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Yale University 

Abstract 

Data Integration and Targeted Anticancer Drug Synergies Prediction 

by Xiaoting Gao 

Chairperson of the Supervisory Committee: Professor  
 Department of Biostatistics 

In	the	past	decades,	targeted	cancer	therapies	have	made	considerable	

achievements	in	inhibiting	cancer	progression	by	modulating	specific	molecular	

targets.	However,	targeted	cancer	therapies	have	reached	a	plateau	of	efficacy	as	the	

primary	therapy	since	tumor	cells	can	achieve	adaptability	through	functional	

redundancies	and	activation	of	compensatory	signaling	pathways.	Therapies	using	

drug	combinations	have	been	developed	to	overcome	the	bottleneck.	Accurate	

predictions	of	synergies	effect	can	help	prioritize	biological	experiments	to	identify	

effective	combination	therapies.	Data	integration	can	give	us	a	deeper	insight	into	

the	mechanism	of	cancer	and	drug	synergies	and	help	to	address	the	challenge	in	

prediction	of	drug	combinations.	In	this	thesis,	we	illustrate	that	integrative	analysis	

of	multiple	types	of	omics	data	and	pharmacological	data	can	more	effectively	

identify	drug	synergies,	hence	improve	the	prediction	accuracy.	As	part	of	the	

AstraZeneca-Sanger	Drug	Combination	Prediction	DREAM	Challenge,	we	showed	

that	multiple	data	integration	methods	could	identify	multiple	oncogenes	and	tumor	

suppressor	genes	as	signature	genes.	We	showed	that	several	models	built	through	

data	integration	outperformed	benchmark	models	without	data	integration	

methods.		 	
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CHAPTER 1. INTRODUCTION 

 
An	understanding	of	the	molecular	basis	of	cancer	brings	the	development	of	

targeted	anticancer	therapies.	In	the	past	decades,	targeted	cancer	therapies	have	

made	considerable	progress	in	inhibiting	cancer	progression	in	some	cancer	

patients	by	modulating	specific	molecular	targets.	However,	the	development	of	

new	drugs	has	been	slowed	down	in	recent	years	partly	because	drugs	with	specific	

targets	often	show	limited	efficacies,	poor	safety	and	resistance	profiles	[1].	One	of	

the	reasons	of	this	phenomenon	is	that	most	human	diseases	are	results	of	complex	

biological	processes	that	are	redundant	and	robust	to	drug	perturbations	of	a	single	

molecular	target.	Therefore,	in	recent	years,	efforts	have	been	directed	to	the	

discovery	of	compound	combinations,	as	they	exhibit	several	advantages	as	

therapeutics	compared	to	single	agent	medicines.	Drugs	in	combination	may	

achieve	greater	effects	than	the	additive	therapeutic	effect	of	each	drug	individually,	

which	is	known	as	synergy	[2].	For	example,	Gefitinib	(EGFR	tyrosine	kinase	

inhibitor,	induces	CDK	inhibitors	p27	and	p21,	decreases	MMP2	and	MMP9	enzyme	

activity	[3]),	combined	with	Taxane	(disrupts	microtubules	by	binding	to	β-tubulin,	

induces	tumour	suppressor	gene	p53	and	CDK	inhibitors	p21,	downregulates	BCL-2,	

leading	to	apoptosis	[4])	can	produce	strong	synergistic	effect	in	breast	cancer	

MCF7/ADR	cells	[5].	Studies	have	also	suggested	that	synergistic	drug	combinations	

can	achieve	therapeutic	selectivity	by	countering	biological	compensation,	allowing	

reduced	dosage	of	each	compound	or	accessing	context-specific	multitarget	

mechanisms	[6].		

	
1.1 Targeted anticancer drug synergies and omics data 

	
For	single	agent	therapeutics,	predicting	the	response	of	a	cancer	patient	to	a	

certain	targeted	anticancer	drug	is	vital	for	precision	medicine.	The	efficacy	of	

personalized	treatment	depends	on	the	ability	to	identity	specific	genetic	causes	for	

a	patient	and	then	use	the	corresponding	targeted	therapy.	In	order	to	have	a	
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comprehensive	understanding	of	the	link	between	genomic	features	and	treatment	

effects,	large-scale	datasets	of	genomic,	proteomic,	epigenomic	profiling	data	as	well	

as	pharmacological	profiling	data	have	been	generated	from	cultured	human	cell	

lines,	such	as	the	Cancer	Cell	Line	Encyclopedia	(CCLE)	[7]	and	Cancer	Genome	

Project	(CGP)	[8].	In	2012,	NCI-DREAM	drug	sensitivity	prediction	challenge	was	

held	aiming	to	compare	methods	for	predicting	drug	sensitivity	from	multi-omic	

data	in	breast	cancer	cell	lines,	including	copy	number	variation,	gene	expression,	

mutation,	DNA	methylation	and	protein	abundance	[9].	The	key	to	precision	

medicine	will	be	the	ability	to	“translate	large	compendia	of	genomic,	epigenomic,	

and	proteomic	data	into	clinically	actionable	predictions”	[9].	Studies	from	this	

challenge	have	illustrated	that	the	incorporation	of	multiple	genomic	

characterizations	could	lower	the	prediction	error	for	single	drug	sensitivity	[9,	43].		

 

Similarly,	the	accuracy	of	prediction	of	drug	synergies	also	largely	depends	on	our	

comprehension	of	how	different	types	of	omics	data	can	inform	us	on	synergistic	

effects.	Knowledge	drawn	from	multi-omic	data	can	facilitate	progress	in	

understanding	mechanisms	of	drug	combinations.	Omics	data	have	been	widely	

used	to	investigate	the	relations	among	small	molecules,	genes	and	diseases	and	to	

discover	molecules	linked	to	pathological	processes.	With	its	ability	to	reflect	

biological	processes,	omics	data	can	also	contribute	to	drug	combinations	studies.	

Some	research	has	been	done	to	predict	drug	synergies	or	to	construct	novel	

molecular	networks	based	on	omics	data.	Chen	et	al.	[28]	presented	a	systematic	

overview	of	existing	approaches	to	model	drug	synergies,	including	omic-based	

methods	in	synergy	identification.	Sun	et	al.	[29]	proposed	a	model	for	the	

prediction	of	synergistic	drug	combinations	specifically	for	the	treatment	of	cancer,	

called	Ranking-system	of	Anti-Cancer	Synergy	(RACS),	which	could	combine	

features	of	targeting	networks	and	transcriptomic	profiles.	A	computational	

approach,	Drug-Induced	Genomic	Residual	Effect	(DIGRE)	Computational Model,	

was	proposed	to	predict	drug	synergies	by	explicitly	modeling	drug	response	curves	

and	gene	expression	changes	after	drug	treatments	[30].	Chen	[31]	proposed	a	new	

method	for	synergy	evaluation	by	a	pathway-pathway	interaction	network.	Vera-
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Licona	et	al.	[40]	designed	a	new	software,	OCSANA	(optimal	combinations	of	

interventions	from	network	analysis),	to	identify	optimal	and	minimal	combinations	

of	intervention	to	disrupt	the	paths	between	source	nodes	and	target	nodes	while	

minimizing	the	side	effects.	In	Pal	&	Berlow’s	article	[42],	a	new	approach	was	

presented	to	predict	the	sensitivity	of	a	new	drug	or	a	drug	combination	by	

generating	abstract	representation	of	cancer	pathways	based	on	known	kinases	

inhibitor	targets.	These	studies	have	illustrated	the	possibility	of	predicting	drug	

synergistic	effect	from	omics	data.		
 

1.2 Data integration 

Although	many	methods	have	been	developed	for	drug	combination	effect	

prediction	using	omics	data,	most	of	these	methods	mainly	utilize	one	type	of	omics	

data,	usually	genomics	data	or	proteomics	data.	However,	with	the	rise	of	high-

throughput	sequencing	technologies	[10]	and	large-scale	consortia	projects,	large	

amounts	of	heterogeneous	datasets	have	been	generated,	which	make	integration	of	

different	types	of	omics	data	an	effective	approach	to	understand	the	complex	

interplay	of	drug	combinations	against	the	disease	process.	Several	studies	have	

stated	the	necessity	and	benefit	of	data	integration	methods	in	drug	related	studies	

[33,	34,	35].	Dorel	et	al.	[39]	discussed	three	integration	strategies	to	predict	drug	

sensitivity	and	intervention	combinations	using	signaling	networks	together	with	

high-throughput	data:	(1)	Highthroughput	data-based	signature	retrieval;	(2)	

Inferring	intervention	points	from	integrated	analysis	of	interactomes	and	(3)	

Interference	set	finding	using	topological	analysis	of	networks	and	mathematical	

modeling	of	network	rewiring.	Zhao	et	al.	[32]	presented	a	computational	approach	

to	predict	drug	combinations.	By	integrating	molecular	and	pharmacological	data,	

69%	of	their	top	ranked	predictions	of	effective	combinations	were	supported	by	

literature.	Azmi	et	al.	[41]	showed	that	combining	high-throughput	data	with	

network	and	systems	biology-based	strategy	could	facilitate	the	understanding	of	

the	synergy	between	MI-219	and	oxaliplatin	at	the	gene	level	and	aid	to	identify	

driver	pathways	that	augment	p53	reactivation-mediated	events.		
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In	this	thesis,	data	integration	refers	to	the	process	of	selecting	important	predictors	

of	drug	synergies	by	conducting	integrative	analysis	of	genomics,	epigenomics,	

transcriptomics	and	pharmacological	data.	To	understand	drug	combination	in	gene	

interaction	network,	there	is	a	need	to	develop	data	integration	methods	because	

different	types	of	molecules	are	involved	in	a	biological	process	and	the	analysis	of	

one	data	type	may	give	a	partial,	and	maybe	biased,	perspective	on	the	biological	

process.	Although	microarray	technology	seems	to	be	the	most	mature	technology	

from	all	the	omics	and	many	breakthroughs	about	predicting	cancer	outcomes	from	

gene	expression	data	have	been	made,	other	omics	data	may	contain	

complementary	information	not	present	in	gene	expression	and	integrating	more	

than	one	data	source	can	achieve	better	prediction	of	therapy	response	[38].	It	was	

shown	that	a	set	of	genes	selected	by	analyzing	the	correlation	of	copy	number	

variation	and	gene	expression	could	discriminate	matched	adjacent	noncancerous	

samples	from	gastric	cancer	samples	in	an	unsupervised	two-way	hierarchical	

clustering	[11].	Some	research	found	a	negative	correlation	between	activities	of	the	

enzyme	drug	L-asparaginase	and	DNA	copy	number	of	genes	near	asparagine	

synthetase	in	the	ovarian	cancer	cells	[12].		
 
Assembling	all	types	of	omics	data	into	a	more	comprehensive	and	complex	

biological	entity	can	shed	light	on	the	biological	processes	about	cancer	and	

targeted	drugs	that	are	not	fully	known	to	us.	In	our	study,	datasets	from	the	

AstraZeneca-Sanger	Drug	Combination	Prediction	DREAM	Challenge,	including	gene	

expression,	copy	number	variation,	mutation	and	methylation,	were	used	to	

illustrate	the	benefit	of	applying	data	integration	methods	into	drug	synergy	

analysis.	

 
CHAPTER 2. RESEARCH DESIGN 

2.1 Overview 

Our	study	of	the	data	integration	methods	in	drug	synergy	study	is	part	of	our	

research	for	the	AstraZeneca-Sanger	Drug	Combination	Prediction	DREAM	
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Challenge,	Subchallenge	1.	The	aim	of	this	Challenge	is	to	“explore	–	and	hopefully	

reveal	-	fundamental	traits	that	underlie	effective	combination	treatments	and	

synergistic	drug	behavior	using	baseline	genomic	data,	i.e.	data	collected	

pretreatment”	[13].	It	is	to	“uncover	important	biomarkers	that	are	predictive	of	

synergistic	behavior,	yielding	a	direct	path	for	clinical	translation”	[13].	Synergy	

scores	of	167	experimentally	tested	drug	combinations	over	85	cell	lines	(primarily	

colon,	lung	and	breast)	were	provided.	Corresponding	monotherapy	drug	response	

for	each	drug	and	cell	line	were	available	as	well.	Additionally,	omics	data	for	85	cell	

lines	including	gene	expression,	somatic	mutation,	copy	number	variation	and	

methylation	were	offered.	Putative	drug	targets	and	chemical	information	about	

drugs	were	also	known	to	participants.		

	
In	Subchallenge1,	participants	were	asked	to	predict	drug	synergy	of	167	

combinations	in	the	panel	of	85	cell	lines.	The	synergy	dataset	was	divided	into	

three	sets:	a	training	data	set	(3/6-50%),	a	leaderboard	set	(1/6-16.7%),	and	a	

validation	set	(2/6-33%).	In	this	study,	the	training	dataset	and	leaderboard	dataset	

were	used	since	validation	set	has	not	been	released	yet.	There	are	two	challenges	

with	different	restrictions	in	Subchallenge	1.	For	Subchallenge	1A	(we	will	use	

Challenge	A	in	the	following	text	instead),	all	available	data	could	be	used;	while	for	

Subchallenge	1B	(Challenge	B	in	the	following	text),	only	copy	number	variation,	

mutation	and	prior	knowledge	was	allowed	[13].	 		
 

In	our	study,	our	main	assumption	is	that	combination	effects	on	cell	lines	with	

similar	molecular	features	would	resemble	each	other.	We	implemented	our	model	

based	on	Random	Forests,	a	method	widely	used	and	demonstrated	to	be	powerful	

in	various	supervised	learning	problems.	Random	Forests	are	a	classifier	consisting	

of	a	collection	of	tree-structured	classifiers	[36].	To	predict	drug	synergy	scores,	

Random	Forests	fitted	a	combination	of	regression	trees.	The	predictions	from	each	

tree	were	taken	and	averaged	together	to	predict	new	values	from	this	ensemble	of	

trees.	We	first	identified	signature	genes	associated	to	the	cancers	and/or	

influenced	by	the	drugs.	Ten	sets	of	signature	genes	were	selected	from	different	
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perspectives.	To	demonstrate	the	effect	of	data	integration	techniques	on	drug	

synergy	prediction,	six	of	the	ten	sets	of	signature	genes	were	selected	by	

integrative	analysis	while	four	of	them	were	selected	without	integrative	analysis.	

Then	ten	Random	Forests	models	were	constructed	to	automatically	choose	

important	molecular	features	for	each	combination	from	the	signature	genes	by	

including	additional	covariates	such	as	drug	indicators	in	the	regression	model.	

Four	models	using	signature	genes	not	selected	by	data	integration	methods	were	

considered	benchmark	models.	The	performance	of	six	other	models	would	be	

compared	to	the	performances	of	these	four	models.	

	
2.2 Methods 

2.2.1 Data preprocessing 

Somatic	mutation	data	were	preprocessed	using	MutSigCV	[14],	a	method	to	

extrapolate	the	likelihood	for	each	gene	of	being	cancer-associated	based	on	the	

mutation	position,	transition	status	and	mutation	type.	The	original	chromosome	

region-based	methylation	data	were	converted	to	gene-based	data	using	R	package	

BioMart	[15].	For	copy	number	variation	(CNV)	data,	the	maximal	copy	number	

information	was	taken	out	from	GRCh37	CNV	file	and	the	non-informative	(equal-

valued)	genes	were	removed	across	cell	lines,	thus	CNV	data	were	transformed	into	

a	matrix	with	each	entry	representing	the	maximum	copy	number	of	a	given	gene	in	

the	corresponding	cell	line.	For	single	drug	sensitivity,	the	GI50	of	a	drug	on	a	cell	

line	was	calculated	using	the	fitted	dose-response	curves	from	the	mono-therapy	

data.	
 

2.2.2 Signature gene selection 

The	following	methods	were	applied	to	select	signature	gene	

expression/mutation/copy	number	variation/methylation	to	be	added	into	the	

model.	

1. DriverNet	[16]	

DriverNet	is	a	novel	integrated	genome/transcriptome	analysis	approach	to	

identify	candidate	drivers	with	aberrant	genomic	alteration	such	as	mutation	or	
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copy	number	variation	[16].	The	assumption	of	DriverNet	is	that	driver	genes	

with	genomic	aberration	will	impact	the	expression	levels	of	multiple	genes	

rather	than	a	single	gene.	Genes	with	more	connections	to	genes	with	outlying	

expression	are	more	likely	to	be	driver	genes.	The	associations	between	

mutation/copy	number	variation	and	coincident	changes	in	gene	expression	are	

analyzed	through	an	influence	graph	based	on	prior	knowledge	about	pathways	

and	gene	networks	obtained	from	Reactome	[17].	Then	a	greedy	algorithm	is	

applied	to	find	the	lowest	number	of	genes	connected	to	the	most	genes	with	

outlying	expression.		

	

The	expression	of	a	gene	in	a	sample	is	defined	as	an	outlying	expression	if	it	is	

outside	of	a	predetermined	range	of	gene	expression	for	a	given	gene	across	all	

samples.	In	this	manner,	gene	expression	matrix	will	be	converted	to	a	binary	

matrix	with	samples	as	rows	and	genes	as	columns.	Mutation	matrix	and	copy	

number	variation	matrix	are	both	binary	matrices,	with	cells	having	a	value	of	1	

if	the	gene	is	mutated	or	has	copy	number	gain/loss	in	the	corresponding	sample	

and	0	otherwise.	The	associations	between	gene	expression	and	mutation,	or	

copy	number	variation	are	examined	by	an	influence	graph,	which	contains	prior	

knowledge	about	the	protein	functional	interaction	network	derived	from	Wu’s	

study	[26].	

	

In	our	study,	DriverNet	generated	two	signature	gene	lists.	One	is	the	result	of	

analyzing	mutation	and	gene	expression	data	while	the	other	is	for	copy	number	

variation	and	gene	expression.	

	
2. remMap	[18]	

RemMap,	REgularized	Multivariate	regression	for	identifying	MAster	Predictors,	

was	proposed	to	fit	multivariate	response	regression	models	under	the	high-

dimension-low-sample-size	setting	[18].	The	motivation	of	remMap	is	to	explore	

the	regulatory	relationships	among	different	biological	molecules	from	multiple	

types	of	high	dimensional	genomic	data,	especially	the	modulation	effect	of	copy	
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number	variation	on	gene	expression	[18].	RemMap	can	build	a	multivariate	

linear	regression	model	with	an	L1	norm	penalty	to	control	the	overall	sparsity	

of	the	coefficient	matrix	and	a	group	lasso	penalty	[19]	to	control	the	total	

number	of	predictors	entering	the	model.	Consequently,	the	detection	of	master	

predictors	can	be	facilitated.	 
 

Peng	et	al.	[18]	applied	remMap	method	to	gene	expression	and	copy	number	

variation	data	to	investigate	the	influences	of	DNA	copy	number	alterations	on	

RNA	transcript	levels	based	on	172	breast	cancer	tumor	samples.	RemMap	can	

also	be	utilized	to	study	the	relationships	between	other	types	of	biological	

molecules	[18].	It	can	be	applied	to	other	models	as	well	to	select	a	group	of	

variables	in	a	multiple	regression	model.	In	our	study,	remMap	was	utilized	to	

select	genes	whose	expression	could	affect	single	drug	sensitivity.	 
 
3. CNAmet	[20]	

The	assumption	of	CNAmet	is	that	genes	with	simultaneous	alterations	in	gene	

expression,	copy	number	and	methylation	are	likely	to	be	involved	in	tumor	

progression.	CNAmet	can	integrate	copy	number,	methylation	and	gene	

expression	data	to	detect	genes	with	abnormal	expression	levels	that	have	

concomitant	amplification/deletion	or	hypomethylation/hypermethylation.		

	

In	our	study,	CNAmet	was	applied	to	analyze	copy	number	variation,	

methylation	and	gene	expression	to	select	signature	genes.		It	was	also	used	to	

identify	corresponding	changes	in	copy	number	and	methylation	for	genes	

selected	by	remMap	since	remMap	was	only	used	to	select	genes	of	which	

expression	levels	can	influence	single	drug	response.	

	
4. COSMIC	gene	

COSMIC	Cancer	Gene	Census	data	[21]	contains	a	catalog	of	genes	for	which	

mutations	have	been	causally	implicated	in	cancer.	We	selected	genes	related	to	

the	cancer	types	of	the	cell	lines	considered	in	this	challenge,	resulting	in	81	

genes	as	signature	genes.	Random	forests	models	with	the	
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expression/mutation/copy	number/methylation	of	COSMIC	genes	as	predictors	

were	benchmark	models	in	our	study.	Prediction	results	of	other	models	using	

signature	gene	lists	generated	by	data	integration	methods	would	be	compared	

to	the	results	of	these	models.		

 

5. Coefficient	of	variation	

A	total	of	300	genes	with	the	highest	coefficients	of	correlation	of	gene	

expression	levels	were	selected	as	signature	genes.	In	our	study,	a	model	to	

predict	drug	synergies	was	built	with	the	gene	expression,	copy	number	

variation	and	methylation	of	these	genes.	This	model	was	another	benchmark	

model	to	assess	the	effect	of	utilizing	data	integration	methods	to	select	

signature	genes.		
 
 

2.2.3 Drug synergies prediction 

For	each	drug	combination	on	each	cell	line,	a	vector	of	covariates	was	constructed.	

The	vector	was	comprised	of	the	following	covariates:	

• Drug	indicators:	which	two	drugs	the	combination	included;	

• Cell	line	indicators:	on	which	cell	line	the	combination	was	tested;	

• CNV	indicators:	whether	the	target	genes	of	the	two	drugs	have	copy	number	

variations	(e.g.	maximal	copy	number	3)	on	the	cell	line;	

• Mutation	indicators:	whether	the	target	genes	of	the	two	drugs	have	

mutations	on	the	cell	line;	

• The	CNV,	gene	expression,	and	methylation	information	of	the	signature	

genes	on	the	cell	line.	

Random	Forests	implemented	using	R	package	randomForest	[22]	was	applied	to	

predict	drug	synergy	scores	of	every	drug	combination	on	different	cell	lines.	The	

response	variable,	i.e.,	observed	synergy	scores,	was	preprocessed	by	subtracting	

the	mean	of	the	corresponding	combination	from	them.	Then	the	mean	was	added	
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back	to	the	Random	Forests	predictions.	For	both	Challenge	A	and	Challenge	B,	

benchmark	models	and	models	using	data	integration	approaches	were	built.		

2.2.4 Performance evaluation 

In	our	study,	the	training	and	leaderboard	datasets	were	combined	to	train	the	

Random	Forests.	To	assess	the	performance	of	each	model,	30	rounds	of	3-fold	cross	

validations	were	conducted.	In	this	Dream	Challenge,	two	prediction	scoring	metrics	

were	designed	to	compare	the	prediction	accuracy	of	each	model.	In	our	study,	we	

adopted	the	same	metrics	to	measure	each	model’s	prediction	precision.		

1. Primary	metric	[27]	

Primary	metric	is	aimed	to	evaluate	the	prediction	accuracy	of	each	drug	

combinations.	It	is	a	weighted	average	of	Pearson	correlation	between	

predicted	synergy	scores	and	true	synergy	scores	for	each	drug	combination.	

Suppose	for	drug	combination	i,	n!	is	the	number	of	cell	lines	drug	

combination	i	was	applied	to	and	ρ!	is	the	Pearson	correlation	between	

synergy	score	prediction	and	true	synergy	score	for	drug	combination	i,	then	

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑚𝑒𝑡𝑟𝑖𝑐: 𝜌! =
𝑛! − 1 ∙ 𝜌!!

!!!

𝑛! − 1!
!!!

, 

where	N = 167	is	the	total	number	of	drug	combinations	(∀ n! ≥ 2).	

2. Tie	metric	[27]	

The	tie-breaking	metric	is	identical	to	the	primary	metric,	but	only	drug	

combinations	with	observed	synergistic	cell	lines	in	the	test	set	are	used.	For	

each	drug	combination,	synergistic	cell	lines	are	defined	as	having	synergy	

score	greater	than	20	in	that	cell	line	for	a	given	drug	combination.	

Since	30	rounds	of	3-fold	cross	validations	have	been	conducted,	the	mean	primary	

metric	and	tie	metric	were	used	to	compare	the	performances	of	all	models.		
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CHAPTER 3. RESULTS 

3.1 Feature selection 

3.1.1 DriverNet 

The	underlying	assumption	of	the	DriverNet	method	is	that	aberrant	genomic	

variation	will	disrupt	transcriptional	patterns	through	one	or	several	pathways.	The	

copy	number	alteration	or	somatic	mutation	of	one	gene	may	not	only	lead	to	the	

over-representation	or	under-representation	of	this	gene,	but	also	the	expression	

levels	of	other	genes	connected	to	it	through	pathways.	Similarly,	one	mutated	gene	

can	also	affect	multiple	genes.	For	our	analysis,	DriverNet	was	first	applied	to	

mutation	and	gene	expression	datasets	to	select	candidate	driver	mutations.	Then	it	

was	applied	to	copy	number	variation	and	gene	expression	datasets	again,	aiming	to	

detect	possible	driver	copy	number	variation.	

	
For	mutation	only,	DriverNet	identified	326	mutated	genes	that	were	associated	

with	abnormal	expression	levels	of	other	genes.	A	total	of	97	of	them	were	

nominated	as	significant	driver	candidates	with	P	value	below	0.05,	including	

several	known	oncogenic	genes,	such	as	PIK3CA,	KRAS,	ERBB2,	STAG1,	as	well	as	

tumor	suppressor	genes	TP53	and	PTEN.	Among	97	significant	candidate	drivers	

identified	by	DriverNet,	21	of	them	were	in	the	COSMIC	cancer	gene	census	(ABL1,	

AKT1,	APC,	ATM,	BCR,	CDH1,	EGFR,	EP300,	ETNK1,	FBXW7,	JAK1,	KRAS,	MET,	MSH2,	

PDGFRA,	PDGFRB,	PIK3CA,	PIK3R1,	PTEN,	SMAD4,	TP53).	Other	candidate	genes	

that	were	not	in	COSMIC	datasets	included	FCL1,	of	which	missense	mutations,	

silent	mutations	and	nonsense	mutations	are	often	observed	in	cancers,	and	RYR3,	

which	may	affect	the	growth,	morphology	and	migration	of	breast	cancer	cells	[23].	

	
For	copy	number	variation,	96	genes	with	amplification	and	190	genes	with	deletion	

were	marked	as	candidate	drivers	by	DriverNet.	Among	amplified	candidate	genes,	

the	copy	number	variation	of	15	of	them	significantly	altered	the	gene	expressions	

of	themselves	or	other	genes,	while	the	copy	number	loss	of	32	genes	of	190	deleted	

genes	had	significant	altering	effects.	Significant	candidate	drivers	(p<0.05)	with	
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high-level	amplification	or	homozygous	deletion	included	oncogenes	EGFR,	PIK3CA,	

MET	and	suppressor	gene	TP53.	Oncogenes	AKT1,	FGFR1	and	FGFR2	were	also	

detected	but	not	significant.	Most	signature	genes	selected	by	DriverNet	identified	

were	associated	with	the	aberrant	gene	expression	levels	of	other	genes.	For	

example,	the	amplification	of	oncogene	PIK3CA	was	found	to	be	associated	with	the	

up-regulation	of	43	other	genes,	including	EGFR,	MAPK9,	PRKCA,	and	EP300.	

Figure.1	shows	the	heat	map	of	Spearman	correlation	between	copy	number	and	

gene	expression	of	46	genes	selected	with	p	value	lower	than	0.05.		
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Figure	1	Spearman	correlation	between	CNV	and	expression:	Rows	correspond	to	gene	expression	and	
columns	correspond	to	copy	number.	Red	and	blue	indicate	high	and	low	correlations	respectively.	The	
plot	shows	that	the	copy	numbers	of	selected	genes	are	associated	with	the	expression	of	other	genes	
beside	themselves.	The	copy	numbers	of	gene	FURIN	are	negatively	associated	with	the	expression	of	
almost	all	the	other	selected	genes.	The	copy	numbers	of	COX7B	are	positively	associated	with	the	
expression	of	all	the	selected	genes.	

Surprisingly,	ERBB2,	of	which	the	amplification	exists	in	up	to	18%	of	breast	cancer	

patients,	was	not	identified	as	a	candidate	driver	[24].	However,	the	average	gene	

expression	level	of	ERBB2	with	amplification	was	significantly	higher	than	that	of	

ERBB2	with	deletion	or	without	any	copy	number	variation.	Figure	2	is	the	boxplot	

displaying	the	gene	expression	levels	of	ERBB2	with	and	without	amplification.	The	

results	of	t	test	of	equal	means	of	gene	expression	are	presented	as	well. 
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Figure	2	Boxplot	of	the	expression	of	ERBB2:	Amplified	ERBB2	has	relatively	higher	expression	levels	
than	ERBB2	without	amplification.	The	P	value	of	the	two-sample	t-test	for	the	equal	mean	is	0.02.	Thus,	
from	the	results	of	t	test,	the	expression	level	varies	with	the	copy	number	of	gene	ERBB2.	

The	candidate	driver	genes	were	predictors	for	both	Challenge	A	and	Challenge	B.	

For	the	models	for	Challenge	B,	only	the	copy	number	variation	and	mutation	of	

those	genes	were	added.		

	

3.1.2 CNAmet 

CNAmet	was	applied	to	select	genes	with	simultaneous	expression	and	copy	number	

(or	methylation)	alterations.	Those	selected	genes,	which	may	have	a	key	role	in	

tumor	progression	or	drug	interaction,	were	used	as	predictors	for	Challenge	B.		

	

Our	analysis	of	copy	number	variation,	gene	expression	and	mutation	datasets	using	

CNAmet	resulted	in	four	gene	lists,	which	corresponded	to	hypomethylation,	

hypermethylation,	copy	number	loss,	and	gain	respectively.	The	copy	numbers	

(methylation)	of	genes	in	copy	number	gain	and	loss	(hypomethylation	and	

hypermethylation)	lists	were	predictors	in	the	model.	CNAmet	identified	487	genes	

with	both	amplification	and	overexpression,	or	deletion	and	underexpression.	A	

total	of	369	genes	with	methylation	alterations	were	detected	coexisting	with	

downregulation	or	upregulation	of	gene	expression.	The	overlaps	between	them	

Mean	
(amplification)	

4.87	

Mean	
(deletion/	no	
change)	

4.19	

P	value	 0.02	
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were	52	genes,	of	which	both	copy	numbers	and	methylations	affected	their	gene	

expressions.	JAK1,	whose	mutation	is	often	associated	with	acute	lymphoblastic	

leukemia	and	one	of	the	drug	target	genes,	was	selected	as	a	predictor	since	its	

amplification	and	hypomethylation	were	linked	to	the	abnormal	gene	expression	

levels.		

	

Candidate	signature	genes	nominated	by	CNAmet	included	several	oncogenes	such	

as	FLT3,	STAT3,	and	AKAP9,	and	5	drug	target	genes,	JAK1,	PIK3CA,	RRM1,	TYMS,	

and	TOPBP1.	Similar	to	DriverNet,	CNAmet	did	not	label	ERBB2	as	a	signature	gene.	

The	p	value	of	permutation	test	for	ERBB2	is	0.21.		

	
3.1.3 remMap 

Unlike	DriverNet	and	CNAmet,	which	identify	possible	driver	genes	or	signature	

genes	without	utilizing	drug	information,	remMap	allows	using	single	drug	

responses	as	the	dependent	variable	to	select	features	that	affect	drug	sensitivity.	In	

theory,	drug	synergy	scores	can	also	be	applied	as	the	response	variable	for	variable	

selection.	However,	due	to	the	small	number	of	experiments	with	cell	lines	for	each	

drug	combinations,	the	limited	sample	size	can	lead	to	low	statistical	power,	hence	

reduce	the	chance	of	detecting	signature	genes.	Therefore,	the	GI50	value	of	each	

drug	was	used	as	response	variable	since	there	were	fewer	missing	observations	for	

each	drug.	Figure	3.A	and	Figure	3.B	display	two	plots,	one	of	which	is	the	heat	map	

of	drug	synergy	scores	of	all	the	drug	combinations	across	85	cell	lines	and	the	other	

is	of	GI50	values	of	all	drugs	across	all	cell	lines.	

	
With	GI50	values	as	response	variable,	if	the	predictors	in	the	multivariate	linear	

model	were	the	expression,	copy	number	variation,	mutation	and	methylation	of	all	

genes,	theoretically	remMap	could	simultaneously	select	all	the	important	features.	

Nevertheless,	it	would	take	exceptionally	long	time	to	run	this	program.	Even	using	

gene	expression	values	along	as	predictors	in	the	model	requires	more	than	five	

days	to	run	the	program.	Considering	the	computational	time,	only	gene	expressions	

with	coefficient	of	correlation	greater	than	0.2	were	added	into	the	model	as	
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independent	variables.	As	a	

result,	2922	predictors	

were	considered	in	the	

model.	As	is	shown	in	

Figure	3.A,	not	all	drugs	

were	tested	on	the	same	

cell	lines.	Consequently,	we	

divided	69	drugs	into	five	

groups	that	were	not	

mutually	exclusive	based	

on	the	cell	lines	they	tested	

on	and	built	a	model	for	

each	group	of	drugs;	hence	

we	had	5	gene	lists	

corresponding	to	5	drug	

lists.	

	
There	were	569	genes	

selected	by	remMap,	

including	drug	target	genes	

PIP5K1B,	WNT5B,	

WNT10A,	and	others.	The	

results	are	consistent	with	

existing	biological	findings	

on	cancer.	For	example,	for	

drugs	targeting	MAP2K1	

and	MAP2K3,	this	method	

successfully	inferred	the	

association	between	cell	

lines’	response	to	those	

																																									Figure	3.A	GI50	and	Cell	Lines	

Figure	4.B	Drug	Synergy	Scores	and	Cell	Lines	
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drugs	and	the	expression	of	genes	FGFR3,	MAPK13	and	FGF12.		

	
However,	as	a	result	of	data	preprocessing,	only	a	small	portion	of	gene	expression	

data	was	used,	which	may	result	in	the	failure	to	capture	important	information	

from	genes	whose	expression	levels	had	less	variation.	Therefore,	the	gene	list	

selected	by	remMap	was	combined	with	a	list	of	81	genes	from	COSMIC	data	that	are	

related	to	the	cancer	types	in	this	challenge	and	then	the	gene	expression	data	of	

this	new	list	served	as	predictors	in	the	final	model.	Figure	4	is	the	heat	maps	of	

Pearson	correlations	between	GI50	of	five	drugs,	which	were	tested	on	more	cell	

lines	than	other	drugs,	and	expression	levels	of	genes	selected	by	remMap	

corresponding	to	these	drugs.	Figure	5	shows	Pearson	correlations	between	GI50	of	

the	same	five	drugs	and	COSMIC	gene	expressions.		

	

	
Figure	4	Pearson	Correlations	between	Single	Drug	Sensitivities	and	Gene	Expressions	of	50	genes	
selected	by	remMap.	Blue	and	Red	indicate	low	and	high	correlations.	Rows	correspond	to	drugs	and	
columns	correspond	to	gene	expression.	The	plot	suggests	that	the	expression	levels	of	selected	genes	
can	affect	drug	responses.	The	highest	positive	correlation	is	detected	between	the	expression	of	gene	
ALOX15B	and	the	response	of	drug	“MTOR_1”,	which	is	as	high	as	0.63.	The	most	significant	negative	
correlation	is	between	the	expression	of	gene	OSMR	and	the	response	of	drug	“PIK3C”,	which	is	-0.43.	
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Figure	5	Pearson	Correlations	between	Single	Drug	Responses	and	Gene	Expression	of	COSMIC	genes.	
Blue	and	Red	indicate	low	and	high	correlations.	Rows	correspond	to	drugs	and	columns	correspond	to	
gene	expression.	Compared	to	genes	selected	by	remMap,	the	correlations	between	drug	responses	and	
the	expression	of	COSMIC	genes	are	less	strong	but	strong	associations	still	exist.	The	expression	of	ETV1	
is	negatively	correlated	with	the	response	of	drug	“AKT”.	The	Pearson	correlation	between	them	is	-0.43.	
The	highest	positive	correlation	is	0.41,	which	is	the	correlation	between	the	expression	of	GATA3	and	
the	expression	of	drug	“AKT”.	

Because	only	related	gene	expression	features	were	selected,	it	is	not	known	

whether	the	copy	number	variation	or	methylation	of	those	genes	were	associated	

with	drug	responses.	Therefore,	CNAmet	method	was	applied	again	to	find	those	

parallel	changes.	A	total	of	16	of	them	were	identified	as	having	simultaneous	copy	

number	variation,	while	for	methylation,	14	of	them	were	detected	with	

hypermethylation	or	hypomethylation	that	can	impact	drug	responses.	

	
3.2 Model Performance 

Ten	models	were	built	to	predict	drug	synergy	scores.	Six	of	them	were	for	

Challenge	A	and	the	others	were	for	Challenge	B,	in	which	only	copy	number	

variation	and	mutation	data	were	allowed	to	use.	For	the	models	of	each	challenge,	

the	difference	of	the	covariates	used	lies	in	the	gene	expression/copy	number	

variation/methylation	of	signature	genes	added	into	the	model.	Each	model	used	

different	signature	gene	lists	generated	by	multiple	methods.	Table	1	summarizes	

which	of	the	CNV,	gene	expression	and	methylation	information	was	specifically	

used	in	each	model.	
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Table	1.A	Features	of	Signature	Genes	in	Each	model	for	Challenge	A	

Challenge	A	

Model		 Covariates		

DriverNet1	 1. Expression	levels	of	genes	selected	by	DriverNet	using	

mutation	dataset	and	gene	expression	dataset;	

2. Copy	numbers	of	those	selected	genes;	

3. Methylation	levels	of	selected	genes.	

DriverNet2	 1. Expression	levels	of	genes	selected	by	DriverNet	using	copy	

number	variation	dataset	and	gene	expression	dataset;	

2. Copy	numbers	of	selected	genes;	

3. Methylation	levels	of	selected	genes.	

remMap.CNAmet	 1. Expression	levels	of	569	genes	selected	by	remMap;	

2. Expression	levels	of	81	COSMIC	genes	related	to	the	cancer	

type	in	this	challenge.	(Overlapping	genes	in	two	gene	lists	

were	removed	so	that	there	were	no	redundant	genes).	

3. Copy	numbers	of	16	genes	with	simultaneous	amplification	

or	deletion	selected	by	CNAmet;	

4. Methylation	levels	of	14	genes	with	parallel	

hypermethylation	or	hypomethylation	selected	by	CNAmet.	

remMap		 1. Expression	levels	of	569	genes	selected	by	remMap;	

2. Expression	levels	of	81	COSMIC	genes	related	to	the	cancer	

type	in	this	challenge.	(Overlapping	genes	in	two	gene	lists	

are	removed	so	that	there	will	be	no	redundant	variables).	

COSMIC	

(benchmark)	

1. Expression	levels	of	81	genes	from	COSMIC	Cancer	Gene	

Census	related	to	the	cancer	type	in	this	challenge;	

2. Copy	numbers	of	selected	genes;	

3. Methylation	levels	of	selected	genes.	
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CV300	

(benchmark)	

1. Expression	levels	of	300	genes	with	the	highest	coefficient	

of	variation	of	their	gene	expression	levels;	

2. Copy	numbers	of	selected	genes;	

3. Methylation	levels	of	selected	genes.	

 
Table	1.B	Features	of	Signature	Genes	in	Each	model	for	Challenge	B	

Challenge	B	

Model		 Covariates		

DriverNet1	(B)	 Copy	numbers	of	genes	selected	by	DriverNet	using	the	

mutation	dataset	and	gene	expression	dataset.	

DriverNet2	(B)	 Copy	numbers	of	genes	selected	by	DriverNet	using	the	copy	

number	variation	dataset	and	gene	expression	dataset.	

CNAmet	 Copy	numbers	of	487	genes	selected	by	CNAmet	with	

simultaneous	amplification	or	deletion	and	abnormal	gene	

expression.	

COSMIC	(B)	

(benchmark)	

Copy	numbers	of	81	genes	from	COSMIC	Cancer	Gene	Census	

related	to	the	cancer	types	in	this	challenge.	

 

In	order	to	understand	whether	the	application	of	data	integration	would	benefit	

drug	synergy	prediction,	three	benchmark	models	were	built	without	using	data	

integration	tools.	Two	of	them,	model	CV300	and	model	COSMIC	were	for	Challenge	

A	and	model	COSMIC	(B)	was	for	Challenge	B.		

The	models’	performance	was	evaluated	using	two	metrics	designed	by	challenge	

organizers,	primary	metric	and	tie	metric.	To	compare	ten	models’	prediction	

accuracy,	30	rounds	of	3-fold	cross	validations	were	conducted.	The	mean	primary	

and	tie	metrics	for	the	entire	cross	validations	were	calculated	(Figure	6	and	Table	2	

display	the	two	metrics	for	each	model).		
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Table	2.A	Primary	and	Tie	Metrics	of	Each	Model	in	Challenge	A	

Model		 DriverNet1	 COSMIC	 DriverNet2	 remMap	 remMap.CNAmet	 CV300	

Primary	

metric	

0.273	 0.268	 0.268	 0.265	 0.266	 0.199	

Tie	

metric	

0.278	 0.272	 0.272	 0.270	 0.270	 0.201	

	
Table	2.B	Primary	and	Tie	Metrics	of	Each	Model	in	Challenge	B	

Model	 COSMIC	(B)	 DriverNet2	(B)	 DriverNet1	(B)	 CNAmet	

Primary	

metric	

0.266	 0.261	 0.272	 0.240	

Tie	metric	 0.270	 0.267	 0.278	 0.246	

	

Based	on	the	results	of	cross	validations,	model	DriverNet1	and	model	DriverNet1	

(B)	achieved	the	best	performance	among	models	for	Challenge	A	and	for	Challenge	

Figure	6	Primary	and	Tie	Metrics	for	Each	Model:	Purple	bars	indicate	primary	metric	and	blue	bars	indicate	tie	metric.	The	bars	plot	shows	
that	model	DriverNet1	and	model	DriverNet1(B)	achieve	the	highest	prediction	accuracy.	Model	CV300	has	the	lowest	prediction	scores.		
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B	respectively.	Among	six	models	for	Challenge	A,	model	CV300	had	the	lowest	

primary	and	tie	metrics.	All	other	models,	including	models	for	Challenge	B,	

outperformed	model	CV300.	This	indicates	that	genes	in	all	the	other	signature	gene	

lists	contain	more	information	than	the	genes	whose	gene	expression	have	the	

highest	coefficient	of	variation	of	gene	expression.		

	
For	Challenge	A,	compared	to	model	COSMIC,	the	only	model	with	better	prediction	

accuracy	was	model	DriverNet1.	Model	DriverNet2	had	the	same	performances	as	

Model	COSMIC.	All	the	other	models	for	Challenge	A	did	not	achieve	better	

performance,	but	the	differences	in	the	performances	were	minimal.	Model	

DriverNet1	and	model	DriverNet2	both	had	higher	primary	metric	and	tie	metric	

than	those	of	model	remMap,	even	though	signature	genes	used	in	model	remMap	

were	selected	with	single	drug	response	as	dependent	variable.	Model	

remMap.CNAmet’s	performance	was	slightly	better	than	model	remMap.	The	

improvement	was	minimal	and	Pearson	correlation	between	the	predictions	of	two	

models	was	0.993.	One	probable	reason	is	that	although	CNAmet	was	employed	to	

pinpoint	related	changes	in	copy	number	or	methylation,	only	30	genes	were	

detected	with	concurrent	copy	number	variation	or	methylation	alteration.	The	

effects	of	extra	30	features	can	be	too	limited	to	bring	considerable	improvement.		

	
For	Challenge	B,	the	prediction	of	model	DriverNet1	(B)	was	the	most	accurate.	The	

performances	of	model	COSMIC	(B)	and	model	DriverNet2	(B)	were	very	similar,	

while	the	primary	and	tie	metrics	of	model	CNAmet	were	both	lower.	Therefore,	the	

genes	selected	by	DriverNet	using	mutation	data	and	gene	expression	data	are	most	

informative	for	predicting	drug	synergy	scores.		

	
Unexpectedly,	the	predictions	from	different	models	are	highly	correlated,	though	

the	covariates	they	use	have	little	overlap.	For	each	drug	combination,	we	calculated	

Pearson	correlations	between	the	predictions	and	true	synergy	scores.	Besides	

model	CV300,	model	CNAmet,	which	had	relatively	lower	prediction	accuracy,	other	

seven	models’	prediction	were	close.	Figure	7	shows	Pearson	correlations	of	all	

models	besides	model	CNAmet,	model	CV300	and	model	remMap.CNAmet.	Since	
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Pearson	correlation	between	the	predictions	of	model	remMap	and	the	predictions	

of	model	remMap.CNAmet	was	0.993,	only	model	remMap’s	predictions	are	used	

here.	

	

Figure	7	Pearson	Correlations	between	the	Predicted	Synergy	Score	and	True	Score	of	All	the	Drug	Combinations.	As	shown	
in	the	plot,	each	model	has	similar	patterns	of	correlations.	The	predicted	scores	of	each	model	are	very	similar.	
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CHAPTER 4. CONCLUSIONS 

4.1 Summary 

In	this	thesis,	we	built	ten	Random	Forests	models	to	predict	drug	synergy	scores.	

Besides	three	models	as	benchmarks	(model	CV300,	model	COSMIC	and	model	

COSMIC	(B)),	the	other	seven	models	utilized	the	copy	number	

variations/expressions/methylation	levels	of	genes	selected	by	DriverNet,	remMap	

and	CNAmet.	DriverNet	selected	326	mutated	genes	with	altered	gene	expression	

using	mutation	and	gene	expression	data.	Another	286	genes	with	simultaneous	

copy	number	variation	and	gene	expression	changes	were	selected	by	DriverNet	

after	analyzing	copy	number	and	gene	expression	data.		

	

The	results	of	the	cross	validations	suggest	that	for	Random	Forests	model,	

signature	genes	selected	by	DriverNet	using	gene	expression	and	mutation,	or	copy	

number	variation	are	the	most	predictive,	in	that	model	DriverNet1	and	model	

DriverNet1	(B)’s	primary	metrics	were	the	highest	(0.273	and	0.272).	Especially	for	

Challenge	B,	when	gene	expression	values	cannot	be	used	as	predictors,	DriverNet	

identifies	informative	copy	number	variations	successfully.		

	
Although	DriverNet	cannot	integrate	drug	response	or	drug	synergies	information	

into	the	variable	selection	process	like	remMap,	DriverNet1	and	DriverNet2	

outperformed	two	models	using	the	gene	list	generated	by	remMap	(model	remMap	

and	model	remMap.CNAmet),	of	which	primary	metrics	were	0.265	and	0.266	

respectively.	One	of	the	explanations	that	the	genes	selected	by	remMap	were	not	as	

informative	as	genes	selected	by	DriverNet	might	be	that	due	to	the	limited	samples	

of	single	drug	responses,	the	power	of	detecting	signature	genes	was	limited.	

Moreover,	unlike	DriverNet,	which	incorporates	prior	knowledge	from	existing	

cancer	research	through	an	influence	graph,	remMap	selects	signature	genes	

without	prior	biological	knowledges.	Thus,	when	there	is	much	noise	in	the	dataset,	

uninformative	variables	may	be	selected	by	remMap,	hence	decreasing	model’s	

prediction	accuracy.		
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Compared	to	DriverNet,	CNAmet	can	conduct	integrative	analysis	of	copy	number	

variation,	gene	expression	and	methylation.	This	method	is	able	to	distinguish	

synergistic	effect	of	DNA	methylation	and	copy	number	variation	on	gene	

expression.	Model	CNAmet’s	predictions	were	more	accurate	than	those	of	Model	

CV300	with	primary	metric	as	0.240,	which	reveals	that	genes	selected	by	CNAmet	

are	more	helpful	for	drug	synergies	prediction.			

	
For	three	benchmark	models,	model	CV300,	model	COSMIC	and	model	COSMIC	(B),	

model	CV300	achieved	the	lowest	prediction	accuracy	with	primary	metric	as	0.199,	

while	the	other	two	models	with	81	genes	related	to	the	cancer	types	in	this	

challenge	from	COSMIC	Cancer	Gene	Census	as	covariates	had	the	best	

performances	other	than	model	DriverNet1	and	model	DriverNet1	(B).	For	

Challenge	A,	model	COSMIC	had	the	second	highest	primary	metric,	0.268;	while	for	

Challenge	B,	model	COSMIC	(B)’s	primary	metric,	0.266,	was	the	second	highest	as	

well.	Since	all	the	model’s	predictions	were	more	precise	than	that	of	model	CV300,	

DriverNet,	remMap	and	CNAmet	are	all	effective	ways	to	select	signature	genes.	The	

fact	that	model	DriverNet1	and	model	DriverNet1	(B)	had	the	best	performance	

suggests	that	information	from	genes	selected	entirely	based	on	prior	knowledge	

(81	COSMIC	genes)	can	be	inadequate	to	predict	drug	synergies.	Nonetheless,	the	

performance	of	models	utilizing	remMap	and	CNAmet	to	select	features	indicates	

that	variable	selection	methods	that	are	not	knowledge-based	may	also	be	

insufficient.	

	
4.2 Limitations 

Although	this	study	has	shown	that	the	application	of	data	integration	methods	can	

improve	model’s	prediction	accuracy,	the	implementation	of	data	integration	

methods	has	some	limitations.	First	of	all,	each	data	integration	method	has	its	own	

limitations.	

	

1. DriverNet	
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The	most	distinguishing	feature	of	the	DriverNet	approach	is	to	incorporate	

prior	knowledge	about	cancer	gene	networks	through	the	influence	graph.	Genes	

outside	the	influence	graph	will	not	be	selected,	which	can	reduce	the	likelihood	

of	including	uninformative	gene	features	in	the	model.	Although	in	this	study,	

drug-gene	information	was	not	applied	to	select	signature	genes,	theoretically	it	

is	possible	to	use	such	information	by	designing	our	own	influence	graph.	

However,	the	use	of	influence	graph	can	also	fail	to	identify	signature	genes	we	

have	no	knowledge	of	since	the	graph	is	inevitably	sparse	and	incomplete.		

	

Another	drawback	of	DriverNet	is	that	it	may	fail	to	detect	somatic	mutations	or	

copy	number	variations	that	modulate	less	extreme	but	important	changes	in	

gene	expression,	in	that	a	prespecified	threshold	is	used	to	define	outlying	gene	

expression	values	[16].	In	our	study,	gene	expressions	outside	the	two	standard	

deviation	values	were	considered	abnormal.	This	approach	may	result	in	the	

overlook	of	genes	with	somatic	mutations	or	copy	number	variations	that	

modulate	important	changes	in	gene	expression	within	the	given	range	[16].		

	

In	addition,	DriverNet	cannot	take	the	directionality	of	the	change	in	expression	

into	account	[16],	and	it	cannot	discern	the	correlation	between	copy	number	

gain/loss	and	gene	expression	is	negative	or	positive.		

	
2. CNAmet	

Compared	to	DriverNet,	which	can	identify	genomic	aberrations	altering	more	

than	one	transcriptional	network	[16],	the	main	limitation	of	CNAmet	is	that	it	

can	only	analyze	the	one-to-one	association	between	gene	expression	and	

methylation	(or	CNV).	It	cannot	be	applied	to	assess	the	influence	of	one	gene’s	

CNV	or	methylation	on	another	gene’s	expression.	For	example,	in	our	study,	

both	DriverNet	and	CNAmet	identified	PIK3CA	as	signature	gene.	Both	

approaches	can	recognize	the	effect	of	the	copy	number	gain	of	PIK3CA	on	its	

gene	expression,	but	DriverNet	can	also	distinguish	the	influence	of	amplified	
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PIK3CA	on	gene	expression	of	other	genes	in	the	same	pathway,	such	as	EGFR,	

MAPK9,	MET,	GNAS,	CD4,	and	others.		

	

One	of	the	advantages	of	CNAmet	is	that	it	can	conduct	integrative	analysis	of	

methylation,	copy	number	variation	and	gene	expression.	In	our	study,	we	only	

used	CNAmet	to	select	genes	with	important	hypermethylation	or	

hypomethylation.	(remMap	can	select	alteratinos	in	methylation	with	significant	

effect	as	well,	however,	in	our	study,	we	only	applied	remMap	to	select	signature	

genes	based	on	their	expression	since	adding	more	variables	into	the	model	

would	cost	longer	time	to	run	the	program).	Nevertheless,	CNAmet,	like	

DriverNet	has	the	same	disadvantage	that	directionality	is	not	considered.		

	

CNAmet	does	not	employ	prior	knowledge,	which	makes	it	a	suitable	tool	to	

detect	concomitant	copy	number/methylation	and	gene	expression	alteration,	

but	less	applicable	for	signature	genes	selection.	Although	there	is	no	clear	

evidence	that	knowledge-based	integration	can	outperform	data-driven	

integration,	Kim	et	al.’s	paper,	in	which	a	graph-based	framework	for	integrating	

multi-omics	data	to	predict	clinical	outcomes	for	cancer	patients	was	proposed,	

suggested	that	it	was	beneficial	to	incorporate	genomic	knowledge,	such	as	

pathway	or	GO	gene	sets,	into	omics	data	integration	process	since	it	could	

improve	the	predictive	power	and	better	explain	the	interplay	between	different	

types	of	data	and	knowledge	[37].	However,	CNAmet	can	serve	as	a	

complementary	tool	for	detecting	matching	alterations	in	methylation	or	copy	

number	for	signature	genes	selected	by	other	non-integrating	methods.	In	our	

study,	after	selecting	signature	genes	with	remMap,	CNAmet	was	applied	to	

search	for	the	parallel	changes	in	methylation	or	copy	number.	

	
3. remMap	

Compared	to	two	other	methods,	remMap	has	two	main	strengths.	First,	

information	about	drug	can	be	used	to	select	signature	genes.	Second,	remMap	

treats	all	sources	of	genomic	information	as	one	coherent	dataset	rather	than	
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separate	ones.	Therefore,	remMap	can	carry	out	one	joint	analysis	by	viewing	

gene	expression,	methylation,	copy	number	variation,	and	mutation	datasets	as	

one	dataset.	Although	in	our	study,	due	to	the	limited	sample	size	and	

computational	feasibility,	only	gene	expression	dataset	was	used.		

	

Because	remMap	is	time-consuming,	proper	dimensionality	reduction	methods	

should	be	applied	first	before	using	remMap	for	variable	selection.	Using	original	

high-dimensional	datasets	directly	can	be	inefficient.	Moreover,	it	is	also	hard	for	

remMap	to	incorporate	prior	knowledge	into	the	model.	Microarray	technique	

suffers	from	low	signal-to-noise	ratio,	which	may	cause	instability	in	gene	

signatures.	Utilizing	other	information	may	help	to	reduce	the	effect	of	randomly	

generated	differences	in	expression	levels	[38].	Without	the	incorporation	of	

genomic	knowledge,	remMap	may	select	uninformative	genes	due	to	the	random	

noises	in	microarray	data.			

	
Apart	from	the	limitations	mentioned	above,	there	are	some	drawbacks	three	

methods	all	have.		

• Different	cancer	types	and	subtypes	are	not	considered.	The	inability	of	

taking	cancer	types	and	subtypes	into	consideration	may	lead	to	the	failure	

of	identifying	signature	genes	of	certain	type	or	subtype.	

• Different	omics	data	have	different	noise	level.	For	each	data	integration	

method,	its	tolerance	to	noise	in	each	type	of	omics	dataset	is	unknown,	

which	may	make	the	results	questionable.		

	
4.3 Conclusions  

Research	in	data	integration	and	in	drug	synergy	analysis	has	mostly	remained	

isolated.	Our	study	suggests	that	the	application	of	data	integration	approach	may	

improve	our	understanding	of	targeted	drug	synergies.	The	emergence	of	data	

integration	methods	will	facilitate	the	process	of	variable	selection	for	models	to	

predict	drug	synergies.	Although	the	need	for	a	systematic	integrative	analysis	

method	has	not	been	fully	addressed	yet,	there	are	various	approaches	that	can	be	



	 34	

implemented	in	future	studies.	The	major	challenge	of	incorporating	data	

integration	analysis	into	drug	synergies	study	is	to	combine	different	types	of	omics	

datasets	and	drug	information.	As	more	data	are	generated	across	multiple	data	

types,	novel	integration	methodologies	of	future	will	further	our	understanding	of	

important	biological	processes	of	gene-gene	and	drug-gene	interactions.		
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