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The effect of spatiotemporally-dependent air pollution exposure on birthweight in 

the Lanzhou Birth Cohort 
 

Abstract 

Introduction: Low birthweight serves as a proxy risk factor for a number of conditions later in development. Of China’s 

urban centers, Lanzhou has long been considered one of the worst-affected cities by air pollution.  

Objectives: This study uses spatial heterogeneity in air pollution exposure across addresses in Lanzhou and temporal 

heterogeneity resulting from the differential timing of pregnancy in the Lanzhou Birth Cohort to investigate the 

association between PM10 exposure and birthweight. 

Methods: The study population consisted of 4,865 mother-child pairs from the Gansu Provincial Maternity and Child 

Care Hospital. Participants completed an epidemiological questionnaire and patient data were collected from hospital 

records. Environmental data from four monitoring stations were provided by the Gansu Provincial Environmental 

Monitoring Central Station. Linear regressions were used to model the relationship between mean PM10 exposure 

during the whole pregnancy and birthweight. 

Results: The lowest PM10 exposure quartiles had a mean birthweight of 3396 g, compared to a mean birthweight of 

3373 g for the highest PM10 exposure quartiles. A 10 µg/m3 increase in mean PM10 exposure during the 2nd trimester was 

associated with an 8 g (sd 2 g) decrease in birthweight (P=0.0002) and the same increase during the 3rd trimester was 

associated with a 4 g (sd 1 g) decrease in birthweight (P=0.0019). Mean PM10 exposure during the whole pregnancy was 

not found to have significant interactions with income, maternal BMI, newborn sex, or dietary factors.  

Conclusion: PM10 exposure, especially during the 2nd and 3rd trimesters, may be associated with decreased birthweight. 

Though Lanzhou long topped lists of cities most affected by air pollution in China, the local government launched a 

major initiative in 2012 to significantly reduce air pollution presenting opportunities for natural experiments to 

understand the burden of air pollution. The findings of this study may serve as a reference for comparison of future 

results. 
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Introduction 

Air pollution 

Air pollution is a serious and growing environmental problem for China as it undergoes economic, demographic, 

and epidemiological transitions, and also poses a significant challenge to the health of hundreds of millions of Chinese 

citizens[29]. In general, exposure to particulate matter (PM) has been found in epidemiological and clinical studies to be a 

risk factor for respiratory conditions such as asthma[48] and cardiovascular conditions from hypertension to ischemic 

stroke to myocardial infarction via direct toxicity as well as indirect injury due to systemic inflammation and oxidative 

stress[12]. 

Air quality in Lanzhou 

Of China’s urban centers, Lanzhou has long been considered one of the worst-affected cities by air pollution due 

to its topography, climate, and economic structure[44]. Lanzhou is a city of 3 million and the capital of Gansu Province in 

Northwest China. Situated along the Yellow River, It lies in a valley, where temperature inversions frequently prevent 

the dissipation of pollution from dust, secondary aerosols, car exhaust, industrial activities, and the burning of coal for 

heating in winter[39]. Among adults in Beijing and in Lanzhou, air pollutants have been associated with hospital 

admissions for respiratory and cardiovascular diseases[11,57], with particularly strong effects among women, the 

elderly[44], and potentially the unborn. 

Birth outcomes 

An extensive literature has linked maternal exposure to air pollution to fetal outcomes such as low birthweight 

(LBW)[15,27,33], preterm birth (PTB), intrauterine growth restriction (IUGR) and small for gestational age, as well as all-

cause post-neonatal mortality[24] and both cardiovascular and respiratory outcomes[5,22]. Birthweight is an important 

indicator of proper prenatal growth, and LBW serves as a proxy risk factor for a number of conditions later in 

development. Many factors are well-established predictors of LBW and IUGR, including maternal and paternal 

anthropometrics (ex. height, weight, BMI), race, socioeconomic factors (ex. profession, income, diet), behavioral factors 

(ex. stress, hours worked, active and passive smoking)[17,32,41]. 

Literature review: natural experiments, cohort studies, and effect modification 

One paper examining the 2008 Beijing Olympics, a period during which major steps were taken to temporarily 

curb air pollution, found that the natural experiment led to small but significant increases in the birthweights of infants 

who were in their 8th month of gestation during the Olympics[40], though another attributed the increases to NO2 

concentration in the 3rd trimester, with null findings for PM10
[19]. 

A large cohort study across 12 European countries found that even low concentrations of ambient air pollution 

were associated with increased risk of term LBW[37] and another large study in Belgium found that the effect of 

particulate air pollution on fetal growth was actually stronger at lower concentrations[50]; studies in areas with high air 
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pollution are relatively uncommon. Specifically, PM10 has repeatedly been found to be associated with reduced 

birthweight on the order of 10 g per 10 ug/m3 increase in PM10
[10,25,40], as well as elevated risk of LBW[8,38] and/or PTB[2]. A 

previous study in the Lanzhou birth cohort, in an area of high pollutant concentrations, found an association between 

exposure to ambient air pollution and PTB[58]. 

Other studies in Canada and England also found evidence of effect modification, whereby PM exposure had a 

stronger negative effect on birthweight among the socioeconomically disadvantaged[43] and in mothers who smoked, 

consumed alcohol, or used drugs, suggesting that certain populations are especially vulnerable to the effects of air 

pollution[14]. In other settings, modification by SES exhibited a more complex, context-specific pattern[43]. 

However, the specific nature of the relationship between exposure to air pollution and birthweight is not yet 

clear, due to complicated mixes of pollutants and exposures, long latencies and the difficulty of studying biological 

mechanisms, and the heterogeneity of exposed populations as well as study methodologies. 

Objectives 

Using baseline data from the Lanzhou Birth Cohort, we investigated the impact of air pollution, and in particular 

PM10, on birthweights of infants born in Lanzhou, China, and also considered the effects during different windows of 

exposure. Given the frequency of co-exposure to air pollution and new nutritional patterns in a rapidly urbanizing 

society[29], we also looked at potential interactions between air pollution and dietary patterns as well as socioeconomic 

status. Specifically, this study uses spatial heterogeneity in air pollution exposure across addresses in Lanzhou and 

temporal heterogeneity resulting from the differential timing of pregnancy to investigate the association between PM10 

exposure and birthweight.  

Material and Methods 

Study Population 

The study population consisted of 10,542 mother-child pairs where the child was born to the mother, aged 18 or 

older with no history of mental illness, from January 2010 to December 2012 at the Gansu Provincial Maternity and Child 

Care Hospital in Lanzhou, the largest maternity hospital in Gansu, in the People’s Republic of China. These pairs 

represented 73.4% of eligible participants. The study design was reviewed by the Human Investigation Committees at 

the Hospital and at Yale University. Participants provided written consent, and completed a questionnaire with an 

interviewer in the three days before or after delivery regarding medical and reproductive history, lifestyle factors, and 

basic demographic details. Patient data including maternal and fetal reproductive outcomes were collected from 

hospital records. Additional details on the Lanzhou birth cohort can be found in previous publications[58]. 

Observations with missing or incomplete environmental data (due to missing addresses, for example) were 

dropped. Similarly, individuals with missing or inconsistent data on birthweight, gestational time, or the covariates 

identified for analysis (including dietary data) were not excluded. Finally, mothers who experienced preterm delivery 
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were not considered, consistent with the practices of many other studies investigating birthweight, as a different set of 

factors, previously identified in the Lanzhou birth cohort[58], may mediate PTB as compared to LBW at term. Ultimately, 

data from 4865 mother-child pairs were used for the analyses. The exclusion of individuals with incomplete data did not 

generally change the observable characteristics of the study population, and was not expected to have changed the 

results of the study (data not shown).  

Air Pollution Data 

Environmental data were provided by the Gansu Provincial Environmental Monitoring Central Station, which 

collected daily average concentrations of PM10, NO2, and SO2 from four monitoring stations concentrated in the urban 

center of Lanzhou from April 2009 to December 2012. These included SO2, NO2, and daily temperature and PM10 

records. Home and work addresses from the questionnaire were geocoded. PM10, Daily NO2, and SO2 exposures were 

estimated for each pregnant woman and for each day of her pregnancy by using the inverse distance-weighting method 

on the basis of the distances from her home and work addresses to the four stations, taking into account changes in 

residence and employment. The home address was weighted at 16 hours and the work address at 8 hours on weekdays, 

but only exposures associated with the home address were considered on weekends. Exposures were averaged over the 

duration of the pregnancy and, for PM10, also over trimesters (days 1-90, 91-180, 181+) and months (1-30, 31-60, 61-90, 

etc.) for the consideration of critical exposure windows. These continuous variables for exposure were also transformed 

into quartiles for stratified analysis. All pollution variables were scaled so that a one unit change corresponded to a 10 

µg/m3 increase or decrease. 

Birth Outcome Data 

Continuous birthweight at term delivery was the primary outcome for analyses in this study. As such, preterm 

births, defined as delivery at <37 weeks of gestation, were excluded from the analysis. Low birthweight was defined as a 

birthweight of <2500 g. 

Covariates 

The outcome was continuous birthweight, while the explanatory variable of interest was PM10, measured at 

different timescales during the pregnancy. Covariates included socioeconomic status indicators (educational attainment, 

household income), newborn’s sex, maternal conditions (gestational diabetes, gestational hypertension, preeclampsia, 

vaginal bleeding), maternal and paternal BMI, maternal age, and age at menarche (see Table 1). Placenta and umbilical 

cord conditions were considered fetal conditions, and were not included. Potential covariates with very little variation in 

this cohort, such as smoking, rare in Chinese women, were also excluded. 

Dietary Data 

Self-reported dietary data on 33 food items from the food frequency section of the questionnaire were reduced 

to four factors using principal component analysis (PCA). As the actual frequencies of consumption and quantities 
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consumed per sitting were not sufficiently complete, simple binary variables representing whether or not an individual 

consumed each food item were used. 

Statistical Analysis 

Summary statistics including frequencies and means were calculated for all variables in the total population, and 

also among LBW and normal birthweight infants. Given the low incidence of LBW (<2500 g) following the exclusion of 

preterm births, birthweight was treated as a continuous outcome rather than a binary one in later analyses. For the 

descriptive analysis, mean PM10 exposure during the whole pregnancy and during each trimester were stratified to look 

for associations between exposure quartile and continuous birthweight. Subsequently, unadjusted and adjusted linear 

regressions were used to model the relationship between mean PM10 exposure during the whole pregnancy and 

birthweight. Full multivariate (adjusted) regression models were reduced using backward selection and a P-value of 

0.05. In the consideration of exposure windows, uncorrelated trimesters or uncorrelated months were substituted for 

PM10 exposure during the whole pregnancy in the previously identified models adjusting for confounders. Lastly, four 

dietary factors created using PCA were added to the model, along with interaction terms, to look for dietary impacts on 

birthweight as well as potential effect modification. All analyses were performed in SAS 9.4 (SAS Institute, Inc., Cary, NC). 

Results 

Spatial and temporal heterogeneity of different air pollutants 

PM10 and SO2 levels at each of the four stations were highly seasonal (autocorrelated), peaking in winter and 

reaching minimums in summer, and thus also highly correlated with one another (Figure 1). The fold increase between 

seasons was especially notable for SO2. Seasonality was less clear for NO2. There was not a clear qualitative damping of 

PM10, SO2, or NO2 concentrations suggesting long-term improvement in air quality over the timeframe of the study. 

During the whole pregnancy, SO2 was highly correlated with NO2 (r=0.61619, P<0.0001). PM10 was more weakly 

correlated with both SO2 (r=0.49325, P<0.0001) and NO2 (0.34965, P<0.0001). During each trimester, PM10 was more 

highly correlated with SO2 (r=0.82643, 0.77298, 0.81718; P<0.0001) than with NO2 (r=0.57128, 0.55381, 0.73755; 

P<0.0001); SO2 and NO2 were also correlated during each trimester (r=0.63915, 0.69255, 0.75560; P<0.0001). (Figure 2) 

PM10 was also more closely associated with NO2 during certain months of pregnancy. As there is no reason that 

PM10 should be more highly correlated with NO2 during a particular trimester if the trimesters are equally likely to 

include any given three months of the year, this suggests possible bias or seasonality in the timing of pregnancy in the 

sample population. 

In addition to temporal trends, there were also spatial differences in pollutant concentrations. Among the four 

stations, Xigu had the highest mean concentration of SO2 while Huanghebei had the highest variance; for PM10, Xigu had 

the highest mean concentration and the highest variance; spatial differences in NO2 were not apparent (data not 

shown). Means and variances were not calculated or compared by years or seasons. 
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See Figure 1 for additional information. Trend lines and moving averages were not added, but a more specific 

treatment will be given to time-series analysis of environmental monitoring data in the future. 

Characteristics of the study population 

Slightly higher numbers of study participants became pregnant during the summer and autumn months of June-

October than during the winter and spring months of November-May (Figure 1). As this is a reflection as much of study 

recruitment as of seasonal trends in pregnancy, future studies should adjust for this differential timing of the start of 

pregnancy.  

 

Figure 2. Timing of start of pregnancy by month, between 2009 and 2012, among study participants (n=4820). 

83% of mothers received at least a high school education, and 50% of mothers lived in households with income 

of at least 3000 RMB (approximately $500 USD) per month. For comparison, the national GDP per capita was roughly 

3800 RMB per month. 53% of infants born during the study period were male, and 47% female, close to the national 

male/female sex ratio of roughly 1.15 at birth. 1% of mothers had gestational diabetes, and another 1% had gestational 

hypertension, while 2% experienced preeclampsia, and 12% experienced some form of vaginal bleeding. The mean 

maternal and paternal BMIs were 20.6 (sd 2.6) and 24.0 (sd 3.1), respectively. The average mother was 29 years old, and 

experienced menarche at age 14. Women consumed 1456 calories per day during the year before pregnancy, and 

roughly 1700-1800 calories daily during pregnancy. 

On average, women were exposed to 140.2 µg/m3 (IQR 130.0-149.4) of PM10 during their whole pregnancies. For 

reference, the U.S. National Ambient Air Quality Standard for PM10 is 150 µg/m3, not to be exceeded more than once per 

year. Additionally, they were exposed to 43.8 ppb and 50.2 ppb of NO2 and SO2, respectively, during their whole 

pregnancies, for which the relevant U.S. standards are 100 ppb and 75 ppb. Table 1 presents these descriptive statistics, 

also stratified by low and normal birthweight. 
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Table 1. Characteristics of the study population. 

 Total (%), 
N=4865 

Low Birthweight (%), 
N=54 

Normal Birthweight (%), 
N=4811 

Education    

   No formal education 0.72 0.00 0.73 

   Elementary school 2.16 3.70 2.14 

   Middle school 13.67 25.93 13.53 

   High school 16.88 25.93 16.77 

   Community college 23.70 18.52 23.76 

   College 34.61 18.52 34.80 

   Graduate school 8.26 7.41 8.27 

Household Income    

   <1000 4.91 9.26 4.86 

   1000-1999 16.32 18.52 16.30 

   2000-2999 28.78 40.74 28.64 

   3000-3999 23.95 14.81 24.05 

   4000-4999 13.50 11.11 13.53 

   5000+ 12.54 5.56 12.62 

Newborn Sex    

   Male 52.64 57.41 52.59 

   Female 47.36 42.59 47.41 

Gestational Diabetes 1.11 0.00 1.12 

Gestational Hypertension 1.11 5.56 1.06 

Preeclampsia 1.93 5.56 1.89 

Vaginal Bleeding    

   None 87.75 83.33 87.80 

   Mild 11.53 14.81 11.49 

   Severe 0.72 1.85 0.71 

 Total, Mean (SD) Low Birthweight, Mean 
(SD) 

Normal Birthweight, 
Mean (SD) 

Maternal BMI 20.60 (2.63) 20.29 (2.95) 20.61 (2.63) 

Paternal BMI 23.99 (3.10) 23.59 (3.38) 23.99 (3.09) 

Maternal Age 28.61 (4.02) 28.15 (4.60) 28.62 (4.01) 

Menarche Age 13.75 (1.50) 13.93 (1.34) 13.75 (1.50) 

Calories Per Day    

   Year Before Pregnancy 1455.65 (482.86) 1449.14 (440.42) 1455.73 (483.36) 

   1st Trimester 1682.48 (504.24) 1597.76 (440.88) 1683.43 (504.87) 

   2nd Trimester 1783.50 (551.18) 1700.89 (486.00) 1784.42 (551.85) 

   3rd Trimester 1792.26 (558.76) 1686.94 (475.82) 1793.44 (559.55) 

Average NO2    

   Whole Pregnancy 0.0438 (0.0055) 0.0440 (0.0057) 0.0438 (0.0055) 

   1st Trimester 0.0446 (0.0094) 0.0426 (0.0096) 0.0446 (0.0094) 

   2nd Trimester 0.0447 (0.0101) 0.0452 (0.0107) 0.0447 (0.0101) 

   3rd Trimester 0.0421 (0.0123) 0.0443 (0.0130) 0.0420 (0.0123) 

Average SO2    

   Whole Pregnancy 0.0502 (0.0130) 0.0515 (0.0147) 0.0502 (0.0130) 

   1st Trimester 0.0526 (0.0278) 0.0506 (0.0310) 0.0527 (0.0277) 

   2nd Trimester 0.0532 (0.0290) 0.0516 (0.0255) 0.0533 (0.0291) 

   3rd Trimester 0.0449 (0.0289) 0.0528 (0.0326) 0.0448 (0.0288) 
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Average PM10    

   Whole Pregnancy 0.1402 (0.0139) 0.1432 (0.0146) 0.1402 (0.0138) 

   1st Trimester 0.1342 (0.0379) 0.1326 (0.0410) 0.1343 (0.0379) 

   2nd Trimester 0.1434 (0.0339) 0.1474 (0.0300) 0.1434 (0.0339) 

   3rd Trimester 0.1429 (0.0417) 0.1497 (0.0420) 0.1428 (0.0417) 

The mean birthweight for term infants was 3382 g (sd 410 g), closely consistent with the findings of other 

studies. 54 (1.11%) of 4865 terms infants had clinical LBW. 

Birthweight by Air Pollutant Exposure Quartiles 

Based on stratified analysis, higher quartiles of PM10 exposure during the whole pregnancy or during the 3rd 

trimester appeared to be associated with generally lower birthweight (Table 2). For both the whole pregnancy and the 

3rd trimester, the lowest PM10 exposure quartiles had a mean birthweight of 3396 g, compared to a mean birthweight of 

3373 g for the highest PM10 exposure quartiles. The same trend was observed for the 2nd trimester, but the opposite 

trend was observed for the 1st trimester, with an association between higher quartiles of PM10 exposure and higher 

birthweight. The mirroring of the trends suggested that the 3rd trimester might be the critical exposure window. 

However, effect sizes were small and may not have been statistically significant. Nonetheless, the effects of air 

pollution during the 2nd and 3rd trimesters were candidates to explain the overall effect of PM10 exposure during 

pregnancy on birthweight. The effects of NO2 and SO2 exposure were less clear from stratified analysis, though an 

association between higher quartile of SO2 exposure during the 1st trimester and generally higher birthweight was 

noted. 

Table 2. Birthweight by air pollutant exposure quartiles. 

  Whole Pregnancy 1st Trimester 2nd Trimester 3rd Trimester 

      

P
M

10
 

Ex
p

o
su

re
 

Le
ve

l 

1st Quartile (Lowest) 3396 (394) 3365 (412) 3387 (398) 3396 (415) 

2nd Quartile 3383 (407) 3380 (411) 3396 (422) 3389 (401) 

3rd Quartile 3375 (417) 3382 (394) 3380 (396) 3370 (408) 

4th Quartile (Highest) 3373 (423) 3400 (424) 3364 (425) 3373 (417) 

      

SO
2 

Ex
p

o
su

re
 

Le
ve

l 

1st Quartile (Lowest) 3361 (409) 3364 (416) 3366 (407) 3379 (407) 

2nd Quartile 3400 (409) 3379 (417) 3397 (416) 3394 (397) 

3rd Quartile 3375 (401) 3381 (393) 3389 (411) 3377 (421) 

4th Quartile (Highest) 3391 (421) 3405 (413) 3376 (407) 3378 (416) 

      

N
O

2 

Ex
p

o
su

re
 

Le
ve

l 

1st Quartile (Lowest) 3377 (412) 3374 (414) 3352 (408) 3379 (407) 

2nd Quartile 3371 (403) 3401 (408) 3415 (411) 3380 (409) 

3rd Quartile 3408 (415) 3363 (413) 3373 (402) 3390 (404) 

4th Quartile (Highest) 3372 (411) 3383 (405) 3389 (417) 3378 (421) 

*All sample sizes between 1211 and 1219.  
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Linear Regression Models 

Education, household income, newborn sex, gestational diabetes, vaginal bleeding, maternal and paternal BMI, 

maternal age, calories during the 2nd trimester, and PM10 exposure during the 3rd trimester were each associated with 

birthweight in simple (unadjusted) regression models. Higher SO2 exposure during the 1st trimester was once again 

found to be associated with higher birthweight. The full model including mean exposures and daily caloric intake during 

the whole pregnancy and all covariates identified preeclampsia but not maternal age in addition to the aforementioned 

predictors as being significantly and independently associated with birthweight; the results of the reduced model were 

consistent with the full model. Pollutant exposures and caloric intake by trimester were not included in the full and 

reduced models to prevent multicollinearity. 

As expected, female infants were 109 g (sd 12 g) smaller than their male counterparts, and gestational diabetes 

significantly increased birthweight by 176 g (sd 55 g) while preeclampsia significantly decreased birthweight by 119 g (sd 

42 g). A 10 µg/m3 increase in mean PM10 exposure during the whole pregnancy had a more modest but still significant 

effect, being associated with a 13 g (sd 5 g) decrease in birthweight. Meanwhile, a 10 µg/m3 increase in mean SO2 

exposure during the whole pregnancy was associated with a 15 g (sd 5 g) increase in birthweight. (Table 3) Variance 

inflation factors were also checked for all models to confirm the absence of multicollinearity.  

Table 3. Linear regression models. 

 Simple Full* Reduced* 

 Beta (SE) P Beta (SE) P Beta (SE) P 

Education 12.92 (4.51) 0.0042 8.61 (4.90) 0.0791   

Household Income 13.43 (4.29) 0.0017 10.51 (4.59) 0.0222 13.89 (4.22) 0.0010 

Newborn’s Sex (Female) -110.84 (11.67) <0.0001 -109.41 (11.50) <0.0001 -109.21 (11.50) <0.0001 

Gestational Diabetes 229.33 (56.05) <0.0001 175.76 (55.10) 0.0014 176.26 (54.97) 0.0014 

Gestational Hypertension 54.61 (56.14) 0.3307 26.14 (54.80) 0.6333   

Preeclampsia -78.22 (42.72) 0.0671 -118.39 (42.15) 0.0050 -118.82 (42.04) 0.0047 

Vaginal Bleeding -35.66 (16.48) 0.0305 -46.35 (16.38) 0.0047 -42.47 (16.17) 0.0087 

Maternal BMI 22.48 (2.21) <0.0001 21.99 (2.26) <0.0001 22.12 (2.21) <0.0001 

Paternal BMI 9.32 (1.90) <0.0001 6.68 (1.87) 0.0004 7.24 (1.86) 0.0001 

Maternal Age 6.05 (1.46) <0.0001 2.13 (1.48) 0.1494   

Menarche Age -3.25 (3.93) 0.4089 2.45 (3.91) 0.5301   

Calories Per Day (per 100cal)       

   Year Before Pregnancy 1.92 (1.22) 0.1147 1.18 (1.20) 0.3281   

   1st Trimester 2.20 (1.17) 0.0588     

   2nd Trimester 2.13 (1.07) 0.0457     

   3rd Trimester 2.06 (1.05) 0.0508     

Average NO2 (per 10 units)       

   Whole Pregnancy 4.96 (10.73) 0.6442 14.87 (13.60) 0.2742   

   1st Trimester 2.56 (6.25) 0.6827     

   2nd Trimester 5.43 (5.83) 0.3512     

   3rd Trimester -1.94 (4.78) 0.6851     

Average SO2 (per 10 units)       

   Whole Pregnancy 5.46 (4.53) 0.2273 10.76 (6.07) 0.0762 15.28 (5.16) 0.0028 
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   1st Trimester 4.88 (2.12) 0.0213     

   2nd Trimester -0.58 (2.03) 0.7742     

   3rd Trimester -0.35 (2.04) 0.8648     

Average PM10 (per 10 units)       

   Whole Pregnancy -6.62 (4.24) 0.1186 -13.02 (4.81) 0.0069 -13.47 (4.78) 0.0049 

   1st Trimester 2.97 (1.55) 0.0557     

   2nd Trimester -2.32 (1.73) 0.1809     

   3rd Trimester -3.12 (1.41) 0.0270     

Temporal Autocorrelation 

The unexpected trend observed in birthweight according to PM10 exposure quartile in the 1st trimester in 

unadjusted analyses can be explained by the significant and strongly negative correlation (r=-0.75375, P<0.0001, data 

not shown) between mean PM10 exposure in the 1st and 3rd trimesters. PM10 demonstrates predictable temporal trends 

across seasons, peaking in the winter due to emissions from coal heating and the temperature inversion caused by 

geographical features, and dropping in the summer. Higher PM10 exposure during the 1st trimester is likely not causing 

higher birthweight, but rather predicting lower PM10 exposure during the 3rd trimester, 6 months later, which could be 

associated with higher birthweight. The 3rd trimester may thus be the critical period during which higher or lower PM10 

truly has an effect on birthweight. This is consistent with the results of a number of previous studies on exposure 

windows. 

PM10 exposure during the 2nd trimester, on the other hand, is only weakly correlated with PM10 during trimesters 

1 (r=-0.05895, P<0.0001) and 3 (r=-0.01876, P=0.1908). Trimesters 2 and 3 were thus modeled simultaneously in later 

regressions. PM10 exposure during the whole pregnancy, an average of PM10 exposure during the three trimesters, was 

most highly correlated with PM10 exposure during the 2nd trimester, which represents the midpoint of the 1st and 3rd 

trimesters in terms of time and air pollution and thus serves as an approximation of the mean PM10 exposure during the 

whole pregnancy. 

As SO2 during the 1st trimester is very closely associated with PM10 during the 1st (r=0.82643, P<0.0001) and 3rd 

(r=-0.76432, P<0.0001) trimesters, it is possible the positive effect associated with SO2 during the 1st trimester is truly 

reflective of the negative effect of PM10 during the 3rd trimester on birthweight. Both the counterintuitive effects of PM10 

and SO2 during the 1st trimester could be explained by the effect of PM10 during the 3rd trimester on birthweight. 

SO2 correlations were similar to those seen for PM10. Of mean SO2 exposures by trimester, Trimesters 1 and 3 

were highly negatively correlated (r=-0.62972, P<0.0001), while whole pregnancy and trimester 2 SO2 were highly 

positively correlated. Trimesters 1 and 3 were not highly correlated with whole pregnancy and trimester 2 SO2, though 

all pairwise associations were significant. As such, SO2 exposures during the 2nd and 3rd trimesters (weakly correlated 

with one another) were used for exposure window analysis. 

Months closer in time are more correlated for each of the pollutants. Because the seasonal trends in NO2 were 

less interpretable and it was not significant in reduced multivariate linear regressions, NO2 was not further considered. 
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Exposure Window Regressions 

When mean PM10 exposure during trimesters 2 and 3 were introduced into the reduced model in place of PM10 

exposure during the whole pregnancy, both were significant (Table 4). A 10 µg/m3 increase in mean PM10 exposure 

during the 2nd trimester was associated with an 8 g (sd 2 g) decrease in birthweight (P=0.0002) and the same increase 

during the 3rd trimester was associated with a 4 g (sd 1 g) decrease in birthweight (P=0.0019). Given IQRs of 51.7 and 

61.1 for mean PM10 exposure during the trimesters 2 and 3, air pollution could have a cumulative and sizable effect on 

birthweight over time. Mean PM10 exposure by month was also considered. Because months 1 and 7, 2 and 8, and 3 and 

9 were highly negatively correlated with one another (r<-0.50, P<0.0001), months 1, 2, and 3 were excluded. When 

months 4-9 were added one by one to the reduced model described before, all but month 7 had significant and negative 

effects on birthweight. When all were added simultaneously, the newly reduced model showed that months 4 and 9 had 

significant and negative effects on birthweight (Table 4).  

In the co-exposure model, neither SO2 exposures during trimester 2 or trimester 3 were found to be significant 

in after controlling for PM10 exposures. For SO2 exposure by month, when months 4-9 were added simultaneously, the 

newly reduced model showed that months 4, 6, and 8 had significant but opposing effects on birthweight. Given the 

potential for additional endogeneity and the conflicting results for SO2, only PM10 was considered for interaction effects. 

Table 4. Effects of mean PM10 exposure by trimester and month on birthweight. 

 Simple Full Reduced 

    

PM10 Exposure Beta (SE) P Beta (SE) P Beta (SE) P 

Trimester 2 -7.11 (2.10) 0.0007 -8.01 (2.12) 0.0002 -8.01 (2.12) 0.0002 

Trimester 3 -3.66 (1.40) 0.0089 -4.39 (1.41) 0.0019 -4.39 (1.41) 0.0019 

Month 4 -2.74 (1.31) 0.0367 -4.71 (1.65) 0.0044 -5.24 (1.47) 0.0004 

Month 5 -3.97 (1.48) 0.0072 -1.98 (1.83) 0.2789   

Month 6 -2.84 (1.43) 0.0465 -1.78 (1.87) 0.3407   

Month 7 -1.89 (1.20) 0.1138 -0.72 (1.73) 0.6778   

Month 8 -2.36 (1.08) 0.0284 -1.00 (1.63) 0.5374   

Month 9 -2.56 (1.07) 0.0167 -3.42 (1.46) 0.0190 -4.50 (1.20) 0.0002 

       

SO2 Exposure Beta (SE) P Beta (SE) P Beta (SE) P 

Trimester 2 1.27 (2.26) 0.5755 1.23 (2.27) 0.5866   

Trimester 3 0.77 (2.03) 0.7045 0.72 (2.03) 0.7226   

Month 4 2.48 (1.93) 0.1996 6.83 (3.20) 0.0331 6.47 (2.47) 0.0087 

Month 5 0.35 (1.93) 0.8580 -1.86 (3.97) 0.6386   

Month 6 -0.05 (1.79) 0.9790 -5.58 (3.86) 0.1486 -4.71 (2.36) 0.0460 

Month 7 0.75 (1.70) 0.6582 1.96 (3.85) 0.6101   

Month 8 2.04 (1.68) 0.2255 8.05 (3.97) 0.0428 6.38 (2.33) 0.0062 

Month 9 0.52 (1.93) 0.7866 -3.90 (3.65) 0.2853   
*The analysis of trimesters was conducted separately from the analysis of months. All models for PM10, including the simple models, were adjusted 

for household income, newborn sex, gestational diabetes, preeclampsia, vaginal bleeding, maternal and paternal BMI, and average SO2 during the 

whole pregnancy. All models for SO2 were adjusted for the same covariates and average PM10 during the whole pregnancy in place of average SO2. 

The coefficients and significances on the covariates were not qualitatively different from those presented in Table 3. 
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Dietary Effects 

PCA identified four factors from the 33 food items on the questionnaire and generated factor scores for each. 

Factor 1 included staples and other basic goods (ex. rice, flour, green vegetables, tomatoes, and potatoes); factor 2 

included non-meat sources of protein (ex. milk, yogurt, eggs, soymilk, and tofu); factor 3 included additional vegetables 

(ex. mushrooms, bamboo shoots, wood-ear, seaweed, and garlic); and factor 4 included meats (beef, lamb, chicken, fish, 

and seafood). Higher factor scores indicated a greater variety of foods consumed within a category. Factor scores were 

significantly associated with household income level, but not with maternal BMI, which may be determined not by 

quality or variety of food, but by quantity, not measured here. Factor scores were also significantly associated with 

lower birthweight in the case of factor 1, and higher birthweight for factors 2 and 4. However, the effect sizes per unit 

change in the factor scores were small, and the IQRs for factor scores 1-4 were 0.35, 1.05, 1.35, and 1.36, so the total 

effects of food variety on birthweight were not anticipated to be large. 

Table 5. Associations between factor scores and household income, maternal BMI, as well as effects on birthweight. 

Factor, 
Interpretation 

Household income* Maternal BMI* Birthweight 
(Simple)** 

Birthweight 
(Full)** 

Birthweight 
(Reduced)** 

Beta (SE) P Beta (SE) P Beta 
(SE) 

P Beta 
(SE) 

P Beta 
(SE) 

P 

1, Staples -0.0265 
(0.0105) 

0.0113 0.0002 
(0.0055) 

0.9738 -12.61 
(5.76) 

0.0285 -12.82 
(5.75) 

0.0258 -12.74 
(5.75) 

0.0268 

2, Non-meat 
protein 

0.1095 
(0.0103) 

<0.0001 0.0031 
(0.0055) 

0.5643 12.84 
(5.77) 

0.0260 13.15 
(5.76) 

0.0226 13.03 
(5.76) 

0.0237 

3, Vegetables 0.0265 
(0.0105) 

0.0113 -0.0064 
(0.0055) 

0.2427 7.12 
(5.86) 

0.2246 7.88 
(5.86) 

0.1787   

4, Meat 0.0825 
(0.0104) 

<0.0001 -0.0073 
(0.0055) 

0.1815 12.66 
(5.82) 

0.0297 13.18 
(5.82) 

0.0235 12.92 
(5.82) 

0.0264 

*Factor scores were regressed on household income and maternal BMI. These regressions did not adjust for covariates.  

**Birthweight was regressed on factor scores, adjusting for newborn sex, gestational diabetes, preeclampsia, vaginal bleeding, maternal and 

paternal BMI, average SO2 during the whole pregnancy, and average PM10 during the whole pregnancy (the results were not qualitatively different 

when average PM10 during trimesters 2 and 3 were used instead). Income was not included in the model due to its previously described correlation 

with dietary factors. The coefficients and significances on the covariates were not qualitatively different from those presented in Table 3. 

Interactions 

Using a model that included household income, newborn sex, gestational diabetes, preeclampsia, vaginal 

bleeding, maternal and paternal BMI, average SO2 during the whole pregnancy, average PM10 during the whole 

pregnancy, and dietary factors 1, 2, and 4, mean PM10 exposure during the whole pregnancy was not found to have 

significant interactions with income, maternal BMI, newborn sex, or dietary factors. 
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Discussion 

Comparison of air pollution trends, effect sizes, and windows of exposure 

The temporal trends in each of the air pollutants was consistent with previous findings in Lanzhou, with a 

bimodal distribution for PM10 and unimodal distributions for SO2 and NO2, with concentrations highest in summer and 

lowest in winter[11], and levels above Chinese and international standards[56].  

We found evidence for a negative impact of air pollution on birthweight. Specifically, PM10 exposure during the 

2nd and 3rd trimesters appears to be a better candidate for having effects on birthweight than SO2 or NO2. Previous 

studies have disagreed on the size and even direction of the effects of air pollution on birthweight and other birth 

outcomes. Our results are consistent with a WHO review finding associations between PM and both PTB and LBW in 

developing countries with high levels of air pollution[15]. However, they run counter to those of some studies that find a 

positive or null association between PM exposure and birthweight, including a study of 1.5 million births in Texas[16], a 

study of twins[7], and the Beijing Olympics natural experiment[19]. These differences can be reconciled after considering 

collinearity among multiple exposures, as well as residual confounding by differences in PM composition and by 

temporal autocorrelation[42], for example between the seemingly opposing effects of PM10 during the 1st and 3rd 

trimesters on birthweight. The methodologies applied by different studies, and the sample sizes used, also vary widely. 

The finding that PM10 but not SO2 is associated with LBW is consistent with a systematic review that also found 

inconclusive results for NO2 across publications[42]. Studies in Japan and China found associations between SO2 and risk 

of LBW[52,53], but another in Germany following power plant desulfurization found increases in LBW[31]. Apparently 

paradoxical results can frequently be explained or rationalized by complex correlation structures among different air 

pollutants, and different exposure windows. 

PM10 does not penetrate as deeply into the respiratory tracts and lungs as does PM2.5 or PM0.1, and though it 

may impair lung structure and function, PM10’s effects may be more dependent on its specific composition[51]. A study of 

eight European cohorts found that higher concentrations of sulfur, nickel, and zinc in PM10 and PM2.5 were associated 

with increased risk of LBW[36]. Another study in the northeastern and mid-Atlantic U.S. found associations between 

birthweight and exposure to aluminum, elemental carbon, nickel, and titanium in PM2.5, even at levels compliant with 

EPA standards, and null results for other chemical components of particulate matter[13]. 

Though the overall effects of a particular pollutant during pregnancy may not be significant, their effect sizes 

having been diluted by averaging over time, the effects during a particular trimester may still be important. As other 

studies have emphasized, it continues to be necessary to identify critical exposure windows[25], the specific active 

constituents of air pollution, and the mechanisms by which they exert effects on fetal outcomes[24,27]. 
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Molecular, cellular, and physiological mechanisms 

Exposure to air pollution may act through different mechanisms at different stages of the pregnancy, and on 

different organ systems. For instance, the placenta is less permeable to toxins earlier in the pregnancy, so early effects 

are more likely to be indirect, due to maternal responses, rather than the translocation of particles from the respiratory 

tract to the fetus[18]. The different mechanisms and physiological manifestations associated with different exposure 

windows, however, are complex and not well-characterized. One study from a low-pollution setting in China reports an 

association between exposure to PM10 and SO2 in the second and third months of pregnancy and birth defects[30]. We 

did not consider birth defects due to sample size limitations. 

A number of studies have also considered residential proximity to traffic and roadways, finding associations with 

LBW and also uncovering potential epigenetic mechanisms such as DNA[23] and mtDNA[20] methylation and shortened 

telomere length[6] in the placenta, which may serve as intermediate indicators of other mechanisms acting on disease 

progression. As placental weight was also lower in mothers living near major roads, the impairment of placental oxygen 

and nutrient transport functions were suggested to be part of the causal pathway between pollution exposure and birth 

outcomes including PTB and LBW[55], perhaps by inducing an anti-angiogenic state[46]. Indeed, proximity has also been 

related to maternal and fetal obstetrical complications including preeclampsia, preterm premature rupture of 

membrane and, subsequently, PTB and potentially LBW[54]. Maternal smoking, another prenatal exposure associated 

with LBW, was similarly found to heighten reduce antioxidant capacity and elevate oxidative stress in fetal placental 

tissue[4] and cord blood[3].  

Some studies have also investigated the effects of in utero exposure to air pollution in animal models, finding 

associations with placental injury and hemorrhage as well as inflammatory cell infiltration and oxidative stress[49], and 

differential cytokine levels[9], gene expression, and hormone activation in pathways mediating inflammatory signaling, 

the antioxidant response, and endothelial function[45], with corresponding morphological changes in the umbilical 

cord[47]. These may serve as systemic mechanisms underlying reduced birthweight and later risk of cardiovascular, 

neurological, metabolic, and immunological conditions in humans[12,26].  

Many covariates on placenta and umbilical cord are available from the Lanzhou birth cohort for future study, but 

fetal conditions such as placental abruption, placenta previa, and cord entanglement were also found to be significantly 

and negatively associated with birthweight in simple linear regressions, but were not included as it was not possible to 

preclude reverse causation or confounding by underlying biological mechanisms. Their inclusion improved the fit of the 

reduced model in Table 1 from R2=0.0510 to R2=0.2235, and the inclusion of placenta weight alone improved R2 to 

0.2189 (13 g increase in birthweight for 10 g increase in placenta weight, P<0.05) without otherwise qualitatively 

changing the results (data not shown). This validates the essential role of the placenta in fetal development, but also 

suggests that placenta weight may be a proxy for developmental processes that also affect birthweight. 
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With better data, the molecular, cellular, and physiological bases, including the relation to maternal and fetal 

conditions, for changes to birthweight can be further elucidated. Preliminary analyses on these data suggest that 

preeclampsia and placental conditions may mediate the connection between PM10 and birthweight (data not shown), 

consistent with some previous findings. 

There is also the open question of whether air pollution exerts its influence on birthweight via PTB or IUGR. 

Some studies have found that PM affects birthweight without inducing PTB[35], while others, including studies on indoor 

air pollution, found that certain cooking fuels[1] and other chemicals lowered birthweight[21,34]. In this cohort, the present 

findings on term birthweight and a previous investigation of PTB[58] suggest that the effect of particulate matter on 

birthweight is mediated by both PTB and IUGR. Given the importance of indoor air pollution, including polychlorinated 

biphenyls, disinfection byproducts, and pesticides[33], it is important to consider multilevel environmental exposures in 

tandem. 

A number of proposed mechanisms by which PM exposure might affect birthweight, including inflammation, 

oxidative stress, maternal-fetal hemodynamics, and displacement of the oxygen-hemoglobin dissociation curve[27,42], 

could also plausibly be affected by nutritional status and dietary profiles[22]. However, effect modification by nutrition 

was not found in our study, possibly due to biases in self-reported data or limited power. Other effect modifiers, such as 

race and smoking, were not considered due to low rates of smoking among Chinese women, and low numbers of non-

Han women. A more detailed accounting of possible molecular and cellular mechanisms as well as physiological effects 

is necessary. 

Limitations and potential methodological improvements 

We accounted for temporal autocorrelation, the fact that months are more closely correlated with adjacent 

months or months a full year away, in only a crude way. Multicollinearity due to multiple exposures and temporal 

autocorrelation and seasonality for each pollutant should be investigated more explicitly in future studies.  

Notably, NO2, SO2, and PM10 are heavily influenced by one another. Certain estimates were not robust to 

sensitivity analysis; for example, PM10 was in some instances not significant except in the presence of NO2 or SO2, both 

of which are positively associated with birthweight in contrast to PM10, which is negatively associated with birthweight. 

Given that PM10 is positively correlated with both NO2 and SO2, sharing many of the same sources, it is possible that NO2 

or SO2 are suppressing the effects of PM10. If this is indeed the case, it points to the need for a fuller accounting of other 

environmental pollutants which may be correlated with PM10, confounding the relationship with birthweight. However, 

NO2 and SO2 are widely associated with lower birthweight, rather than higher, and so residual confounding is another 

serious possibility. Additionally, there is still the potential for confounding by seasonal variables such as temperature 

and meteorological factors. 
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Apart from seasonal effects, we should also consider fixed effects in the trends of PM10, SO2, and NO2, as well as 

whether or not differences in the fractions of women giving birth during each season bias the correlation matrix. For 

example, whole pregnancy NO2 is most closely correlated to 3rd trimester NO2, indicating that 3rd trimester NO2 best 

approximates the average of 1st, 2nd, and 3rd trimester NO2. This could be the case if a disproportionate number of 

infants in the sample were conceived in a particular month and a particular location, for example, if many infants were 

conceived in December in an area where NO2 is highest in January-March, lowest in April-June, and at intermediate 

values in July-September. 

As previously mentioned, future research will need to more fully account for seasonal trends in pregnancy and 

in different air pollutant concentrations using statistical methods. Smoothing splines, mixed regressions, and 

autoregressive methods may be applied in future analyses to better control for multicollinearity and potential 

misattribution/misinterpretation due to temporal autocorrelation. Land-use regression models and traffic proximity 

could also be applied to the Lanzhou context[37].  

Our study, like many others, was also limited by its sample size and its power in isolating the small and easily 

overshadowed effects of air pollution on birthweight. Small effect sizes are difficult to examine without sufficiently 

specified regression models. Larger sample sizes and higher quality data on covariates (ex. food frequency) will allow us 

to improve our model. A longer follow-up time as well as a more geographically diverse sample population would have 

provided more heterogeneity in air pollution exposure. Further, the spatial resolution of this study was limited by the 

small number of environmental monitoring stations, and exposure assessment based on inverse distance weighting 

interpolation is not necessarily accurate for those living far from the monitoring stations. As time goes on, technical 

improvements will become possible. For example, the air pollution monitoring stations now also collect data on PM2.5, 

O3, and CO. Multilevel predictors, perhaps from prospective personal exposure and biological monitoring, and 

outcomes, including utero and placental conditions, could then be integrated using mediation or structural equation 

modeling. 

Future: Pollution Policy and Natural Experiments 

Though Lanzhou long topped lists of cities most affected by air pollution in China, the local government 

launched a major initiative in 2012 to significantly reduce air pollution by enforcing existing statutes, by relocating heavy 

industries to specially-designated, less densely-populated areas, and by transitioning coal-burning heating stations to 

natural gas. Though seldom discussed in English-language reporting, the ‘Lanzhou Model’ of pollution control is widely 

considered to have been a success in improving air quality. Such policy changes occurring across China may present key 

opportunities to understand the burden of air pollution on the Chinese populace, and serve as natural experiments for 

the impacts of different interventions. Though the timeframe of the pollution control initiative was outside of the scope 

of this study, we are hopeful that our findings may serve as a reference for comparison of future results. 
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Indeed, there is now strong evidence that sustained improvements in outdoor air quality through consistent 

monitoring, the enforcement of regulations, environmentally-conscious urban design and other policies, or even 

temporary improvements in air quality, will result in improved health for the Chinese populace[19,28,29,40]. 
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Figure 1. Temporal and seasonal trends in SO2, NO2, and PM10, stratified by location. The monitoring stations at Huanghebei and Xigu measured air pollution 

from April 1, 2009 until December 31, 2012, while the stations at Tieluju and Xizhan measured from January 1, 2011 until December 31, 2012. Raw data is 

presented here with impossible (negative) values removed. Data was not averaged across the different monitoring stations or aggregated by week or month to 

maintain spatial differences and temporal resolution, though for a given pollutant, merged raw data across all four stations are presented.  

  



Air pollution and birthweight in the Lanzhou Birth Cohort 

23 

Supplemental Table 1a. PM10, SO2, and NO2 Correlation Matrix by Trimester 

 

PM10 SO2 NO2 

preg 1st 2nd 3rd preg 1st 2nd 3rd preg 1st 2nd 3rd 

P
M

1
0 

preg 1.000 0.076 0.729 0.334 0.493 0.031 0.487 0.146 0.350 0.148 0.343 0.073 

1st 0.076 1.000 -0.059 -0.754 -0.160 0.826 -0.268 -0.717 -0.284 0.571 -0.265 -0.583 

2nd 0.729 -0.059 1.000 -0.019 0.583 0.094 0.773 -0.064 0.228 0.077 0.554 -0.198 

3rd 0.334 -0.754 -0.019 1.000 0.160 -0.764 0.104 0.817 0.411 -0.412 0.131 0.738 

SO
2
 

preg 0.493 -0.160 0.583 0.160 1.000 0.178 0.773 0.398 0.616 0.164 0.637 0.173 

1st 0.031 0.826 0.094 -0.764 0.178 1.000 -0.064 -0.630 -0.073 0.639 -0.096 -0.493 

2nd 0.487 -0.268 0.773 0.104 0.773 -0.064 1.000 0.110 0.404 0.064 0.693 -0.070 

3rd 0.146 -0.717 -0.064 0.817 0.398 -0.630 0.110 1.000 0.487 -0.437 0.256 0.756 

N
O

2 

preg 0.350 -0.284 0.228 0.411 0.616 -0.073 0.404 0.487 1.000 0.343 0.472 0.676 

1st 0.148 0.571 0.077 -0.412 0.164 0.639 0.064 -0.437 0.343 1.000 -0.209 -0.128 

2nd 0.343 -0.265 0.554 0.131 0.637 -0.096 0.693 0.256 0.472 -0.209 1.000 -0.023 

3rd 0.073 -0.583 -0.198 0.738 0.173 -0.493 -0.070 0.756 0.676 -0.128 -0.023 1.000 
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Supplemental Table 1b. PM10 Temporal Autocorrelation Matrix 

Month 1 2 3 4 5 6 7 8 9 10 

1 1.000 0.566 0.214 -0.029 -0.172 -0.452 -0.662 -0.485 -0.087 -0.006 

2 0.566 1.000 0.583 0.163 -0.052 -0.227 -0.471 -0.673 -0.502 -0.170 

3 0.214 0.583 1.000 0.525 0.063 -0.114 -0.276 -0.504 -0.656 -0.463 

4 -0.029 0.163 0.525 1.000 0.476 0.020 -0.073 -0.216 -0.465 -0.493 

5 -0.172 -0.052 0.063 0.476 1.000 0.456 0.079 0.026 -0.129 -0.227 

6 -0.452 -0.227 -0.114 0.020 0.456 1.000 0.542 0.159 0.106 0.016 

7 -0.662 -0.471 -0.276 -0.073 0.079 0.542 1.000 0.557 0.202 0.129 

8 -0.485 -0.673 -0.504 -0.216 0.026 0.159 0.557 1.000 0.560 0.221 

9 -0.087 -0.502 -0.656 -0.465 -0.129 0.106 0.202 0.560 1.000 0.553 

10 -0.006 -0.170 -0.463 -0.493 -0.227 0.016 0.129 0.221 0.553 1.000 

 

Supplemental Table 1c. SO2 Temporal Autocorrelation Matrix 

Month 1 2 3 4 5 6 7 8 9 10 

1 1.000 0.716 0.321 -0.132 -0.404 -0.518 -0.495 -0.442 -0.358 -0.197 

2 0.716 1.000 0.704 0.296 -0.146 -0.396 -0.515 -0.485 -0.503 -0.384 

3 0.321 0.704 1.000 0.714 0.324 -0.101 -0.373 -0.499 -0.564 -0.501 

4 -0.132 0.296 0.714 1.000 0.721 0.368 -0.034 -0.304 -0.486 -0.480 

5 -0.404 -0.146 0.324 0.721 1.000 0.750 0.432 0.038 -0.236 -0.369 

6 -0.518 -0.396 -0.101 0.368 0.750 1.000 0.763 0.460 0.107 -0.104 

7 -0.495 -0.515 -0.373 -0.034 0.432 0.763 1.000 0.760 0.475 0.176 

8 -0.442 -0.485 -0.499 -0.304 0.038 0.460 0.760 1.000 0.786 0.482 

9 -0.358 -0.503 -0.564 -0.486 -0.236 0.107 0.475 0.786 1.000 0.768 

10 -0.197 -0.384 -0.501 -0.480 -0.369 -0.104 0.176 0.482 0.768 1.000 

 

Supplemental Table 1d. NO2 Temporal Autocorrelation Matrix 

Month 1 2 3 4 5 6 7 8 9 10 

1 1.000 0.513 0.101 -0.227 -0.444 -0.304 -0.045 0.032 0.000 -0.050 

2 0.513 1.000 0.491 0.078 -0.205 -0.378 -0.252 -0.022 0.079 0.032 

3 0.101 0.491 1.000 0.499 0.112 -0.177 -0.336 -0.240 -0.026 0.066 

4 -0.227 0.078 0.499 1.000 0.529 0.156 -0.145 -0.273 -0.220 -0.094 

5 -0.444 -0.205 0.112 0.529 1.000 0.532 0.184 -0.106 -0.236 -0.225 

6 -0.304 -0.378 -0.177 0.156 0.532 1.000 0.602 0.252 -0.062 -0.177 

7 -0.045 -0.252 -0.336 -0.145 0.184 0.602 1.000 0.684 0.319 0.066 

8 0.032 -0.022 -0.240 -0.273 -0.106 0.252 0.684 1.000 0.718 0.422 

9 0.000 0.079 -0.026 -0.220 -0.236 -0.062 0.319 0.718 1.000 0.752 

10 -0.050 0.032 0.066 -0.094 -0.225 -0.177 0.066 0.422 0.752 1.000 
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