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LANGUAGE AT REST: A LONGITUDINAL STUDY OF INTRINSIC FUNCTIONAL CONNECTIVITY IN 

PRETERM CHILDREN 

Megan A. Rowlands, Dustin Scheinost, Cheryl Lacadie, Betty Vohr, Fangyong Li, Karen C. Schneider, R. Todd 

Constable, Laura R. Ment. Department of Pediatrics, Yale University, School of Medicine, New Haven, CT. 

 

Preterm (PT) children show early cognitive and language deficits and display altered cortical connectivity for language 

compared to term (T) children. Developmentally, functional connectivity networks become more segregated and integrated 

through the weakening of short-range and strengthening of long-range connections. The specific aims of this study are: (1) To use 

residual fMRI data to investigate intrinsic connectivity development from ages 8 to 16 years in PT vs. T controls; and (2) To 

correlate intrinsic connectivity to cognitive and language scores. Longitudinal intrinsic connectivity distribution (ICD) values 

were assessed in PT (n = 13) compared to T children (n = 12) at ages 8 vs. 16 years using a Linear Mixed Effects model. 

Connectivity values in regions generated by the group x age interaction analysis were correlated with scores on full IQ (FSIQ), 

verbal IQ (VIQ), verbal comprehension IQ (VCIQ), performance IQ (PIQ), Peabody Picture Vocabulary Test­Revised (PPVT­R), 

and Rapid Naming Composite (RDRL_cmp). The group x age analysis revealed significant ICD differences in the following 

regions: bilateral Brodmann area (BA) 47­BA11­BA10­L BA45 (p=0.0002) and L fusiform­BA18­BA19 (p=0.008). The larger 

frontal region (bilateral BA47-BA11-BA10-L BA45) was separated into subregions for further analysis, which showed the 

following significant ICD group x age differences: L and R BA47 (p=0.03 and p=0.0006, respectively), bilateral BA11 

(p=0.0008), L and R BA10 (p=0.0005 and 0.005, respectively), and L BA46 (p=0.03). Over time, PT ICD increased in: bilateral 

BA47­BA11­BA10­L BA45 (p<0.0001), L and R BA47 (p=0.02 and <0.0001, respectively), bilateral BA11 (p<0.0001), L and R 

BA10 (p<0.0001 for both), and L BA46 (p=0.002).  In addition, PT showed decreased ICD in L fusiform­BA18­BA19 (p=0.002). 

In contrast, the T subjects had no significant changes in ICD values over time. At age 16, PT had greater ICD than T in: bilateral 

BA47­BA11­BA10­L BA45 (p=0.0002), L & R BA47 (p=0.03 & p=0.0007), bilateral BA11 (p=0.0009), L & R BA10 (p=0.0006 

& p=0.005), and L BA46 (p=0.03). PT had less ICD than T in L fusiform­BA18­BA19 (p=0.04). L fusiform­BA18­BA19 ICD 

positively correlated to scores on VIQ (p=0.021), PIQ (p=0.041), and FSIQ (p=0.015). None of the other regions correlated to 

scores on the cognitive tasks. The L fusiform-BA18-BA19 region includes the visual word form area, which has long been 

associated with reading performance and complex visual processing. These data demonstrate for the first time that, over the 

course of adolescence, prematurely-born children undergo widespread developmental changes in intrinsic connectivity that differ 

from term-born children. The development of resting state connectivity in prematurely-born children does not reflect 

compensatory alterations but rather appears to underscore and perpetuate impairment in language and cognitive processing.
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1. Introduction 

 

1.1. Cognitive impairment is prevalent in preterm-born children 

Preterm (PT) birth is a major global health burden, with up to 11% of all live born infants 

worldwide being born at less than 37 weeks gestation (1,2), and as many as one-third of 

prematurely born infants suffering from significant cognitive impairments during early childhood 

(3-6). While Saigal et al. (7) demonstrated that, by adulthood, preterms are comparable to their 

term (T) peers in educational attainment and functional independence, several studies have 

shown that preterms persistently display global impairment in cognition, language, and motor 

function (8-10).  

Even in early childhood, language deficits are evident. At age 2.5 years, preterms had 

lower scores on tasks of cognition, receptive and expressive communication, with over 10% of 

preterm children showing moderate-severe delay in these areas (11). Similarly, at age 6 years, 

preterms had significantly poorer reading, vocabulary, and comprehension than terms (12). 

Promisingly, there is some evidence to suggest that these early language deficits in 

preterms may improve with age. Luu et al. found that from ages 3 to 12, preterms had poorer 

receptive vocabulary compared to controls, but they improved over time and nearly approached 

the normative values by age 12 (13). These “catch-up gains” in receptive vocabulary were also 

seen at age 16, although preterms continued to show impairment in phonology (14).  

 

1.2 Structural and functional organization of neural networks 

Cognitive functions are mediated by neuronal networks of varying complexity. Neurons 

communicate by receiving synaptic inputs along their dendritic trees and then transmitting 
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information via axon outputs to other neurons. These connections form larger networks, which 

are critical for communicating, integrating, and processing information in the brain. 

Morphologically, the brain contains visibly distinct tissues, termed gray and white matter. Neural 

gray matter includes neurons, dendrites, synapses, and local axons, while white matter refers to 

the long-distance, myelinated axon tracts between cortical areas. The vast majority of axonal 

connections exist between local neurons, while the likelihood of two distant neurons being 

connected is only one in a million. Thus, most neuronal communication occurs within local 

networks, and only a small proportion of these signals are communicated distantly by the 

relatively few neurons with long-range connections (15).  

The development of this structural connectivity is substantially restricted by material, 

energy, and physical constraints. To economize resources, the brain has adapted to reconfigure 

axonal connections between neurons over time. Synapses and axons are remodeled, redundant 

connections are eliminated, and the sensitivities of these connections are continually modified. 

While this may succeed in minimizing structural costs, the challenge lies in preserving the 

functional integrity and efficiency of neuronal communication and processing (15). 

The functional properties of neural networks are not strictly defined by structural 

connections but rather are influenced by the interplay of the activity and connections across the 

entire network. While functional connectivity is mediated by structural connections, not all 

structural connections between neurons confer an efficient functional relationship. As such, as 

the brain evolves over the course of a person’s life, unnecessary or redundant connections may 

be eliminated while others are created in order to maximize functional efficiency (16). Evidence 

of this remodeling has been observed in a number of structural neuroimaging studies. White 

matter tends to increase linearly, peaking at age 50, for example, while gray matter density 
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decreases in a non-linear fashion up to age 40 (17). Optimally, these changes serve to maximize 

functional efficiency while conserving precious structural resources.  

 

1.3. Altered neural structures in PTs 

Preterm birth substantially alters the neurodevelopment of both gray and white matter. In 

early childhood, the brains of preterms are 5-6% smaller and display diffuse white matter 

abnormalities compared to matched term controls (18-20). During childhood and adolescence, 

preterm brains fail to undergo white matter expansion and gray matter pruning in temporal and 

frontal lobes that characterize normal development in term controls (21), resulting in significant 

decreases in left frontal and bilateral temporal white matter volumes (22). At young adulthood, 

preterm subjects continue to display alterations in both regional volumes and microstructural 

connectivity, particularly in language areas including the left frontal language regions, temporal 

and parietal cortices, and both cerebellar hemispheres (18,23-26). These observations suggest 

that the effects of prematurity on brain development are both widespread and long-lasting.  

Nosarti et al. observed that preterms had diffuse decreases in both white and gray matter 

volumes compared to terms, which correlated with greater cognitive impairment (27). Parker et 

al. also showed that preterms had reduced total cerebellar volumes compared to terms. Although 

initial cognitive measures revealed a positive correlation with cerebellar volume, this association 

did not persist after controlling for white matter volume (28). 

Notably, Schafer et al. found that, despite preterms having significant differences in 

functional connectivity to language areas as well as a reduction in left frontal and bilateral 

temporal white matter, preterm subjects performed comparably on semantic language tasks to 

normal term controls (22). Lubsen et al. echoed these findings, demonstrating that despite 
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preterms having lower fractional anisotropy values, which are a marker of microstructural 

connectivity, in several language regions, they performed comparably to terms (29).  

 

1.4. Development of resting state functional connectivity networks  

Recently, resting state functional connectivity MRI has come into focus as a method for 

identifying functional neural networks. It is based on the finding that distinct neural regions that 

display temporally related spontaneous blood oxygen level dependent (BOLD) fluctuations at 

rest reflect a functionally connected network (30).  

 Few studies have investigated resting state connectivity (RSC) in children or across 

development. Of these studies, it has been reported that the functional organization of the brain 

in children significantly differs from that of adults. Children display more local, short-range 

connections between adjacent brain regions, which eventually shift to more long-range, 

distributed connections in adults (31). This developmental trend encompasses “segregation” of 

neural networks via the weakening of short-range connections and concurrent “integration” of 

distant regions into functional networks via the strengthening of long-range connections (32).  

  The evolving functional architecture over development appears to correspond to maturing 

behavioral and cognitive abilities. Task-based fMRI studies show that more mature brains 

exhibit both greater task-activation and greater anti-task-deactivation in corresponding regions 

with age (33). Resting state studies have similarly demonstrated that this synchrony of stronger 

activation within networks and enhanced deactivation of antagonistic networks correlates with 

more mature performance on tasks of higher order executive function, such as attention, working 

memory, and regulatory control (34,35).  
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While this trend of “segregation and integration” seems to characterize maturation in a 

number of neural networks, little is known about the development and refinement of language 

network connectivity or how this development is affected by preterm birth. At adolescence, 

preterms display globally stronger intra- and inter-hemispheric connectivity to the superior 

temporal lobes than terms, but functional connectivity between these language regions and 

overall network efficiency are reduced in preterms (36). Preterms continue to demonstrate 

greater connectivity at age 20 in hypothesized language processing areas, including left 

temporal-parietal areas, left and right inferior temporal lobes, and the medial frontal lobes (37). 

Although previous studies have demonstrated significant connectivity differences between 

preterms and terms (36,37), it is unclear whether these connections are present at birth and are 

not pruned through the course of development or if they develop over time.  

Traditionally, the use of resting state functional MRI data has had several limitations. For 

one, it relies on pre-selected regions of interest (ROI) to be investigated. ROI refers to a cluster 

of neural voxels in fMRI analysis that corresponds to an anatomical area of the brain that an 

investigator chooses to study. For example, if an investigator were interested in studying 

connectivity in visual networks, then an area of visual cortex would likely be selected as an ROI 

or “seed”. Connectivity to and from this region would then be analyzed, while other neural 

regions are disregarded (38). Although this method may help to answer questions about specific 

regions, the use of pre-selected ROIs may overlook non-selected areas that display notable 

connectivity. Also, the use of resting state functional connectivity relies on arbitrarily defined 

correlation thresholds to describe functional connectivity differences.  

To overcome these limitations, Scheinost et al. developed the intrinsic connectivity 

distribution (ICD) metric. ICD allows for the characterization of all connections via a voxel-by-



	 6	

voxel whole-brain survey without requiring a priori defined ROIs or connectivity thresholds 

(37). It measures the connectivity of each voxel to all other neural voxels and allows for 

elaboration of a specific voxel’s degree of connectivity throughout the brain without being 

limited to connectivity within a pre-defined network (39). 

 

2. Statement of Purpose 

 

The purpose of this longitudinal study is to investigate how intrinsic functional 

connectivity is altered from childhood through adolescence in preterms compared to terms, as 

well as how these changes in connectivity relate to cognitive, semantic, and phonologic testing 

scores. I hypothesize that, when compared to term controls, preterm subjects will display altered 

connectivity trajectories between childhood and adolescence. Functional connectivity will be 

correlated with performance on language tasks.  

  

3. Materials and Methods 

 

This study was performed at the Yale University School of Medicine, New Haven, CT 

and Brown Medical School, Providence, RI. The protocols were reviewed and approved by 

institutional review boards at each location. Children provided written assent; parent(s) provided 

written consent for the study. All scans were obtained at Yale University and were analyzed at 

Yale University.  

 

3.1. Subjects 
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 The preterm cohort consisted of children who were enrolled in the follow-up MRI 

component of the Multicenter Randomized Indomethacin Intraventricular Hemorrhage 

Prevention Trial (40). Newborns were identified as preterm if they weighed between 600 and 

1250g at birth, and they were recruited for the IVH Prevention Trial within 6 hours of birth. Only 

those preterm children without evidence of intraventricular hemorrhage, periventricular 

leukomalacia and/or low-pressure ventriculomegaly and who lived within 200 miles of the Yale 

study center were included in the IVH trial. Term control children were recruited from the local 

communities of the study children. They were group-matched to the preterm children for age, 

sex, and minority status. Minority status was defined as being of non-Caucasian race and was 

reported by parents at the time of the assessment. Only preterm subjects and term controls with 

data collected at both 8 years and 16 years of age were included.  

 

3.2. Neurodevelopmental assessments 

Serial standardized neuropsychological assessments were performed by testers blinded to 

the randomization status of the subjects in the IVH prevention study. Intellectual ability was 

measured using the Weschler Intelligence Scale for Children, Third Edition (WISC-III), from 

which the verbal IQ (VIQ), performance IQ (PIQ), verbal comprehension IQ (VCIQ) and full-

scale IQs (FSIQ) were obtained. Specific language skills were assessed with the Peabody Picture 

Vocabulary Test—Revised (PPVT-R) and the Rapid Naming Composite (RDRL_Cmp). The 

PPVT tests receptive vocabulary, while the RDRL_Cmp measures the efficiency of retrieving 

names of digits and letters, which is suggested to be a component of phonologic coding (41).  

 

3.3. Residual data between task paradigms during fMRI scanning 



	 8	

 For the 16-year-old subjects, each subject performed an event-related cue-target identity 

task that required a match/mismatch judgment between pictures and words that were presented 

acoustically and/or in printed form on each trial. Responses were made via a button press. 

Between 8 and 10 runs were completed per subject. This task is described in detail in Frost et al. 

(42). For the 8-year-old subjects, each subject passively listened to the Ugly Duckling story 

presented either normally, with words scrambled, or with a low pass filter applied.  This task is 

described in detail in Ment et al. (43). For both tasks, the task-based data were analyzed using a 

general linear model described in each of the respective papers. Then the model fit was 

subtracted from the raw data to create a residual data set, which was used as the input to the 

connectivity analysis.  

The use of residuals has been described previously by Finn et al. (44). The effect of task 

was regressed out to leave residual fluctuations that we believe are more closely representative of 

intrinsic, spontaneous neural activity. By avoiding task-based data, we prevent our results from 

being dominated by activation coupled to the onset and processing of each stimulus and instead 

are able to examine spontaneous fluctuations. Furthermore, the use of purely continuous resting-

state scan data may introduce confounding “tasks”, such as mind-wandering, which are likely 

inhibited in task-based studies. Thus, we believe that the use of residual data during a task-based 

study may more accurately reflect spontaneous neural changes and better enhance underlying 

functional organization between the groups. 

 

3.4. Preprocessing 

All data were converted from Digital Imaging and Communication in Medicine 

(DICOM) format to Analyze format using XMedCon (http://xmedcon.sourcefroge.net/). During 
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the conversion process, the first four images at the beginning of each of the ten functional series 

were discarded to enable the signal to achieve steady state, leaving 209 measurements for 

analysis. Images were first slice time corrected using sinc interpolation and then motion 

corrected using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/). Runs with linear 

motion in excess of 1.5 mm or rotation greater than 2° were discarded. All voxels with signal 

less than 5% of the maximum were set to zero, and drift removal (up to 3rd order) and temporal 

Gaussian smoothing (standard deviation = 1) were then performed on the time-course of each 

voxel. Finally, the global time-course was regressed out. As group differences in motion have 

been shown to confound functional connectivity results as seen in Van Dijk et al. (45), average 

frame-to-frame displacement was calculated for each run and compared between the four groups: 

8-year preterm, 8-year term, 16-year preterm and 16-year term. To level the mean displacement 

across groups to 0.054 mm, runs with displacement greater than 0.09 mm for the 8-year preterm 

(58 of 150 runs), 0.08mm for the 8-year term (29 of 62 runs), and 0.12mm for the 16-year 

preterm (55 of 288 runs) were additionally discarded. No runs were additionally discarded from 

the 16-year term subjects (349 runs).   

 

3.5. Residual functional connectivity maps 

 All remaining residual data runs for each subject were concatenated, and the functional 

connectivity of each voxel, as measured by ICD, was calculated as described in Scheinost et al. 

(37). Similar to most voxel-based functional connectivity measures, ICD involves correlating the 

time course for any given gray-matter voxel with the time course of every other gray-matter 

voxel in the brain, and then summarizing these correlations with a network theory metric. 

Specifically, ICD models the entire distribution of the network measure of degree, therefore 
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eliminating the need to specify a connection threshold. A histogram of these positive correlations 

was constructed to estimate the distribution of connections to the voxel in question. This 

distribution of connections was converted to a survival function and the survival function was 

fitted with a stretched exponential with unknown variance, α. As alpha controls the spread of the 

distribution of connections, a larger alpha indicates a greater number of high correlation 

connections. Finally, this process was repeated for all voxels in the gray matter resulting in a 

parametric image of the alpha parameter for each subject, which was used in all between group 

and correlational analyses. Each subject’s ICD map was then normalized by subtracting that 

subject’s mean and dividing by the standard deviation across all voxels. This normalization 

process removed the large global connectivity differences to better investigate the more subtle 

relative connectivity differences (46). Finally, a 6mm Gaussian filter was applied to each 

normalized ICD map. 

 

3.6. Registration to a common reference space 

 To take individual subject data into a common reference space, three registrations were 

calculated within the Yale BioImage Suite software package (http://www.bioimagesuite.org) 

(47) and then concatenated and applied as one registration. The first was a linear registration 

between the individual subject’s raw functional data and the subject’s T1 anatomical image 

collected at the same slice locations. The second linear registration was between the individual’s 

T1 anatomical image and the individual’s 1 mm isotropic MP-Rage anatomical image. Finally, a 

non-linear registration was computed between the individuals’ MP-Rage anatomical image and 

the Colin27 Brain (48) in order to transform data into the standardized space defined by the 
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Montreal Neurological Institute (MNI). The inverse transformation from the MNI space to the 

individual functional space was also computed. 

 

3.7 Group comparison Linear Mixed Effects model 

To compare the longitudinal changes of ICD across the groups, a Linear Mixed Effects 

model (LME) using age (8 year vs. 16 year) and group (preterm vs. term) as factors was 

computed using AFNI. The age by group interaction was investigated using a threshold 

significance of p<0.05 with a conjoint cluster of 184 voxels corresponding to a p<0.05 family-

wise error (FWE) correction as determined by AFNI’s AlphaSim program. 

 

3.8. Other statistical analyses 

 Demographic data were analyzed using Fisher’s exact test for categorical variables and t 

test for continuous variables. Mixed model repeated measures analysis was performed to 

compare the longitudinal changes in both resting state functional connectivity and 

neurocognitive scores between preterms and terms, with covariate adjustment for gender, race 

and maternal education status and inclusion of time by group interaction. Linear contrasts were 

performed to examine the changes in both connectivity and cognitive scores from age 8 to 16 for 

each group, compare groups at each age, and compare these connectivity and cognitive score 

changes between groups. Pearson correlation analysis was performed to examine the correlations 

between all ROIs and cognitive scores at age 16. The correlation analysis was also stratified by 

preterms and terms. The significance level was p < 0.05, two-sided.   
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3.9 My contribution  

After participating in a similar research project with Dr. Ment during my first year 

summer, I became interested in further characterizing connectivity in preterm subjects versus 

term controls. I performed an extensive background literature review, which revealed a 

knowledge gap in longitudinal studies of connectivity in preterm children and adolescents. Thus, 

when I proposed to revisit the neuroimaging data with Dr. Ment, I suggested that we focus on 

longitudinal data. From Dr. Ment’s cohort of study patients, I identified the subjects for whom 

we had longitudinal data at both 8 and 16 years. I then coordinated with the neuroimaging data 

analysts and described my interest in identifying regions of the brain that underwent significant 

connectivity changes between ages 8 and 16 in preterms versus terms. They recommended that 

we utilize a new method of connectivity analysis, the intrinsic connectivity distribution, for 

quantifying connectivity from residual fMRI data. The neuroimaging analysts provided me with 

the raw values for relative connectivity from the group x age interaction analyses. I discussed the 

project with statisticians at the Yale Center for Analytic Studies, emphasizing that I wanted to 

explore the correlations between the changes in these connectivity values over time and scores 

on various neurocognitive assessments. I provided them with the ICD data and neurocognitive 

scores, and they sent me the results of their analyses. I independently interpreted the results of 

these analyses, recognized the striking decrease in left fusiform-BA18-BA19 connectivity in 

preterm subjects, and described the implications for its positive correlation to scores on VIQ, 

PIQ, and FSIQ. I performed an extensive literature review to establish context for these results, 

which led me to conclude that reductions in connectivity in this region are contributing to the 

pervasive and persistent neurocognitive deficits that we observed in the prematurely-born 

children.  
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4. Results 

 

4.1. Subjects 

Thirteen preterm children and twelve term children were included. Demographic data for 

all subjects are reported in Table 1. Perinatal data for the preterm subjects are also shown in 

Table 1. There were no significant differences between the two groups in the number of males, 

handedness, race, or years of maternal education. Both groups were comparable at age of scan, 

although preterms were slightly older than terms at age 16, which trended toward significance 

(16.31 vs. 16.12 years, p  = 0.059).  

 

Table 1: Demographic data for the study children (mean ± SD) 

 Preterm Term p 

Number 13 12 - 

Males 9 (69%) 6 (50%) 0.428 

Right-handed 13 (100%) 12 (100%) - 

Minority Status 5 (38%) 4 (33%) 1.000 

Age at 8yo Scan 8.89 ± 0.49 8.80 ± 0.49 0.654 

Age at 16yo scan 16.31 ± 0.29 16.12 ± 0.18 0.059 

Mat ed < HS 0 0 - 

Birthweight (grams) 
948.46 ± 
188.05 - - 

Gestational Age 
(weeks) 27.31 ± 2.43 - - 

 

As shown in Table 2, there were no significant differences between preterms and terms in 

cognitive scores at age 8, but PIQ and FSIQ trended towards significance (p = 0.06 and p = 0.07, 
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respectively), with preterms having poorer performance. Similarly at age 16, preterms scored 

lower than terms in VIQ, PIQ, and FSIQ (p = 0.04, p = 0.006 and p = 0.006, respectively).  

Comparing changes in testing scores from age 8 to 16 by group, preterm children’s scores 

worsened with increasing age, while scores for the term controls improved, with PIQ and FSIQ 

reaching significance (p = 0.03 and p = 0.03, respectively). Preterms also performed significantly 

worse on FSIQ at age 16 than at age 8 (p = 0.03).  

Table 2: Cognitive data adjusted for gender, race, and maternal education. Presented as least squares means (95% 
confidence interval) and p values. 

 Outcomes Pre-Term Term Group 
difference 

Interaction 
(slope 

difference) 

VIQ 

8 years 
104.1 (96.7, 

111.5) 
109.8 (102.3, 

117.4) 

-5.7 (-16.3, 
4.9) 

P=0.27  

16 years 
98.3 (90.8, 

105.8) 
109.6 (101.6, 

117.6) 

-11.4 (-22.4, -
0.3) 

P=0.04  

Changes from 
8 to 16years 

-5.9 (-12.6, 
0.9) 

P=0.09 
-0.2 (-7.6, 7.2) 

P=0.95  

-5.6 (-15.8, 
4.5) 

P=0.26 
      

PIQ 

8 years 
97.2 (87.8, 

106.7) 
110.0 (100.5, 

119.5) 

-12.8 (-26.2, 
0.7) 

P=0.06  

16 years 
94.0 (84.1, 

103.9) 
114.9 (104.7, 

125.1) 

-20.9 (-35.1, -
6.6) 

P=0.006  

Changes from 
8 to 16 years 

-3.2 (-8.0, 
1.6) 

P=0.18 
4.9 (-0.3, 10.1) 

P=0.06  

-8.1 (-15.2, -
1.0) 

P=0.03 
      

FSIQ 

8 years 
100.6 (92.2, 

108.9) 
111.3 (102.9, 

119.7) 

-10.7 (-22.6, 
1.2) 

P=0.07  

16 years 
95.8 (87.5, 

104.1) 
113.5 (104.9, 

122.0) 

-17.7 (-29.6, -
5.7) 

P=0.006  

Changes from 
8 to 16 years 

-4.8 (-9.0, -
0.5) 

P=0.03 
2.2 (-2.5, 6.8) 

P=0.34  

-6.9 (-13.2, -
0.7) 

P=0.03 
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VCOMPIQ 

8 years 
106.5 (98.7, 

114.2) 
109.2 (101.3, 

117.1) 

-2.8 (-13.9, 
8.4) 

P=0.61  

16 years 
100.5 (93.1, 

108.0) 
108.2 (100.2, 

116.1) 

-7.6 (-18.6, 
3.3) 

P=0.16  

Changes from 
8 to 16 years 

-5.9 (-13.6, 
1.7) 

P=0.12 
-1.0 (-9.3, 7.2) 

P=0.79  

-4.9  (-16.1, 
6.3) 

P=0.38 
      

PPVT 

8 years 
101.0 (90.3, 

111.6) 
113.6 (102.8, 

124.4) 

-12.7 (-27.9, 
2.6) 

P=0.10  

16 years 
104.0 (93.5, 

114.5) 
117.5(106.8, 

128.1) 

-13.5 (-28.5, 
1.6) 

P=0.08  

Changes from 
8 to 16 years 

3.0 (-4.1, 
10.1) 

P=0.39 
3.8 (-3.6, 11.3) 

P=0.30  

-0.8 (-11.1, 
9.5) 

P=0.87 

RDRL_Cmp 

8 years - - -  

16 years 
98.8 (82.1, 

115.5) 
100 (88.3, 

111.7) 

-1.2 (-13.2, 
10.9) 

P=0.84  
Changes from 
8 to 16 years - -  - 

 

4.2 Generated regions 

The group x age interaction analysis revealed several regions with significant differences 

in longitudinal changes in connectivity, including left fusiform-BA18-BA19 (occipito-temporal 

cortex), bilateral BA47-BA11-BA10-left BA45 (inferior frontal gyri, orbitofrontal and anterior 

prefrontal cortices) for preterm compared to term controls (Fig. 1). This included some areas that 

had been both previously published in the literature and identified in our previous studies 

(22,49,50).  
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Figure 1: Interaction result from Linear Mixed Effects model using age (8 year vs. 16 year) and group (preterm vs. term), 
with p<0.05 threshold significance. These areas were mapped to: left fusiform-BA18-BA19 (occipito-temporal cortex) and 
bilateral BA47-BA11-BA10-left BA45 (inferior frontal gyri, orbitofrontal and anterior prefrontal cortices). Regions were 
selected from this analysis. 

 

 

Additional normalized ICD maps were generated comparing groups at ages 8 and 16 

years. Several connectivity differences were observed between groups at age 8, including L 

BA18, L BA19, L BA21, L and R BA37, and the cerebellum (Fig. 2). However, these areas did 

not undergo significant longitudinal changes in connectivity and thus did not persist in the group 

x age interaction map. The interaction map at age 16 showed significant connectivity group 

differences, including bilateral BA9, bilateral BA10, bilateral BA11, L BA13, L BA24, L BA32, 

R BA44, bilateral BA45, bilateral BA46, bilateral BA47 (Fig. 3). Several of these regions 

overlapped with the connectivity differences generated by the group x age interaction map. 
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Figure	2:	Interaction	result	showing	group	differences	at	age	8,	with	p	<	0.05	threshold	significance.	These	areas	
included:	L	BA18,	L	BA19,	L	BA21,	L	and	R	BA37,	and	the	cerebellum.	They	did	not	undergo	significant	
longitudinal	connectivity	changes,	however.	

. 	

Figure	3:	Interaction	result	showing	group	differences	at	age	16,	with	p	<	0.05	threshold	significance.	These	areas	
included:	bilateral	BA9,	bilateral	BA10,	bilateral	BA11,	L	BA13,	L	BA24,	L	BA32,	R	BA44,	bilateral	BA45,	bilateral	
BA46,	bilateral	BA47.	
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The larger frontal ROI was separated into seven individual ROIs based on Brodmann 

areas for further investigation (Fig. 4). All regions were defined in reference space, with the 

center of mass MNI coordinates listed in Table 3, as defined in the Yale Bioimagesuite Software 

(Bioimagesuite.org). For all regions, the inverse transformation from reference space was used to 

warp each region back to individual functional space. 

 

Figure 4: Regions generated from group by age interaction analysis. 

 

 

Table 3: Montreal Neurological Institute (MNI) coordinates of generated regions. 

Brodmann’s areas (BA) Center of Mass MNI (x, y, z) 
Bilateral BA47-BA11-BA10-
Left BA45 -6, 43, -9 

Left BA 45 -43, 28, 2 
Left BA 47 -43, 31, -4 
Right BA 47 36, 41, -15 
Bilateral BA 11 8, 43, -16 
Left BA 10 -30, 48, -3 
Right BA 10 33, 52, -4 
Left BA 46 -44, 40, 1 
Left Fusiform-BA18-BA19 -33, -71, -13 
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4.3. Intrinsic connectivity over time 

 Least squares means for the resting state ICD data for each ROI are shown in Figure 5 

and Table 4; these were adjusted for sex, race, and maternal education. Preterm subjects 

demonstrated significant increases in connectivity from age 8 to age 16 years in bilateral BA47-

BA11-BA10-Left BA45 (LSM 0.61, p < 0.0001), left and right BA 47 (0.27, p = 0.02 and 0.89, p 

< .0001, respectively), bilateral BA 11 (0.74, p < 0.0001), left and right BA 10 (0.48, p < 0.0001 

and 0.74, p < 0.0001), and left BA 46 (0.49, p = 0.002). Preterms also displayed significant 

decreases in connectivity in left fusiform-BA18-BA19 over time (-0.20, p = 0.002). Terms did 

not undergo significant alterations in connectivity over time in any ROIs, although the increase 

observed in right BA 10 trended towards significance (0.23, p = 0.06).  

At age 8, none of the regions showed different connectivity between two groups. At age 

16, the majority of the interrogated regions displayed significantly different connectivity in 

preterms compared to term controls. Preterms had greater connectivity than terms at age 16 in 

the following regions: bilateral BA47-BA11-BA10-Left BA45 (0.53, p = 0.0002), left and right 

BA 47 (0.37, p = 0.03 and 0.68, p = 0.0007), bilateral BA11 (0.60, p = 0.0009), left and right BA 

10 (0.46, p = 0.0006 and 0.51, p = 0.005), and left BA 46 (0.46, p = 0.03). Conversely, terms had 

greater connectivity than preterms in left fusiform-BA18-BA19 (-0.21, p = 0.04).  

Finally, in comparing the changes in connectivity over time in preterms versus terms, 

significant differences were again seen in bilateral BA47-BA11-BA10-Left BA45 (0.53, p = 

0.0002), left fusiform-BA18-BA19 (-0.24, p = 0.008), left and right BA 47 (0.38, p = 0.03 and 

0.68, p = 0.0006), bilateral BA 11 (0.60, p = 0.0008), left and right BA 10 (0.46, p = 0.0005 and 

0.51, p = 0.005), and left BA 46 (0.46, p = 0.03).  
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Figure 5: ICD plots and p values for group by age interaction. At age 8, PTs and Ts displayed similar connectivity in 
regions. PT but not T underwent significant increases in connectivity by age 16 in all areas except left fusiform-BA18-
BA19 & left BA45. 

 

 

Table 4: Generated region outcomes adjusted for gender, race, and maternal education. Presented as LS means (95% 
confidence interval) and p values. 

 Outcomes Pre-Term Term Group 
difference 

Interaction 
(slope 

difference) 

Bilateral 
BA47_BA11_BA10_LeftBA45 

8 years 0.06 (0.05, 
0.07) 

0.06 (0.06, 
0.07) 

-0.00 
P=0.58  

16 years 0.67 (0.50, 
0.84) 

0.14 (-
0.03, 0.32) 

0.53 
P=0.0002  

Changes 
from 8 to 16 

years 

0.61 (0.44, 
0.77) 

P <.0001 

0.08 (-0.1, 
0.25) 

P=0.37  

0.53 (0.29, 
0.77) 

P=0.0002 
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Left Fusiform_BA18_BA19 

8 years 0.06 (0.04, 
0.08) 

0.04 (0.02, 
0.05) 

0.02 (-0.00, 
0.05) 

P=0.08  

16 years -0.14 (-
0.26, -0.03) 

0.07 (-
0.05, 0.19) 

-0.21 (-0.38, 
-0.05) 

P=0.04  
Changes 

from 8 to 16 
years 

-0.20 (-
0.32, -0.08) 

P=0.002 

0.04 (-
0.08, 0.16) 

P=0.53  

-0.24 (-0.41, -
0.07) 

P=0.008 
      

Left BA45 

8 years 0.06 (0.06, 
0.07) 

0.07 (0.06, 
0.08) 

-0.01 (-0.02, 
0.00) 

P=0.13  

16 years 0.10 (-0.09, 
0.28) 

-0.14 (-
0.33, 0.06) 

0.24 (-0.03, 
0.52) 

P=0.08  

Changes 
from 8 to 16 

years 

0.03 (-0.15, 
0.22) 

P=0.71 

0.21 (-
0.41, -
0.01) 

P=0.33  

0.24 (-0.03, 
0.52) 

P=0.08 
      

Left BA47 

8 years 0.07 (0.06, 
0.08) 

0.08 (0.07, 
0.09) 

-0.01 (-0.02, 
0.01) 

P=0.40  

16 years 0.34 (0.12, 
0.57) 

-0.03 (-
0.26, 0.21) 

0.37 (0.04, 
0.69) 

P=0.03  
Changes 

from 8 to 16 
years 

0.27 (0.04, 
0.50) 

P=0.02 

-0.10 (-
0.34, 0.13) 

P=0.37  

0.38 (0.05, 
0.71) 

P=0.03 
      

Right BA47 

8 years 0.06 (0.05, 
0.07) 

0.06 (0.05, 
0.07) 

-0.01 (-0.02, 
0.02) 

P=0.96  

16 years 0.95 (0.71, 
1.19) 

0.27 (0.02, 
0.52) 

0.68 (0.33, 
1.03) 

P=0.0007  
Changes 

from 8 to 16 
years 

0.89 (0.65, 
1.1) 

P<.0001 

0.21 (-
0.04, 0.46) 

P=0.10  

0.68 (0.33, 
1.03) 

P=0.0006 
      

Bilateral BA 11 

8 years 0.06 (0.05, 
0.07) 

0.06 (0.05, 
0.07) 

-0.00 (-0.02, 
0.01) 

P=0.70  

16 years 0.79 (0.57, 
1.01) 

0.19 (-
0.04, 0.43) 

0.60 (0.28, 
0.92) 

P=0.0009  
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Changes 
from 8 to 16 

years 

0.74 (0.52, 
0.95) 

P <.0001 

0.13 (-
0.09, 0.36) 
P = 0.23  

0.60 (0.28, 
0.92) 

P=0.0008 
      

Left BA10 

8 years 0.06 (0.06, 
0.07) 

0.07 (0.06, 
0.07) 

-0.00 (-0.01, 
0.00) 

P=0.50  

16 years 0.55 (0.38, 
0.7) 

0.08 (-
0.08, 0.25) 

0.46 (0.23, 
0.70) 

P=0.0006  
Changes 

from 8 to 16 
years 

0.48 (0.32, 
0.64) 

P <.0001 

0.02 (-
0.15, 0.19) 

P=0.83  

0.46 (0.23, 
0.70) 

P=0.0005 
      

Right BA10 

8 years 0.07 (0.07, 
0.08) 

0.08 (0.07, 
0.09) 

-0.00 (-0.01, 
0.01) 

P=0.94  

16 years 0.81 (0.58, 
1.05) 

0.31 (0.07, 
0.55) 

0.51 (0.17, 
0.85) 

P=0.005  
Changes 

from 8 to 16 
years 

0.74 (0.51, 
0.97) 

P< .0001 

0.23 (-
0.01, 0.47) 
P = 0.06  

0.51 (0.17, 
0.85) 

P=0.005 
      

Left BA46 

8 years 0.07 (0.06, 
0.08) 

0.07 (0.06, 
0.08) 

0.00 (-0.01, 
0.01) 

P=0.99  

16 years 0.56 (0.28, 
0.84) 

0.10(-0.18, 
0.39) 

0.46 (0.06, 
0.86) 

P=0.03  
Changes 

from 8 to 16 
years 

0.49 (0.21, 
0.77) 

P=0.002 

0.03 (-
0.26, 0.33) 

P=0.81  

0.46 (0.05, 
0.86) 

P=0.03 
 

4.4. Intrinsic connectivity and language scores 

Exploratory analysis using Pearson correlations were performed to correlate ICD in ROIs 

with cognitive measures of all study subjects (i.e. PT and T) at age 16 years; results are listed in 

Table 5. In these analyses, significant correlations were only seen between connectivity of the 

left fusiform-BA18-BA19 and VIQ (r = 0.467, p = 0.021), PIQ (r = 0.419, p = 0.041), and FSIQ 

(r = 0.491, p = 0.015). Scores on the other cognitive tasks were not significantly associated with 



	 23	

connectivity in the other regions. Furthermore, in comparing preterm and term control subjects, 

there were no statistically significant differences between these groups in the correlations of ROI 

connectivity to cognitive scores at age 16.  

When interrogating the relationship between changes in ICD from ages 8 to 16 years and 

overall cognitive outcome measures (ages 8 and 16), again only the left fusiform-BA18-BA19 

region was significantly associated with scores on VIQ (r = 0.466, p = 0.022), PIQ (r = 0.431, p 

= 0.036), and FSIQ (r = 0.498, p = 0.013). Comparisons of the association of connectivity 

changes from ages 8 to 16 and cognitive scores at age 16 revealed no significant group 

differences between preterms and terms. Furthermore, no significant group differences between 

preterms and terms were seen when comparing connectivity at age 16 to changes in cognitive 

scores from ages 8 to 16. 

 

Table	5:	Unadjusted	Pearson	correlations	between	generated	regions’	connectivity	and	score	at	age	16.	

  VERBIQ VCIQ PERFIQ FULLIQ PPVT RDRL_cmp 

Bilateral 
BA47_BA11_BA10_LeftBA45 

 

Pearson 
Correlation 
Coefficients -0.0750 -0.05056 -0.27232 -0.20537 -0.15723 

 

0.23503 

p 0.7266 0.8145 0.1980 0.3357 0.4529 0.2581 
        

Left Fusiform_BA18_BA19 
 

Pearson 
Correlation 
Coefficients 0.46707 0.36750 0.41928 0.49088 0.24065 0.10950 

p 0.0214 0.0773 0.0414 0.0149 0.2466 0.6023 
        

Left BA45 
 

Pearson 
Correlation 
Coefficients -0.07473 -0.05031 -0.10132 -0.09214 0.04644 0.17545 

p 0.7286 0.8154 0.6376 0.6685 0.8255 0.4015 
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Left BA47 
 

Pearson 
Correlation 
Coefficients -0.17325 -0.14823 -0.18649 -0.19468 -0.00563 0.11965 

p 0.4182 0.4894 0.3829 0.3620 0.9787 0.5689 
        

Right BA47 
 

Pearson 
Correlation 
Coefficients -0.03099 -0.06313 -0.26783 -0.18179 -0.15021 0.31215 

p 0.8857 0.7695 0.2058 0.3952 0.4736 0.1287 
        

Bilateral BA11 
 

Pearson 
Correlation 
Coefficients -0.01667 0.02428 -0.23584 -0.15659 -0.16158 0.18251 

p 0.9384 0.9103 0.2672 0.4649 0.4403 0.3826 
        

Left BA10 
 

Pearson 
Correlation 
Coefficients -0.10211 -0.12229 -0.30733 -0.23721 -0.12313 0.31724 

p 0.6350 0.5692 0.1441 0.2644 0.5576 0.1223 
        

Right BA10 
 

Pearson 
Correlation 
Coefficients -0.30007 -0.18210 -0.13887 -0.23281 -0.28134 -0.01274 

p 0.1543 0.3944 0.5175 0.2736 0.1731 0.9518 
        

Left BA46 

Pearson 
Correlation 
Coefficients -0.24017 -0.24532 -0.26274 -0.27499 -0.06541 -0.07850 

p 0.2583 0.2479 0.2148 0.1934 0.7561 0.7092 
 

 

5. Discussion  

 

Developmental changes in connectivity differ in prematurely-born subjects compared to 

healthy term controls during that critical period of late childhood through adolescence. To the 
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best of our knowledge, this is the first report of longitudinal changes in intrinsic connectivity in 

preterm subjects and term controls from 8 to 16 years. At age 8, preterms and terms displayed 

grossly equivalent connectivity in the interrogated regions but then underwent significant 

alterations through age 16 years. Preterm but not term children demonstrated significant 

increases in connectivity in the regions of interest over time, especially in left and right BA47, 

bilateral BA11, left and right BA10, and left BA46. Ultimately, preterms showed greater 

connectivity than terms at age 16 in all areas of interest except the left fusiform-BA18-BA19, in 

which preterms underwent a significant decrease in connectivity in this region. Finally, in both 

preterms and terms, left fusiform-BA18-BA19 connectivity was significantly and positively 

associated with scores on the Full Scale IQ, Performance IQ, and Verbal IQ.  

 

5.1. Altered development of resting state connectivity  

Several studies have investigated the development of preterm resting state connectivity in 

infancy and early childhood. Seed-based correlation analysis has shown that preterms, when 

studied at term in the neonatal period, demonstrate resting state networks that closely 

topographically resemble those of term controls (51). However, network studies show that 

preterm resting state networks have weaker connectivity and complexity, especially in those 

networks subserving higher-order functions, e.g. language, frontoparietal control, and default 

mode networks (52). By age 4, network analysis studies demonstrate that the strong, 

predominantly local resting state connections at birth eventually shift to increased inter-

hemispheric connectivity (53).  

Although our study did not attempt to map out the geography of these connections, we 

found that at age 8, both preterms and terms displayed quantitatively similar connectivity in the 
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interrogated regions. When solely comparing relative connectivity between preterms and terms at 

age 8, we did observe significant group differences. This is in keeping with previous findings of 

connectivity and volumetric differences at age 8 (21,49). However, these areas of contrast in our 

8-year-old interaction map did not undergo significant longitudinal changes, and thus were not 

generated by our group x age interaction map, which was the variable of interest in this study.  

ROI studies show that at several time points in childhood and adolescence, functional 

connectivity to various language regions differs significantly between preterms and terms 

(37,49,50). At age 8, for example, preterms displayed greater connectivity from Wernicke’s 

region (L BA22) to L BA40, R BA40, and R BA44/45 compared to terms; they also displayed 

increased connectivity to and involvement of right-sided neural circuits than their term 

counterparts (49). At age 16, functional connectivity in preterms was increased between 

Wernicke’s area (L BA22) and R BA40 relative to terms, further demonstrating altered 

connectivity and increased right hemisphere involvement for language (50). Finally, at age 20, 

significant functional connectivity differences between preterms and terms were observed in the 

left temporal-parietal area (L BA39, L BA40, L BA7, L BA19, L BA21, and L BA 22), the right 

inferior temporal lobe (R BA21 and R fusiform gyrus), the left inferior temporal lobe (L fusiform 

gyrus, L BA19, and L BA21), the left cerebellum (biventer, inferior semilunar, superior 

semilunar, and quadrangular lobules), and bilateral medial frontal lobes (R BA6, bilateral BA8, 

bilateral BA9, and L BA32) (37). 

These findings are similarly confirmed by microstructural analyses and appear to confer 

cognitive, functional implications. In preterm adolescents, for example, the microstructural 

integrity of white matter tracts within ventral and dorsal language pathways, which were 

significantly altered compared to terms, positively correlated with performance on semantic and 
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phonological tasks, respectively (54). Our present findings are of particular importance because 

they suggest that differences in preterm and term neural connectivity are not simply reflections 

of early and preserved perturbations, but rather are the result of the preterm subjects more rapidly 

altering the number of connections to these areas over the course of adolescence.  

 

5.2. Maturation of the Visual Word Form Area  

Interestingly, we found only a few regions that underwent reductions in resting state 

connectivity from childhood through adolescence, with only left fusiform-BA18-BA19 reaching 

significance in the preterm group.  This area is primarily involved in visual processing. The 

fusiform gyrus is a region of the occipital temporal cortex, which is composed of several 

subregions that subserve visual functions of varying complexity. Higher-order functional regions 

tend to be located in the more anterior portion of the fusiform gyrus and include areas that 

process faces (fusiform face area)(55), bodies (fusiform body area)(56), or visual word forms 

(visual word form area)(57). These higher-order regions also show greater lateralization, with 

visual face processing being predominately right-lateralized, and visual word form processing 

being predominately left-lateralized (58). The posterior fusiform gyrus has been associated with 

processing of object-related visual cues and visual language perception (58).  

Both structural and functional connectivity analyses have revealed extensive networks 

that link the fusiform gyrus to the occipital, temporal, parietal, frontal, insular, and subcortical 

regions (58). The posterior fusiform gyrus, for example, has been found to be connected to the 

amygdala, hippocampus, dorso-lateral occipital cortex, and posterior lingual cortex through the 

inferior longitudinal fasciculus (59). It is also connected to the dorsolateral and inferolateral 

frontal cortices via the inferior frontal-occipital fasciculus (60). More anteriorly, the anterior 
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ventral occipito-temporal cortex is connected to parietal, temporal, and frontal cortical regions 

via the long and short fiber bundles that comprise the superior longitudinal fasciculus (58,60).  

The visual word form area (VWFA) is an area encompassed by the left occipito-temporal 

cortex (61); given our particular interest in language for preterm children, the VWFA will be the 

focus of discussion from here forward. As early as the first few months of life, infants already 

display left hemisphere lateralization for language, long before they are capable of producing 

speech themselves (62). By age 7, the VWFA has become strongly left-lateralized and 

demonstrates prominent activation to word forms (63). Although the predominance is for left 

lateralization, the right homologous region has been shown to assume visual word form 

processing function in the case of early disruption of left VWFA. For example, a child reported 

in the literature underwent a left occipital lobe resection involving the VWFA and temporal 

white matter at age 5. By age 10, she had learned to read normally. Neuroimaging studies 

revealed that word forms elicited a strong activation in her right VWFA homologue, suggesting 

that this area had compensated for normal left VWFA function (64). This neuroplasticity appears 

to be limited to a certain age window, however. Another subject underwent a complete left 

hemispherectomy for epilepsy at age 15. Prior to surgery, she had developed normally with 

speech and reading abilities similar to those of typically-developing adolescents. Postoperative, 

she was consistently impaired in tasks of letter naming, word recognition, word reading, and 

phonology. These findings suggest that once the cortical language areas have become lateralized, 

the contralateral hemisphere is no longer able to compensate (65).  

A longitudinal fMRI study of the left occipital-temporal sulcus found that the size of the 

VWFA region activation to visual word stimuli increased from ages 8 to 12, then decreased from 

ages 13 to 15 years, and remained largely stable into adulthood (66). Resting state connectivity 
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studies have shown that the involvement of VWFA in different resting state networks also 

changes across development. In children, for example, VWFA participates in the visual resting 

state network and then transitions to the fronto-parietal network at adolescence (67).  

Studies of anatomic connections from the VWFA show predominate extension to 

hypothesized language areas, including left superior temporal gyrus, posterior medial temporal 

gyrus, Broca’s area, and within the left occipito-temporal sulcus (61,68). These areas are 

interconnected by the arcuate fasciculus, inferior fronto-occipital fasciculus, and inferior 

longitudinal fasciculus (69). The reduction in VWFA functional connectivity observed in our 

preterm adolescents may represent either a global decrease in these connections to VWFA or a 

loss of connections along specific white matter tracts. Furthermore, the observed connectivity 

loss may be the result of a steady decrease in resting state connectivity or an initial expansion 

and later pruning, as observed in Ben-Shachar et al. (66).   

 

5.3. Association between VWFA connectivity and cognition 

In our study cohort, preterms scored lower on all cognitive tasks compared to terms and 

scored lower on all tasks at age 16 than at age 8 except for the PPVT-R. However, this decline in 

score over time only reached significance for the FSIQ. Although our sample size was 

particularly small, the larger cohort from which these preterms were selected, which included 

373 8-year-olds and 326 16-year-olds, also demonstrated decreases in the FSIQ over time (mean 

scores of 91 and 87 at ages 8 and 16, respectively) (14).  

Notably, despite such remarkable and widespread connectivity changes over time, only 

left VWFA connectivity correlated to scores on Full Scale IQ, Performance IQ, and Verbal IQ 

before correction for multiple comparisons. The Full Scale IQ is a composite of both the Verbal 
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IQ and Performance IQ, taking into account scores on both. The Verbal IQ measures verbal 

comprehension and working memory, while the Performance IQ measures perceptual 

organization and processing speed.  

Interestingly, left VWFA connectivity did not correlate with the other language tasks, 

such as the Peabody Picture Vocabulary Test or Rapid Digit and Letter Naming Tasks, 

suggesting that it does not participate in semantic or word retrieval processing. This conflicts 

with other studies, however, which have demonstrated VWFA involvement in various naming 

and object recognition tasks (70,71). Further, the other interrogated regions did not correlate to 

performance on any of the cognitive tasks. This is interesting given that several of these regions 

have been associated with cognitive functioning in other studies. BA 45 and BA 47, for example 

have been implicated in semantic and lexical processing (72-74). BA 11 is involved in creativity 

and reward-based behavior (75,76). BA 10 shows activation during tasks of prospective memory 

and “mentalizing” (77,78), and BA 46 is involved in episodic memory retrieval (79).  

The involvement of the VWFA in reading has long been established. Early lesion studies 

demonstrating pure alexia (80) have since been corroborated by task-based fMRI studies 

showing VWFA activation during reading tasks (66,81,82). Children with greater left occipito-

temporal activation display more advanced reading skills, while disruptions in parieto-temporal 

and occipito-temporal activation are associated with reading impairment, including dyslexia (83). 

Additionally, DTI studies have shown that VWFA receives white matter input from visual cortex 

and projects fiber tracts to cortical language areas, further speaking to its role in visual language 

processing (61,68).  

Cohen and Dehaene (84) argue that VWFA represents a “specialized” region for 

responding to visual words, which they propose is necessary and apparent given how seamlessly 
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we can recognize words despite the complexities of orthography, e.g. changes in font, case, size, 

and location. To support their hypothesis, they provide evidence that VWFA exhibits three forms 

of specialization: functional specialization, reproducible localization, and regional selectivity, 

albeit partial regional selectivity (84). Functional specialization theorizes that different cortical 

areas are specialized for different functions, i.e. VWFA for word recognition. In order to 

demonstrate this, VWFA must show specific activation to written words that are distinct from 

generic visual processing. Several studies have supported this hypothesis, showing that the 

VWFA displays stronger activation to letters than to pseudo-characters or digits (85-87) and is 

equally responsive to words regardless of case (88). Interestingly, the VWFA is also 

preferentially activated by strings of letters and words that conform to orthographic rules as 

opposed to random strings of consonants (85,89-92).  

Reproducible localization refers to activation of a reproducible area during tasks. This 

has been observed for the VWFA, as several studies have shown that a portion of the left 

fusiform gyrus, approximated at MNI coordinates (-46, -53, -20), is reproducibly activated 

during reading (57,93,94). Thirdly, regional selectivity postulates that regions of cortex are 

exclusively dedicated to performing a specific function, such as letter or word recognition, and 

do not respond to other non-letter or non-word stimuli. Cohen and Dehaene argue that the 

VWFA exhibits partial regional selectivity. This region of occipito-temporal cortex is likely 

more generally involved in complex visual processing in early development, and then becomes 

“re-purposed” and increasingly but not exclusively specialized for reading as an individual 

continues to learn and refine these skills (84,95). 

Although its name implies specific involvement in visual word processing, recent studies 

have argued against this specificity. For one, although resting state connectivity correlations have 
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been shown between purported “reading regions” (96), resting state whole brain analyses have 

not demonstrated a designated “reading network” (67,97,98). Furthermore, resting state studies 

demonstrate that the VWFA is only weakly correlated with hypothesized reading regions and is 

most strongly correlated with the dorsal attention network (99). This suggests that, while the 

VWFA plays a pivotal role in visual word processing, it is not exclusively dedicated to this 

function. Rather, it is likely more generally involved in the processing of complex visual stimuli 

(100,101).  

In further support of this, the VWFA has been shown to be active during tasks of object 

or picture naming, despite these tasks not explicitly requiring the processing of visual word 

forms (70,71). For example, positron emission tomography studies show greater VWFA 

activation when subjects silently named a picture of an object than when they silently read the 

name of the object (70). This has been similarly reproduced, where stronger activation was 

demonstrated to naming objects than reading the written names of the same objects (102). If the 

VWFA were solely involved in word form recognition, it would be expected to be most active 

during “explicit” reading of the written word as opposed to “implicit” naming of objects, which 

was not observed (103). Moreover, even unfamiliar non-objects without names elicited VWFA 

activation relative to visual noise (104). Thus, the role of the VWFA in word form recognition or 

naming cannot be consistently ascribed, as it appears to be involved in a number of visual 

processes. Curiously, despite these other studies showing involvement of the VWFA in naming, 

we did not observe a correlation between rapid letter or digit naming and VWFA connectivity. 

Interestingly, the VWFA does not seem to be exclusively limited to visual stimuli either. 

VWFA became activated during auditory word tasks (105) and has even been activated by 

congenitally blind subjects tactilely reading Braille (90). Although more strongly activated by 
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visual stimuli, the ability for auditory and tactile stimuli to also activate this region further casts 

doubt on its dedicated role in visual word form processing (103).  

For these reasons, Price and Devlin counter that naming this region the VWFA is both 

misleading and inaccurate (103). While involved in visual word form processing, this function is 

nonspecific. They posit that multimodal activation in this region suggests that: (1) this region 

may contain multiple neuronal populations subserving different functions; (2) a single cognitive 

function may be underlying these responses; or (3) these neurons may be multifunctional as a 

result of converging communication with other cortical areas (103). 

While Cohen and Dehaene (84) strongly disagree with several of the methodologies and 

conclusions drawn by Price and Devlin (103), they agree that since reading is a relatively new 

advent and that the skill itself develops and improves through learning over time, one should not 

expect a predetermined region of cortex to have evolved to be exclusively devoted to visual word 

form processing. They also agree that this area is likely composed of neurons that preferentially 

respond to letter and word stimuli but also likely contains neurons that are involved in other 

visual processes, such as face and object recognition (106). Thus, they conclude that it is not 

surprising that functional neuroimaging studies demonstrate activation of the VWFA to word and 

non-word stimuli. Furthermore, they posit that even if a portion of VWFA were to demonstrate 

regional selectivity and cortical delineation from neighboring regions, the limitations in spatial 

resolution of current neuroimaging modalities would prevent us from accurately differentiating 

between distinct cortical areas. 

The topography of VWFA connectivity appears to divergently influence reading 

performance in children compared to adults. Koyama et al. (107), for example, found that 

reading performance in children was inversely related to RSC between VWFA and the left 
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inferior frontal gyrus and left inferior parietal lobule. Reading competence was positively 

associated with connectivity between VWFA and both the precuneus/posterior cingulate cortex 

and ventromedial prefrontal cortex, which are part of the default network. The opposite was true 

for adults, whose reading competence was positively associated with connectivity between the 

VWFA and phonology-related regions, i.e. Broca’s area and left inferior parietal lobule, and 

negatively associated with connectivity between VWFA and default network regions. This 

suggests that enhanced RSC between VWFA, Broca’s area, and the left inferior parietal lobule 

mediates improved reading performance in the mature adult brain but not in children. 

Furthermore, the negative relationship seen in adults between reading competence and the 

VWFA-default network connectivity reflects that “segregation” of these regions contributes to 

maturation and optimization of the adult brain.  

Thiebaut de Schotten et al. studied the effect of literacy on white matter microstructure 

and found that reading performance positively correlated with an increased fractional anisotropy 

(FA) in the posterior left arcuate fasciculus. The posterior left arcuate fasciculus connects the 

posterior temporal lobe, which includes the VWFA, with the inferior parietal lobule and 

posterior superior temporal regions. Fractional anisotropy values in the posterior arcuate were 

consistently increased by literacy, regardless of whether literacy was acquired in childhood or 

adulthood. FA was also positively correlated with the level of VWFA activation to written letter 

strings as well as the level of planum temporale activation to spoken sentences. The authors 

conclude that the act of learning to read induces functional changes in VWFA, planum 

temporale, and the white matter connections between them (69).  

In light of the positive correlation we found between left VWFA connectivity and 

cognitive and verbal performance, the decrease in connectivity for preterms is paradoxical. It 
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indicates that they are not effectively or adaptively recruiting connections in these regions. 

Furthermore, this active loss of connections does not reflect an enhanced, “mature” brain 

(32,108), but rather is associated with inferior cognitive performance. Preterms’ worsening 

scores on Verbal IQ, Performance IQ, and Full Scale IQ from ages 8 to 16 can be attributed in 

part to this decrease in connectivity. Interestingly, we did not observe a correlation between 

VWFA connectivity and rapid naming scores (RDRL_Cmp). This differs from expected given 

that several studies have found an association between letter and word naming and VWFA 

(66,81,82). As we did not adjust for multiple comparisons, the significance of these correlations 

in this exploratory analysis should be interpreted with caution (109).  

Additionally, although terms in our study did not display any significant quantitative 

changes in connectivity in the left VWFA over time, this does not indicate that the topography of 

these connections was similarly unaltered. It may be that terms similarly undergo “segregation” 

and “integration” of these connections, but that the overall degree of connectivity remains the 

same. Likewise, it may be that preterms’ loss of connections from VWFA to specific neural 

regions is what is underlying the observed cognitive deficits and is not due to the reduction in 

connectivity overall.  

 

5.4 Educational interventions to enhance VWFA connectivity 

 Our results suggest that if one were able to increase connectivity in left fusiform-BA18-

BA19, this may help to mediate some of the cognitive deficits we observed in the preterms. This 

may be addressed by educational neuroscience, which has emerged as a focus aimed at designing 

and implementing educational exercises to evoke neural plasticity and enhance functional 

specialization in cognitive circuits (110).  
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In a longitudinal DTI study by Keller and Just, 8- to 10-year-old poor readers underwent 

100 hours of remedial reading instruction, and resulting changes in their cortical fractional 

anisotropy (FA) values were assessed (111). FA is a marker of the microstructural integrity of 

white matter and is influenced by a number of axonal features, including myelination, axonal 

packing density, axonal diameter, or orientation of axons (112). At baseline, compared to the 

good readers, these poor readers exhibited significantly lower FA values. After the 100-hour 

remediation program, the poor readers displayed significant increases in both reading ability and 

FA. Radial diffusivity significantly decreased after remediation, while axial diffusivity was 

unchanged. This indicates that the increase in FA was reflective of increased myelination. These 

remediation effects are promising, as increasing myelination may enhance the speed and 

efficiency of neural transmission, in turn augmenting functional connectivity. These observations 

differed from those of a group of good readers and to a control group of untreated poor readers, 

who did not display significant changes in FA. Similarly, the findings by Thiebaut de Schotten et 

al. of literacy’s effects on increasing left posterior arcuate FA further supports an intervention 

aimed at improving reading ability and, ultimately, VWFA microstructural connectivity (69). 

 Brem et al. studied the effect of grapheme-phoneme training on sensitization of the visual 

word form area in kindergarten-aged, non-reading children (113). Their study children 

alternately practiced a computerized grapheme-phoneme game and nonlinguistic control game 

for 8 weeks and were subsequently imaged with fMRI and event related potential at various time 

points during the training period. At baseline, the children were similarly familiar with letters but 

were rudimentary in reading ability. Prior to training, fMRI revealed bilateral ventral posterior 

occipito-temporal activation when presented with word or pseudoword stimuli. Over the 8 week 

course of grapheme-phoneme training but not the control training, the children demonstrated 
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increased activation and sensitivity to print words primarily in the posterior visual word form 

system, including the left and right posterior occipito-temporal lobes (fusiform gyrus and inferior 

temporal gyrus) and cuneus. On further investigation of regions of interest in the occipito-

temporal lobes, only left R4 (MNI coordinates [x,y,z] ±46, −78, −12) showed significant training 

effects with increased responses to word stimuli. Event related potential analyses confirmed the 

fMRI findings of increased response to word stimuli as opposed to pseudoword stimuli after 

grapheme-phoneme training, specifically in the left occipito-temporal cortex (fusiform gyrus and 

lingual gyrus), right cuneus, and posterior cingulate. This study provides striking evidence that 

educational experiences can induce specific alterations in the neural activity of children. Notably, 

however, the increase in printed word sensitivity was only temporary and declined after the 

subjects discontinued their grapheme-phoneme training.   

Functional cortical specialization has also been shown to depend on the modality of 

learning and training. James et al. investigated the effect of training on functional specialization 

of the VWFA (114). Twelve healthy pre-school aged, pre-literate children were trained for letter 

recognition through either manual sensori-motor training by writing out a given letter or through 

visual training by verbally identifying a presented letter. Prior to training, fMRI showed that at 

baseline, the left VWFA demonstrated greater activation during letter perception than during 

perception of shapes or pseudo-letters. The right fusiform gyrus, in contrast, showed similar 

degrees of activation to all stimuli. These hemispheric differences support that even prior to 

literacy, functional specialization for printed letters is beginning to emerge. The authors note that 

all subjects had some familiarity with letters, i.e. singing the alphabet song, writing their names, 

which may account for this early left hemisphere localization. After completion of sensorimotor 

training, the amplitudes of the BOLD signals in both the left VWFA and right anterior fusiform 
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gyrus dramatically increased during letter perception; these phenomena were not observed in the 

visual training group. This heightened activation of the VWFA in reading after sensorimotor 

training highlights its role in synthesizing multiple sensory modalities as opposed to being 

functionally limited to visual processing alone. On behavioral tasks of letter recognition, the 

sensorimotor trained group showed greater improvement in performance than the visual-only 

trained group, although these differences did not reach significance. This suggests that functional 

neural alterations can be induced by sensorimotor training and may be early precursors to 

behavioral changes.  

Given the potentially enormous benefits in neuroimaging-based educational 

interventions, several agencies have organized to share these innovations with the public. The 

Organization for Economic Cooperation and Development (OECD), for example, has launched a 

website (www.OECD.org) with several forums, one of which serves as a platform where 

neuroimaging and educational researchers can share their interventional educational materials. 

The goal is that eventually these websites will include multilingual educational exercises, 

descriptions of efficacy for specific target groups, and information for parents, children, teachers, 

and researchers to reference (115). 

  

5.5. Limitations 

One limitation of this study is the use of interleaved residual fMRI data to approximate 

resting state connectivity. Although Fair et al. (116) have described that interleaved residual data 

are both quantitatively and qualitatively similar to continuous resting data and may be an 

adequate alternative for RSC analyses, it is possible that these approximations are not an 

accurate measure of true RSC. Other limitations include the relatively small sample size of only 
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13 preterm and 12 term children, unadjusted Pearson correlations, and analyzing longitudinal 

data from only two time points. Additionally, we cannot interpret the changes in connectivity as 

being attributed solely to time or age differences due to the possibility of confounding from 

magnet effects. Regardless, this does not minimize the observation that preterm connectivity 

changes are significantly different than term connectivity changes. 

To the best of our knowledge, this is the first longitudinal study evaluating the development 

of intrinsic functional connectivity and language in preterm children through adolescence. The 

children who participated in this study are part of a well-studied cohort with neuroimaging 

available from early in the neonatal period and extending through young adulthood. Future 

longitudinal studies should assess connectivity at several time points over the course of 

childhood through adolescence, ideally with larger numbers of preterm and term children. It may 

be pertinent to correlate changes in cortical thickness to RSC as a metric for brain maturation.  

 

5.6. Conclusions 

Prematurely-born children undergo significant expansion of resting state connections over 

time, which differs markedly from term children. Most notably, preterm subjects showed 

paradoxical decreases in resting state connectivity in the left occipito-temporal cortex, which 

includes the VWFA, that was significantly correlated with verbal and IQ measures. These data 

suggest that the development of resting state connectivity in prematurely-born children does not 

reflect compensatory alterations in connectivity but rather may underscore and perpetuate 

impairment in language and cognitive processing. Promisingly, the advent of educational 

neuroscience in the future may serve to increase connectivity in this region and mediate the 

cognitive deficits that were observed.
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