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Algorithm-independent optimal input fluxes for

boundary identification in thermal imaging

Kurt Bryan1 and Lester Caudill2
1 Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN 47803,
USA
2 Department of Mathematics and Computer Science, University of Richmond, Richmond, VA
23173, USA

E-mail: kurt.bryan@rose-hulman.edu, lcaudill@richmond.edu

Abstract. An inverse boundary determination problem for a parabolic model, arising in
thermal imaging, is considered. The focus is on intelligently choosing an effective input heat flux,
so as to maximize the practical effectiveness of an inversion algorithm. Three different methods,
based on different interpretations of the term “effective”, are presented and analyzed, then
demonstrated through numerical examples. It is noteworthy that each of these flux-selection
methods is independent of the particular inversion algorithm to be used.

1. Introduction
This paper addresses the following parabolic inverse boundary identification problem: Let Ω be
a bounded and connected region in lRn, with boundary ∂Ω consisting of two surfaces Γ and S0.
Let u = u(t, x) (the temperature of Ω) satisfy the initial-boundary value problem

∂u

∂t
−4xu = 0 , x ∈ Ω , 0 < t < T ; (1)

∂u

∂η
= g(t, x) , x ∈ Γ , 0 < t < T ; (2)

∂u

∂η
= 0 , x ∈ S0 , 0 < t < T ; (3)

u(0, x) = 0 , x ∈ Ω (4)

where η denotes a unit outward normal vector on ∂Ω. The function g represents an input heat
flux (at least after suitable rescaling) on Γ, while we assume that the surface S0 is perfectly
insulating. Given suitable Γ, S0, and g, determining u on Ω over a prescribed time interval is a
well-posed problem.

We consider the inverse problem in which the surface Γ is accessible for temperature/flux
measurements, while S0 is considered inaccessible, and is to be determined from the Cauchy
data g(t, x) and

u(t, x) for x ∈ Γ and t ∈ (T1, T2). (5)

The authors present a numerical algorithm for this inverse problem in [2], where they view the
input flux g as forward data, and the resulting surface temperature (5) as the overposed data.
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As we begin to consider a practical implementation of this algorithm, it becomes clear that
our algorithm (like any other) has a number of design parameters which must be specified.
In addition to algorithm-specific parameters (which will not be addressed here), there are some
design parameters which, by the nature of this inverse problem, must be present in any algorithm
used to numerically solve it. Two such parameters which are of particular interest to us are

• choice of the input flux g(t, x).
• choice of the time interval over which to measure the Dirichlet data on Γ.

In this paper, we report preliminary results of an investigation of the first parameter choice,
i.e. we consider ways to intelligently choose the input flux function g(t, x) in (2). (The second
parameter choice − data time window − will be addressed in a future paper.) The issue here
is that different choices for g, as will be seen later, will result in reconstructions that differ in
quality and accuracy. Consequently, we seek to characterize input fluxes that may be considered
“optimal” in an appropriate sense. The first task is to determine exactly what will be meant by
the term “optimal”.

In this work, we present two different approaches to making precise the term “optimal input
flux,” and investigate the consequences of each. The first, which is the focus of Section 2, is
cast within a Hilbert space framework. This approach is modeled on the important work of
Isaacson, Cheney, and co-authors (see [3, 5, 8, 9]), on the topic of optimal current patterns for
the impedance tomography problem. The second approach to “optimal input fluxes” is based
more upon intuitive physical considerations, and is the subject of Section 3. For each, optimality
is defined in terms of a chosen flux’s ability to recognize differences between two different S0

surfaces. This perspective makes sense within the context of damage assessment, where the
extent of damage to a sample is determined by the extent of its variation from a damage-free
version of the same sample.

In Section 4, we present the results of numerical experiments designed to compare the
performances of these different fluxes on a model problem. Section 5 addresses the consequences
of finite-precision measurements within this context.

2. Hilbert Space Approach
As noted, we will characterize optimality of fluxes in terms of each flux’s ability to distinguish
between two different choices of S0. To this end, we consider two such surfaces which, for added
confusion, we will label S1 and S2. We consider two copies of the IBVP (1)-(4), one for S1

and one for S2. We will denote by Ωj and uj = uj(t, x; g) the domain and IBVP solution,
respectively, corresponding to (1)-(4) with a specific choice of input flux g and with S0 replaced
by Sj . (See Figure 1.)

G

S1

W1

G

S2

W2

G

S1

S2

Figure 1. The domains Ω1 and Ω2 (left and center), and these two domains overlaid.

For simplicity of presentation, we will assume that Ω2 ⊆ Ω1, although this assumption can be
relaxed.
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2.1. First Definition of “Optimality”.
The following approach follows the important work of D. Isaacson and co-authors [3, 5, 8, 9]
regarding distinguishability for the impedance tomography problem. Let G be a set of admissible
functions g for the IBVP (1)-(4), and define an inner product for f, g ∈ G by

〈f, g〉 ≡
∫ T

0

∫

Γ
fg dsdt . (6)

We denote by G the set G equipped with this inner product, completing it if necessary to
make G a Hilbert space. Let B(G) represent the surface of the unit ball in G. For j = 1, 2, define
the partial Neumann-to-Dirichlet operator Lj : G → G by

Lj(g) = uj

∣∣∣
Γ×[0,T ]

, for g ∈ G .

Thus, Lj maps the input flux to the measured data. We will say that an optimal input flux is a
member ĝ of B(G) for which

‖u1(ĝ)− u2(ĝ)‖2 = ‖L1(ĝ)− L2(ĝ)‖2 = sup
g∈B(G)

‖L1(g)− L2(g)‖2 , (7)

where the norm is the one induced by the inner product (6). In words, this simply says that
the optimal flux is the flux which produces the largest (in the L2-sense) difference between the
measured data on the two domains.

Following Isaacson, we define an operator L : G → G by

L = (L∗1 − L∗2)(L1 − L2) ,

where ∗ represents the Hilbert space adjoint. Thus, (7) can be formulated equivalently as

‖L1(ĝ)− L2(ĝ)‖2 = sup
g∈B(G)

〈Lg, g〉 . (8)

Noting that L is compact, self-adjoint, and non-negative, the spectrum of L consists of a
discrete set {λn} of real numbers with λn ↘ 0, and a corresponding orthonormal basis {φn} of
eigenfunctions. Then, from the Minimax Principle (see [6], pp. 405-406), we conclude, under
the assumption that λ1, the largest eigenvalue of L, is simple, that ĝ in (8) should be taken to
be ±φ1, the first normalized eigenfunction of L. More precisely, we have the following result.

Theorem 2.1 The input flux g ∈ B(G) that maximizes (in the sense of the norm induced
by the inner product (6)) the difference in the boundary data between S1 and S2 is ĝ = φ1,
where φ1 is a normalized eigenfunction corresponding to the largest eigenvalue λ1 of the operator
L = (L∗1 − L∗2)(L1 − L2). Moreover, for this choice of ĝ,

‖L1(ĝ)− L2(ĝ)‖ =
√

λ1 .

Proof. In light of the discussion leading up to the statement of the theorem, the only remaining
issue is the last equality, which is an immediate consequence of the Minimax Principle [6].

We now illustrate two optimal fluxes, obtained by numerically approximating the
eigenfunction in Theorem 2.1. The approximation method is based on the following result,
which is essentially the Power Method (see, e.g., [10]).
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Result 2.1 Let φ ∈ G for which 〈φ, φ1〉 6= 0, and let n ∈ lN. Then,

lim
n→∞

Lnφ

‖Lnφ‖ = ±φ1 .

Furthermore, if the eigenvalue λ1 of L is simple, then the convergence is exponential.

Proof. Expand φ in terms of an orthonormal basis {φj} of eigenfunctions of L:

φ =
∞∑

j=1

〈φ, φj〉φj .

Applying L n times yields

Lnφ =
∞∑

j=1

〈φ, φj〉λn
j φj

= 〈φ, φ1〉λn
1φ1 +

∞∑

j=2

〈φ, φj〉λn
j φj

= λn
1


〈φ, φ1〉φ1 +

∞∑

j=2

〈φ, φj〉
(

λj

λ1

)n

φj


 .

Likewise, one may compute

‖Lnφ‖ = λn
1 |〈φ, φ1〉|

√√√√1 +
∞∑

j=2

〈φ, φj〉2
〈φ, φ1〉2

(
λj

λ1

)2n

.

Since λ1 > λj , the terms
(

λj

λ1

)n

decay exponentially to zero as n increases. As a result,

lim
n→∞

Lnφ

‖Lnφ‖ =
〈φ, φ1〉φ1

|〈φ, φ1〉| = sgn(φ1)φ1 .

For a given input flux g, Lj(g) is computed, for j = 1 or 2, by directly solving the appropriate
version of the forward problem (1)-(4). To compute L∗j (h), for j = 1, 2 and some function h
defined on Γ× [0, T ], we use the fact that

L∗j (h) = L∗j (h)(t, x) = Lj

(
h̃
)

(T − t, x) ,

where h̃(t, x) = h(T − t, x). So, we compute the adjoints through suitable time-reversals of the
relevant solution of the forward problem.

Two such optimal fluxes, corresponding to different domain pairs, are shown in Figure 2. In
each case, Ω1 is the rectangle [0, 1] × [−0.5, 0]. In the first example, Ω2 is the same rectangle,
with a portion of its lower boundary replaced by a smooth hump. The choice of Ω2 in the
second example is similar, but with a second, smaller, hump included. In each illustration, the
magnitude of the resulting optimal flux is plotted at several fixed times, as a function of x.
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Figure 2 Two examples of optimal fluxes.

The shapes of these flux magnitudes suggest that their effectiveness at distinguishing the two
surfaces stems from their ability to induce a heat flow, of sorts, across the back surface, in such
a way as to sample the surface most effectively.

3. The “Heat Content” Approach
Returning to the inverse problem of Section 1, we will now consider a somewhat different
perspective on the optimal flux issue. We still seek the input flux that best distinguishes between
two surfaces S1 and S2 − the change is in the meaning of “best distinguishes.” Specifically, denote
by D the region bounded by the surfaces S1 and S2. (See Figure 3.)

G

S1

S2

D

Figure 3 An illustration of the region D, bounded by the surfaces S1 (dotted) and S2 (dashed).

We will assume sufficient smoothness of ∂D to permit integration by parts. Based on physical
considerations, we will define the optimal flux as the flux g that maximizes the total heat entering
the subdomain D. By virtue of (3)-(4) on Ω1, this amounts to maximizing the quantity |E(g)|,
where

E(g) =
∫ T

0

∫

S2

∂u1

∂η
dσdt = −

∫

D
u(T, x) dx , (9)

where the last equality follows from (1)-(4) and Green’s identities.
For x ∈ Ω1, the solution u1 can be written as

u1(t, x) =
∫ T

0

∫

Γ
N1(t− s, x, y)g(s, y) dσyds ,

where N1(t, x, y) is the usual Neumann kernel for the heat equation, defined, for each fixed
x ∈ Ω1, as the solution to

∂N1

∂t
−4yN1 = 0 , x ∈ Ω1 , 0 < t < ∞;
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∂N1

∂ηy
= 0 , x ∈ Γ , 0 < t < ∞;

N1(0, x, y) = δx(y) , y ∈ Ω1.

Substituting this representation into (9) yields

E(g) = −
∫ T

0

∫

Γ
B1(T − s, y)g(s, y) dσydt , (10)

where
B1(t, y) ≡

∫

D
N1(t, x, y) dx .

From here, we explore two directions, which differ in the assumed properties of the input flux g.

3.1. “Heat Content” Approach: L2 Formulation
Under the assumption that the input flux g belongs to the Hilbert space G (with the same inner
product (6)), it is clear from (10) that the maximum of |E(g)| occurs when g is a scalar multiple
of B1, i.e.

ĝ(s, y) = −cB1(T − s, y) , for some c ∈ lR+ , (11)

where the constant c is determined by the normalization requirement on g.
To construct this optimal flux ĝ, we simply solve an IBVP satisfied by B1. Specifically,

B1(t, y) is easily shown to satisfy

∂B1

∂t
−4yB1 = 0 , y ∈ Ω1 , 0 < t < T ;

∂B1

∂ηy
= 0 , y ∈ Γ , 0 < t < T ;

B1(0, y) = χD(y) , y ∈ Ω1 ,

where

χD(y) =
{

1 , y ∈ D
0 , y 6∈ D

.

Figure 4 illustrates an example of this type of flux. In this example, Ω1 and Ω2 are the
“capsule” domains described at the start of Section 4. The magnitude of the resulting optimal
flux is plotted at several fixed times, as a function of x.
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Figure 4 An example of a flux constructed according to equation (11).

3.2. L2∗ Formulation
In some thermal imaging applications, input heating is accomplished with low-intensity lasers.
Thus motivated, we now consider input fluxes g of the form

g = g0 +
m∑

j=1

cjδtj ,xj ,

with g0 ∈ L2, xj ∈ Γ, 0 ≤ tj ≤ T , and cj ∈ lR. We normalize these fluxes according to

m∑

j=1

|cj |+
∫ T

0

∫

Γ
|g0| dσxdt = 1 , (12)

and denote by L2∗ the set of all such functions g for which the left-hand side of (12) is finite.
We have the following result:

Theorem 3.1 The normalized g ∈ L2∗ that maximizes E(g) is g = ĝ, where

ĝ(t, y) = −δT−t0,x0(t, y) ,

where (x0, t0) is a point on the closed and bounded region Γ̄ × [0, T ] where B(y, t) attains its
maximum value M .

Proof. First, we show that E(ĝ) = M :

E(ĝ) = −
∫ T

0

∫

Γ
B1(T − s, y)ĝ(s, y) dσydt

=
∫ T

0

∫

Γ
B1(T − s, y)δT−t0,x0(s, y) dσydt

= B1(T − (T − t0), x0) = B1(t0, x0) = M .
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Next, we show that M is the maximum of E(g) on L2∗, by showing that |E(g)| ≤ M for all
normalized g ∈ L2∗. Indeed, for such a g, which may be written as

g = g0 +
m∑

j=1

cjδtj ,xj ,

with normalization (12), we have

|E(g)| =

∣∣∣∣∣∣
−

∫ T

0

∫

Γ
B1(T − s, y)

m∑

j=1

cjδtj ,xj (s, y) dσydt−
∫ T

0

∫

Γ
B1(T − s, y)g0(s, y) dσydt

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
−

m∑

j=1

cj

∫ T

0

∫

Γ
B1(T − s, y)δtj ,xj (s, y) dσydt

∣∣∣∣∣∣
+

∫ T

0

∫

Γ
|B1(T − s, y)g0(s, y)| dσydt

≤
m∑

j=1

|cj ||B1(T − tj , xj)|+ M

∫ T

0

∫

Γ
|g0| dσydt

≤ M
m∑

j=1

|cj |+ M

∫ T

0

∫

Γ
|g0| dσydt

= M




m∑

j=1

|cj |+
∫ T

0

∫

Γ
|g0| dσydt


 = M .

So, |E(g)| ≤ M for all normalized g ∈ L2∗. Thus, ĝ(t, y) = −δT−t0,x0(t, y) maximizes E(g).

4. Numerical Examples
We now present the results of numerical experiments, designed to demonstrate the effectiveness
of these “optimal” fluxes, within the context of the inverse problem introduced in Section 1. To
describe the domain Ω, we begin with the rectangular region defined in (x1, x2) coordinates by
−10 ≤ x1 ≤ 10, 0 < x2 < 1, together with a half disk of radius 1/2 at each end, centered at
(−10, 1/2) and (10, 1/2). The domain Ω consists of this region, but with the x2 = 0 (i.e. lower)
portion of the surface replaced by the graph of x2 = σ(x1) for some function σ supported in the
interval [−5, 5]. (See Figure 5.) The surface Γ consists of the top half (the connected portion of
∂Ω lying above x2 = 1/2) of the boundary, and S0 the remainder.

–10 –5 5 10
Figure 5 The domain Ω used in the numerical example.

To construct an optimal flux, we must specify a reference domain Ω1. Here, we will use a
domain constructed analogously to Ω, but with σ(x1) ≡ 0. So, in the notation established in
Section 2, we take Ω2 = Ω, and use Ω1 and Ω2 to generate the input flux g(t, x), to use for the
inversion.

The forward problem is solved numerically, using boundary integral equations. We solve the
inverse problem using the algorithm detailed in [2]. In each example, we use time interval (0, 1),
with the temperature u measured at points x1 = −4 + 0.2k, k = 0 to k = 40 on the top surface
x2 = 1 (the interval [−4, 4] on the x1 axis) at each of times t = 0.05j, j = 1 to j = 20. At each
data point (time/space) we add independent Gaussian random noise, standard deviation 0.2.
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(For reference purposes, the temperature u typically lies in the range u = 1 to u = 5 over the
course of the simulation.) The perturbation in the temperature, as compared to the uncorroded
domain with back surface σ = 0, is about 0.5, so the noise is approximately 10 percent of the
signal magnitude. In each figure in this Section, the dashed curve represents the true surface,
and the solid curve represents the reconstruction.

Figure 6 shows the reconstruction that results from using the flux determined by Theorem
2.1.

−6 −4 −2 0 2 4 6
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0

0.2

0.4

0.6

0.8
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1.2

x

y

Optimal L2 input flux, noisy data

 

 

Estimated surface
Actual surface

Figure 6 Reconstruction using the optimal input flux of Theorem 2.1.

Figure 7 shows the reconstruction that results from using the flux defined by equation (11).

−6 −4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6
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Optimal "heat content" input flux, noisy data

 

 

Estimated surface
Actual surface

Figure 7 Reconstruction of back surface using the L2 “heat content” optimal flux of equation
(11).

Figure 8 is the same as the preceding two, but using the flux defined in Theorem 3.1.

−6 −4 −2 0 2 4 6
−0.2

0

0.2

0.4

0.6

0.8

1
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x
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Steady−state spatial delta function flux, noisy data

 

 

Estimated surface
Actual surface

Figure 8 Reconstruction of back surface using the flux from Theorem 3.1.

For comparison, we show, in Figure 9, the corresponding results, when two other typical
input fluxes are used. The first reconstruction was performed using a flux that is a delta-pulse
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Table 1. Performance of input fluxes.

Flux Figure ‖u1 − u2‖2 ‖E(g)‖2 ‖S − S0‖2

flux from Theorem 2.1 ?? 2.27 0.824 0.179
flux from equation (11) ?? 1.32 1.0 0.190
flux from Theorem 3.1 ?? − − 0.334
δ at t = 0, uniform in x ??a 0.67 − 0.260
uniform in t and x ??b 0.32 0.541 0.387

at time 0, uniform in space. (This is representative of, e.g., flashlamp heating.) The second uses
a flux that is uniform in both time and space.
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Uniform space, t=0 delta input flux, noisy data
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Uniform space and time input flux, noisy data

 

 

Estimated surface
Actual surface

Figure 9 Two examples, given for comparison purposes, of reconstructions resulting from other
standard choices for input flux.

Table 1 provides further comparison of the performance of these various input fluxes. In this
table, the column heading ‖u1 − u2‖2 gives the L2-difference in the measured data for the two
surfaces. The column heading ‖E(g)‖2 gives the total energy (as defined by equation (9)), scaled
so that the largest value in that column is 1.0. The column heading ‖S1 − S2‖2 measures the
L2 error in the reconstruction of the surface S.

Some observations on these examples:

• The blanks in the table arise because the specific forms of some of these fluxes do not admit
calculation of those quantities.

• As expected, the flux from Theorem 2.1 has the largest value of ‖u1 − u2‖2, since this is
exactly the quantity that this flux was designed to maximize.

• For similar reasons, the flux from equation 11 has the largest value of ‖E(g)‖2.
• Of these five fluxes, the flux from Theorem 2.1 produces the smallest-error surface

reconstruction.
• The performance of the flux from Theorem 3.1, despite the fact that it is designed to be

optimal among those of its kind, is undeniably poor, providing only a rough indication of the
location and magnitude of the most dominant difference between S1 and S2. This suggests
that a single laser pulse does not provide, even in the best case, sufficient information. One
should instead consider a combination of such pulses, either sequentially or in unison.
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5. Distinguishability
We return now to the setting of Section 2.1, and begin consideration the concept of
distinguishability by finite-precision measurements, originally introduced in [8] for the impedance
tomography problem. In the present context, our investigation begins with the following
immediate corollary of Theorem 2.1.

Corollary 5.1 For every g ∈ B(G),

‖L1(g)− L2(g)‖ ≤
√

λ1 .

In words, this says that, for two given surfaces S1 and S2, the difference in the measured
data (i.e. the difference ‖u1(t, x) − u2(t, x)‖) is never larger than

√
λ1, regardless of the choice

of input flux. This, in turn, puts a limitation on the ability of practical data measurements
to successfully distinguish between the two surfaces. Indeed, if the instrumentation used to
measure the data on Γ× [0, T ] can measure only to precision-level ε, and if ε >

√
λ1, then, up to

measurement precision, the measured data will be the same for both surfaces, thereby rendering
them indistinguishable from each other.

As an illustration, let Ω2 be the rectangle [0, 1] × [0, 0.5], and let Ω1 be the same rectangle,
with a portion of its lower boundary replaced by a smooth symmetric hump, supported on the
interval [0.4, 0.8], and maximum height 0.2. For this pair of domains, we view the top boundary
as Γ and the bottom boundaries as S2 and S1, respectively. For this configuration, we compute
that √

λ1 ≈ 0.0539 .

In light of the preceding corollary, this says that, if the data for each of these domains is measured
with a device that is accurate only to the first decimal place, then, the measurements will be
the same, and the differences between the two surfaces will not be detected.

Given the diffusive nature of heat, one may naturally ask how distinguishability, as measured
by the eigenvalue

√
λ1, changes with the height of the hump in the preceding example. One would

expect that a shorter hump (or, more reasonably, a larger distance from the input boundary Γ
to the back surface S1) would correspond to a smaller distinguishability. To investigate this, we
consider the same domains as in the preceding example, and compare the distinguishabilities
over a range of hump depths. As indicated in Figure 10, we denote the depth of the hump by d.

1
x

0.5

y

G

S1

S2

d

Figure 10 The geometry of the present situation.

Figure 11 shows the value of
√

λ1 versus d for a range of d-values. For comparison, we also
show the plot of the function

√
λ1 = 0.249e−5.025d, the best-fit exponential function to this

data. The fit is remarkably good, supporting the conjecture that, in this setting, the decay in
distinguishability with respect to defect depth follows an exponential pattern, at least within
the indicated range of d-values. (This is consistent with the results of similar experiments
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previously performed for the electrical impedance tomography by a number of authors, e.g. [5].)
The authors plan to pursue a systematic study of this relationship.

0.160.18 0.220.240.260.28 0.3
d

0.02

0.04

0.06

0.08

0.1

�!!!!!!
Λ1

Figure 11 Actual values of
√

λ1 vs. d (dots), and the plot of the best-fit exponential function
(curve).

6. Concluding Remarks
Some final remarks are in order:

• In the field, one is limited, by available equipment (flashlamps, low-intensity lasers, etc.) in
the specific thermal flux patterns that can be induced. Perhaps the flux patterns described
in this paper would be best reproduced as discrete patterns, induced by a synchronized
collection of laser pulses.

• Each of the three types of optimal fluxes introduced depends on the unknown boundary. In
practice, one would desire an algorithm that will simultaneously recover both the flux and
the boundary. This type of challenge has been addressed in other contexts (e.g. electrical
impedance tomography), and tools developed there, such as the NOSER algorithm (see [?]),
may serve as starting points for the present situation.

• As noted earlier, this is a report of preliminary findings, and there is much more work to
be done. These encouraging results suggest that further research in this direction will be
fruitful.

• We have set forth a number of methods for constructing useful input heat fluxes. In each
method, it is necessary to specify the data time period (i.e. the time interval over which
data will be collected) before constructing the input flux. The choice of this time window
is another interesting design decision, and will be addressed in a future paper.

In the transition from theoretical mathematical results to practical implementation of those
results, a number of design decisions must be made. In this paper, we have considered one
such design decision, within a parabolic boundary determination problem. In addition to the
practical necessity, consideration of such questions leads to interesting mathematics in its own
right.
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