
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

5-1-2001

Intelligent Voice Email Agent: A Multimedia
Solution
Xuecheng Wang
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Wang, Xuecheng, "Intelligent Voice Email Agent: A Multimedia Solution" (2001). Student Work. 1170.
https://digitalcommons.unomaha.edu/studentwork/1170

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232767126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/1170?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F1170&utm_medium=PDF&utm_campaign=PDFCoverPages

Intelligent Voice Email Agent - A Multimedia Solution

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

University of Nebraska at Omaha

by

Xuecheng Wang

May 2001

UMI Number: EP73410

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation RaMisMng

UMI EP73410

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

THESIS ACCEPTANCE

Acceptance for the faculty of the Graduate College,
University of Nebraska, in partial fulfillment of the

requirements for the degree Master of Science in Computer Science,
University of Nebraska at Omaha.

Committee

l / v ' M u \ t H (l e / x c ,

u' ^ b / j c o i

t o)

X.

Chairperson ?A < k - u / / '

_ ’MDate ■ / f (, / 3 c c i

ABSTRACT

Intelligent agent theory is an important concept in artificial intelligent area. An

intelligent agent, in a nutshell, is an intelligent program that uses agent

communication protocols to exchange information for automatic problem solving,

performing specific tasks on behalf of their users. Our objective is to investigate

what an intelligent agent consists of and to implement several important aspects

of it. In particular, we are interested in an intelligent agent that is able to take care

of the incoming messages while the user is concentrating on some other duties.

We develop an agent-based design framework and implement an intelligent agent

system - voice email system that monitors incoming emails for us while we are

surfing the Internet. A special feature of this system is that the agent reads any

new messages for users. This initiative is based on the perception of real world

needs and the academic research development. Based on what we have done, we

can extend our agent capabilities. For example, two mail agents should be able to

communicate each other to achieve more complicated task.

Table of Contents

Chapter 1 Introduction... 1
1.1 The Initiatives - What We D o.. 1
1.2 The Approaches - How We Do..5
1.3 Organization of the Thesis.. 6

Chapter 2 Intelligent Agent: Theory, Classification, Framework
and Architecture... 7
2.1 What Is An Agent.. 7

2.1.1 Exploring various definitions o f agent...7
2.1.2 A more formal definition o f agent... 10

2.2 The Intelligent Agent Theory... 14
2.2.1 Early intelligent agent research..14
2.2.2 New theories in 1990’s .. 15
2.2.3 Three key issues..15

2.3 The Intelligent Agent Classification.. 17
2.4 The Intelligent Agent Framework...20
2.5 The Subsumption Architecture.. 23

2.5.1 What is subsumption architecture... 23
2.5.2 Principles o f subsumption architecture.. 24

2.6 Summary... 26
Chapter 3 Supporting Techniques For Reactive Agents............... 27

3.1 TTS and Internet Email Protocol.. 27
3.1.1 Text-to-Speech Synthesis (T T S)... 27
3.1.2 Internet Email protocol...31

3.2 Object-Oriented Design and Java API..33
3.3 Summary..36

Chapter 4 Development of Voice Email Agent Architecture........37
4.1 Project Model Implementation Methodology and Project Design

Consideration.. 37
4.1.1 Project model implementation methodology and design considerations......................... 37
4.1.2 The reasons that we add voice feature to the agent.. 39
4.1.3 The challenges for integrating speech into agent system.. 40

4.2 The Voice Email Agent Architecture... 42
4.2.1 Developing a layered agent m odel..43
4.2.2 The agent architecture... 46
4.2.3 Features o f the layered agent model..48

Chapter 5 Implementation of Intelligent Voice-Email Agent 51
5.1 The Principal Functions and Features.. 51
5.2 The Implementation..52

5.2.1 The implementation o f T TS..52
5.2.2 The implementation of electronic mail..60

5.3 The Navigation of Principal Functions... 64

5.4 A Brief Summary... 71
Chapter 6 Conclusion and Future Work.. 73

6.1 The Significances of Our W orks..73
6.2 Our Work In A Broader Sense...74
6.3 Future Work..75

References... 76

List of Figures

Figure 1.1 The Main Interface.. 5

Figure 2.1 The General Model of An Intelligent A gent..................................12

Figure 2.2 Intelligent Agent Classification...19

Figure 2.3 The Ajanta General M odel... 21

Figure 2.4 Subsumption Architecture.. 26

Figure 4.1 The Overall Flowchart... 43

Figure 4.2 An Intelligent Voice Email Agent Architecture.............................47

Figure 5.1 The Speech Synthesizer States..55

Figure 5.2 The Substates of ALLOCATED.. 56

Figure 5.3 The Handling Function.. 62

Figure 5.4 The Voice Email Agent Screen (1) ..65

Figure 5.5 The Voice Email Agent Screen (2) ..67

Figure 5.6 The Interactions Between Layers... 71

Figure 6.1 The Forward Features Between A gents... 75

List of Tables

Table 4.1 The Scenario for Adding Voice Feature

1

Chapter 1

Introduction

In this thesis we explore intelligent agent theory, an important concept in artificial

intelligent area, by designing an intelligent voice e-mail agent system. Such kind

of work extends intelligent agent theory scope to multimedia mechanism that is an

innovative work in this area. Our work mainly covers the explorations of several

aspects of intelligent agent theory and the implementations related to our

intelligent agent system architecture. In this introductory chapter, we discuss our

initiatives, our approaches, and give an overall idea about what our work is like.

The more detailed discussions are presented in the following chapters.

1.1 The Initiatives — What We Do

Since the invention of computer, we have dreamed computer programs

automatically perform boring and complex tasks for us. With the development of

artificial intelligence (AI) research, the intelligent agent (IA) concept is proposed

and it seems that IA can accomplish this task for us.

What is an intelligent agent? A discussion of various definitions is provided in

Chapter 2. An agent, according to the Webster’s New World Dictionary, is "a

person or thing that acts or is capable of acting or is empowered to act, for

2

another". An intelligent agent (IA), in a nutshell, is an intelligent program that

uses agent communication protocols to exchange information for automatic

problem solving, performing specific tasks on behalf of their users. Specifically,

the initiatives for utilizing intelligent agents are to simplify distributed computing

and overcome user interface problems. Such kind of program is distinguished

from other types of software program by its independent properties, therefore the

program is capable of completing complex assignments without intervention.

The objective of this thesis is to investigate what an intelligent agent consists of

and to implement several important aspects of it. In particular, we are interested in

an intelligent agent that is able to take care of the incoming messages while the

user is concentrating on some other duties (such as debugging or running a

computer program, surfing the Web pages, accessing the databases, as well as

others). With the help of an intelligent agent, the user is able to focus on his/her

own interests while not delay the handling of any important messages, because

the agent may make decisions for the user based on a set of instructions given by

the user ahead of time. The users only handle emails or phone messages that

deserve immediate attention. This scenario imposes tremendous challenges for the

system design. For example, how to make the agent identify what are important

messages, how to implement a set of instructions that agent has to follow, how to

synchronize user’s other duties with the agent’s background activities etc. Due to

3

the complexity of this problem, in this thesis, we only deal with a simplified

scenario, namely, how to use agent-based techniques to build a voice email

system that monitors incoming emails for us while we are surfing the Internet. A

special feature of this system is that the agent reads any new messages for users.

Therefore users can focus on their own duties while not delay the handling of any

important messages. Users are informed of the content of the messages that they

want to know. In order to achieve this goal, we first develop an agent-based

design framework and then implement it. With the completion of the agent, it

connects to mail server, fetching all the messages in the folder. All the messages

in the folder are shown in a graphic user interface, therefore users can go through

all the messages. If users want to listen to any message, just click that message

and select speak function, then the agent reads for users. As long as the agent is

active, it checks if there are any new messages in the folder. If there are any, the

agent reads the message if user give instructions to agent. It identifies various

types of messages such as plain/text, multipart and nested message. A visual

notification is also shown on the screen. With both visual and voice notifications,

our agent becomes a multimedia intelligent agent. We are able to set the agent

preferences by selecting voice type (either male or female), selecting the age

(young or aged), adjusting the volume, deciding how long of interval to check

new messages etc. The intelligent agent system, in fact, transforms any text email

messages to voice via speaker. This initiative is based on the perception of real

4

world needs and the academic research development. The idea described here has

not been explored in existing literature, and may find a wide range of applications

because its functions are realized via audio.

5

1.2 The Approaches - How We Do

We designed and implemented our intelligent agent that monitors user’s email

account by notifying the new incoming messages not only with text notification

but also with voice notification. The intelligent agent interface is shown in the

Figure 1.1. It is a combination of intelligent agent theory and architecture,

network protocol, voice technology and theory, electronic mail protocol, Object-

Oriented design theory and Java API. The agent implementation provides great

convenience to interface users, enabling them to surf the net while obtaining any

new messages from their account.

 . I g l x lAgent Speaking For You

Play Voice Volume Merval Sound
C3 Mail account

Date From (Subject
Tue M ar27... 5e talking ;
Tue Mar 27 e talking «e_..ifh is ts an a t

m
Date: Tue Mar 27 22:54:40 P8T 2001
From: e talking «e_talWng@yahoo.com»
To: e_talWng@yahoo.com
Subject: Hi

ReadTMs Volume Volume - ! Male Female j Pause Cancel

Hi.
This Is the first m essage. Let the agent speak
something. Say how are you, in Chinese, this is to say
n ihow .,

Do You Yahoo!?
Get email at your own domain with Yahool Mail
httptfpersonal.mall yahoo com/? refer=1ext

Figure 1.1 The Main Interface

mailto:e_talWng@yahoo.com

6

1.3 Organization of the Thesis

The rest o f the thesis is organized as the following: the various definitions of

agent, intelligent agent theory and frameworks are discussed in chapter2. In

chapter 3 we give a detailed discussion our model technical background

introduction including: speech technology (speech synthesis and speech

recognition), Internet email" protocol, Object-Oriented design theory and Java

API. Chapter 4 and 5 are the core chapters of our work. In chapter 4, we discuss

our voice email agent architecture. We focus on the development of our agent

architecture, discussing the features of our architecture and how we implement

our features in the agent architecture in this chapter. In chapter 5, we have a

detailed discussion of our agent implementation such as how the techniques in

chapter 3 are implemented. In the last chapter the significance of our work and the

improvements we should consider in the future work are discussed.

7

Chapter 2

Intelligent Agent: Theory, Classification, Framework and

Architecture

In this chapter we explore various definitions of agent, the intelligent agent

theory, and certain intelligent agent frameworks. It gives us a background

introduction about intelligent agent theory, application, and research

developments. Doing a survey of intelligent agent concept is to justify the need of

using subsumption architecture [Brooks, 1986] where our agent is built.

2.1 What Is An Agent

2.1.1 Exploring various definitions of agent

To discuss what is an agent is important for our work because we want to design

an intelligent agent system with the properties of an agent. In computer science

area, agent concept is used for its basic functions but not limited to it. One of the

extended applications is software agent concept. A software agent is a software

entity which functions continuously and autonomously in a particular

environment, often inhabited by other agents and processes. One implication of

software agent is its intelligent behaviors, which indicates that intelligent agent

might have services capabilities, autonomous decision, and commitment features.

Because artificial intelligent is a science that simulates certain processes from

8

human, these processes have intelligent property. Therefore intelligent agent is

considered as an important research area of artificial intelligent. The research of

intelligent agent (or in a broad sense, software agent) gives us a good opportunity

to explore artificial intelligence theory. In the application field, intelligent agents

are also applied in many business areas including business and management.

Let us explore intelligent agent definition first. In the research field, there is no

clear definition of what is an intelligent agent. Stan Franklin in his article, Is it an

Agent, or just a Program? [Franklin, 1996] gave us a full introduction of several

definitions:

The first one is provided by Russell and Norvig [Russell and Norvig, 1995], who

were the authors of popular AI textbook "Artificial Intelligence: a Modem

Approach". Russell and Norvig gave such a definition that "an agent is anything

that can be viewed as perceiving its environment through sensors and acting upon

that environment through effectors". It focuses on environment, the sensing and

reactions.

As one of the pioneers of agent research, Pattie Maes of MIT's Media Lab thought

[Maes, 1995] "autonomous agents are computational systems that inhabit some

complex dynamic environment, sense and act autonomously in this environment,

9

and by doing so realize a set o f goals or tasks for which they are designed”. The

contribution of this definition is that it indicates that agents have to act

autonomously so as to "realize a set of goals."

Intelligent agent has also been widely discussed in white papers. For example,

Sankar Virdhagriswaran noticed that “the term agent is used to represent two

orthogonal concepts. The first is the agent's ability for autonomous execution. The

second is the agent's ability to perform domain oriented reasoning”. It has also

been noticed that "intelligent agents are software entities that carry out some set

o f operations on behalf o f a user or another program with some degree o f

independence or autonomy, and in so doing, employ some knowledge or

representation o f the user's goals or desires", which indicates that an agent acts

for another [IBMWP, 2000]. One of examples could be an information gathering

agent (http ://www-4. ibm. com/software/speech/).

Though what is intelligent agent still need further investigation, our work which

designs a intelligent agent system follows Wooldridge and Jennings’ proposal that

is a more clear and complete definition. Wooldridge and Jennings [Wooldridge

and Jennings, 1995] proposed that an intelligent agent refers to " a hardware or

(more usually) software-based computer system that enjoys the following

properties:

10

• autonomy: agents operate without the direct intervention o f humans or

others, and have some kind o f control over their actions and internal

state;

• social ability: agents interact with other agents (andpossibly humans) via

some kind o f agent-communication language;

• reactivity: agents perceive their environment, (which may be the physical

world, a user via a graphical user interface, a collection o f other agents,

the INTERNET, or perhaps all o f these combined), and respond in a timely

fashion to changes that occur in it;

• pro-activeness: agents do not simply act in response to their environment,

they are able to exhibit goal-directed behavior by taking the initiative."

They indicate that an agent is autonomy, sensing and acting, allowing for a broad,

but finite, range of environments. There is also a communications requirement for

an agent. This definition could be more comprehensive compared to previous

ones.

2.1.2 A more formal definition of agent

Further more, Wooldridge and Jennings [Wooldridge and Jennings, 1995] had

tried to put intelligent agent in a theoretical setting by defining the intelligent

agent with the components that comprise it. Therefore an intelligent agent is a

structure of (Z, E, A, F, C, I):

L: a set of agent states describing the internal status of the agent;

E: a set of external or environment states, representing inputs to the agent,

A: a set of actions representing those that the agent might perform,

F: next state function determined by E and L,

C: choice function from L to A,

I: an initial state.

This structure is a clear picture of what is an intelligent agent including its internal

status, inputs to the agent, actions that an intelligent agents perform, next state

function, choice function and initial state.

One point need to be pointed out is E (environment states): a set of external or

environment states, representing inputs to the agent. Intelligent agents are situated

in some environments, sometimes if we modify environment, we no longer have

an intelligent agent. For example, a robot is not an intelligent agent if there is only

visual sensors but without light in an environment.

Another remark is related to A (actions): a set of actions representing those that

the agent might perform. An intelligent agent is not defined by its task. For

example if a spell checker corrects the typo when a user is typing, it is an

12

intelligent agent. Otherwise a spell checker appended to a word processor is not

an agent. Therefore all intelligent agents are computer programs, but not all

programs are intelligent agents. In some sense, intelligent agents are the subset of

computer programs.

A final point we clarify is that intelligent agent has a broader sense in the real

world, especially in some business applications. What we use here is an intelligent

agent that could be any software agent with the property of demonstrating

intelligent behavior.

With the help of intelligent agent as a structure, our intelligent agent system

design is clear and complete. Figure 2.1 tries to illustrate what is an intelligent

agent:

sensors communication

nerceDts

AGENTenvironment

actions effectors

Figure 2.1 The General Model of an Intelligent Agent

13

From this figure we can see that an intelligent agent perceives its environment

through sensors, and acts through its effectors. There are also communications

between agents, and each agent sensors outside environment as well.

14

2.2 The Intelligent Agent Theory

A good understanding of intelligent agent theory development is helpful in

designing our own system. In the following section, we discuss intelligent agent

theory including its development phase, various theories, and classification.

2.2.1 Early intelligent agent research

An agent idea was first introduced in the mid-1950's by John McCarthy, he was

also the first one who introduced the concept of artificial intelligence (AI). The

term of intelligent agent (IA), however, was introduced formally by Oliver G.

Selfridge several years later. They considered an agent as a system that could

carry out the detailed computer operations when given a task and could also ask

for and receive advices when it got stuck.

In the development of intelligent agent concept, deliberative agent was one of the

most important concepts worthwhile mentioned. It was the first generation of

agent research from 1977. This agent concept came from the symbolism research

in artificial intelligence, especially the deliberative thinking paradigm. In this

paradigm, agents with an internal symbolic reasoning model, in order to achieve

their goals, engage in planning and negation with other agents.

15

2.2.2 New theories in 1990’s

The intelligent agent research went into second-generation phase that started

around 1990. The study focused on development of agent theories, architectures

and languages, and a significant broadening of the typology of agents being

investigated. The main part was about autonomous agents. During this period of

theory development, researches in distributed artificial intelligence (DAI) played

an important role as symbolism in the first generation of agent concept

development. Their contributions were especially to distributed problem solving

and multi-agent systems. The main idea is how to decompose the original

problem into subproblems which are to be solved by various agents, how to

synthesis partial results obtained from these agents, how to enable agents to

communicate and interact, and how to ensure acts act coherently etc.

2.2.3 Three key issues

Agent theories, architectures and languages are three key issues in recent

intelligent agents research [Wooldridge and Jennings, 1995]. These three key

issues give a clear picture of future intelligent agent research development.

• Agent theories

Agent theories are about what an agent is, representation and reasoning about

agent properties. Such representation and reasoning are implemented by the use of

mathematical formalisms;

16

• Agent architectures

They focus on implementation of intelligent agents system — how to construct and

design a software or hardware system that satisfies the properties of intelligent

agents;

• Agent languages

They are software systems that are for programming and experimenting with

agents, these programming languages may embody the various principles

proposed by researchers.

17

2.3 The Intelligent Agent Classification

In order to find the place where our intelligent agent stands for, we should take a

look at the classification of intelligent agents. Theorists have formalized the

intelligent agent classification to collaborative agent, interface agent, mobile

agent, information/Intemet/Intranet agent, autonomous agent, and reactive agent

[Nwana and Azarmi, 1997] as shown in Figure 2.2.

Collaborative agent: indicating that in order to reach mutually acceptable

agreements agents have to negotiate with each other;

Interface agent: by it name, indicating when a user wants to learn a particular

application, it provides support such as proactive assistance;

Mobile agent: is the agent that is able to roam in wide area networks, with

characteristics of autonomous and co-operative;

Information/Internet/Intranet agent’, is closely related to Internet and Intranet, it

principally manages, manipulates or collects information from many distributed

sources;

18

Autonomous agent: has goal-directedness, proactive and self-starting behavior

with characteristics of situatedness, autonomous and flexible;

Reactive agent', is the agent that responds to the present environment where it is

embedded in a stimulus-response manner, it usually does not have internal,

symbolic models of its environment.

We will discuss reactive agents with more details because our agent model

belongs to this type. Reactive agents are special type of intelligent agents. They

act or respond in a stimulus-response manner to the embedded environment.

According to Maes, there are three key ideas of reactive agents: (1) emergent

functionality: it indicates that there is no any priori plan for the behavior of the

agents, their interactions are dynamic; (2) task decomposition: a collection of

modules forms a reactive agent, each module acts autonomously for its specific

tasks; (3) reactive agents: usually act upon such representations as those close to

raw sensor data. The most important application of reactive agent is Brook's

subsumption architecture which we introduce in the following section. His

architecture is utilized in reactive software agents though it has been mostly

implemented for physical robots.

19

collaborative
agent

interface
agent

Information/
Internet/
Intranet

agent
intelligent

agent

mobile
agent

autonomous
agent

reactive
agent

Figure 2.2 Intelligent Agent Classification

20

2.4 The Intelligent Agent Framework

The intelligent agent frame is the place where intelligent agent locates. The

framework is fulfilled by the involving parties which are classified into three

major types in our case: the agents involved, any resource that agents need to use,

and the environment where agents execute. One of the most complete and

contemporary models is framework of Ajanta system [Kamik and Tripathi, 1998].

This framework model is to discuss a mobile agent that represents a user in a

network to migrate autonomously from node to node, and perform computations

on behalf of that user. Although Ajanta system is to deal mobile agent, the three

principal parties of intelligent agent are clearly represented in this model: the

agents involved, any resource that agents need to use, and the environment where

agents execute.

Each agent has its own state (internal data) and code. As we discussed in the

preceding section, an intelligent agent is a structure of L\ a set of agent states

describing the internal status of the agent; E : a set o f external or environment

states, representing inputs to the agent; A : a set of actions representing those that

the agent might perform; F: next state function determined by E and L\ C: choice

function from L to A; I: an initial state. These key elements are represented in this

framework model.

21

AGENT

AGENT SERVER

host Credentials

Resource
Registry

Domain
Registry

Agent
Transfer

Itinerary
Current

State
(Internal

Data)o

Agent Environment

Code
(Methods)

Proxy1

RESOURCE

Access

Proxy2

Figure 2.3 The Ajanta General Model

In Ajanta system, agent accesses the resources through proxy, which acts as an

intermediary between agent and resources. The advantage of utilizing proxy is

that it could have security check and meanwhile have resource availability check.

22

Proxy plays an important role in communication between agents as well. The

environment where agents execute acts as the interface between agents and the

services provided by the agent server (or host). In order to request migration,

communication with other agents, or access the resources, an intelligent agent

could invoke the primitives provided by the environment.

What we have discussed is an overall intelligent agent framework, our agent

implementation is a reactive agent which responds to the present environment. To

design such an agent, we need some kind of architecture to build on. The one we

select is subsumption architecture.

23

2.5 The Subsumption Architecture

The subsumption architecture is the one we build our agent on. In our work, we

not only utilize subsumption architecture but also integrate OO design

methodology to it. Therefore the advantages of subsumption architecture are fully

taken.

2.5.1 What is subsumption architecture

The subsumption architecture was proposed by Rodney A. Brooks [Brooks,

1986]. Generally speaking, it is a layered architecture where each layer senses and

acts in order to perform its task. Each layer is also an agent that indicates that it

satisfies all the requirements of an intelligent agent. Under such an architecture,

an agent is built up with simple behaviors controlled at a low layer, and complex

behaviors at its higher layers. The different layers are not completely independent.

The advantage of subsumption architecture is to decompose a system into parallel

tasks, therefore this architecture increases robustness, concurrency support,

incremental construction and ease of testing. Let us propose an example to

illustrate the difference between traditional functional decomposition and

subsumption architecture: in traditional functional decomposition, a robot

functions could be decomposed into: sensors —> perception —> modeling —>

planning —> task recognition motor control. It is a very straightforward

decomposition, functions are ordered. Next function is based on the completion of

24

the previous one. While in subsumption architecture, these functions are parallel:

avoid objects<wander <explore < build maps <monitor changes <identify

objects <plan actions <reason about object behavior. The symbol < denotes

increasing levels of competence. The parallel functions let subsumption

architecture to decompose a system into parallel tasks that are not completely

independent. It is possible that additional functions are added to this architecture.

2.5.2 Principles of subsumption architecture

The general process of building up a subsumption architecture is to first

decompose the problem into a series of task-achieving behaviors. Each is

implemented in its own layer. The control system has the property of “plug and

play” because of each layer has its own access to sensors and actuators. The

building process is incremental, a new one can be added to an existing layer

without modification of the built layers. The layers are independent, in the sense

that the next layer is built with its own access to sensors and actuators. The higher

layer, however, achieve its task with the help from lower layer. Higher layer could

contain lower level layer as one of its subsets. All the layers work together to

achieve the overall goal. A concrete example helps clarify this concept: suppose

there is a level 0 agent is built, this agent contains some sensors which monitor

and process procedures. In this stage, we could regard it a complete and simple

intelligent agent after testing. According to subsumption architecture, we can add

the next control layer to the agent. This layer can monitor the data paths in the

level 0 layer and put data onto the level 0 data paths. In this sense, level 1 layer

subsume the normal data flow of level 0. Additional layer could be added if need.

The principles of subsumption architecture could be indicated in the following:

(1) There is no central model of the world;

(2) There is no separation into perception, central processing, and actuation

systems, in another word, they are intertwined;

(3) Adding more specific behaviors to the existing layer will increase its

capabilities;

(4) Messages are available on the appropriate input port when needed;

(5) Behaviors run in parallel, requiring conflict resolution; in this scenario,

different behaviors attempt to control the same actuator in different ways.

The subsumption architecture is shown in Figure 2.4, from which we could note

the architecture has a set of layers, each layer has its own sensing and acting

function though it is not necessarily that all reactive agents have actuators and

sensors.

26

level 4

► IN

level 0

There are six layers in the
architecture figure, from
lower level to higher level.
Layers work asynchronously,
that is higher level can inhibit
those in lower layers

Figure 2.4 Subsumption Architecture

2.6 Summary

In this chapter we discussed various definitions of agent, the intelligent agent

theory, and some intelligent agent frameworks. With the help of this discussion,

we can begin our intelligent agent design and implementation. Two important

parts are Ajanta system and subsumption architecture. Although Ajanta system is

to deal mobile agent, the three principal parties of intelligent agent are clearly

represented in this model: the agents involved, any resource that agents need to

use, and the environment where agents execute. These parties should be covered

in every intelligent agent including our work. Based on such a framework with

some changes, we are able to develop our own framework, design an agent

system and implement it.

27

Chapter 3

Supporting Techniques For Reactive Agents

In this chapter, we give a detailed discussion of our model technical background

including: speech technology mainly Text-to-Speech Synthesis (TTS), Internet

email protocol, Object-Oriented design theory and Java API. These techniques

serve as necessary tools for implementing reactive agents.

3.1 TTS and Internet Email Protocol

3.1.1 Text-to-Speech Synthesis (TTS)

Text-to-Speech Synthesis (TTS) researches have been conducted for many years.

TTS is the creation of audible speech from computer readable text, which presents

a rich array of challenges, and it requires a variety of areas including acoustic

phonetics, prosody, computational phonology, computational morphology, and

corpus-based linguistics. This development trend comes from the need of man-

machine interaction. There are two main approaches to speech production in TTS

field: concatenative and rule-based. Each has its own advantages and weakness.

The concatenative approach is to piece together stored speech units that are

originally extracted from natural speech. There are large numbers of factors that

can influence the properties of speech segments in natural speech. The forms of

the speech units could be stored are either in raw waveforms, or in sets of

parameters derived from the waveforms. The current trend in concatenative

synthesis is toward waveform concatenation. This methodology is to produce

more human-sounding voice quality than earlier TTS systems. The next process is

to select units from the unit database, concatenate and modify to reflect prosodic

properties of the utterance. The prosodic properties are either intonational or

durational. It is a very complex and difficult work to select the best units in order

to reconstruct a particular utterance, which needs more research work in the

future. On the other hand, all of the perceptually relevant acoustic parameter

values are produced by a set of rules in rule-based synthesis. These rules are

context-sensitive based on an analysis of natural speech patterns. How to capture

the perceptually relevant generalizations (rules) is the principal challenge for this

rule-base approach. The task is to produce appropriate values for high-quality

synthesis.

Many researchers had achieved accomplishments in this field. Hertz in 1979 and

1982, Allen, Hunnicutt and Klatt in 1987 had such an attempt to assume a

segmentation of speech into adjacent phoneme-sized units [BELL, 2000]. They

found that in order to appropriately capture generalizations about the acoustic

patterns of speech within and across dialects and languages, units of varying sizes

are required.

29

Research institutions are actively involved in this field. The Bell Lab’s Text-to-

Speech system contains several components, for example, the text analysis

capabilities of the system [BELL, 2000]. It detects the ends of sentences, perform

rudimentary syntactic analysis, expand digit sequences into words, and

disambiguate and expand abbreviations into normally spelled words. These words

can be analyzed by the dictionary-based pronunciation module that provides

pronunciation for most of words. Another component handles prosodic phrasing,

word accentuation, sentence intonation, and the actual speech synthesis. The

AT&T Lab's group devotes their efforts to increase the naturalness of speech

synthesis significantly while maintaining good intelligibility [ATT, 2000]. Their

new TTS was introduced in 1998 and marked a dramatic leap in naturalness.

Microsoft’s Text-to-Speech engine is also a concatenative synthesis base, the

audio output from the engine is generated from files, which contain information

derived from recordings of real people [MSFT, 2000]. IBM ViaVoice Text-To-

Speech is the speech synthesis process that goes through several high level

linguistic stages to create highly intelligible speech output [IBM, 2000]. The

uniqueness of their TTS is using small snippets of actual spoken recordings and

gluing them together. The formant technology utilizes a Klatt type synthesizer.

The attributes of their TTS are their highly intelligible and flexible aspects. It can

accommodate an unlimited number of voices by modifying the gender, pitch,

head size, roughness, etc. However, exploiting the strength of TTS requires the

30

integration of TTS and other technologies, as well as a good understanding of

related technical fields. This thesis explores several features of TTS and related

technologies so that the advantages of TTS can be fully utilized by integrating

TTS with other techniques. As mentioned early, as Bell Labs and AT&T put

much efforts on TTS research, most of the applications of TTS are about

telephone systems, such as: using an in-flight phone to get stock quotes,

generating spoken prompts in voice response systems, serving as an interface to

an order-verification system for salespeople in the field, and giving users the

ability to access textual information over the phone, etc. Studying the proposed

topic provides an excellent opportunity to add new functionalities to TTS. One of

such directions could be adding voice function to Internet email applications. It

requires good understanding of TTS, networking protocol, and software design

methodology. The most important is the good understating of text stream to

speech stream techniques. What we are doing is in this direction, which expands

TTS application field.

There are no such works that are to integrate intelligent agent theory, TTS,

Internet email, networking protocol, and OO design together so far. Especially the

power of OO design makes model implementation more easily and reusable,

which is the strength of Object-Oriented methodology. My thesis research is such

an endeavor to accomplish this goal.

31

3.1.2 Internet Email protocol

We add voice functions to the agents by utilizing TTS and other techniques such

as network protocol etc. The method to implement this idea is to have Internet

email application with its unique voice function. Email is one of the protocols

included with the Transport Control Protocol/Internet Protocol (TCP/IP) suite of

protocols. A popular protocol for receiving e-mail is POP3 and a popular protocol

for sending it is SMTP. There are two protocols dealing with the receiving of

email: POP (Post Office Protocol 3) and IMAP (Internet Message Access

Protocol). POP3 is the most recent version of a standard protocol. It is a

client/server protocol for receiving e-mail. The email is received and held by the

Internet server. The email receiver periodically checks the mailbox on the server

and downloads any mail. An alternative protocol is IMAP. It is different than

POP3 in that email is viewed at the server as though it was on the client computer

with IMAP. An email message deleted locally is still on the server. E-mail can be

kept on and searched at the server. POP service could be thought of as a "store-

and-forward" while IMAP service can be thought of as a remote file server.

The protocol for transferring email across the Internet is SMTP (Simple Mail

Transfer Protocol), which is a TCP/IP protocol. Because its limitation to queue

messages at the receiving end, it's usually used with one of two other protocols,

32

POP3 or IMAP. In such a way, the user save messages in a server mailbox and

download them periodically from the server. It means that users typically use a

program that uses SMTP for sending e-mail and either POP3 or IMAP for

receiving messages [Wood, 1999].

33

3.2 Object-Oriented Design and Java API

We apply an object-oriented approach to this task, which is approved a very fast

and efficient method. The Object-Oriented Design (OOD) is an approach that

partitions a system into objects. Each object in the system includes the data and

all necessary operations that manipulate it. The primary initiatives for object

orientation are to keep objects unchanged though their functions tend to change

with the evolution of a system. Therefore the system is more maintainable with

OOD approach. There is an interesting connection between the concepts of agents

and objects. However, objects are not conceptually compatible with agents.

Though an object is defined in terms of its operations (methods), thus controlling

its own state (which is a particular snapshot of its behavior), it does not have

control over its overall behavior. Agent-based software engineering is often

compared to object-oriented programming. The main difference lies in the

language of the interface: in agent-base software engineering, agents use a

common language with an agent-independent semantics [Bradshaw, 1997]

[Chen, 1999].

Three most important concepts of OOD are encapsulation, messaging, and

inheritance. We first introduce the concept of implementation hiding which is the

same as access control. Access control puts boundaries within a data type.

Therefore the client programmers know what he can and what he can’t use. On

34

the other hand, the interface is separated from the implementation. Inclusion of

data and operations within objects combined with implementation hiding is called

encapsulation [Eckel, 2000].

With the help of encapsulation, system designer just choose objects they need and

execute them. At the same time, the maintenance becomes more convenient since

changes in one object do not affect other objects. Messaging are used for

manipulating objects, each message requests an object to perform actions.

Therefore an object does useful work for you, such as completing a transaction,

drawing something on the screen, or turning on a switch. You can send requests to

different objects, and each object can complete only certain tasks.

Another important characteristic of OOD is inheritance. It provides a nice

mechanism to utilize the existing objects, and make additional modifications.

Therefore there is a hierarchy where objects are arranged from general to more

specific objects. Each object in lower level inherits attributes and behaviors from

higher level objects.

35

Because of these three characteristics of OOD, it is possible that objects are

reusable. The objects can be moved around easily. They are self-contained and

autonomous, therefore it is a ideal scenario that these objects could be used as

components in many kinds of systems.

The implementation language is Java. Its idea of platform independent enables

“program once and run everywhere”. It is an ideal language for this research that

explores integration of electronic mail and voice technology. We apply JavaMail
?

API and JavaSpeech API (http://java.sun.com/products/javamail/index.html and

http://java.sun.com/products/java-media/speech). The JavaMail API provides a set

of abstract classes that model a mail system, which enables us to create an

independent framework [SUN, 2000]. This framework is platform independent.

The JavaMail API is implemented as a Java platform standard extension. It

supports the implementation of the POP3, IMAP and SMTP.

IBM ViaVoice Text-To-Speech is the speech synthesis process that goes through

several high level linguistic stages to create highly intelligible speech output

[IBM, 2000]. The Java implementation of the ViaVoice SDK is to incorporate

IBM's ViaVoice speech technology into user interfaces. The SDK could be used

in our text-to-speech synthesis supporting multi languages such as French,

German, Italian, Spanish, UK English, and US English. It is an implementation of

http://java.sun.com/products/javamail/index.html
http://java.sun.com/products/java-media/speech

36

Java Speech API which was developed by Sun Microsystems in collaboration

with IBM and other speech technology developers, in other word, it is built on top

of the native speech recognition and synthesis capabilities in IBM ViaVoice. Our

implementation of TTS is based on such a technology and integrates it with our

agent system.

3.3 Summary

We introduced our model technical background such as Text-to-Speech Synthesis

(TTS), Internet email protocol, Object-Oriented design theory and Java API in

this chapter. These techniques serve as enabling techniques for our email agent -

a multimedia intelligent agent: TTS supports intelligent agent in that it can give us

audible notification and read for us; Internet email protocol such POP3 and IMAP

enable intelligent agent to receive and send e-mail; OOD supports intelligent

agent in that objects are self-contained and autonomous, therefore they can be

used as components in our system. Our agent system is implemented by utilizing

these technologies that work together in our work.

37

Chapter 4

Development of Voice Email Agent Architecture

The voice email agent architecture is core of our work, our mission is to develop

such a architecture that is reusable, incremental, partial-independent and easy to

integrate with a broad sense of intelligent agent applications. In this chapter we

focus on the development of our agent architecture, discussing the features of our

architecture and how we implement these features in the agent architecture.

4.1 Project Model Implementation Methodology and

Project Design Considerations

A good methodology for implementation is crucial for our work. It provides us a

guideline for how our agent model should be implemented. In this section, we

discuss the process of our work, and the factors that we should consider

(http://java.sun.com/products/java-media/speech). Based on such an

implementation methodology, we discuss the agent architecture.

4.1.1 Project model implementation methodology and design considerations

Designing and building a good intelligent agent system is a rather complex task

that requires a deep and comprehensive understanding of intelligent agent theory

http://java.sun.com/products/java-media/speech

38

and other related issues. In order to accomplish this task, we should follow these

guidelines:

(1) Carry out a comprehensive study of intelligent agent theory;

(2) Identify the framework of our intelligent agent system;

(3) Define the requirements for intelligent agent implementation;

(4) Implement the system according to the framework and requirements

defined;

(5) Evaluate the system and completing the documentation.

Because our voice email agent is an application with special voice features, we

should take the following aspects into our considerations:

(1) We should provide a robust, cross-platform voice email agent system with

speech synthesis function. The agent should handle new message

notification correctly and give proper process. We need an agent that runs

on any platforms because the future users will use it on multiple platforms;

(2) The agent should access to state-of-the-art Internet mail and speech

technology. The changing technology requires us to implement our agent

with the updated one to ensure that any new features are utilized;

(3) The agent should be simple and easy to use.

39

4.1.2 The reasons that we add voice feature to the agent

Speech is one of the most natural mediums for human communication, email has

become another popular communication medium with the Internet development.

If the agent we develop were intelligent in both visual and audible aspects, it

would be more powerful and convenient with such an extended feature of voice.

Voice in our agent is one of the output approaches besides the text interface.

Table 4.1 indicates that it is appropriate to add voice feature to our agent:

j When the voice is appropriate | When the voice is not

(1) Users need to look at

something else instead of

screen or something else

attracts users’ attention;

(2) A personality need to be

embedded into an

interface;

(3) For the users who have a

physical disability

(1) Users need to present a

large amount of

information;
i •

(2) Something need to be

compared;

(3) Something is private or

confidential

Table 4.1 The Scenario for Adding Voice Feature

40

When there is a new message coming, users usually are doing other duties. It is

desirable that if the new message can be read for them. It is even more desirable

that if user gives certain instruction to let agent know if he want to hear it or not.

Therefore adding voice feature is necessary. Because we can change the voice

properties such as age, gender and volume, the agent posses certain personalities

we need instead of interface we can only look at. Undoubtedly, if a message is

private or confidential, we are able to take off the voice function as simple as it is.

4.1.3 The challenges for integrating speech into agent system

During the process of design, basically there are six challenges that we have to

face:

(1) Transience: contrast to graphical interface which is persistent, speech is of

transience; if there is a lot of information, the users might only remember

part of it, they only have limited ability to remember transient information;

(2) Invisibility: namely, it is difficult to communicate the functions to users

such as what they should do, what actions they should take;

(3) Asymmetry: people can not listen as easily and quickly as they speak;

therefore, listening and speaking should be compromised in the process of

design;

41

(4) Synthesis quality: the quality is not always satisfactory and natural. It is

even more difficult when the speech output is dynamic because the pre­

recorded output does not help;

(5) agent should be able to recognize simple instructions from user;

(6) agent handling any new message requires the coordination of voice

functions and other GUI interfaces. In other words, should users have

visual notifications first or have both notifications at the same time.

Only do we consider the above-mentioned challenges and find solutions, our

agent is able to convey natural voice stream to user and take voice stream from

user, therefore it becomes a really multimedia intelligent agent.

42

4.2 The Voice Email Agent Architecture

Before we explore our agent model architecture, we give overall discussion about

our work. Whenever we connect to the Internet, we can open this agent by typing

command in the command line. The agent can connect to any POP3 mail server,

checking message folders, fetching all the messages in the folder, and notifying us

of any new messages. It identifies various types of messages such as plain/text,

multipart and nested message.

This goal is accomplished in the following steps:

(1) The agent connects to our mail server, fetching all the messages in our

INBOX folder. All the messages in the agent are displayed in a GUI

interface, therefore we can go through all the messages. If we want to

listen to any message, just click that message and select speak function,

then the agent reads for us;

(2) As long as the agent is active, it checks if there are any new messages in

our folder. If there are any and user want to heart it, the agent reads the

message for user including sender and subject. It identifies various types

of messages such as plain/text, multipart and nested message;

(3) A visual notification is also shown on the screen. With both visual and

voice notifications, our agent becomes a multimedia intelligent agent;

43

(4) We are able to set the agent preferences by selecting voice type (either

male or female), selecting the age (young or aged), adjusting the volume,

deciding how long of interval to check new messages etc.

This process is indicated in Figure 4.1:

Mail Server Mail Client Parser Synthesizer Speaker

Figure 4.1 The Overall Flowchart

4.2.1 Developing a layered agent model

We introduce a layered model as the solutions for the challenges we face. This

solution models the agent into three layers: account process layer, notification

layer, and speech integration layer. Therefore the layered agent accomplishes the

goals we set.

Account process layer

The account process layer is the first layer that does the basic works such as

connecting to the mail account, fetching messages etc. This layer is below the

other two layers: speech integration layer and notification process layer, whenever

1 1 String tn
< = >

we open our agent system this layer is the one that work within the system.

Although we introduce more implementation details in chapter 5, it is easy to

understand if we put more concrete examples in this chapter. Basically account

process layer creates a mail Session object managing both configuration options

and user authentication information. Each session could connect to multiple

message stores and transports. The agent establishes the default session that

accesses INBOX folder. The default session is created as

Session defaultSession

= Session.getDefaultlnstance(props, authenticator);

The Properties object contains default values and other configuration information

such as mail, store.protocol, mail.transport.protocol, mail, host, mail, user, and

mail.from etc. If there is no specific requirement, the system properties object that

is retrieved from the System. getProperties method is used. Then the Store and

Folder classes are created in this layer. As we know, messages are stored in

folders where new messages are usually delivered. Access protocols are also

defined in Store to access folders and retrieve messages from folders. The Folder

can contain both subfolders and messages, and all the messages within a Folder

are sequentially numbered. As we note, the basic functions are achieved in this

layer.

45

Notification layer

This is the layer on top of account process layer. Its actions are based on the

results of the first layer, in another word, our intelligent agent automatically

notifies the new incoming messages as long as the account is active. It checks the

account every certain amount of time. As long as there are any new ones, our

agent sends a message to the next speech agent to notify the user with both text

and voice notification.

Speech integration layer

This layer represents a speech agent that deals with either speech input or

speech output. The speech agent basically has such processes:

(a) Identifying requirements such as what language or dictation

capability;

(b) Locating and creating an engine; allocating the resources for the

engine, and setting up;

(c) Beginning operation of the engine such as resume it;

(d) Using the engine;

(e) Deallocating the resources of the engine.

46

Every speech engine must be in one and only one of the following four

allocation states: either DEALLOCATED, ALLOCATED,

ALLOCATINGRESOURCES, or DEALLOCATINGRESOURCES.

The ALLOCATED state has several sub-states: either the PAUSED or the

RESUMED state.

The speak out function is provided by a Synthesizer which speaks text,

manages a queue of text to be spoken. The properties of speech engine are

the SynthesizerProperties objects that define five synthesizer properties.

These properties could be modified during operation of a synthesizer in

order to effect speech output properties. The first property is the voice

property that is used to control the speaking voice of the synthesizer. The

other four properties are to control prosody of speech including the pitch,

intonation, rhythm, timing, stress and other characteristics that affect the

style of the speech.

4.2.2 The agent architecture

Our intelligent agent is based on subsumption architecture we discussed in the

previous section. The general process of building up a subsumption architecture is

to first decompose the problem into a series of task-achieving behaviors. Each is

47

implemented in its own layer. Our agent could be classified as reactive agent that

responds to the present environment. Therefore three layers are used to represent

account process, voice notification, and speech. Figure 4.2 indicates our

subsumption architecture:

count

Figure 4.2 An Intelligent Voice Email Agent Architecture

Three layers are clearly represented in the figure, and each layer represented one

subagent of our intelligent agent system. The main property of this architecture is

“plug and play”, each one has its own access to outside environment. Because the

building process is incremental, a new one can be added to an existing layer

without modification of the built layers. These layers are independent in the sense

48

that each one has its own access but not absolutely independent. The account

process layer provide data for notification layer, they are somehow interrelated.

The speech integration layer acts upon the changes in two previous layers, but it

could act itself. Therefore each layer of control is simply added to existing one to

achieve the overall goal.

In the meantime, each layer is also reusable. For example, account process layer

could be used by other agents as long as such agents need the email process

functions: connecting to a session, opening folders etc. Incremental indicates that

the whole agent system is built layer by layer. The first one is account process

layer that provides necessary infrastructure for the later layers. The notification

layer is built above account process layer and the speech integration layer is

another one built on top of notification layer. It is possible that a new layer could

be added on the top of the speech integration layer if needed. The function of

speech integration layer is utilized by this new layer.

4.2.3 Features of the layered agent model

With the help of integration of subsumption architecture and Object-Oriented

technology, we develop our agent architecture with outstanding features that are

reusable, incremental, partial-independent and easy to integrate with a broad sense

of intelligent agent applications.

49

(1) Reusable:

The reusable feature of our architecture is to allow developer to reuse part of

architecture such as a component of the architecture. The components can be

moved around easily because they are self-contained. The implementation of each

component is invisible to developers. Therefore they know what components he

can and what he can’t use. There are also communications between different

components by sending requests to ask someone else to complete certain tasks.

Therefore each component in the architecture is reusable.

(2) Incremental:

Incremental process indicates that a new component can be added to an existing

one. The incremental feature of our architecture provides a great convenience to

designer, which allows them to know which component could be designed first

and which one could be later. Certain component is based on the completion of

another component.

(3) Partial-Independent:

The component is partly independent in the sense that though certain components

are built with its own access to the outside world including other components,

they achieve their tasks with the help from other layers sometimes. Higher layer

could contain lower level layer as one of its subsets. The partly independent

component cooperates sometimes to achieve a specific goal. Because each of

them is not absolutely independent, we could add a new component to existing

50

one, this process is incremental as we just discussed. Therefore with such

features, our Voice Email agent architecture is easy to integrate with a broad

sense of intelligent agent applications.

4.3 Summary

The agent we developed in this chapter is intelligent in both visual and audible

aspects. When there is a new message coming, it reads new message for users.

The introduction of our agent architecture demonstrates that our voice email agent

architecture is such an architecture that is reusable, incremental, partial-

independent, and easy to integrate with a broad sense of intelligent agent

applications. The advantages of this architecture are that it is a layered model:

account process layer, speech integration layer, and notification layer. We

develop our agent architecture with outstanding features that are reusable,

incremental, partial-independent and easy to integrate with a broad sense of

intelligent agent applications. The agent with such features is able to handle the

challenges we face: transience, invisibility, and speech synthesis quality, and the

coordination of voice functions and other GUI interfaces.

51

Chapter 5

Implementation of Intelligent Voice-Email Agent

In this chapter, we have a detailed discussion of our agent implementation that is

how the techniques in chapter 3 are implemented including speech technology

such as Text-to-Speech Synthesis (TTS), Internet email protocol, Object-Oriented

design theory etc. In the first subsection, we give a brief introduction of what our

agent is and what functions it has.

5.1 The Principal Functions and Features

The Voice-Email intelligent agent system communicates text messages and their

contents, by which its intelligent converter delivers abbreviations, punctuation,

time and date formats, and many other potentially ambiguous texts in a way that

is easily deciphered and correctly spoken. It connects to our mail server, fetching

all the messages in the folder. All the messages in the folder are shown in a

graphic user interface, therefore we can go through all the messages. If we want to

listen to any message, just click that message and select speak function. As long

as the agent is active, it checks if there are any new messages in our folder. If

there are any, the agent read the message for us including sender and subject

based on user instruction. It identifies various types of messages such as

plain/text, multipart and nested message. A visual notification is also shown on

52

the screen. There are also functions associated with the speech synthesizer:

selecting voice type (either male or female), selecting the age (young or aged),

adjusting the volume, deciding how long of interval to check new messages etc.

5.2 The Implementation

Our Voice-Email system utilizes Java programming language, which enables it to

be used on any platform on which the Java Virtual Machine (JVM) is installed. It

uses JDK1.3 and JavaMail and JavaSpeech API

(http: //j ava. sun. com/products/j avamail/index .html and

http://java.sun.com/products/java-media/speech). The speech engine is IBM’s

ViaVoice.

5.2.1 The implementation of TTS

As mentioned in the previous chapters, IBM ViaVoice Text-To-Speech is the

speech synthesis process that goes through several high level linguistic stages to

create highly intelligible speech output. The uniqueness of their TTS is using

small snippets of actual spoken recordings and gluing them together. The Java

implementation of the ViaVoice SDK is to incorporate IBM's ViaVoice speech

technology into user interfaces. The SDK could be used in our text-to-speech

synthesis supporting multi languages such as French, German, Italian, Spanish,

UK English, and US English. It is an implementation of Java Speech API which

http://java.sun.com/products/java-media/speech

53

was developed by Sun Microsystems with IBM, in other word, it is built on top of

the native speech recognition and synthesis capabilities in IBM ViaVoice [IBM

2000]. Our implementation of TTS is based on such a technology and integrates it

with our agent system. We first discuss the algorithms behind the Speech engine

interface to explain how it works.

5.2.1.1 The speech engine and its properties

We implement speech engine by the javax.speech package that defines an abstract

software representation including engine’s properties. The speech engine that

handles text output could be described in the following:

(1) Identifying functional requirements for an engine

(2) Locating and creating an engine for those functional requirements

(3) Allocating the resources for the engine

(4) Setting up the engine

(5) Beginning operation of the engine

(6) Using the engine

(7) Deallocating the resources of the engine

This is the basic speech engine work flow, the outcome of this process is a speech

engine with basic properties, we can utilize it until deallocates the resources for

the engine. Each engine has its own properties defined in the EngineModeDesc

class, and additional properties for synthesizers are defined in

54

SynthesizerModeDesc classes. The basic properties include EngineName,

ModeName, Locale and Running, the additional properties are List o f Voices.

EngineName is a string that defines the speech engine name, and ModeName is

another string that defines a specific mode of operation of the engine. Locale

refers to the languages/countries supported by the engine, and Running is a

Boolean value that indicates if the engine is running on a platform. The additional

property of List o f Voices is an array of voices that the synthesizer is capable of

producing. Each voice is a combination of voice name, gender, age and speaking

style. The synthesizer is a sub class of speech engine, which is an engine that

converts text to speech. As a type of speech engine, speech synthesizer inherits

much of functionalities of a speech engine. In the following section, we discuss

synthesizer’s states.

5.2.1.2 The speech synthesizer state

We first discuss the states of speech engine and then some special states of

synthesizer. A speech engine has four states: DEALLOCATED, ALLOCATED,

ALLOCATING_RESOURCES AND DEALLOCATINGRESOURCES. The

ALLOCATED state has two sub states: PAUSED, or the RESUMED states.

Figure 5.1 illustrates these four states:

DDMJLOCAIING
.RESOURCES

NEW ENGINE

Figure 5.1 The Speech Synthesizer States

A new created engine is always in the DEALLOCATED state, then a call to

allocate is needed. As indicated in the above figure, from DEALLOCATED state

to ALLOCATINGRESOUCES state is (1) and from

ALLOCATING RESOURCES to ALLOCATED is (2) and so on so forth. There

are also additional sub states for synthesizer in ALLOCATED state plus

PAUSED and RESUMED states mentioned above: QUEUEEMPTY and

QUEUENOTEM PTY. Any allocated synthesizer is either one of these two

states. Notice that QUEUE EMPTY and QUEUE NOT EMPTY states are

parallel to PAUSED and RESUMED states and run independently. The reason for

56

these two additional states is that speaking out text puts an object onto

synthesizer’s speech FIFO output queue. The first object is spoken is the one on

the top of the queue if the queue is not empty or the one when a paused

synthesizer is resumed. Figure 5.2 illustrates the sub states of an allocated speech

synthesizer.

ALLO CATED

QUEUEUPDATE

>UBUE_NOT_EMPTYQUEUEJEMPTY

QUEUEEMPTIED

ENGINE RESUMED

ENGINE PAUSED

Figure 5.2 The Substates of ALLOCATED

5.2.1.3 The speech synthesizer mechanism

As indicated in section 5.2.1.1, a speech engine handling text output identifies

functional requirements, locating and creating an engine, allocating the resources

for the engine and setting up the engine, beginning operation of the engine, using

57

the engine, and then deallocating the resources of the engine. For speech

synthesizer, this process is more specific as illustrated in the following algorithm:

(1) Creating a synthesizer for certain kind o f language

(2) Getting it ready to speak

(3) Calling the allocate function

(4) Calling the resume function

(5) Calling the SpeakPlainText function

(6) Waiting till speaking is done

(7) Cleaning up by calling deallocation function

There are four principal steps in this process: create, allocate and resume,

generate, and deallocate. By calling the createSynthesizer function of the Central

class of javax. speech package, a speech synthesizer is obtained. The Synthesizer

object is prepared to output speech text by calling allocate and resume methods.

At this point, the synthesizer is in the RESUMED state. Before the synthesizer

finishes speech, the waitEngineState method is called, and then deallocate frees

the resources.

58

5.2.1.4 The speech synthesizer properties

We have given a brief introduction of speech engine properties in section 5.2.1.1,

in this section a more detailed discussion of speech synthesizer properties are

introduced. There are two categories of synthesizer properties: voice and prosody.

The voice property controls the voice of synthesizer: each one is defined by a

name, gender, age and speaking style. The gender could be GENDERFEMALE,

GENDER MALE, GENDER NEUTAL or GENDER DON ’ T_CARE. The age

could be A G ECH ILD (up to 12 years), AGE_TEENAGER (13-19),

A G E Y OUN GERADULT (20-40), AG EM ID D LEA D U LT (40-60),

AGE OLDER ADULT (60+), AGE NEUTRAL, and AGE DONT CARE. The

speaking style could be classified as casual, business, or happy etc. One example

of a voice could be defined as the following:

Voice(“name string ”, GENDERFEMALE, AGEM IDDLEADULT, “happy”);

The defined Voice object could be used in the selection of a synthesizer as shown

in the following pseudo code:

SynthesizerModeDesc = new SynthesizerModeDesc();

SynthesizerModeDesc. addVoice (Voice);

Synthesizer ModeDesc. setLocale(Locale. US);

Synthesizer = Central. createSynthesizer (SynthesizerModeDesc);

59

The next category is about prosody which includes the pitch, intonation, rhythm

and timing, stress and other properties. Therefore the prosodic features are:

Volume, Speaking rate, Pitch, and Pitch range. Volume is a float with range of 0.0

(silence) to 1.0 (loudest). Speaking rate is also a float value in words per minute,

the higher the faster output. Pitch is a float value in Hertz and Pitch range is also

a float range value for pitch variation.

5.2.1.5 JSML and speech synthesizer properties

We use JSML for controlling speech more smooth. JSML stands for Java Speech

Markup Language that enables applications to provide a high quality and

naturalness of synthesized speech by annotating text with additional information.

It is a kind of markup language similar to HTML. By adding markers, we can

control the output of synthesized speech such as pronunciation of words and

phrases, the emphasis of words, the placements of boundaries and pauses, and the

control of pitch etc. The properties mentioned in last section can be used within

JSML text. One of the examples is shown in the following:

/ / Speak the sender's name slower to be clearer

StringBuffer.append("Message from"+"<PROS RATE=\”-30\">"+ sender

+ ",</PROS>");

//D ate

StringBuffer.append/" delivered " + "<SAYAS class=\"date\">" + date +

"</SAYAS> ");

/ / Subject

StringBuffer. append(” with subject: "+ "<PR OS RATE=\ ”-30\"> " +

subject + "</PROS> ");

In the above example, we can add special tags to let speaking of string slower and

clearer. The advantages o f using JSML text are that the properties could be

controlled more finely and naturally. It can even change the property for word

level as shown in the previous example.

5.2.2 The implementation of electronic mail

By utilizing JavaMail API, we can add electronic mail ability to any applications

that we want them to have process email functions. It makes implementation more

easy and simple. The principal content of such API is appropriate convenience

classes that include common mail functions and protocols. One of advantages of

JavaMail API is that it supports many different message system implementations,

either different message stores or different message formats, or different message

transports. It provides base classes and interfaces for any client applications. In

this section, we discussion the implementation details.

61

5.2.2.1 JavaMail API architecture

JavaMail API is a layered architecture that is composed of three layers: (1)

abstract layer, (2) implementation layer and (3) JavaBeans Activation Framework

(JAF).

Abstract layer includes classes, interfaces and abstract methods which support all

the mail handling functions. The implementation layer refers to internet

implementation that uses internet standards such as RFC822 and MIME etc. The

next layer is JAF that handles message data. With such an architecture,

applications can send, receive and store a variety of messages in many different

message system implementations.

5.2.2.2 The mail handling function implementation

The typical message handling process includes the following steps: (1) creating a

mail message; (2) creating a Session object; (3) sending the message; (4)

retrieving the message; (5) carrying out some operations on the message.

In the next section, we discuss each step in details: what is the class about, how it

is created and interactions between them. Figure 5.3 illustrates this process:

62

FOLDERSMESSAGE MESSAGE

STORE
TRANSPORT

NETWORK
Submit a message Receive a message

Figure 5.3 The Handling Function

We use such objects in the mail function: Message, Transport, Store and Folder

as shown in the above figure.

5.2.2.3 Implementing JavaMail API

This section includes the major classes we use and how they are implemented in

our agent system. There are five classes we use: Message class, Folder class,

Store class, Transport class, and Session class.

The Message class

The Message class is an abstract class which specifies the attributes and content

for a message. The attributes of a message include the address information and the

structure of the content. The address information is used for message

transportation: examples are From, To, Subject, Reply-To etc. The content of a

message is a collection of bytes.

The Folder class and Store class

The Folder is the container for messages or subfolders. The methods of fetching,

appending, copying and deleting messages are defined in Folder class. The Store

class is the database that contains folders. The access protocol is also defined in

this class such as IMAP, POP3 etc.

The Transport class and Session class

The Message object is sent by calling Transport.send method, the Transport class

sends messages to the recipients and models the transport agent as well. The

Session class is the container for Store and Transport objects. The way to obtain

Store and Transport is to call the functions in Session class. The Session object

specifies such properties that define the interface between client application and

the network.

64

5.3 The Navigation of Principal Functions

In this section, we navigate our intelligent agent work flow in the order of user

perceptions. This process is partitioned into several phases, starting from first log

in account, checking messages in mail account, until the notification when there

are new messages in the account.

Phase I: Start the application

In order to start this agent, user should input the command line like:

C:\java MailAgent—Lpop3://username:passwd@servername

In more details, if a user opened a Yahoo mail account with user name as

e_talking, then server is: pop.mail.yahoo.com and account

is: e_talking@yahoo.com

If the agent has completed the connection with server, the agent works for user.

The agent speaks a short introduction via speaker including:

"Welcome!"

"Mail Agent Speaking For You”

"and now you have n total messages in your box"

n is message number in user INBOX folder. INBOX folder is the one that most

protocol put messages in. At the same time, the main interface of our agent is

shown as indicated in Figure 5.4.

mailto:e_talking@yahoo.com

65

IKS Mail Agent Speaking For You i 'tn , » lf l l *1
Play Voice Volume Menol Sound
13 Mail account jrj* ReadThts j Volume♦ j Volume- Male , Female Pause , Cancel

Date | From . 1 Subject •n r ' D^e?Tue Mar~27 22:54:40PST2001
From: e talking <e_talkinggyahooxom>

I ‘fro: e_talldng@sfahoo.com
 : Subject HI_________ ■m.

: This Is the first message. Let the agent speak
something. Say how are you, in Chinese, this is to say

' ni how...

Do You Yahoo!?
Set email at your own domain with Yahoo! Mall
http^personal,mail,yahoo,comf?.refer=text

Figure 5.4 The Voice Email Agent Screen (1)

The agent screen is divided into three parts: in the left upper comer, the account is

shown; in left down comer, the messages in the user INBOX folder is shown

including Date, From and Subject. In the right of the screen, the content of

selected message is shown here. The agent fetches all the messages in the folder

and the header of each one is displayed. Therefore user can go through all the

messages. By clicking any of the messages, we can look at the content in right

screen. If user wants to listen to any message, there are two alternative ways:

either by a short cut button shown on upper right part ReadThis or by clicking

Play button on the main menu. The functions associated with the Speech

mailto:e_talldng@sfahoo.com

66

Synthesizer such as voice type (either male or female), the age (young or aged),

the volume, how long of interval to check new messages, and what kind of music

notifications could be selected by clicking the corresponding buttons on the main

menu. The short cut buttons are also shown on the right of the screen.

Phase II: Check new message

As long as the agent is active, it checks if there are any new messages in our

folder. If there are any, a visual notification is also shown on the screen as shown

in Figure 5.5. At the same time, the agent will play music as notification. The

agent reads the message based on the instructions from user. If user wants to hear

it then just says yes. The agent identifies various types of messages such as

plain/text, multipart and nested message. Then it also speaks a notification such

as:

"Hello e talking, you have n new message”

" Message 1"

"This message is sent by sender and the subject is: subject”

" Message

"This message is sent by sender and the subject is: subject”

n is the number of new in the folder, sender and subject are retrieved from the

new just arrived.

67

; Hello ejalking you have new messages!

Figure 5.5 The Voice Email Agent Screen (2)

According to the type of incoming message, the agent speaks different

notification accordingly. For example, if the message is a text/plain type, then the

agent speaks:

" This is a plain text message"

"The content i s : "

If the type is multipart type, the agent speaks

"This is a Multipart message with attachment"

"The content i s : "

"This is attachment"

"The content i s : "

If it is message/rfc822 type, then it speaks:

"This is a Nested Message"

"The content i s : "

If none of above, it speaks:

"Ops, I can not speech for you, could you have a look?"

68

The new message is shown in left down comer by clicking upper left account

name. This is to refresh the messages in the user INBOX folder. Then the new

one is shown including Date, From and Subject. Therefore our intelligent agent is

able to take care of the incoming messages while the user is concentrating on

some other duties. With the help of an intelligent agent, the user is able to focus

on his/her own interests while not delay the handling of any new messages.

Because user can select how long to check new ones, our agent acts based on a set

of instructions given by the user.

The background algorithm for checking new messages is shown in the following:

Open folder INBOX with Folder. READ ONLY

Get total message number by calling folder. getUnreadMessageCountQ

Speech "Welcome! "Mail Agent Speaking For You, and now you have n

total messages in your box"

Close folder

Open folder with Folder. READ ONLY

Get preMessages = folder.getMessageCountQ

Close folder, close

While (true)

{

69

I f folder is not open

Then open folder

Get totalMessages = folder.getMessageCountQ

Get newMessages = totalMessages - preMessages;

I f newMessages is greater than 0

{

Get userName = urln.getUsername()

//taking ” out from user name

Get easyName = u s e r N a m e . r e p l a c e ')

Speech "Hello " + easyName + "you have " +

newMessages + "new message "

Get all the messages in INBOX me = folder, getMessages ()

Get number o f messages: j

fo r (i = newMessages; i > 0; i—)

{

Get subject sub = me[j-i].getSubject()

Get fromString

Speech "Message " + n + “This message is sent by"

+fromString

Speech ” and the subject is: " + sub

Then process the content o f each: me[j-i]

70

}

}

preMessages = totalMessages;

}

A detailed representation of interactions between three layers is shown in Figure

5.6. Whenever there are any new messages or we log in our account the first time,

the agent handles this function in its account process layer as indicated by (1). If

this is a new one, the account process layer invokes notification layer that process

notification function according the properties predefined as indicated by (2).

Upon completion, notification layer calls speech integration layer to speech the

messages to user as indicated by (3). If user just wants to listen to the content by

clicking certain buttons, account process layer notifies speech integration layer

directly without invoking notification layer as indicated by (4) in the Figure 5.6.

When users start our agent, they has no idea that there are three layers cooperate

background. The impression they have is a whole application with audio feature.

71

notification Injer

speech integration layer

Figure 5.6 The Interactions Between Layers

5.4 A Brief Summaiy

In chapter 5 we discussed our agent implementation details including how the

techniques in chapter 3 are implemented including Text-to-Speech Synthesis

(TTS), Internet email protocol, Object-Oriented design theory etc. With the

completion of implementation, our agent can check if there are any new messages

in our folder. If there are any, the agent reads the message for us. It can identify

various types of messages such as plain/text, multipart and nested message. A

visual notification is also shown on the screen. With both visual and voice

notifications, our agent becomes a multimedia intelligent agent. We can also

select voice type (either male or female), the age (young or aged), the volume,

how long of interval to check new messages etc. Our Voice-Email intelligent

agent system delivers abbreviations, punctuation, time and date formats, and

many other potentially ambiguous texts in a way that is easily deciphered and

correctly spoken.

73

Chapter 6 Conclusion and Future Work

In this section we discuss the significance of our work and the improvements we

should consider in the future work. The significances part focuses on how our

work makes new efforts in the respective areas.

6.1 The Significances of Our Works

As we have indicated that intelligent agent is an intelligent program that uses

intelligent agent technology to exchange information for automatic problem

solving, performing specific tasks on behalf of their users. In our work we

investigate what is need for an intelligent agent and use our results to design such

an agent and implement it. Such an intelligent agent work is based on our design

framework and works for us. As already shown, such a multimedia email system

monitors the email for us while we are surfing the Internet and read the message

for us. It notifies any new incoming messages not only with text notification but

also voice notification. Such an intelligent agent is developed based on our design

framework. The intelligent agent system combines network protocol, voice

technology and theory, electronic mail protocol, Object-Oriented design theory

and Java API.

74

6.2 Our Work In A Broader Sense

As we had indicated in chapter 2, our work is classified into reactive agent

category. Such kind of agents responds to the present environment where they are

embedded in a stimulus-response manner, monitoring outside by sensors and

utilizing data from sensors. One of the applications is robot that is a physical

agent. The subsumption architecture is suitable for reactive agent of robot. Our

work extends such architecture to agents that are software applications together

with utilization of OO technology. Therefore the goals of different layers in

subsumption architecture are achieved more easily and we can extend our agent

more conveniently. This is our new efforts for the subsumption architecture.

Based on what we have done, we can extend our agent capabilities. For example,

two mail agents should be able to communicate each other to achieve more

complicated task. If there are any important messages, one agent can forward

them to another agent that can reach users. One agent is in office server and

another one is in home computer. By Internet connection, agents are able to

communicate each other over Internet. Each agent stores the IP address of another

one. Because of Internet volume, user can set some criteria to allow agent fill out

some messages such as large size ones, or the ones with certain sender. The agent

is also able to forward message without attachment if that attachment is too large.

Figure 6.1 shows this scenario. We can even go further by adding more layers to

75

let agent navigating on the Web. The agent can find a file and send that file back

to user.

M ail M essages NETWORK

M ail Server M ail A gent M ail A gent

Figure 6.1 The Forward Features Between Agents

6.3 Future Work

In previous chapter, we have discussed our agent system, including our

objectives, initiatives, its theoretical background, the whole model design and its

implementation details. Though the agent realized our objectives through

implementation, it need further improvements and there are still challenges ahead

such as:

(1) How to expand the agent architecture to more flexible applications;

(2) How to improve our design to facilitate further development of

intelligent agent;

(3) How to improve scalability and performance etc.

As long as we put efforts on these issues, we will have a more flexible and

efficient intelligent agent system.

76

References

[ATT, 2000] http://www.research.att.com/areas/

[BELL, 2000] http://www.bell-labs.com

[Bradshaw, 1997] Jeffrey M. Bradshaw, Software Agents, MIT Press 1997

[Brooks, 1986] Rodney Brooks, A Robust Layered Control System for a Mobile

Robot, IEEE Journal of Robotics and Automation, April, 14-23.1, 1986

[Brooks, 1990] Rodney Brooks, Elephants Don't Play Chess, In Pattie Maes, ed.,

Designing Autonomous Agents, Cambridge, MA: MIT Press 1990

[Chen, 1999] Z. Chen, Intelligent agents, The 1EBM Handbook o f Information

Technology in Business, pp. 561-569, 1999

[Eckel, 2000] Bruce Eckel, Thinking in Java, Prentice Hall 2000

[Franklin, 1996] Stan Franklin, Is it an Agent, or just a Program?: A Taxonomy

fo r Autonomous Agents, Proceedings of the Third International Workshop

on Agent Theories, Architectures, and Languages, Springer-Verlag 1996

[IBM, 2000] http://www-4.ibm.com/software/speech/

[IBMWP, 2000] http://activist.gpl.ibm.com:81/WhitePaper/ptc2.htm

[Kamik and Tripathi, 1998] Neeran Kamik and Anand Tripathi, Agent Server

Architecture for the Ajanta Mobile-Agent System, in Proceeding of the

1998 International Conference on Parallel and Distributed Processing and

Application (PDPTA’98), Las Vegas 1998

http://www.research.att.com/areas/
http://www.bell-labs.com
http://www-4.ibm.com/software/speech/
http://activist.gpl.ibm.com:81/WhitePaper/ptc2.htm

77

[Maes, 1995] Pattie Maes, Artificial Life Meets Entertainment: Life like

Autonomous Agents, Communications of the ACM, 38, 11, 108-114 1995

[MSFT, 2000] http://www.microsoft.com/enable/dev/default.htm

[Nwana and Azarmi, 1997] H.S. Nwana and N.Azarmi, Software Agents and Soft

Computing, Berlin: Springer 1997

[Russell and Norvig, 1995] Stuart J. Russell and Peter Norvig, Artificial

Intelligence: A Modern Approach, Englewood Cliffs, NJ: Prentice Hall

1995

[SUN, 2000] http://java.sun.com/products

[Wood, 1999] David Wood, Internet Email, OReilly 1999

[Wooldridge and Jennings, 1995]M. J.Wooldridge and N. R Jennings (eds.)

Intelligent Agents, Berlin: Springer 1995

http://www.microsoft.com/enable/dev/default.htm
http://java.sun.com/products

	University of Nebraska at Omaha
	DigitalCommons@UNO
	5-1-2001

	Intelligent Voice Email Agent: A Multimedia Solution
	Xuecheng Wang
	Recommended Citation

	tmp.1499779448.pdf.xkrTJ

