393,868.75 
17 737 3874.02 3474.99 10.216 5.532 $2,855,152.74 
18 378 3668.06 4296.19 9.246 4.361 $1,386,526.68 
19 156 4979.67 7376.79 8.452 4.095 $776,828.52 
20 79 4264.88 2152.24 9.254 3.841 $336,925.52 
21 10 3891.75 2677.07 10.124 4.161 $38,917.50 
22 640 5560.48 18306.18 10.857 5.194 $3,558,707.20 
24 81 4824.61 3239.75 12.450 7.660 $390,793.41 
26 463 5126.45 17496.44 8.618 4.362 $2,373,546.35 
27 305 9866.57 13393.34 9.641 3.945 $3,009,303.85 
28 154 4809.52 2690.86 11.570 4.820 $740,666.08 
29 199 6306.67 16385.42 11.386 4.400 $1,255,027.33 
31 3536 5866.44 10604.19 10.951 4.229 $20,743,731.84 
33 13 4815.13 1502.26 12.255 4.234 $62,596.69 
34 206 5015.63 3412.86 10.616 4.299 $1,033,219.78 
35 554 5057.39 10431.91 10.792 4.545 $2,801,794.06 
36 196 5188.51 3782.59 9.408 3.498 $1,016,947.96 
37 852 4752.77 4790.44 10.625 7.681 $4,049,360.04 
38 3521 3191.47 3178.75 11.510 5.603 $11,237,165.87 
40 263 3624.41 3607.11 10.318 6.288 $953,219.83 
41 49 19533.52 92830.08 9.140 3.966 $957,142.48 
42 581 3724.28 2820.3 8.644 4.220 $2,163,806.68 
43 778 5098.99 7388.92 10.125 4.027 $3,967,014.22 
44 54 6028.77 7571.08 10.768 4.674 $325,553.58 
45 549 3823.5 5487.15 9.507 6.355 $2,099,101.50 
46 666 4320.83 9834.33 8.736 3.883 $2,877,672.78 
47 349 3661.44 2566.51 10.274 6.028 $1,277,842.56 
48 733 5272.56 18006.95 12.944 5.397 $3,864,786.48 
49 470 4282.16 4075.77 9.950 4.299 $2,012,615.20 
50 54 4401.8 3576.8 10.096 4.497 $237,697.20 
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51 581 5026.23 4041.3 . . $2,920,239.63 
52 198 4115.11 2443.61 9.268 3.820 $814,791.78 
53 150 3295 2984.02 . . $494,250.00 
54 182 4495.89 10712.26 9.705 4.184 $818,251.98 
55 723 4663.74 12117.53 7.094 4.027 $3,371,884.02 
56 242 5190.72 5544.81 . . $1,256,154.24 
57 1170 5354.69 8681.7 10.488 4.142 $6,264,987.30 
58 376 7092.81 20000.42 9.614 4.456 $2,666,896.56 
59 1039 6246.86 7400.63 9.612 4.885 $6,490,487.54 
60 490 6567.42 44787.68 8.445 4.490 $3,218,035.80 
62 712 3441.29 5867.9 12.235 6.064 $2,450,198.48 
63 585 4086.27 5183.53 7.991 3.900 $2,390,467.95 

 TOTAL           $146,729,448.97 
SITE:EPA represents the catchment zone generated with an EPA monitoring site with a center. Blanks are sites 
where we were not able to derive information, and were shuffled into the next closest site in subsequent steps. 
Amongst the 13 sites we ended up discarding, 5 were discarded due to sparse air readings (strikeout). 

 
 
 
 
TABLE 2: Data Overview-Aggregate Data 
DATA 
SOURCE 

Value ± SD p-value 

Mean 
charges 

49437.14  ± 
65628.48 

P<0.0001* 

 Mean 
Ozone 
(ppm) 

  P<0.0001* 

Mean 
PM2.5 
(ug/m^3) 

8.9727  ±   3.0706 P<0.0001* 

Mean # 
Medicaid  

62699  ±    84809    
 

-- 

Mean Pop 429217 ± 581472 -- 

P-values derived from ANOVA for tests comparing one EPA-Site Catchment area’s weekly readings to another, 
suggesting fundamental differences caused by hidden secondary covariates between zones. 
*p-values are lifted from ANOVA comparing by groups organized by EPA-site, and are significant on a p < 
0.05 under a Bonferonni correction.  
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Datasets and Sources 

We utilized 2011-2012 Medicaid charge information from the Texas ‘Blue Ribbon’ dataset as our source 
of healthcare cost information and place of residency associated with each patient. We utilize this information 
and geocode cases of asthma/COPD to the nearest EPA catchment site. These places of residency are paired to 
one of the three EPA 63 monitoring sites which offer daily* average mean readings of PM2.5 (particulate 
matter) exposure, which we utilize as an environmental proxy for an individuals’ exposure. 

In this model, we have divided Texas into 55 geographic areas (after dropping 8 sites due to data 
scarcity), whose centroid is one of the associated EPA sites. All respiratory cases in the blue ribbon set are 
paired with one of these geographic locations, contributing to that sites’ daily repeated measures as an outcome 
(Table 1). We utilize EPA sites’ readings for the date, utilizing the 3 day moving window average of PM2.5 for 
that site.  

 
TABLE 3: Data Overview 

DATA 
SOURCE 

Description Relevant variables 

BLUE 
RIBBON 

SOURCE OF MEDICAID 
DATA 

CHARGE Costs, Area 
Code associated with 
residency, Diagnosis 
Related group 

EPA-QS Daily/Weekly PM2.5 
readings 

Longitude/latitude of 
measuring sites, pm2.5 
level 

Census Population controls useful 
for establishing rate 
outcome. 

Population per geographic 
area 

Centroid 
Locations 

Geocoding/geoprocessing 
Our link between our Blue 
Ribbon Set and our EPA 
set. 

Longitude and Latitude 
associated with area codes. 

 
Blue Ribbon Project (HCUP data)–Our charge information and proxy for ‘direct’ respiratory costs was 

sourced from the Texas-based Medicaid dataset managed by state Health and Human Services. Out dataset 
contains two years’ worth of charge information from 2011-2012, identified by DRG. However, unlike other 
datasets it is lacking in SES type information.  

We were able to isolate certain categories of charges from form information. The dataset categorized the 
type of inpatient admission via APR-DRGs (2009), looking at known respiratory outcomes from the literature 
(Chung 2005). 

 
EPA-AIR QUALITY SYSTEM DATA MART DATABASE: The source of air quality measurements are 

collected from the EPA monitoring stations and downloaded rom their Air Quality System Data Mart system, 
sampled from 2010 to 2014. The AQS database-provided specific daily averages taken at variable intervals 
across the year. Data was provided in the form of average PM2.5 and Ozone readings for the day. It includes 
specific measurements by type of air pollutant. We utilized readings from the 58 air quality monitoring stations 
in Texas. We also drew the boundaries of our catchment zones from each EPA-site longitude and latitude. The 
centroids of area codes are assigned to the nearest EPA Air quality site as its landmark, and all the area codes 
designated to the same EPA monitoring site are assigned to the same zone/catchment area. 
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Census Data: 2010 Census information helped estimate the population of each catchment area by ZCTA 
(analog for zip code) and a ZTCA crosswalk file that allowed us to translate raw area codes to the census 
ZCTAs. By combining these datasets we can generate per-capita cost figures and hospitalization rates. An open 
source population centroid dataset was utilized to translate/mask the individual’s area code to a ‘zone’ of these 
using the SAS 9.4 package Geocoding features to receive longitude and latitude data, to filter only for datasets 
close by to the EPA or state air-quality monitoring stations.  

We repeated this process for the different OZONE monitoring stations also derived from the AQS EPA 
system, which had its own sets of sites and longitude and latitude information.   
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METHODOLOGY: DATA CATCHMENT/ SELECTION CRITERIA 

Methods: Measurements of Exposures and Outcome Identification 
Like previous studies we utilize environmental measurements closest to individuals’ place of residence as a 

proxy for Medicaid patients’ exposures to PM2.5 or ozone. We did not account for indoor exposures or personal 
air monitoring readings. This method, however, gave us the advantage of being able to fit longitudinal repeated-
measures models to elucidate the relationship between spikes in PM2.5 air concentration and causally-linked 
health outcomes like asthma and COPD on a very large scale. 

Outcomes were identified from the hospital blue ribbon dataset using commonly known 2011 APR-
DRGs (diagnosis related groups) that are indications of the type of condition a patient is admitted under. From 
the literature we focused on respiratory admissions whose primary diagnosis was Asthma, COPD, Respiratory 
Inflammation, pulmonary embolisms, Bronchiolitis, all conditions whose associations with PM2.5 are well 
documented (Dominici 2006). We looked up codes with the accompanying data-dictionary for the Medicaid 
charges that specify the type of primary condition the patient was afflicted with. 
 We also focused on certain cardiovascular conditions whose relationship to acute PM2.5 is also supported 
within the literature (CDC 2011). Heart Failure, Cardiac Arrest, myocardial infection, along with a few other 
acute conditions have strong positive associations with localized PM2.5 exposure (Talbott 2014). We also listed 
some conditions associated with Ozone exposure, as ozone is associated with our primary outcome asthma. The 
rest of the exposures are listed in Table 3 (Lin 2002). 
 We subset outcomes for more refined analysis based on Respiratory Only categories (left column, Table 3), 
Cardiovascular Conditions (right column, Table 3), and all-combined. In increase the percentage of cases, as we 
would’ve ended up with many strata with zero values, we ended up utilizing the combined conditions listed in, 
all associated with PM2.5 (Karr 2006). 
 

 
 
 
Table 4: Medicare-DRG Classifications used to identify charges for conditions associated with PM2.5 

Respiratory Conditions: Cardiovascular Conditions 
Pulmonary edema Myocardial Infarction 
Pulmonary embolism Heart Failure 
Major Inflammation Cardiac Arrest 
Bronchiolitis Angina Pectoris 
COPD Cardiomyopathy 
Asthma Cardiac Arrhythmia / Hypertension 
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Methods: Geocoding and Group Allocation 
Allocation of individuals was done utilizing charge data from the Blue Ribbon file. The dataset had a zip 

code of home residence that we were able to utilize. From this we are able to pair people by area code to their mean 
weighted population centroid location via longitude and latitude. This is similar to the method employed by 
previous studies linking hospitals to the county level measurements (Peng 2008), and likely provides a more 
realistic measurement than others that utilized even more indirect measurements like distance from roads as a 
proxy. 

Geocoding of study sites was executed by taking longitude and latitude measurements for all 63 EPA air 
monitoring stations and utilized them as the center of circular zones that would be utilized to allocate charges to. 
With fields provided by both datasets, we can geocode the individual charges to specific EPA sites by min distance. 
Map them via the area-code information provided by Blue Ribbon charge dataset, pairing individuals to an EPA 
monitoring site as its anchor point. Since we only had area code resolution, we utilized a publically available mean-
population centroid dataset.  

SAS handled all geo-coding measurements, utilizing built-in operators like a geo-distancing function to 
calculate distances. We determined which EPA site most representative of the individual patients’ exposure by 
calculating the closest site. For each of the 400k observations available in the Blue Ribbon charge data, SAS 
calculated distances (from the patient’s area code centroid location) to an array of 58 longitude-latitudes associated 
with the air monitor locations. 

In effect, our model treated each geographic circle as the lowest level of measurement for our outcome 
(hospitalizations/spending per site), utilizing the monitoring station as both the center and the source of that area’s 
daily-ish PM2.5 / AQI readings. 

 
Figure 1: Aggregated Catchment Zones. 
A map of ZCTAs (smallest borders) with each color representing a cluster of catchment zones for readability. 
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Figure 2: Structure of Aggregated Data  
 

 
Daily Counts from September 1- August 
31st  

EPA-Monitoring Area Day 1 Day2 Day3 … Day365 

1 
obs1 (= COST + 
PM2.5)  Obs2    Obs365 

2      
3   …  

…      
63 OBS 1 Obs2   Obs365 

      
*Structured for hierarchical repeated measures analysis.    

Individual charge data was distilled to number of counts (/or cost accumulated) for respiratory conditions per day, 
along with a paired pm2.5 reading from that specific EPA monitoring site/catchment area. 
 
Data Imputation: 

The data was complex: the 63 EPA sites were not homogenous in the amount of readings a year available. 
Due to wanting to properly utilize all charge information available and not just drop the hospital information 
associated with missing air-reading days, we utilized splining and imputation methods. Regression Splines with 
Longitudinal Data was the basis of our imputation methods. 

Also utilized a simpler linear-spline method via SAS. 
 These modeling and estimation procedures had been utilized previously for similarly structured data to justify our 
use of LOESS or interpolation for mixed data (Jo 2007). We fit these measurements as the primary identifier when 
we were missing a true reading. 
 We had to drop 8 sites due to the lack of charges. Another 10 zones were also dropped because of scarcity of 
air data and were allocated to the next closest source. The variations in distance of the population to its matched site 
might provide some sort of measurement bias. We did not utilize imputation for the ozone records, as fortunately, 
though there were fewer sites, had daily readings for all of them.  
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Methods: Modeling  

We executed a basic descriptive statistical analysis for an overview of the air-readings and charge 
information associated with each catchment area (Table 1) along with an ANOVA test comparing differences in 
weekly readings between zones.  

 
Model Description 

Primarily, all our models are mixed longitudinal models with repeated measures. We treated each 
catchment area associated with an EPA site as the smallest individual subject that provides the mean PM2.5 
reading for the day aligned with the daily medical expenses. These daily repetitive readings lend itself to 
multilevel repeated measures model (Figure 2). 

The Daily PM2.5 was our fixed independent variable component of our mixed model, as our primary 
association of interest. The random effects components of our mixed model consists of a random intercept 
associated with each EPA-catchment zone, to reflect the differences associated with each of the 
microenvironments and populations housed within. As with other time series, we utilized a covariance structure 
that was autoregressive, as subsequent air quality readings should not be independent from one another. 
 
Outcomes and Exposure Estimation-imputation and the problem of time 

Each EPA-site was the unit of analysis, with 3 outcomes: 1.) Cost associated with the day 2.) Number of 
procedures executed 3.) Charge amounts associated with the inpatients for the day. Daily PM2.5 and Cost 
calculations as the nested, repeated measurement. We also remodeled different outcomes based off of binned, 
aggregated value with weeks as the lowest unit of outcome/exposure. Table 2 and Table 3 illustrate the various 
model fits and time frame of exposures and outcomes that we utilized. 

Delving into the literature, previous studies also considered multiple models for PM2.5 exposure (Peng 
2008). Some papers and models associated the same day air quality readings with the fixed lag-time models, more 
traditional, and with the correlation structure previous values still have some sort of influence on the model. Peng 
and Bell’s 2008 paper with Medicaid data utilized various lag-times, 0 day, 1 day, 2 day, while we will utilize a 3 
day rolling average window. Some papers emphasize a model of gradual sensitization before an asthma attack 
(Lin 2002). I wanted the model to capture a larger window of exposures than a single lag-time(especially since 
acute can be triggered by an ‘accumulation’ consistent high levels of PM exposure), and especially given my 
imputation methods, a 3 day moving average is appropriate so that results will ‘dilute’ the effect of missing an 
extra outlier. However, this will likely drag associations closer to the null. Later, through data aggregation we 
utilize a weekly average to measure ozone and PM2.5 exposure. 
 
Model Progression 

We will fit multiple models, simple outcomes isolating PM2.5 and later fits that include known covariates 
that affect our outcome like Ozone. We will also try alternative time-frames in terms of exposure measurements: 
not only are we going to utilize three day moving averages, but we will estimate our outcomes using broader 
binned weekly measurements of PM2.5 and ozone.  
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Results and Estimates 

The statistically significant p-values derived from ANOVA for tests comparing one EPA-Site Catchment area’s 
weekly readings to another, suggesting fundamental differences caused by hidden secondary covariates when 
comparing different areas of the state in Table 2. Of course, this ignores some of the temporal component, but is 
useful for understanding that there is indeed a difference in the effect of air quality between groups and spending. 
The statistically significant p-values derived from ANOVA suggest differences in average per capita costs and air 
exposure.  
 
Daily PM2.5 as a Linear Predictor of Actual Amount Paid: 
Table 5 contains the parameters to calculate amount of money associated with each increase in ug/m^3 in our 
mixed model. Models have varying outcomes (by site by site or per person, which enables different controls) and 
(varying lag times and measurement intervals) for the independent variable measurements. In our mixed model with 
a 3-day rolling average of PM2.5 ambient concentration as a predictor, we were able to find statistically significant 
values for our daily costs as an outcome per geographical site(p<0.001), and marginally significant outcome with 
the per capita outcome (p=0.0737, Table 5). This true cost outcome is the actual amount paid out by Medicaid for 
the hospitalizations in the Blue Ribbon set. We find that site specific estimates produce an estimated  

50	 ∗ 365 ∗ 	515.68 $
= $9,411,160, in additional state Medicaid spending per additional year. 

 
Utilizing the individual per capita spending as  an outcome and again extrapolating these results to a statewide 
estimate, a 1 PPM increase in annual PM2.5 exposure to the Texas population(25MM) is estimated to have this 
economic impact: 

25.26MM People *365* 0.0004190
$ 	= $3,863,138 for Texas over the year. 

 
TABLE 5: Model Parameter for mixed model with TRUE-Cost as outcome. 

Model-
Outcome 

Outcome 
Time Frame 

Exposure 
Window PM2.5-B1

$
 

Covariates 
 

p 

$ per site 
 

Per day 3-day rolling 
average 
PM2.5 

515.68 * <.0001 

$ per site 
 

Per week Weekly 
Average 

158.09 * 0.2466 

$ per capita  
 

Per day 3-day rolling 
average 
PM2.5 

4.190E-4 * 
+local pop 

0.0747 

$ per capita 
 

Per week Weekly 
Average 

0.01217 * 
+local pop 

<.0001 

Parameters to calculate amount of money associated with each increase in ug/m^3Mixed Linear Models with 
Repeated Measures. Models have varying outcomes (by site by site or per person, which enables different controls) 
and (varying lag times and measurement intervals) for the independent variable measurements.  
*Adjusted for Census Population in catchment Area, and proportion of Medicaid participants 
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Daily PM2.5 as a Linear Predictor of Charges:  
TABLE 6 shows parameters to calculate amount of charges, not amount paid, associated with each increase in 
ug/m^3 in our mixed linear models. Models have varying outcomes (by site by site or per person, which enables 
different controls) but not have fixed weekly exposure variables for the independent variable measurements.   
 
In our mixed model we had fit PM2.5 concentration, measured in ug/m^3, against the daily outcome of hospital 
charges. It is a secondary measurement subject to inflation of costs and variance. But unlike ‘amount paid’, charges 
however are not negatively biased downwards by payments still due or costs that have been waived. We utilized an 
alpha =0.05 to test against the hypothesis that a predictor included is statistically significant (P<0.0001). We found 
that per site, a 1 ug/m3 increase in the 3-day window PM2.5 average would result in an estimated $1179 increase in 
charges per day (Table 3). This parameter is statistically significant. Translated to: a number that covers the year 
and the annual financial burden (as we have 50 catchment zones and 365 days in year):  

50	 ∗ 365 ∗ 	1178.85 $
= $21,514,012.5    increase in Medicaid charges to Texas per 1ug/m^3 of PM2.5 

 
We fit an alternative model which accounted for the population within each of our designed catchment zones, and it 
produced a positive linear association between pm2.5 and Medicaid charges (P<0.0001, Figure 3). Again, 
translating these results to a statewide estimate, a 1 PPM increase in annual PM2.5 exposure to the Texas 
population is estimated to have this economic impact: 

25.26MM patients *365* 0.002664
$ 	= $24,892,416    for Texas over the year. 

 
Alternative Models: Weekly PM2.5 and Ozone as a Linear Predictor of Amount Paid:  
Table 7 contains Mixed Model regression parameters of alternative fits weekly exposure averages for models with 
Ozone and PM2.5. Models have exposure variables measured as a weekly average for the independent variable 
measurements, but differ. Additional covariates are illustrated by the plus sign. Also transformed outcome variable 
by taking square root of the per capital cost. We find that our mixed model with $ Per Capita Per Week as an 
outcome, when fixed with a time effect, had no significant air exposure parameters, with PM2.5 having a p-value of 
0.84 and Ozone at 0.15. 
 
In our model with $ per capita per week as an outcome (Table 7), each 1ug/m3 increase in PM2.5 results in a 
$2.181E-3, and each 0.01 increase in ppm results in a $0.024503 per capita, which roughly translates to $612575.  
 
From our model, we took the square root transformation of $ per capita per week, and found that PM2.5 is a non-
statistically significant predictor, but ozone is borderline significant (p=0.0582). For each 0.01 increase in ozone 
ppm increases square root per-capita cost per week by 0.006871, which translates to an additional $621824 to 
Texas Medicaid a year. 
 
Count as an outcome:  
We also modelled count as a secondary outcome. We find that both PM2.5 and Ozone are statistically significant 
predictors at p=0.0334 and p<0.0001 respectively. For each increase in ug/m^3, the weekly per capita 
hospitalization count increases 0.002181, and for each 0.01 ppm increase in ozone, it is increased by 0.005351.
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Figure 3: Prediction estimates daily and weekly exposure outcomes.  

  

 
 
 
Clockwise from top left to right, daily per capita predicted costs are charted against actual costs, daily costs per 
catchment area predicted cost vs Actual readings, Predicted weekly costs per capita vs actual, and Predicted weekly 
region costs vs actual ones. PM2.5 is the only exposure variable. 
 
Top row displays our daily readings for our outcomes.  Bottom row utilized our weekly binned averages.  
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Figure 4.Weekly per Capita 
Count Outcome, square root 
transformed. Predictive Models 
versus actual data. 
Our mixed model generated a 
count of hospitalizations per 
capita. Two sites were chosen for 
readability. The shaded blue line 
is the predicted values, and the 
colored area is the 95% 
confidence interval  
 
The red series is a splined fit of 
the actual outcome variables, 
detecting a series of cost 
measurements. 
 
Note: Left axis refers to the 
prediction. Scales are not equal 
and just meant to illustrate trends.  
 
Covariates include PM2.5 and 
Ozone in these model 
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Figure 5: Square-root 
transformed per-capita 
spending and its predictive 
model.   
 
Depicts the predicted mean of 
square root of cost per capita per 
week in sites, compared with the 
raw, tabulated cost per capita. 
These costs are measured by 
actual amount paid. Observations 
are binned by weekly units. 
 
The blue series represents the 
models prediction along with the 
95% CLM. 
 
The red spline fit are the actual 
cost readings per capita per week.  
 
Model includes both PM2.5, 
Ozone. 
  
Note: Scales are not equal and 
just meant to illustrate trends. 
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TABLE 6: Model Parameters with Charges as an Outcome 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameters to calculate amount of money associated with each increase in ug/m^3Mixed Linear Models with 
Repeated Measures. Models have varying outcomes (by site by site or per person, which enables different controls) 
and (varying lag-times and measurement intervals) for the independent variable measurements.  
*Adjusted for Census Population in catchment Area, and proportion of Medicaid participants. 
 
TABLE 7: Model Parameters with Ozone Fits 
Model -
Outcome 

Exposure 
Window 

Covariates 
* 

PM2.5 
}{ 

Ozone 
- 

$ per capita 
Per Week 

Weekly 
Average 

+ Ozone 2.181E-3 
(P<.0334) 

2.4503 
(p<.0001) 

$ per capita 
Per Week 

Weekly 
Average 

+Ozone 
+Fixed Time 
Covariates 

0.000573 
(0.8462) 

0.8080 
(p=0.1506

) 

$
person

 

Per week 

Weekly 
Average 

+ Ozone 
 

0.008587 
(p<.0001) 

4.0555 
(P<.0001) 

$
person

 

Per week 

Weekly 
Average 

+Ozone 
+Fixed Time 
Covariates 

-0.00042 
(p=0.7428

) 

0.6871 
(p=0.0582

) 

Mixed Model regression parameters. Models may have varying outcomes (by site or per person, which enables 
different controls) all have weekly exposure variables for the independent variable measurements. Additional 
covariates are illustrated by the plus sign. Transformed outcome also present in last rows. Models refer to regression 
fits in Figure 7 
*Adjusted for Census Population in catchment Area, and proportion of Medicaid patients. 

}{ Parameter estimate measured in 
$

   

- Parameter estimate measured in ppm for Ozone 
 

Model-
Outcome 

Exposure 
Window 

PM2.5-B1 
 

Covariates 
 

p 

$ 
per site 
Per day 

3-day AVG 
PM2.5 
Interpolatio
n 

1178.85 
$

 

* <.0001 

$ per 
person 
Per Day 

3-day AVG 
PM2.5 

2.664E-3 
$

 

* <.0001 

$ per 
person 
Per Week 

Weekly 
Average 

2.181E-

3
$

 

* 
+ OZONE 

<.0334 
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Figure 6-  Per-week count of 
inpatients predicted controlling 
for OZONE + Fixed Time 
Effect 

The following three graphs 
describe the Per Capita Number 
of hospitalizations vs the 
Predictive Model. Again, scales 
are different and meant to 
highlight the predictive validity 
association with our major 
covariates. Major independent 
variables in this predictive model 
include both PM2.5 & OZONE, 
as well as a fixed time effect. 
 
 
The blue series represents the 
models prediction along with the 
95% CLM. 
 
The red spline fit are the actual 
cost readings per capita per week.  
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Figure 7-Model Prediction of 
Per-Week Per-Capita costs 
with OZONE + Fixed Time 
Effect 

The following three graphs 
describe the Per Capita Cost vs 
the Predictive Model. Again, 
scales are different and meant to 
highlight the predictive validity 
association with our major 
covariates. Major independent 
variables in this predictive model 
include both PM2.5 & OZONE, 
as well as a fixed time effect. 
PM2.5 is not significant at all in 
the model. 
 
 
The blue series represents the 
models prediction along with the 
95% CLM. 
 
The red spline fit are the actual 
cost readings per capita per week.  
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Figure 8-Square Root 
Transformed Weekly Cost Per 
Capita. With OZONE + Fixed 
Time Effect additional 
covariates 

The following three graphs 
describe the Per Capita Cost vs 
the Predictive Model. Again, 
scales are different and meant to 
highlight the predictive validity 
association with our major 
covariates. Major independent 
variables in this predictive model 
include both PM2.5 & OZONE, 
as well as a fixed time effect. 
PM2.5 is not significant in this 
model (Table 7) but OZONE is 
marginally significant. 
 
 
The blue series represents the 
models prediction along with the 
95% CLM. 
 
The red spline fit are the actual 
cost readings per capita per week.  
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Discussion 

Estimating financial impacts:  
 The project had a number of different models designed with a different purpose in mind. We began 
studying costs by utilizing the charge amounts as a proxy outcome, as some bills were left unpaid. But due to 
the extreme ratio of actual-cost:charge that exist in Texas (as high as 100:1), it resulted in an over dispersion of 
values and an almost certain overestimation of costs. Instead we elected to utilize the ‘amount paid’ as an 
outcome which is far more accurate, and actually reflects the amount of money going to providers. 
 In Figure 3, we have mapped out the cost calculations and have estimates in the PM2.5 parameter 
$20,000,000/year range in Medicaid charges alone that can be attributed to a PM2.5. And under the guise of 
evaluating the cost of the US’s more lax standards, at 12 ug vs the 10 ug recommended by the WHO, this 
translates to a $40,000,000/year increase to Medicaid. However, this model can actually underestimate 
cardiovascular + respiratory costs associated with our gas exposures, as we are only utilizing the primary 
diagnosis codes in the Blue Ribbon’s Medicaid charge information, leaving out secondary conditions that may 
contain some of the conditions of interest listed out in Table 4. 

For our later models we decided only to focus on the binned, weekly exposures instead of taking 
advantage of the daily outcomes that we could generate in our model. The day-to-day level of resolution 
generated some ‘noisy’ graphs and slight over dispersion for the lower descriptive values, and the weekly 
exposures actually circumvented some of that. These estimations provided far more conservative estimations in 
the $600,000 range per additional increase of ug/m^3 in PM or 0.01 ppm increase in ozone. 

 
 
Rationale for multiple model generation:  
 We have two broad classes of models that we fit: a predictive model that attempts to isolate the effect 
of PM2.5 (Table 4) and a better fitted descriptive model (Table 5). We found a statistically significant 
relationship between PM2.5 exposure and hospitalization costs, after controlling for the population size of each 
catchment sector and the proportion of Medicaid enrollees in the area. We found a similar proportion of 
Medicaid recipients in all areas. The main reason we did not utilize time fixed effects in our model is to 
attempt to isolate the effect of the contaminants. Though the predictive model would definitely perform better 
with the fixed time effects, there is a danger of over-fitting; what might actually be attributed to the variation in 
gas exposure might be reflected by the time effect, eliminating the chance of detecting a subtle effect of air 
quality on acute conditions/hospital admissions. As well, over fitting would weaken the models’ usefulness and 
applicability to other years as seasonal disruptive events might account for many of the ‘fixed effect’ 
intercepts. 
 
 
 
 
Validation of our predictive model and modelling progression:  

Figure 3 output listed the expected change in cost per additional unit of PM2.5 exposure in a 3day 
moving window. Plotting diagnostics like a residual plot and QQplots (not pictured) we noticed a 
heteroscedasticity and an over-dispersion when looking at lower predicted values against the residuals. There is 
a fan shape with variation highest at the lowest predictive values and becoming. It does look relatively 
normally distributed otherwise despite the shifting variance. Modelling count data as an outcome (or the 
number of hospitalizations or medical charges themselves) in Figures 4, 6 actually solves some of this 
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heteroscedasticity and the residual plot was much improved; likely because we used charges as our cost 
outcome, which has a huge variation in values and in inflation (cost to charge ratios can balloon from 2x to 
orders of magnitude greater).  Another solution was transforming our outcome variable by taking the square 
root, which turns out to be effective. As mentioned previously, binning results by weekly exposures and cost-
outcomes produced less noisy graphs, as in figure 3, and we adjusted exposure levels to be weekly means to 
reflect the changes to our measurement outcome from the daily values. 

In regards to the more parsimonious models, notice that Figures 3-6 have predictive models that mimic 
the shape of cost or count trends, if not the proper magnitude. This problem might be due to some seasonal 
effect that we’re not monitoring, or some other time-dependent covariate that we do not have data on (possibly 
another air exposure, or climate conditions that might affect exposure or the manifestation). In subsequent I 
hope to integrate temperature readings which likely affect rates of respiratory/cardiovascular inpatient 
admissions (Peng 2002).  

The predictor preserves the correct directionality in change, but the predictions are often off in the 
magnitude of change.  Most likely our model does not capture all the necessary time sensitive-predictors; 
either as confounders, or effect modifiers most likely. The bursts in amplitude at certain points give evidence 
there is probably and synergistic effect-modifier that is lurking in the population.  

Another possibility is that each individual has a specific environmental exposure threshold that when 
crossed, greatly increases their risk in a non-linear fashion, though support for this model is tenuous according 
to some research. As a result, we began to add on additional covariates like ozone effects and fixed-time 
parameters (for exploratory purposes, year to year fixed time effects will differ and doing so might weaken the 
applicability of my model to other years and other states). However, as a result the most accurate predictive 
models, seen in Figure 7, has PM2.5 association almost completely attenuated, while leaving ozone’s 
parameter marginally significant (p=.0582). 

In Figure 7 we notice an interesting spike present in all the graphs at ~ Day 380. After checking 
diagnostics to make sure it wasn’t an outlier or error in readings resulted in this odd artifact, we found that 
there was a spike in costs and hospitalization in most of the regional catchment sites in this time frame. It was 
not an error or artifact of the data; this sudden spike was evidence of a disruptive climate event. This date 
translates to late January of 2011 and coincides with a major storm, the 2011 North American Blizzard. It was 
a category 5 storm that hit North America and affected multiple states, even Texas, causing rolling blackouts, 
water treatment shutdowns, and school district cancellations due to road hazards of ice and snow. Temperature 
dropped into the single digits, halting infrastructure, (NWS 2011). It is noted that extreme changes in 
temperature often trigger negative outcomes that include cardiac issues like heart failure and arrest, as well as 
increasing the rate of asthma attacks (Huynen 2001). The effect on asthma and respiratory conditions is 
twofold: not only does the cold induce exercise induced asthma through a mechanism of water/heat loss and 
inflammation, but it also keeps children, an at-risk subgroup, indoors where there are more allergens (Medina 
2006; Carlsen 2012).  

 
Count as an outcome:  

We also modelled count as a secondary outcome-and predictably, inpatient counts were easier to fit. 
Prediction graphs are listed in figures 4-6, and notice how the variations in magnitude of spikes are not as 
dramatic as in charges (which has an additional cause of variation caused by price differences between 
conditions). We find that both PM2.5 and Ozone are statistically significant predictors at p=0.0334 and 
p<0.0001 respectively. For each increase in ug/m^3, the weekly per capita hospitalization count increases 
0.002181, and for each 0.01 ppm increase in ozone, it is increased by 0.005351. 
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Potential Issues and Limitations: 
There are fundamental issues with how we measure exposure and outcome that was caused by the 

limitations of the data. As for our exposures: PM2.5 is a catchall, only referring to the size of particles and not 
the composition. Previous research have noted that the specific source of PM2.5 affects the risk ratio for a 
health outcome. And since we neither looked at the composition of the exposure nor modelled against single 
outcomes, we could be missing out on cleaner correlations. Of course, these issues are due to sample size and 
arriving at a zero-inflated over dispersed model, that might require some other modelling techniques like a 
zero-inflated, mixed negative binomial regression , but it doesn’t quite preserve the strength ‘repeated’ 
structure, instead modelling each reading as a nested random effect of the individual (Liu 2007). 

Our research relies on multiple assumptions in its design. One is that the bootstrapped values are 
accurate; that the distribution of the 3.5 million Medicaid enrollees is distributed similarly to how charges are 
distributed for the year. Our methods also assume that area code centroids an adequate estimate of peoples’ 
true residency location in regard to EPA-sites, and that these allocations to EPA-sites are adequate for 
modeling purposes. However, there is the possibility that there’d be differential misclassification bias in terms 
of environmental exposure: Those people who are living much further away from the nearest EPA site will 
have values more likely to deviate from their true exposure. The distance from the nearest EPA site might also 
harbor some confounding effects, as this population likely live further from major population centers or differ 
in ways from the populations who live closer. We also assume two things in terms of exposures: The nearest 
EPA-air quality site is an adequate measurement of environmental exposure of the place of residency, and that 
the composition of particulate matter within the state is relatively constant from one monitoring station 
delineated zone to another.  

As well, we assume that the random effects component of our model enough to address multivariate 
confounders: like variable proportions of SES, Age, Smoking (and other indoor exposures). We operated under 
similar assumptions to “Statistical Analysis of Repeated Measures data” (Littell 1998). Variables I seek to 
include in future analysis are temperature/ humidity, variables that are broadly considered significant modifiers 
of cardiovascular AND respiratory outcomes (Carlsen 2012), and the specific components of our exposure 
variable, PM2.5. As previously mentioned, the specific components of its composition was not considered state 
to state, and the chemical profile will likely have differing effects. It is likely incorrect to broadly assume that 
all PM2.5 has the same effect on the populace merely due to its similar size.  
 

Our design also lends itself to the possibility of selection bias—the inpatient charges utilized were 
derived from Medicaid only (particularly fee-for-service).   Even when restricting my extrapolations and 
conclusions to a Medicaid only group introduces possible confounding by multivariate factors as well (SES, 
age distributions), since generally only poor, old, and infants comprise the main beneficiaries of Texas 
Medicaid/CHIP and the distributions of these people amongst my sites might not be entirely 
uncorrelated/independent. According to the Kaiser Health foundation, 4.6 million of the 25 MM residents of 
the state are Medicaid beneficiaries (KFF 2013).  

Also, selection bias might arise due to how we allocated EPA sites when we removed certain ones due 
to missing data. Reallocation of catchment zone borders were caused by dropped EPA-sites that were filtered 
out due to missing data and sparse measurements (regarding both charge information and environmental) 
which would’ve led to excessive imputation and inaccurate models. Hopefully, the individuals that would’ve 
been associated with these catchment are adequately represented by the next closest site and new catchment 
zone we had paired them to. How this potential bias caused by our methodology and the lack of broader 
population from which to derive charges from, including private and Medicare patients, remains unanswered 
and require additional analysis. 



	

Wei	23

In response, the next time I might to get a broader pool of charge information, including the private 
payers and Medicare charges, and have set catchment zones of a predetermined radius, similar to some of the 
other studies on the subject (Peng 2008), while excluding those subjects who don’t live within the minimum 
distance of one of the EPA measurement sites.  

 
Finally, in terms of exposure assessment, utilizing environmental level measurements as a proxy for 

individual level exposures lacks a lot of individual exposure information—particularly indoor exposure. We 
assume that utilizing air monitoring stations are a good proxy for their outdoor exposure, but there is no 
guarantee that they spend most of their time 1.) in the outdoors 2.) close to their place of residence. Another 
issue pertinent issue when the nearest EPA air-monitoring site is much further than some patients to their 
nearest site, leading to some questions of validity.  

If I am restricting analysis to hospitals within a certain radius from certain air quality stations, I am 
excluding a lot of potential data-points and possibly in a biased manner that will skew my results. Another 
potential source of bias is the presence of specialty hospitals clustering individuals with the respiratory 
conditions of interest. However, hopefully through randomization I can minimize potential confounding from 
the multitude of potential modifiers. However, specifics information on measurement equipment for each site 
were not available, leading to some unknowns as to the precision of the measurements. Despite these issues, I 
feel there are useful impacts that might be gleaned through a single year cross-sectional relational model.  
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Conclusions and Future Directions: 

With additional data, I hope to adjust for additional confounders from the census as well as adjust for 
additional exposure, using EPA sites. We can reevaluate the effect of other gasses like SO2 or ground level 
ozone. As well, utilizing the census information once again, looking at population densities associated with 
each area code and urban vs rural designations, we might be able to account for the difference in PM2.5 
composition. Researchers mention that urban vs rural particulate matter exposure differ widely (Peng 2008). 
Hopefully with these additional covariates we can improve the accuracy of our estimates and account for more 
of the variation. There are also indirect burdens that are more difficult to quantify, due to elevated stress and 
discomfort, and lost productivity. However, being able to quantify the financial and medical burden of this air 
exposure in hard numbers is a fine start, especially in the light of policy standards for acceptable exposures and 
when pushing for new public health initiatives. 

Also I’d like to establish alternative models: like a moving average, hazard model that might prove useful 
for medical organizations to forecast burdens to medical systems as a function of climate and air quality. As 
well, utilizing more years’ worth of data I can undertake more model validation steps to determine predictive 
power and refine the model. More years’ worth of data also enables more complex modelling techniques, by 
allowing more ‘seasonal’ repetitions, enabling use of an auto-regressive moving average (ARIMA) forecasting 
model to extrapolate future trends. 

Policy makers and environmental regulators should consider the evidence about the associations 
between cardiovascular/respiratory diseases with air quality when setting environmental standards for industry 
or evaluating population level health interventions. The immediate costs of upgrading to ‘clean-air technology’ 
and other air quality interventions might be offset by the ‘hidden burden’ of pollution, opening up additional 
potentially worthwhile investments for the public safety. Though I will be unable to monitor the indirect costs, 
analyses such as this one can give a glimpse to a slice of the true costs of pollution.  

In the meantime, these direct predictions can used in decision-making and policy adjustments, utilized in 
relation to evaluate costs/morbidities associated with new public-works/manufacturing/energy projects. Some 
ACOs like Kaiser are interested in utilizing these environmental models to predict rates of asthma, heatstroke, 
and other CV conditions. With some additional controls, techniques, and data to improve the accuracy of these 
models, predictive tools like these may be useful when predicting burden on facilities and local staff and 
during ‘spikes’ in demand, to prevent short Medical staff shortages and facility overflow; they are not merely 
limited to higher level policy decisions. 
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Appendix 

 
 

Appendix Figure A: Air Quality Measurements against Transformed Spending 

Above	two	rows:	Square	Root	of	Weekly	Cost	per	capita	(Blue)	against	pm2.5	weekly	
averages.	Bottom	two	Rows:	same	outcome,	but	against	mean	ozone	readings	(red).	For	
briefness,	only	included	sites	1	and	4.	
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