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ABSTRACT 

Current TNM staging system derived empirically from human papillomavirus (HPV) unrelated 

oropharyngeal cancer (OPC) has been shown inadequate to predict survival for HPV-related 

OPC. This study used three recursive partitioning algorithms, Classification Trees (CART), 

Conditional Inference Trees (CTree) and Model-based Recursive Partitioning (MOB) to derive a 

new staging scheme based on data from the National Cancer Data Base (NCDB). The derived 

staging systems were compared to the current system using the criteria such as hazard 

consistency within staging groups, hazard discrimination between groups, predictive ability and 

balance of distribution across groups. A total of 5,712 patients were included in the analysis. The 

staging system derived using the model-based recursive partitioning (MOB) has the best 

predictive ability and overall performance. It separates patients into four stages: Stage I (T1-

2N0-2a), Stage II (T1-2N2b-3), Stage III (T3), and Stage IV (T4). Stage V is reserved for 

metastatic patients (M1). The theoretical advantages for the MOB algorithm of fitting the local 

parametric model in each node and adjusting for covariates affecting survival were confirmed 

with empirical analysis. Thus MOB algorithm is recommended for future TNM cancer staging 

studies. 
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INTRODUCTION 

Oropharyngeal carcinoma (OPC) is a type of head and neck cancer with a rising incidence in the 

United States (Chaturvedi et al, 2011). An increasing proportion of OPC is related with human 

papillomavirus (HPV) infection (Ernster, 2007). OPC staging system that defines homogeneous 

populations is essential for selecting treatment, assessing prognosis and interpreting outcomes 

(Sobin, Gospodarowicz and Wittekind, 2010).  

Currently, the American Joint Committee on Cancer (AJCC)/ Union for International Cancer 

Control (UICC) TNM staging system is widely accepted for OPC patients (Greene and Sobin, 

2002). The extent of the tumor (T), the extent of spread to the lymph nodes (N), and the presence 

of metastasis (M) categories combine to create staging groups from I to IV that stratify patients 

according to survival outcomes. The seventh edition AJCC system was derived empirically from 

smoking-related (i.e. human papillomavirus (HPV) unrelated) OPC outcomes (Edge, Byrd and 

Compton, 2010). Researchers have shown that this staging system is not adequate to predict 

survival for HPV-related OPC (Ward et al., 2015; Huang et al., 2015; Dahlstrom et al., 2013), 

thus a separate staging system is needed. 

Recently, Huang et al. (2015) proposed a new staging system for HPV-related OPC using 

recursive partitioning analysis (RPA). Dahlstrom et al. (2016) and O’sulllivan et al. (2016) 

externally validate Huang’s RPA staging system based on HPC-related OPC patients treated at 

their institution and developed new staging systems with RPA as well. 

Recursive partitioning is a tree-based regression modeling technique introduced by Morgan and 

Sonquist (1963). The implementations of such algorithm includes Classification and Regression 
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Trees (CART), Multivariate Adaptive Regression Splines (MARS), and their variants and 

extensions (Zhang and Singer, 2010). The algorithm consists of two stages: first partition the 

observations by the covariate showing the best split that maximized an information measure of 

node impurity in a recursive way, and second fit a regression model in each node of the resulting 

partition. Gordon and Olshen (1985) first adapted the method of recursive partitioning to 

censored outcomes. The idea behind their algorithm was to force each node to be homogeneous 

as measured by a distance metric between the within-node Kaplan-Meier survival function and a 

survival function that has mass on at most one finite point (Bou-Hamad et al., 2011). Other 

splitting criteria using the logrank statistic (Ciampi et al., 1986; Segal, 1988) or likelihood ratio 

statistic (Davis and Anderson, 1989; LeBlanc and Crowley, 1992; Ciampi et al., 1995) was also 

suggested.  

Recursive partitioning has been widely used in TNM staging since the Radiation Therapy 

Oncology Group (RTOG) applied RPA to their head and neck database and create homogeneous 

groups based on anatomic and demographic factors (Cooper et al., 1996). Prognostic factors 

(Shepherd et al., 1993; Roach et al., 2000; Chansky et al., 2009; Huang et al., 2015), anatomic 

factors such as clinical T, N and M categories (Mountain, 1997; Rice et al., 2003; Huang et al., 

2015; Pan et al., 2016) and genetic characteristics (Zhang et al., 2001) are three common types of 

partitioning covariates that the algorithm split nodes on. Using different splitting criteria and 

pruning methods often results in different variable selection and splitting values, thus distinct 

decision trees for staging would be created. But most researchers did not specify the splitting 

criteria and pruning method being used for RPA, which makes the results unable to replicate and 

makes it impossible to compare the effectiveness of different recursive partitioning models. In 

this article various recursive partitioning algorithms, including Classification Trees (CART), 
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Conditional Inference Trees (CTree) and Model-based Recursive Partitioning (MOB) were 

applied to HPV-related OPC patients, comparative evaluation for the derived staging systems 

was performed. The goal of this study was to (1) compare the performance of different recursive 

partitioning algorithms in cancer staging. (2) propose an alternative staging system for HPV-

related OPC that separate the patients into homogeneous groups with respect to survival. 
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Theory of Recursive Partitioning Analysis for Censored Data 

Recursive partitioning is a tree-based regression model introduced by Morgan and Sonquist 

(1963). The algorithm consists of two stages: first partition the observations by the covariate 

showing the best split in a recursive way, and second fit a regression model in each node of the 

resulting partition. Gordon and Olshen (1985) first adapted the idea of recursive partitioning to 

censored outcomes by forcing each node to be homogeneous. Theories for three recursive 

partitioning algorithms available for censored data are introduced in the article. 

Classification and Regression Trees  

Classification and Regression Trees (CART) was introduced in 1984 by Breiman, Friedman, 

Olshen and Stone as an umbrella term of classification trees and regression trees. They employed 

a generalization of the binomial variance called the Gini index as the measure of node impurity 

and split a node by exhaustively searching over all covariates that minimize the total impurity of 

its two daughter nodes. The process is applied recursively until the relative decrease in total 

impurity is below a pre-specified threshold.  

The measure of node impurity for censored outcome was firstly developed by Gordon and 

Olshen (1985). They regarded a node as pure if all failures in the node occurred at the same time 

and defined P as the collection of all such Kaplan-Meier curves. The distance between within-

node Kaplan-Meier curve and any of the curves in P can be used to measure node impurity. 

The pruning process for CART is conducted by choosing a best value for complexity parameter 

using cross-validation. A cost-complexity of tree T is defined as 

 !" # = ! # + & #   [1] 
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where !   is the complexity parameter, !    is the number of terminal nodes in T, and ! "    is the 

sum of the costs over all terminal nodes. According to Breiman et al. (1984), for any value of the 

complexity parameter !  , there is a unique smallest subtree of the initial tree !"    that minimized 

the cost-complexity. We first derive m typical values for complexity parameter spanning from 0 

to infinity. Then fit a full model on the reduced training set with (n-n/s) observations and 

determine the subtrees for each complexity parameter. Under each of the m models, predict the 

outcome for each observation in the test set and sum over the cost of s subsets. The subtree 

derived by the complexity parameter with the smallest cost is chosen as the best pruned tree. 

(Therneau and Atkinson, 2015) 

Conditional Inference Trees 

Exhaustive search over all possible splits that maximize an information measure of node 

impurity often leads to a selection bias towards covariates with many possible splits. 

Hothorn, Hornik and Zeileis (2006) thus proposed Conditional Inference Trees (CTree), a non-

parametric class of regression trees embedding tree-structured regression models into the theory 

of permutation tests (Strasser and Weber, 1999), to fix this problem. 

The CTree algorithm can be formulated using non-negative integer case weights 

! = ($%,… , $()  . Each node is represented by a vector of case weights when the corresponding 

observations are within this node. For case weights w test the global null hypothesis of 

independence between any of the m covariates and the response variable.   The association 

between Y and !"    was measured by a linear statistics of the form 
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!" #$, & = ()*( &,-" .", ℎ(0,, (01, … , 0$))4

$

,51
) 
 [2] 

where !"    is a non-random transformation of the covariate	"#   , h is the influence function 

depending on the response ("#, … , "&)   in a permutation symmetric way. Under the null 

hypothesis one can dispose the dependency of !" #$, &    on the joint distribution of Y and !"    by 

fixing the covariates and conditioning on all possible permutations of Y. Then standardize the 

linear statistic and take the maximum of the absolute value and derive the P-value for the 

conditional distribution of this new test statistic. Next split the node over the covariate !"*	  with 

strongest association to Y (i.e. minimum P-value). Recursively repeat this process until the null 

hypothesis cannot be rejected at a pre-specified level !  . 

For censored regression the influence function h may be chosen as Logrank or Savage scores 

(Segal, 1988) and one can proceed as for univariate continuous regression. Alternatively, one can 

use the weighting scheme suggested by Molinaro, Dudoit, and van der Laan (2004) and take the 

weighted Kaplan-Meier curve for the case weights w(x) as prediction. 

Model-Based Recursive Partitioning  

Motivated by the fact that constant fits in each node tend to produce large and hard-to-interpret 

trees (Chan and Loh, 2004), the incorporation of parametric models into recursive partitioning 

has been of increased interest in the last decade (Zeileis et al., 2008). Inspired by algorithms of 

GUIDE (Loh, 2002), CRUISE (Kim and Loh, 2001) and LOTUS (Chan and Loh, 2004) that 

attached parametric models to terminal nodes, and maximum likelihood trees developed by Su 
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wt al. (2004), Zeileis, Hothorn and Hornik (2008) introduced a framework that embeds recursive 

partitioning into statistical model estimation and variable selection. 

Consider a parametric model !	($, &  ) observations !   and a !  -dimensional vector of parameters 

q. In many situations a single global model will not fit all n observations well. Then it might be 

possible to partition the observations using another set of covariates !", … , !%    such that the model 

can be well-fitted locally in each node.  

The Model-based Recursive Partitioning (MOB) algorithm is used to find such a partition 

adaptively using a greedy forward search. Firstly, fit the model to observations in the current 

node by minimization of some objective function Ψ  . If there is some overall instability in the 

parameter estimates with respect to any of the partitioning variables !"   , split the node over the 

variable !"    associated with the highest parameter instability. To assess whether the parameter 

estimates are stable, the general class of score-based fluctuation test for parameter instability 

(Zaileis and Hornik, 2007) is performed. The idea is to check whether the scores 

! ", $ = 	 '((*,+)'+    fluctuate randomly around their mean 0 or exhibit systematic deviations from 

0 over !"   . These deviations can be formulated as 

 
W" # = %-'/)*-'/) +,(./0)

23

45'
 
 [3] 

where !(#$%)   is the ordering permutation which gives the anti-rank of the observation !"#    in the 

vector !"   , and  !   is a suitable estimate of the covariate matric cov(% &, ( )  . A test statistic can be 

derived by applying a scalar function that captures the fluctuation in the empirical process to the 
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fluctuation process. Next compute the split point that locally optimize the Ψ  . When no more 

significant instabilities can be found, the recursion stops. Post-pruning can be applied by first 

growing a large tree and then pruning back splits that did not improve the model based on 

information criteria such as AIC or BIC (Su, Wang, and Fan, 2004). 
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METHODS 

Study population 

This project was a retrospective study that included patients with HPV-related OPC from 

National Cancer Data Base (NCDB). The NCDB is a joint project of the Commission on Cancer 

(CoC) of the American College of Surgeons (ACS) and the American Cancer Society. It draws 

from more than 1,500 hospital registries and captures approximately 70% of all newly diagnosed 

cancer cases in the U.S. (Bilimoria et al. 2008) The database recorded patient demographics, 

socioeconomic status, stage, tumor characteristics, comorbidity score, and treatment information. 

Patients diagnosed with squamous cell carcinoma of the oropharynx between 2010-2012 were 

enrolled in the study. Patients with unknown HPV status or HPV-negative status were excluded. 

Patients with metastatic disease (M1) were also excluded from the analysis of RPA stage 

derivation because they had distinct survival regardless of clinical T and N stages and only 

comprised 1.5% of study population. The analysis was eventually conducted on 5,626 cases 

meeting clinical and pathological inclusion criteria.  

Statistical Analysis 

Three variants of recursive partitioning algorithms for censored outcomes including CART, 

CTree and MOB were used to determine the new staging system for HPV-related OPC. The 

underlying statistical theories of the algorithms were elaborated in section 2. Table 1 

summarizes the differences in splitting criteria, pruning method and program of implementation 

of the three algorithms. Ordinal clinical T stage (T1/T2/T3/T4a/T4b) and clinical N stage 

(N0/N1/N2a/N2b/N2c/N3) were entered into the model as possible partitioning variables. Age, 
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Charlson-Deyo score and treatment were used to construct the parametric model in MOB 

algorithm. 

Table 1 Comparison of CART, CTree and MOB algorithms 
 Type of Model Splitting Criteria Pruning Method Implementation 

Program 
CART Non-

parametric 
Minimizing total node impurity 
measured by the difference from 
Kaplan-Meier curve to standard 
curves 

Choosing smallest 
complexity parameter 
using cross-validation 

Rpart() function 
from R package 
Rpart 

CTree Non-
parametric 

Partitioning over the covariate 
with strongest association to 
response 

None Ctree() function 
from R package 
partykit 

MOB Parametric Partitioning over the covariate 
associated with the highest 
parameter instability 

Pruning back the splits 
with no improvement 
on AIC 

Mob() function 
from R package 
partykit 

3-year overall survival (OS) was calculated for the 7th edition AJCC staging groups, the proposed 

CART-derived groups, the CTree-derived groups, and the MOB-derived groups using Kaplan-

Meier method. Pairwise log-rank tests were used to detect differences in survival between 

staging groups. Adjusted hazard ratio (AHR) with 95% confidence interval was derived using 

cox proportional hazard models. Variables that had significant effect on survival in univariate 

analysis, including age, Charlson-Deyo score and treatment were included in the final 

multivariate model. All tests were two sided, and a P-value of < 0.05 was considered statistically 

significant. Bonferroni correction was used for subgroup analysis and pairwise comparison. 

The four staging systems were then evaluated using the criteria proposed by Groome et al. 

(2001): (1) hazard consistency measuring whether observations within a staging group have 

similar survival rate. A weighted average of the survival deviation between each staging group 

and the TNM subgroups that comprise this staging group was used. (2) hazard discrimination 

measuring whether the survival rates differ between staging groups. The average of a measure of 
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evenness of the curves and the span of the curves was used. (3) outcome prediction is high. We 

use Brier score (Gerds and Schumacher, 2006) and concordance probability estimate (CPE) 

(Gönen and Heller, 2005) to measure the predictive and discriminative ability of the models. (4) 

balance in the distribution of cases. As in the original Groome study, the first three criteria were 

given a weight of 2 and balance was given a weight of 1. Different weights assignments were 

also discussed. The overall score was then calculated. Bootstrap with replacement was performed 

for internal validation. 

R version 3.2.3 was used for all statistical analyses.  
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RESULTS 

Study Cohort Descriptive Analysis 

A total of 5,712 patients with HPV-related OPC entered into the statistical analysis. The median 

follow-up was 28.45 months (95% CI: 28.09 to 28.91), estimated using reverse Kaplan-Meier 

method (Schemper and Smith, 1996). Demographic and clinical characteristics for the 5,626 

patients are provided in Table 2. The median age was 58. Among those patients, 86% were men, 

84% had no comorbid conditions recorded, 56% received primary radiation therapy and 41% 

received primary surgical therapy. The distribution of clinical T and N categories is also listed in 

the table. 

Table 2 Demographic and Clinical Characteristics of 5,626 HPV-related OPC Patients 
Characteristic No. (%) of Patients Hazard Ratio (P-value) 

Age 
    Mean (Standard deviation) 58.43 (9.33) 1.049 (< .001) 
    Median (Quartiles) 58 (52, 64)  
Sex 
    Male 4,911 (85.98) 0.953 (0.67) 
    Female 801 (14.02)  
Charlson-Deyo score 
    0 4,809 (84.19)  
    1 726 (12.71) 1.967 (< .001) 
    2+ 177 (3.1) 1.023 (0.83) 
Clinical T category 
    T1 1,732 (30.32)  
    T2 2,480 (43.42) 4.082 (< .001) 
    T3 895 (15.67) 0.906 (0.42) 
    T4a 491 (8.6) 0.955 (0.63) 
    T4b 114 (19.96) 1.022 (0.8) 
Clinical N category 
    N0 814 (14.25)  
    N1 1,113 (19.49) 1.963 (< .001) 
    N2a 640 (11.2) 2.204 (< .001) 
    N2b 2,099 (36.75) 0.735 (0.005) 
    N2c 822 (14.39) 0.854 (0.14) 
    N3 224 (3.92) 1.212 (0.104) 



 13 

Treatment 
    Primary radiation 3,222 (56.41) 0.698 (< .001) 
    Primary surgery 2,361 (41.33) 0.365 (< .001) 
    Other 129 (2.26)  

Recursive Partitioning Analysis 
Utilizing the recursive partitioning algorithms of CART, CTree and MOB, three TNM staging 

systems were derived respectively. Figure 1 shows the tree-based staging groups 
derived using CART with 3-year OS estimates, and Figure 1 B shows the combination 
of clinical T and N categories for each staging group. The tree and table representation 
of CTree derived staging groups ( 

Figure 2), and MOB derived staging groups (Figure 3) are also provided. For all three staging 

systems, patients with metastatic tumors (M1) are grouped in to a separate stage. Both MOB 

derived and CART derived staging systems eventually have five staging groups. Stage IV for 

MOB and CART staging systems is the same (T4). Ctree and CART staging systems have the 

same stage I (T1). 

A 

 

 

 

 

 

 

B 
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	 T1	 T2	 T3	 T4A	 T4B	
	N0	 I	 II	 III	 IV	 IV	
	N1	 I	 II	 III	 IV	 IV	
N2A	 I	 II	 III	 IV	 IV	
N2B	 I	 II	 III	 IV	 IV	
	N2C	 I	 II	 III	 IV	 IV	
N3	 I	 III	 III	 IV	 IV	

 
Figure 1 Staging groups derived using CART algorithm (A) Staging groups and 3-year OS (B) 

Clinical T and N categories for each staging group 

A  

 

 

 

 

 

 

 

B 
	 T1	 T2	 T3	 T4A	 T4B	
	N0	 I	 II	 II	 III	 III	
	N1	 I	 II	 II	 III	 III	
N2A	 I	 II	 II	 III	 III	
N2B	 I	 II	 II	 III	 III	
	N2C	 I	 II	 III	 III	 III	
N3	 I	 II	 III	 III	 III	
 
Figure 2 Staging groups derived using CTree algorithm (A) Staging groups and 3-year OS (B) 

Clinical T and N categories for each staging group 
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A 

 

 

 

 

 

 

B  

	 T1	 T2	 T3	 T4A	 T4B	
	N0	 I	 I	 III	 IV	 IV	
	N1	 I	 I	 III	 IV	 IV	
N2A	 I	 I	 III	 IV	 IV	
N2B	 II	 II	 III	 IV	 IV	
	N2C	 II	 II	 III	 IV	 IV	
N3	 II	 II	 III	 IV	 IV	
 
Figure 3 Staging groups derived using MOB algorithm (A) Staging groups and 3-year OS (B) 

Clinical T and N categories for each staging group 

Survival Analysis using AJCC and Recursive Partitioning Derived 
Staging groups 
Kaplan-Meier survival curves with number-at-risk table for the AJCC, CART, CTree and MOB 

staging groups appear in  

 

Figure 4. Adjusted hazard ratios and 3-year overall survival with their 95% CI are provided in 

Table 3. 
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In all four cases, overall log-rank test demonstrated statistically significant difference in survival 

rate across staging groups (P < 0.01). In three staging systems based on recursive partitioning, a 

monotonic reduction in 3-year OS according to higher TNM stages can be seen. In AJCC staging 

system, however, pairwise log-rank tests showed that no significant difference exist between 

Stage I and Stage II (P = 0.48), Stage II and Stage III (P = 0.53) and Stage III and Stage IVA (P 

= 0.011). Table 2 also suggests relatively indistinguishable 3-year OS for AJCC staging group I 

to group IVA (92%, 87%, 89%, 85% respectively). 

A                                                                   

                              

 

 

 

 

B 

 

 

 

 



 17 

 

C  

 

 

 

 

 

 

D 

 

 

 

 

 

 
 
Figure 4 Overall Kaplan-Meier survival curve by (A) AJCC stages (B) CART stages (C) CTree 

stages (D) MOB stages 
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Table 3 Three-year OS, AHR with 95% CIs for AJCC, CART, CTree and MOB staging systems 
 
Stage No. of 

patients 
3-year Overall Survival 

(95% Confidence Interval) 
Hazard 
Ratio 

p-value for 
HR 

AJCC  
I 182 92.11% (88.03%, 96.38%) Ref  
II 394 87.12% (82.98%, 91.46%) 1.290 (0.696, 2.392) 0.418 
III 1173 89.01% (86.78%, 91.29%) 1.416, (0.805, 2.491) 0.228 

IVA 3565 85.38% (83.90%, 86.88%) 1.990 (1.156,  3.425) 0.013 * 
IVB 312 71.02% (64.80%, 77.83%) 4.794 (2.675, 8.591) < .001 *** 
IVC 86 34.84% (24.29%, 49.96%) 10.632 ((5.841, 19.353) < .001 *** 

CART  
I 1726 92.02% (90.43%, 93.65%) Ref  
II 2375 86.73% (84.95%, 88.55%) 1.383 (1.101, 1.737) 0.00534 ** 
III 955 80.59% (77.54%, 83.77%) 2.477 (1.933, 3.175) < .001 *** 
IV 570 70.34% (65.75%, 75.25%) 3.726 (2.882, 4.819) < .001 *** 
V 86 34.84% (24.29%, 49.96%) 9.710  (6.884, 13.695) < .001 *** 

CTree  
I 1726 92.02% (90.43%, 93.65%) Ref  
II 3090 85.83% (84.25%, 87.44%) 1.553 (1.251, 1.929) < .001 *** 
III 810 71.49% (67.68%, 75.50%) 3.613 (2.838, 4.60) < .001 *** 
IV 86 34.84% (24.29%, 49.96%) 9.682 (6.866, 13.655) < .001 *** 

MOB 
I 2001 90.65% (89.06%, 92.28%) Ref  
II 2183 86.91% (85.06%, 88.81%) 1.622 (1.305, 2.015) < .001 *** 
III 872 81.23% (78.10%, 84.49%) 2.456 (1.932, 3.122) < .001 *** 
IV 570 70.34% (65.75%, 75.25%) 3.823 (2.999, 4.872) < .001 *** 
V 86 34.84% (24.29%, 49.96%) 9.801 (7.0413, 13.642) < .001 *** 

    0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Performance Evaluation of the AJCC and Recursive Partitioning 
Derived Staging systems 

Comparing the seventh edition AJCC staging system and the three recursive partitioning derived 

staging systems using Groome’s four criteria, the MOB stage performed best overall, followed 

by CART and CTree stage. The AJCC stage performed least well. The comparative result was 

also validated by bootstrap. (Table 4) 
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CART stage achieved best hazard consistency score, indicating that patients within each CART 

staging group have relatively consistent survival experience. With the worst hazard consistency 

score, AJCC stage has heterogeneous patients in each group with regard to survival. Hazard 

discrimination measures the evenness of the distribution of survival curves across groups and the 

span of the curves. With the patients of M1 disease excluded, CTree stage distributed most 

evenly across group (absolute differences in survival rates are at least 2%, 5%, 6%, and 4% for 

AJCC, CART, CTree and MOB respectively). All four staging systems have similar span of the 

curves (differences in survival rates between the first and the last stage are 21%, 22%, 21% and 

20% respectively) according to Table 2. With the greatest number of subgroups, the AJCC 

staging scheme outperformed other systems with regard to hazard discrimination. The MOB 

stage derived by parametric model-based recursive partitioning has a Brier score of 13.54%, 

indicating a greater predictive power than other systems, whereas the AJCC stage has worst 

discriminative ability. The three recursive partitioning derived staging systems are well-balanced 

with respect to the number of patients in each staging group, while the sample size distribution is 

unbalanced for AJCC stages. 

Table 4 Performance evaluation of AJCC, CART, CTree and MOB staging systems 
Evaluation	Criteria		 AJCC	Stage	 CART	Stage	 CTree	Stage	 MOB	Stage	

Performance	evaluation	for	the	study	cohort	 	 	 	 	
				%	Hazard	consistency	 2.51	 1.27	 1.49	 1.56	
								Score	 1.00	 0.00	 0.18	 0.23	
								Rank	 4	 1	 2	 3	
				Hazard	discrimination	 0.13	 0.43	 0.44	 0.35	
								Score	 0.00	 0.95	 1.00	 0.71	
								Rank	 1	 3	 4	 2	
				Outcome	prediction	(%	variance	explained)	 11.51	 12.29	 12.31	 13.54	
								Score	 1.00	 0.61	 0.61	 0.00	
								Rank	 4	 3	 2	 1	
				Balance	 0.88	 0.46	 0.43	 0.49	
								Score	 1.00	 0.06	 0.00	 0.12	
								Rank	 4	 2	 1	 3	
				Overall	score	 0.71	 0.45	 0.51	 0.29	
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				Overall	rank	 4	 2	 3	 1	
Performance	evaluation	using	bootstrap	(n=1000)	 	 	 	 	
				%	Hazard	consistency	 2.51	 1.71	 1.70	 1.71	
								Score	 0.95	 0.18	 0.16	 0.17	
								Rank	 3.89	 2.22	 1.93	 2.08	
				Hazard	discrimination	 0.17	 0.25	 0.35	 0.25	
								Score	 0.02	 0.42	 1.00	 0.42	
								Rank	 1.11	 2.48	 3.98	 2.43	
				Outcome	prediction	(%	variance	explained)	 11.85	 12.53	 12.51	 13.85	
								Score	 0.75	 0.53	 0.52	 0.08	
								Rank	 3.17	 2.66	 2.69	 1.47	
				Balance	 0.88	 0.46	 0.43	 0.49	
								Score	 1.00	 0.06	 0.00	 0.12	
								Rank	 4.00	 1.93	 1.07	 3.00	
				Overall	score	 0.60	 0.45	 0.47	 0.34	
				Overall	rank	 4	 2	 3	 1	
				%	Rank=1	 0.04	 0.20	 0.31	 0.45	
    % Rank=2 0.07 0.29 0.25 0.39	
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DISCUSSION 

The seventh edition AJCC staging system was derived empirically from HPV-unrelated OPC and 

has been shown to be inadequate to predict survival for HPV-related OPC. Hence, this article 

used three recursive partitioning algorithms, CART, CTree and MOB to derive a new staging 

scheme based on NCDB patients. In addition to proposing a new staging system valid for HPV-

related OPC, the other goal of this study was to compare the recursive partitioning algorithms 

with respect to the performance of the staging systems derived by them, and suggest the best 

algorithm for cancer staging. 

The importance of cancer staging lies in its application in planning treatment, assessing 

prognosis, stratifying patients for therapeutic studies, evaluating treatment outcome, and 

supporting cancer control. Therefore, unlike model validation which merely uses measures of 

predictive power or goodness of fit as assessing criteria, the evaluation for staging schemes need 

to take their applicability in real life into account. Groome et al. (2001) identified four 

characteristic for useful staging systems: similar survival outcomes within each group; 

heterogeneous survival between groups; high predictive ability; and balanced distribution across 

groups. These four criteria were then used for evaluation of the standard AJCC and three derived 

RPA staging schemes. 

According to evaluation analysis based on the study cohort and bootstrap validation (Table 4), 

MOB derived staging system has best predictive ability and overall performance. Thus it became 

the stage scheme for HPV-related OPC recommended by this article. Patients were grouped into 

four stages: Stage I (T1-2N0-2a), Stage II (T1-2N2b-3), Stage III (T3), and Stage IV (T4). Stage 

V is reserved for metastatic patients (M1). 
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MOB is a parametric model-based recursive partitioning algorithm developed to address the 

issue of constant fits in nodes. Rather than fitting a single global model using one set of 

covariates, MOB examines the possibility to partition the observations using another set of 

variables and construct locally well-fitted models in each node. Since a convention of OPC 

staging is to group patients by the combination of clinical T, N and M categories, other 

covariates affecting survival e.g. age, gender and treatment cannot be entered into the model if 

we use non-parametric recursive partitioning algorithms such as CART and CTree. The benefit 

of MOB is then very clear; it adjusts for covariates affecting survival by fitting multivariate cox 

models with those covariates locally and splitting a node over T, N or M if significant parameter 

instability is observed. 

Based on empirical analysis in this article and theoretical advantage of MOB algorithm, MOB is 

recommended as a default method for future TNM cancer staging. 

There are limitations of this study that worth discussion. The median follow-up is 28.5 months 

for the study cohort. This only allows an extrapolation to three-year overall survival in analysis, 

making it impossible to observe late distant metastases occurring 3 years or more after treatment 

that has been described for HPV-related disease (Huang et al., 2013). In addition, NCDB does 

not provide information on smoking history, a strong predictor of increased risk of failure 

(Gillison et al., 2011). Even though internal validation was performed with bootstrap, studies 

using independent datasets for external validation are needed to confirm the recommended 

recursive partitioning algorithm as well as the staging scheme.  
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