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Ordinary and Partial Differential Equations

An Introduction to Dynamical Systems

John W. Cain, Ph.D. and Angela M. Reynolds, Ph.D.



CHAPTER 1

Introduction

The mathematical sub-discipline of differential equations and dynamical systems
is foundational in the study of applied mathematics. Differential equations
arise in a variety of contexts, some purely theoretical and some of practical
interest. As you read this textbook, you will find that the qualitative and
quantitative study of differential equations incorporates an elegant blend of linear
algebra and advanced calculus. For this reason, it is expected that the reader has
already completed courses in (i) linear algebra; (ii) multivariable calculus; and
(iii) introductory differential equations. Familiarity with the following topics is
especially desirable:
= From basic differential equations: separable differential equations and separa-
tion of variables; and solving linear, constant-coefficient differential equations
using characteristic equations.
= From linear algebra: solving systems of m algebraic equations with n un-
knowns; matrix inversion; linear independence; and eigenvalues/eigenvectors.
wr From multivariable calculus: parametrized curves; partial derivatives and
gradients; and approximating a surface using a tangent plane.

Some of these topics will be reviewed as we encounter them later—in this

chapter, we will recall a few basic notions from an introductory course in

differential equations. Readers are encouraged to supplement this book with the
excellent textbooks of Hubbard and West [5], Meiss [7], Perko [8], Strauss [10],
and Strogatz [11].

Question: Why study differential equations?



Answer: When scientists attempt to mathematically model various natural
phenomena, they often invoke physical “laws” or biological “principles” which
govern the rates of change of certain quantities of interest. Hence, the equations
in mathematical models tend to include derivatives. For example, suppose
that a hot cup of coffee is placed in a room of constant ambient temperature a.
Newton’s Law of Cooling states that the rate of change of the coffee temperature
T(t) is proportional to the difference between the coffee’s temperature and the
room temperature. Mathematically, this can be expressed as % = k(T — a),
where k is a proportionality constant.

Solution techniques for differential equations (DEs) depend in part upon how
many independent variables and dependent variables the system has.

Example 1.0.1. One independent variable and one independent variable. In
writing the equation

d?y
a2 +cos(xy) = 3,

it is understood that y is the dependent variable and x is the independent

variable.

When a differential equation involves a single independent variable, we refer
to the equation as an ordinary differential equation (ODE).

Example 1.0.2. If there are several dependent variables and a single independent
variable, we might have equations such as
dy 2 2 dz
- =Xy —X z, - = Z — Y COsXx.
dx yo—xy dx ¥
This is a system of two ODEs, and it is understood that x is the independent

variable.

Example 1.0.3. One dependent variable, several independent variables. Consider

the DE
ou  Pu  u

a2 g
This equation involves three independent variables (x, y, and t) and one depen-
dent variable, 1. This is an example of a partial differential equation (pDE). If there
are several independent variables and several dependent variables, one may have

systems of PDEs.
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Although these concepts are probably familiar to the reader, we give a more
exact definition for what we mean by oDE. Suppose that x and y are independent
and dependent variables, respectively, and let y(*)(x) denote the kth derivative
of y with respect to x. (If k < 3, we will use primes.)

Definition 1.0.4. Any equation of the form F(x,y,y,y",...,y™) = 0 is called
an ordinary differential equation. If y*) is the highest derivative appearing in the
equation, we say that the oDE is of order n.

Example 1.0.5.
dPy\ dy d?y
(58) ~ (ot = vt
can be written as (y"')? — yy” — (cosx)y’ = 0, so using the notation in the above

Definition, we would have F(x,y,vy',y",y") = (y"")? — yy" — (cosx)y’. Thisis a
third-order opE.

Definition 1.0.6. A solution of the obk F(x,y,y',y",...,y") = 0 on an interval
I is any function y{x) which is n-times differentiable and satisfies the equation
on I.

Example 1.0.7. For any choice of constant A, the function

(x) = Ae*
YW= T Ae

is a solution of the first-order opE y' = y — y? for all real x. To see why, we use
the quotient rule to calculate

, Ae*(1+ Ae) — (Ae¥)2  Aef
- (1+ Aex)? T (1+ Ae¥)?

By comparison, we calculate that

2 Ae* (Ae*)? Ae*

oy = (1+A4e) (1+A4e%)2  (1+Ae%)?

Therefore, y’ =y~ yz, as claimed.

The definition of a solution of an ODE is easily extended to systems of ODEs
(see below). In what follows, we will focus solely on systems of first-order ODEs.
This may seem overly restrictive, until we make the following observation.
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Observation. Any nth-order ODE can be written as a system of n first-order
oDEs. The process of doing so is straightforward, as illustrated in the following
example:

Example 1.0.8. Consider the second-order ope y” + (cos x)y’ +y? = e*. To avoid
using second derivatives, we introduce a new dependent variable z = ¥’ so that
z = y”. Our ODE can be re-written as z’ + (cosx)z + y? = e*. Thus, we have
obtained a system of two first-order oDEs:

dy _, d

—_ .2 X
=¥ = (cosx)z — y~ + €.

A solution of the above system of ODEs on an open interval [ is any vector
of differentiable functions [y(x), z(x)] which simultaneously satisfy both oDEs
whenx € I.

Example 1.0.9. Consider the system

-d—t-=zl a:—y‘

We claim that for any choices of constants Cy and C,

[y(t)} _ [ Cycost+ Cysint

z(t) —Cysint + Cycost
is a solution of the system. To verify this, assume that y and z have this form.
Differentiation reveals that ' = —Cj sint + Cycost and 2/ = —Cy cost — Cysint.
Thus, ¥’ =z and 2z’ = —y, as required.

1.1. Initial and Boundary Value Problems

In the previous example, the solution of the system of ODEs contains arbitrary
constants Cy and C,. Therefore, the system has infinitely many solutions. In
practice, one often has additional information about the underlying system,
allowing us to select a particular solution of practical interest. For example,
suppose that a cup of coffee is cooling off and obeys Newton’s Law of Cooling.
In order to predict the coffee’s temperature at future times, we would need to
specify the temperature of the coffee at some reference time (usually considered
to be the “initial” time). By specifying auxiliary conditions that solutions of an
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ODE must satisfy, we may be able to single out a particular solution. There are
two usual ways of specifying auxiliary conditions.

Initial conditions. Suppose F(x,y,¥,y",...,y™) = 0 is an nth order ODE
which has a solution on an open interval I containing x = x9. Recall from
your course on basic differential equations that, under reasonable assumptions,
we would expect the general solution of this oDE to contain n arbitrary constants.
One way to eliminate these constants and single out one particular solution is to
specify n initial conditions. To do so, we may specify values for

y(x0), ¥'(%0), ¥" (x0), ... y" V(o).

We regard xg as representing some “initial time”. An oDE together with its initial
conditions (ics) forms an initial value problem (1ve). Usually, initial conditions
will be specified at xgp = 0. '

Example 1.1.1. Consider the second-order opE y”(x) + y(x) = 0. You can check
that the general solution is y(x) = C; cosx + C;sin(x), where C; and C; are
arbitrary constants. To single out a particular solution, we would need to specify
two initial conditions. For example, if we require that y(0) = 1 and y'(0) = 0, we
find that C; = 1 and C; = 0. Hence, we obtain a particular solution y(x) = cos x.

If we have a system of n first-order oDEs, we will specify one initial condition
for each independent variable. If the dependent variables are

y1(x), y2(x), ... yn(x),

we typically specify the values of

¥1(0),%2(0), - .., yn(0).

Boundary conditions. Instead of specifying requirements that y and its deriva-
tives must satisfy at one particular value of the independent variable x, we could
instead impose requirements on y and its derivatives at different x values. The
result is called a boundary value problem (BvP).

Example 1.1.2. Consider the boundary value problem y" + y = 0 with boundary
conditions y(0) = 1 and y(71/2) = 0. The general solution of the ODE is
y(x) = Cycosx + Cysinx. Using the first boundary condition, we find that
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C; = 1. Since y'(x) = —C; sinx + Cz cos x, the second boundary condition tells
us that —C; = 0. Notice that the two boundary conditions produce conflicting
requirements on Cy. Consequently, the Bve has no solutions.

As the previous example suggests, boundary value problems can be a tricky
matter. In the oDE portion of this text, we consider only initial value problems.

Exercises

1. Write the equation of the line that passes through the points (—-1,2,3) and
(4,0, 1) in R3, three-dimensional Euclidean space.
2. Find the general solution of the differential equation
&y
dx dx3

&%y dy
+ 2&;2- + Sa— O
3. Find the general solution of the differential equation

d%y dy

4. Solve the 1vp
Sy -3y +2y=0, y0)=1 y(0)=1
5. Solve (if possible) the Bvr
y'-3y'+2y=0, y(0)=0, y(1)=e
6. Solve the 1vr

— I —
SOy =0, %(0) =1,  ¥(0)=0,
y'(0)=-1, y"(0)=0

7. Solve the differential equation

Z—y+2)y+1).
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8. Solve the 1vp

dy _ g _
a3 = @ sinx, y(0) =0.

9. Find the equations of the planes tangent to the surface
z=f(x,y) =x® —2x+y* -2y +2

at the points (x,y,z) = (1,1,0) and (x,y,z) = (0,2,2).

10. Find the eigenvalues of the matrix

=[]

and, for each eigenvalue, find a corresponding eigenvector.

11. Find the eigenvalues of the matrix

1 3 -1
A=1023 0
01 2

and, for each eigenvalue, find a corresponding eigenvector.

12. Write the following differential equations as systems of first-order opgs:

y' -5y +6y=0
—y" =2y = 7cos(y)
1/(4) . y// + 8y’ +y2 = et
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