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ABSTRACT 

 Background: Prostate cancer is the most common cancer among men, and the incidence 

is 1.65 times higher in African Americans than Caucasians. The newly discovered PIWI/piRNA 

pathway, which regulates transposon and gene expression via small non-coding RNAs, has been 

implicated in certain aspects of cancer etiology. We hypothesize a novel involvement of the 

pathway via aberrant gene regulation due to sequence variants within piRNAs and test this 

hypothesis in relation to prostate cancer in both an African American and Caucasian sample. 

Methods: To interrogate SNPs embedded in piRNA sequences, we utilized genome-wide 

genotype data to impute 1,000 Genomes SNPs falling within piRNAs. We then tested for 

associations at these variants in bothe populations, while controlling for appropriate covariates 

and principal components. The regions encompassing significant SNPs were subsequently fine 

mapped. Results: In the African American sample one variant falling within a piRNA, 

rs61101785, was significantly associated with prostate cancer (FDR-p < 0.10). Fine mapping 

showed this variant to be the peak of an association signal. The variant is absent in the Caucasian 

sample. Conclusions: We have tested a novel hypothesis for the involvement of PIWI/piRNAs 

in cancer risk in a cancer estimated to make up 25% of new male cancer cases in 2015. Our 

results show the potential for a variant within a piRNA to affect cancer risk. Additionally, the 

risk variant is absent in Caucasians, potentially explaining some of the racial differences in 

prostate cancer risk.
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INTRODUCTION 

 Prostate cancer is the most common cancer in men, with men facing a 15% lifetime risk 

of developing the cancer and it predicted to make up 26% of new cancer cases in males in 2015, 

for a total of 220,800 new cases1. Additionally, it is predicted to account for 9% of cancer related 

deaths in men during 20151. During the period of 2007-2011, the incidence of prostate cancer 

was about 1.65 times higher in African Americans than in Caucasians1. Additionally, recent 

research demonstrated that race modifies the risk of prostate cancer due to obesity, with obesity 

being a stronger risk factor in African Americans than Caucasians2. Among other factors, it has 

been hypothesized that the difference in prostate cancer risk between these two races has a 

genetic component3. By performing this study in both an African American and Caucasian 

sample, we may be able to shed light on genetic contributions to these racial differences. 

 The discovery of PIWI proteins and PIWI-interacting RNA (piRNAs), a class of small 

non-coding RNAs, and the subsequent understanding of their biological role has spawned 

interest in the potential role of these small RNAs in disease. The piwi gene was first identified in 

drosophila through a genetic screen for genes affecting asymmetric division of germline stem 

cells4,5, and was then found to code for a highly conserved protein present in the stem and 

somatic cells of the drosophila germline that is implicated in germline establishment and 

maintenance4-6. PIWI proteins are members of the Argonaute family of proteins, which contain a 

PAZ domain that binds single-stranded RNA, a MID domain, and a PIWI domain that resembles 

the endonuclease RNase-H7. Homologs of drosophila piwi were then identified in various other 

organisms including mice and humans8-10. After the discovery of PIWIs, it was shown that the 

already characterized rasiRNAs and additional small RNAs interact with PIWI proteins, thus 

being named piRNA11-15. The piRNAs identified primarily mapped to intergenic regions and are 
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enriched in repetitive elements, with about 20% in vertebrates mapping to transposon 

sequences11-13.  

 Work to determine the function of PIWI/piRNAs has shown that the two are involved in 

the repression of transposable elements through transcriptional and post-transcriptional 

mechanisms, likely to maintain genome integrity15-24. In terms of transcriptional regulation, it has 

been shown that mutations in drosophila piwi and aub, two PIWIs, lead to a failure to establish 

H3K9me2/3 marks, a repressive histone modification25-27. In drosophila, this mechanism 

involves the interaction of PIWI proteins with Heterochromatin Protein-1 (HP1), demonstrating 

the ability of PIWI/piRNA complexes to recruit epigenetic modifiers to gene loci28,29. The 

processes of inducing epigenetic changes involves PIWI-bound piRNAs guiding PIWI in 

complex with epigenetic regulators to complementary DNA sequences or nascent transcripts 

where their action can take place30. 

 Being of the same gene family as the proteins known to interact with miRNA, it is not 

surprising that evidence of a gene regulatory role for PIWI/piRNAs has also arisen. There is 

evidence in mice of PIWI/piRNAs directing the methylation of promoters, a DNA modification 

associated with decreased gene expression, in a sequence specific manner31. In drosophila, 

cytoplasmic PIWIs participate in inhibiting maternal mRNA translation and maternal mRNA 

decay via CCR4 mediated deadenylation by complementarity with their 3’ UTRs32. Further, 

piRNAs can be generated from the 3’ UTR of certain mRNAs in Drosophila, Xenopus, and mice, 

providing another possible method of regulation33. 

 As these functions of PIWI proteins and piRNA have been elucidated, evidence of their 

association with cancers has come to light. PIWI expression has been demonstrated in a variety 

of human cancers, including colorectal, hepatic, brain, pancreatic, testicular, prostate, breast, 
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gastrointestinal, ovarian, and endometrial cancers34-40. Additionally, expression of piRNAs has 

been observed in cancer cell lines and tissue samples41-43. Of these, specific piRNAs have been 

observed to be under- or over-expressed in tumor tissue as compared to adjacent normal tissue, 

and amelioration of this aberrant expression showed the effect of decreasing cell 

proliferation42,43. 

 Herein, we propose a potential novel involvement of the PIWI/piRNA pathway in 

tumorigenesis. Specifically, we hypothesize that sequence variants within piRNAs may play a 

role in cancer risk by aberrant regulation of tumor suppressor or oncogene expression. As 

piRNAs serve as a sequence specific guide for PIWI proteins, their action at certain loci may be 

abolished or aberrantly target novel loci. This idea is supported by the fact that single nucleotide 

changes in piRNAs can lead to a substantial loss of efficiency at intended target sites30. Here, we 

test this hypothesis in relation to prostate cancer in an African American population derived from 

the Multi-ethnic Cohort (MEC) and Caucasian population from the Cancer Genetic Markers of 

Susceptibility (CGEMS) Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial 

(PLCO) by investigating associations with single nucleotide polymorphisms (SNPs) embedded 

in piRNA sequences. We have limited our analyses to piRNAs derived from 100 or fewer 

genetic loci, as there is evidence that low copy number piRNAs are more likely to regulate 

protein-coding gene expression44 

 

METHODS 

Data 

 Data for this study were obtained from the Database of Genotypes and Phenotypes 

(dbGaP) and includes genotype and phenotype data for African American subjects from the 



! ! 6!

GENEVA Prostate Cancer study (phs000306.v4.p1) genotyped on the Illumina Human1M-

Duov3_B platform and Caucasian subjects from the CGEMS PLCO Prostate Cancer study 

(phs000207.v1.p1) genotyped on the Illumina HumanHap300v1.1 and HumanHap250Sv1.0 

platforms. The subjects in the GENEVA study were derived from the MEC45, as well as six 

additional studies as documented by Freedman et al.46,47. Subjects in the PLCO study were 

drawn from the PLCO Cohort by an incidence density sampling method48. 

Data Cleaning 

 All data cleaning/management was performed using PLINKv1.0749. For both study 

populations, consent groups were all genotyped on the same platform and were merged to make 

a complete data set. However, prior to merging consent groups the data were cleaned to remove 

individuals with a call rate <90%, SNPs with a call rate <95%, and SNPs not following HWE 

(p<0.0001). SNPs of low MAF were not removed, as they were not to be used for association 

analyses and would help inform subsequent imputation. SNPs on the Y chromosome, from 

pseudo-autosomal regions, and mitochondrial SNPs were removed. The data was then lifted over 

to genome build 37, and variant coding was flipped as necessary to be on the (+) genomic strand 

in order to be compatible with the imputation reference panel. One sample was removed from 

each related or duplicate pair in the data, as determined by 

€ 

ˆ π ≥ 0.2  from IBS analysis in plink49. 

Individuals not self-declared for the ancestry of interest were also excluded. Ancestry checks 

were then performed by combining the genome-wide data with a HapMap reference panel 

followed by principal component analysis using EIGENSTRAT50. All subjects in the Caucasian 

population clustered well with HapMap Caucasians, so no removals were made. However, due to 

African Americans being an admixed population and no clear clustering in relation to HapMap 
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samples, PCA was performed using EIGENSTRAT50 and subjects exceeding six standard 

deviations on any of the top ten principal components were removed with one iteration. 

piRNA SNP Genotype Imputation 

 We utilized piRNA Bank51 to determine the position, sequence, and copy number of all 

curated human piRNA sequences. This includes 32,149 unique piRNAs that map to 667,944 

genomic loci. We then used the 1,000 Genomes Phase 3 reference data available for IMPUTE252 

and piRNA coordinates to determine all SNPs mapping to genomic coordinates covered by 

piRNAs encoded at 100 or fewer loci, as imputation is limited to variants in the reference panel. 

Next, imputation was carried out using IMPUTE2 in 5 MB segments with the programs default 

settings52. The program outputs a probability of having each of the three possible genotypes for 

each individual. SNPTEST then uses these probabilities to determine allele dosages for use in a 

logistic regression model as described in the subsequent section. 

Association Analyses 

 Association analyses were carried out in SNPTESTv2.5 using unconditional logistic 

regression with an additive allelic model that inputs posterior genotype probabilities as dosages 

and accounts for uncertainty due to imputation53. Prior to the analyses, monomorphic SNPs as 

well as those with MAF<1% or with an info score <0.9 from IMPUTE2 were excluded. For the 

analyses in African Americans, models were adjusted for 3 principal components, an ordinal 

variable representing age categories, and study. The analyses in Caucasians controlled for 3 

principal components, an ordinal age category variable, and family history of prostate cancer. 

For both analyses age was grouped by ten-year increments, and the number of principal 

components to control for was determined by calculating a genomic inflation factor (GIF) and 

inspecting QQ plots both generated using genome-wide data. Principal component analysis was 
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carried out in EIGENSTRAT50 with LD-pruned data generated from plink49 using a pairwise R2 

threshold of 0.5. 

Fine Mapping 

 Fine mapping was performed on regions containing variants associated with prostate 

cancer. For this, all variants from the Thousand Genomes reference panel in the original 5MB 

imputation window of the associated SNP were imputed using IMPUTE2 in the same manner as 

previously. Association testing was then carried out using SNPTEST for all variants in a 500KB 

window centered on the SNP of interest while controlling for all of the same variables as in the 

piRNA variant association analyses. Imputed variants were limited based on an info quality 

metric of 0.6. P-values were then used to generate Manhattan plots for inspection of the 

distribution of the association signal. 

 

RESULTS 

GENEVA Study  

 After data cleaning in preparation for piRNA variant imputation, the African American 

population consisted of 2,275 cases and 2,425 controls for a total of 4,700 individuals with 

genotype data at 1,121,335 SNPs. During cleaning, 48 individuals were removed following IBS 

analysis (Figure S1a) and 22 were removed due to being PCA outliers after it was determined 

this would be necessary by inspection of ancestry plots (Figure S2a). Following this, piRNA 

SNP genotypes were imputed for each subject at all possible piRNA variants using IMPUTE252.  

Prior to association testing, variants that were monomorphic, had a MAF<1%, or an IMPUTE2 

quality info score < 0.9 were removed. The association analyses were controlled for the study a 

subject was drawn from, age categorized in ten year increments, and the top three eigenvectors 
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from PCA. The choice to control for three principal components was made based on the 

observation of a GIF of 1.00 from genome-wide association analyses and examination of QQ 

plots generated from these analyses (Figure S3a). 

 Association analyses, controlled as described above, were carried out for 1847 variants, 

the results of which are displayed in Figure 1.  The variant rs61101785, located in piR-021163, 

was associated with an increased risk of prostate cancer [FDR-p=0.070], with an odds ratio of 

1.63 [95% CI: 1.29-2.05] (Table 1). The MAF of the variant was 4.1% in cases and 2.6% in 

controls, and is located at Chr4: 3,074,158. The piRNA it falls within maps only to this locus51. 

The locus lies within the first intron of the Huntingtin antisense 1 (HTT-AS1) transcript (UCSC 

Genome Browser). Fine mapping of the region encompassing rs61101785 revealed that the 

association signal peaks at that variant falling within piR-021163 (Figure 2). 

PLCO Study 

 After data cleaning, there were 1,142 cases and 1,098 controls for a total of 2,240 

Caucasian subjects from the PLCO study genotyped at 541,721 variants. During cleaning, 7 

samples were removed due to not being genotyped on both platforms and 53 were removed 

following IBS analysis (Figure S1b). All remaining subjects clustered well with HapMap 

Caucasians on the top two principal components (Figure S2b), so no PCA outlier removal was 

performed. Next, all SNPs falling within piRNAs encoded at 100 or fewer loci were imputed for 

use in association analyses. The association tests were adjusted for family history of prostate 

cancer, age categorized in ten year increments, and the top three principal components from PCA 

based on a GIF of 1.00 and QQ plot inspection (Figure S3b). As in the African American 

population, variants that were monomorphic, had a MAF<1%, or an IMPUTE2 info score < 0.9 

were removed. Associations were tested at 1,364 SNPs, the results of which are summarized in 
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Figure 3. The top three hits are all located within the same piRNA cluster on Chromosome 1451, 

which lies in an intergenic region. Interestingly, the hits within this single piRNA cluster all 

correspond to single copy piRNAs. The fine mapping carried out on the imputation region 

encompassing rs8010969 and rs11625907 revealed that they are likely tagging a causal SNP 

(Figure 4). 

 

DISCUSSION 

 Here, we have performed the first comprehensive analysis investigating the association 

between genetic variants within piRNAs and prostate cancer in both an African American and 

Caucasian sample. The study focused on an African American sample genotyped as part of the 

GENEVA study and Caucasian population drawn from the PLCO study, both available via 

dbGaP. Investigation of associations between imputed piRNA variants and prostate cancer 

revealed a highly interesting association in the African American study sample. A variant falling 

within the singly encoded piR-021163, rs61101785, was associated with an increased risk of 

prostate cancer in African Americans (FDR-p=0.0702). Fine mapping of the region 

encompassing rs61101785 demonstrated that the association signal peaks at the variant. This 

supports the idea of a functional role for this variant given the signal is real. The location of the 

variant (Chr4: 3,074,158) and piRNA (Chr4: 3,074,147-3,074,178) falls within the first intron of 

the HTT-AS1 transcript. HTT-AS1 is non-coding and antisense to the Huntingtin (HTT) gene54, 

a gene causally linked to Huntington’s disease when containing a PolyQ expansion55,56, with the 

two being transcribed head-to-head. The HTT-AS1 transcript is known to regulate the expression 

of the HTT gene in a partially Dicer dependent manner54. The normal HTT gene has been 

implicated in cell survival57, an important aspect of cancer development and progression. 
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Interestingly, piRNAs typically target transposons by deriving from antisense transcripts and 

imprinting of the Rasgfr1 locus in mice involves the targeting of an adjacent antisense transcript 

by a specific piRNA31. Although speculative, it is possible that this piRNA is derived from the 

antisense transcript and can then target the genomic locus. Another interesting aspect of this 

variant is that it was virtually monomorphic in the Caucasian sample, with only two cases being 

heterozygous at this position. This could partially account for the race differences observed in 

prostate cancer risk.  

 The associations observed in the piRNA cluster on chromosome 14 in the Caucasian 

sample are all likely reflecting the same functional variant if one is truly present. Future work 

may investigate if any of these piRNA variants differentially affect aspects of cancer 

development and progression as compared to the wildtype piRNAs. 

 A strength of this study is the Thousand Genomes reference panel used for imputation, as 

this data has highly comprehensive coverage of an immense number of variants. This allowed us 

to achieve coverage of many piRNA embedded SNPs. Howevever, we could not interrogate 

variants within piRNAs not included in the reference panel, which means some piRNAs were not 

interrogated. Another drawback is the fact that we cannot conclude that these variants are causal, 

as they may be tagging variants in linkage-disequilibrium with them. However, future functional 

analyses will help understand whether or not these variants are playing a role in cancer risk. 

Future work will focus on the effects of the wildtype and variant piRNA-021163 on aspects of 

tumorigenesis, including proliferation. Also, work may focus on the gene regulatory effects of 

the piRNA, which can be difficult to predict.  Finally, we were limited to covariates provided in 

the dbGaP datasets, and could have potentially further controlled for confounding factors to 

bolster our results. 
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 Overall, we provide the first evidence that piRNA sequence variants could potentially be 

associated with prostate cancer, with a strong finding coming from our African American sample 

that could in part explain racial differences in prostate cancer risk. Fine mapping of the region 

strengthened this idea, and future functional work will help to understand how this variant may 

be affecting risk. Therefore, it is possible that not only abberant expression of PIWIs or piRNAs 

can play a role in cancer but piRNA sequence changes may also be a factor. 
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TABLES & FIGURES 

 

Figure 1: A Manhattan plot displaying the association results for imputed piRNA variants from 

the African American subjects of the GENEVA study. The significantly associated variant, 

rs61101785, is highlighted in green. 
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Variant Location piRNA MAF 
Cases 

MAF 
Controls 

OR 
[95% CI] P 

FDR-
Adjusted 

P 
GENEVA (n=4,700) 

rs61101785 Chr4: 
3,074,158 piR-021163 4.1% 2.6% 1.63 

[1.29, 2.05] 3.80E-05 0.070 

rs62439721 Chr7: 
6,762,443 piR-003123 16.8% 19.3% 0.84 

[0.76, 0.94] 3.89E-04 0.359 

rs11074184 Chr15: 
93,970,292 piR-008061 9.6% 11.6% 0.81 

[0.71, 0.93] 3.55E-03 0.596 

PLCO (n=2,240) 

rs8010969 Chr14: 
88,626,243 

piR-013783 
piR-014246 19.6% 16.0% 1.28 

[1.10, 1.49] 1.18E-03 0.180 

rs11625907 Chr14: 
88,625,605 piR-008286 19.7% 16.0% 1.28 

[1.10, 1.49] 1.17E-03 0.199 

rs8020378 Chr14: 
88,624,946 piR-018495 19.7% 16.0% 1.28 

[1.10, 1.50] 1.15E-03 0.225 

Table 1: Summary of the top three hits from the GENEVA African American and PLCO 

Caucasian samples. FDR-adjusted p-values < 0.10  and < 0.20 were considered significant and 

suggestive, respectively. 

 

Figure 2: A Manhattan plot displaying the results of fine mapping of the region encompassing 

rs61101785, which is highlighted in green. 
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Figure 3: A Manhattan plot displaying the association results for imputed piRNA variants from 

the Caucasian subjects of the PLCO study. The variants rs8010969 and rs11625907 are 

highlighted in green. 

 

Figure 4: A Manhattan plot displaying the results of fine mapping of the region encompassing 

the variants rs8010969 and rs11625907, which are highlighted in green.
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SUPPLEMENTS 

 

 

Figures S1a and S1b: IBS analysis. Plots of the probability of sharing one allele at a given locus 

vs. the probability of sharing zero alleles at a given locus. One sample was removed from each 

pair in red. 



! ! 17!

 

 

Figures S2a and S2b: Plots of the first two principle components from PCA analysis of study 

subjects merged with HapMap references. CEU = Caucasian, JPT/CHB = East Asian, YRI = 

Yoruba (West Africa). 
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Figure S3a and S3b: QQ plots based on genome-wide associations adjusted for the covariates 

used in the association analyses for both studies.
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