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RECONSTRUCTION OF AN UNKNOWN BOUNDARY

PORTION FROM CAUCHY DATA IN N-DIMENSIONS

KURT BRYAN1 AND LESTER CAUDILL2

Abstract. We consider the inverse problem of determining the shape of some inaccessible portion of
the boundary of a region in n dimensions from Cauchy data for the heat equation on an accessible portion
of the boundary. The inverse problem is quite ill-posed, and nonlinear. We develop a Newton-like algorithm
for solving the problem, with a simple and efficient means for computing the required derivatives, develop
methods for regularizing the process, and provide computational examples.

1 Introduction

Let Ω be a bounded and simply connected region in lRn, whose boundary ∂Ω consists of two disjoint pieces
Γ and S0, and let u = u(t, x) (the temperature of Ω) satisfy the initial-boundary value problem

∂u

∂t
−�xu = 0 , x ∈ Ω , 0 < t < T ; (1)

∂u

∂η
= g(t, x) , x ∈ Γ , 0 < t < T ; (2)

∂u

∂η
= 0 , x ∈ S0 , 0 < t < T ; (3)

u(0, x) = 0 , x ∈ Ω (4)

where η denotes a unit outward normal vector on ∂Ω. The function g represents an input heat flux (at least
after suitable rescaling) on Γ, while we assume that the surface S0 is perfectly insulating. Given suitable Γ,
S0, and g, determining u on Ω over a prescribed time interval is a well-posed problem.

We consider the inverse problem in which the surface Γ is accessible for temperature/flux measurements,
while S0 is considered inaccessible, and is to be determined from the Cauchy data g(t, x) and

u(t, x) for x ∈ Γ and t ∈ (0, T ). (5)

We often refer to Γ as the “front surface” of Ω and S0 as the “back surface.” This terminology is suggestive
of the application of this inverse problem to the important challenge of corrosion detection in structures.

In this paper, we present a new algorithm for estimating S0 from given Cauchy data. This algorithm,
based on a Newton-type method, offers a number of advantages:

• It is applicable to a quite general class of domains.

• As derived, it can be applied to domains in lRn, for any n ≥ 2.

When investigating an inverse problem, the three issues of uniqueness, stability, and reconstruction are
paramount. Uniqueness for the present inverse problem, for any not-identically-zero g has been established
previously (see [5]). Theoretical estimates on the stability of S0 with respect to the Cauchy data on Γ
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presently exist in the cases where n = 2 or n = 3. The first of these to apply to lR3 was proved by Vessella
in [11], which addresses the case where the roles of Neumann and Dirichlet data on Γ are reversed. In
this setting, a logarithmic stability estimate is established, under the assumption that the Dirichlet data
prescribed on (0, T ] × ∂Ω is monotone with respect to time. More recently, logarithmic stability was shown
for the inverse problem (1)-(5) by Canuto, Rosset, and Vessella [7].

Reconstruction methods for boundary identification problems for the heat equation have been proposed
and numerically tested by Banks, Kojima, and Winfree [1, 2] in the case where the domain Ω is a rectangle
in lR2, by Chapko, Kress, and Yoon [8] in the case where Ω is the unit disk in lR2, and by Bryan and Caudill
[4, 3] in the case where Ω is a strip in lR2. To our knowledge, no algorithm applicable in lRn has yet been
proposed and tested.

The present paper is organized as follows: In section 2, we introduce notation and assumptions. In
section 3, we establish an important differentiability result. Section 4 is devoted to establishing a numerical
algorithm, including derivation of an explicit form for the Jacobian of a featured functional. In section 5,
we present some numerical experiments demonstrating the effectiveness of the algorithm.

2 Preliminaries

Notation

For a domain Ω ⊆ lRn or surface S ⊆ lRn−1, we will use the notation ΩT to denote (0, T )×Ω, ST to denote
(0, T ) × S, etc. We will require the following function spaces:

• CB(Ω̄): The space of bounded and continuous real-valued functions on Ω̄, equipped with the supremum
norm.

• L2(ΩT ): The space of square-integrable functions on ΩT , with norm ‖u‖2,ΩT =

(∫ T

0

∫
Ω

|u|2 dxdt
) 1

2

.

• W 2,1
2 (ΩT ): The Sobolev space of functions on ΩT that have square-integrable derivatives through

order two in space and order one in time, with norm

‖u‖(2)
2,ΩT

= ‖u‖2,ΩT + ‖ut‖2,ΩT +

n∑
j=1

‖uxj‖2,ΩT +

n∑
k=1

n∑
j=1

‖uxjxk‖2,ΩT .

Additionally, we will utilize the trace space W
1
2 , 1

4
2 (∂ΩT ), with its norm ‖u‖( 1

2 )

2,∂ΩT
. These are properly defined

in terms of a covering of ∂ΩT , and will not be given in detail here. (For a precise definition, see [10], page
81.) For our purposes, we will think of this space as the trace space on ∂ΩT of uxj , for u ∈W 2,1

2 (ΩT ).
Finally, given a domain D ⊆ lRn, define two more function classes as follows:

• C1(D) ≡
{
f : D → lR

∣∣ fxi exists as a continuous function on D for i = 1, . . . n
}
.

• O2(D) ≡
{
f ∈ C1(D)

∣∣ fxixj exists as a bounded function on D for i, j = 1, . . . , n
}
.

One note on domains: We say that the boundary ∂D of a domain D is of class O2 if (i) D lies only on
one side of ∂D, and (ii) each point in ∂D possesses an open neighborhood ω ⊆ ∂D which can be represented
locally as the graph of a function in the class O2(B) for some set B ⊂ lRn−1.

Assumptions

We will assume that the spatial domain Ω, for a suitable choice of coordinate system, can be constructed
in the following way: Let Ω̂ be a bounded and simply connected region in lRn−1, and let xn = γ(x̂) be a
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real-valued function that belongs to O2
(

¯̂
Ω
)
, where x̂ = (x1, x2, . . . , xn−1). We use Γ (the front-surface)

to denote the graph of γ. We define the set Pγ of admissible back surfaces as follows: Pγ is the set of all
surfaces S which can be represented as the graph xn = σ(x̂) of a function σ which satisfies the following
properties:

• σ = γ on ∂
¯̂
Ω.

• σ(x̂) < γ(x̂) for all x̂ in the interior of Ω̂.

• The boundary of the domain Ω enclosed by the graphs of γ and σ is of class O2. (Consequently, for
any σ ∈ Pγ the surface S defined by xn = σ(x̂) over Ω̂ and the surface Γ together enclose a bounded
and simply connected domain Ω in lRn.)

Assume that the Dirichlet data u(t, x) is given for x ∈ Γ, 0 < t < T . We denote this “measured” data
by d(t, x). For a given arbitrary S ∈ Pγ , we denote by uS the solution to the IBVP (1)-(4) (with S0 = S).

3 Domain Differentiability

We now establish the differentiability of the solution uS of (1)-(4) with respect to S at S0 in the direction
α ∈ A, where A, the set of admissible directions, is the subset of O2

(
Ω̂
)

consisting of functions which are

zero, along with their first partial derivatives, on ∂̂Ω. In so doing, we will require the following solvability
result, Theorem 3.1 below, for parabolic IBVPs of the form

a(x)
∂u

∂t
− 	 · (A(x) 	 u) = f , on ΩT ; (6)

u(0, x) = 0 , on Ω̄ , (7)

∂u

∂ν
= h(t, x) , on ∂ΩT . (8)

For a proof of this result, see [10] (Theorem IV.9.1, pages 341 and 351).

Theorem 3.1 Let the following hold:

• Ω ⊆ lRn has boundary of class O2.

• a(x) ∈ CB(Ω̄) with a(x) ≥ δ > 0 ∀x ∈ Ω̄, for some δ > 0.

• Each entry of the matrix-valued function A(x) is an element of CB(Ω̄), and there exist positive con-
stants α and β so that A(x) satisfies the uniform ellipticity condition

α|ξ|2 ≤ ξT A(x)ξ ≤ β|ξ|2,
for each ξ ∈ lRn.

• f ∈ L2 (ΩT ).

• h ∈W
1
2 , 1

4
2 (∂ΩT ) with h(0, x) = 0 on ∂Ω.

Then the IBVP (6)-(8) has a unique solution u ∈W 2,1
2 (ΩT ). Moreover, there is a constant c > 0 (indepen-

dent of u) such that

‖u‖(2)
2,ΩT

≤ c
(
‖f‖2,ΩT + ‖h‖( 1

2 )

2,∂ΩT

)
. (9)

Let γ be such that Pγ is non-empty and let σ ∈ Pγ , thus forming the domain Ω with ∂Ω = Γ ∪ S0.
We begin by considering a perturbation of σ by εα for some α ∈ A with ε > 0 sufficiently small so that
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σ + εα ∈ Pγ . (It follows from the definitions of Pγ and A that, given α ∈ A, there exists ε0 > 0 such that
ε ∈ [0, ε0] implies σ + εα ∈ Pγ .) Under this perturbation, the IBVP (1)-(4) becomes

∂uε

∂t
−�xuε = 0 , x ∈ Ωε , 0 < t < T ; (10)

∂uε

∂ηx
= g(t, x) , x ∈ Γ , 0 < t < T ; (11)

∂uε

∂ηx
= 0 , x ∈ S0 + εS , 0 < t < T ; (12)

uε(0, x) = 0 , x ∈ Ωε , (13)

where S0 + εS denotes the graph of σ + εα, and Ωε denotes the region bounded by Γ and S0 + εS.
It will be advantageous to have both (1)-(4) and (10)-(13) formulated on the same domain Ω. To this

end, we introduce the spatial change-of-variables Φ = Φ(x, ε) = Φ(x̂, xn, ε) defined by

(y1, . . . , yn) = Φ(x1, . . . , xn; ε) = (φ1(x, ε), . . . , φn(x, ε)) , (14)

where

φj(x, ε) = xj , 1 ≤ j ≤ n− 1 ,

φn(x, ε) = xn +

(
εα(x̂)

γ(x̂) − σ(x̂) − εα(x̂)

)
(xn − γ(x̂)) .

We denote the Jacobian matrix of Φ by Ψ. It is easy to check that

Φ(x̂, γ(x̂), ε) = (x̂, γ(x̂))

and
Φ(x̂, σ(x̂) + εα(x̂), ε) = (x̂, σ(x̂)) ,

i.e. Φ(x, ε) leaves Γ fixed, and maps S0 + εS to S0. Consequently, Φ(x, ε) maps Ωε to Ω.
Applying this change-of-variables to the IBVP (10)-(13) results in an IBVP for v ≡ uε ◦ Φ−1:

ρ(y, ε)
∂v

∂t
− 	y · (κ(y, ε) 	y v) = 0 , y ∈ Ω , 0 < t < T ; (15)

∂v

∂νy
= g(t, y) , y ∈ Γ , 0 < t < T ; (16)

∂v

∂νy
= 0 , y ∈ S0 , 0 < t < T ; (17)

v(0, y) = 0 , y ∈ Ω , (18)

where

ρ(y, ε) =
1

det(Ψ(y, ε))
, (19)

κ(y, ε) = ρ(y, ε)Ψ(y, ε) (Ψ(y, ε))T , (20)

νy = νy(y, ε) = Ψ(y, ε)ηx

(
Φ−1(y, ε)

)
. (21)

We summarize some useful properties of these functions in the next result, whose proof is a direct
consequence of the definition (14) of Φ.
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Lemma 3.1 There exists an ε1 > 0 for which the following properties hold for all 0 < ε < ε1:

• ρ, ν, and each entry of the matrix κ are elements of CB(Ω).

• Each entry of the vector 	 · κ exists as a bounded function on Ω. (This is a consequence of the
membership of γ, σ, and α in the class O2(Ω̂).)

• As ε→ 0, each of the following quantities goes to zero:

– ‖1 − ρ‖∞ ,

– ‖κ− I‖∞ (The maximum of the supremum norms of the entries of the matrix κ− I.),

– ‖	 ·(κ− I)‖∞ (The maximum of the supremum norms of the entries of the vector 	 · (κ− I).).

Moreover, ρ, κ, and νy are each continuously differentiable with respect to ε, and the resulting derivatives
are bounded and continuous on Ω̂.

The main result of this section may now be stated.

Theorem 3.2 Under the conditions specified, the solution u of (1)-(4) is Gateaux differentiable with respect
to S, and its derivative w at S0 in the direction of α is the unique solution of the IBVP

∂w

∂t
− �w = 	 · (κε(x, 0) 	 u) − ρε(x, 0)

∂u

∂t
, on ΩT ; (22)

∂w

∂η
= − ∂u

∂νε
, on ΓT ; (23)

∂w

∂η
= − ∂u

∂νε
, on ST ; (24)

w(0, x) = 0 , on Ω̄ ; (25)

where ρε, κε, and νε are the partial derivatives with respect to ε (in the direction of α) of ρ, κ, and νy,
respectively. Here u represents the solution to (1)-(4) on Ω.

Proof. From the assumptions, it is clear from Theorem 3.1 that (22)-(25) has a unique solution w ∈W 2,1
2 (ΩT ).

The present proof consists in showing that∥∥∥u− v

ε
− w

∥∥∥(2)

2,ΩT

→ 0 as ε→ 0 ,

where v satisfies (15)-(18).
Set z ≡ u− v. Then, z is the unique solution in W 2,1

2 (ΩT ) of the IBVP

∂z

∂t
− �z = 	 · (κ− I) 	 v − (ρ− 1)

∂v

∂t
, on ΩT ;

∂z

∂η
= g(t, y) − g(t, x) + 	v · (η − ν) , on ΓT ;

∂z

∂η
= 	v · (η − ν) , on ST ;

z(0, x) = 0 , on Ω̄ .

By applying (9) to this IBVP, and incorporating the results of Lemma 3.1 and the fact that v ∈W 2,1
2 (ΩT ),

we conclude that
‖z‖(2)

2,ΩT
→ 0 as ε→ 0 . (26)
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Now, set q ≡ z

ε
− w with ε > 0, so that q ∈W 2,1

2 (ΩT ) is the unique solution of the IBVP

∂q

∂t
− �q = 	 ·

(
1

ε
(κ− I) − κε

)
	 v +

(
ρε − 1

ε
(ρ− 1)

)
∂v

∂t
+ 	 · (κε 	 z) + ρε

∂z

∂t
, on ΩT ;(27)

∂q

∂η
=

1

ε
(g(t, y) − g(t, x)) + 	v ·

(
νε − 1

ε
(η − ν)

)
− ∂z

∂νε
, on ΓT ; (28)

∂q

∂η
= 	v ·

(
νε − 1

ε
(η − ν)

)
− ∂z

∂νε
, on ST ; (29)

q(0, x) = 0 , on Ω̄ . (30)

By virtue of (26), the existence of ρε, κε, and νε, and the finiteness of ‖v‖(2)
2,ΩT

, the bound (9), applied to

the IBVP (27)-(30), shows that ‖q‖(2)
2,ΩT

→ 0 as ε→ 0, which completes the proof.

4 Reconstruction Algorithm

Given Dirichlet data d(t, x) on ΓT , we seek an admissible back surface S = S0+εα for which uS(t, x) = d(t, x)
on ΓT . Recognizing the inherent ill-posedness of this inverse problem, we relax this requirement as follows:
We select a linearly independent set of functions {ρj(t, x)}J

j=1 defined on ΓT , and seek an α ∈ Pγ for which∫
ΓT

(uS − d)ρj dsdt = 0 , ∀j

that is, we seek only to match certain select moments of the data d and function uS . This approach has
been used before, e.g., in [4] and [9], especially to study and regularize the ill-posedness of certain inverse
problems.

We thus define a vector-valued functional F : Pγ → lRJ as F (S) = {Fj(S)}J
j=1, where, for each j,

Fj(S) =

∫
ΓT

(uS − d)ρj dsdt . (31)

We present an explicit representation for the Jacobian of this operator, which will permit implementation of
a Newton-type method for finding a root of F in Pγ . Note also that by taking the ρj to be delta-functions this
approach can be used to implement a straightforward point-by-point matching of data d(t, x) and tentative
solution uS(t, x), if desired.

A direct calculation yields the following:

Theorem 4.1 The Jacobian F ′
j(S0)α, of the operator Fj defined in (31) has the form

F ′
j(S0)α =

∫
ΓT

wρj dsdt , (32)

where w is the Gateaux derivative of uS at S0 in the direction α.

We can realize w as the solution of the IBVP (22)-(25). However, there is value in deriving an alternative
form of F ′

j . To this end, we introduce a class of test functions ψj(t, x), j = 1, . . . , J , which satisfy

∂ψj

∂t
+ �xψj = 0 x ∈ Ω , 0 < t < T ; (33)
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∂ψj

∂η
= ρj , x ∈ Γ , 0 < t < T ; (34)

∂ψj

∂η
= 0 , x ∈ S0 , 0 < t < T ; (35)

ψj(T, x) = 0 , x ∈ Ω . (36)

(Note that the problem is well-posed, since we specify the final condition in the backward heat equation.)
The proof of the following key result is rather technical and computational, and is given in an appendix.

Theorem 4.2 For j = 1, . . . , J , the following holds:

F ′
j(S0)α =

∫
Ω̂T

α(x̂)
(
	ψj · 	u+ ψj

∂u

∂t

) ∣∣∣∣∣
S0

dx̂dt . (37)

We also note that Theorem 4.2 can be extended to the case in which Ω is unbounded if, e.g., Ω̃ = lRn−1,
provided that Γ and S0 can still be described as the graphs of appropriately smooth functions, and the class
of admissible back surfaces is has support in a compact set.

Theorem 4.2 allows us to give a rather short proof that the linearization of the map α→ uS0+α|Γ given
as α → w|Γ, where w satisfies (22)-(25) is injective (so that in principle, one can recover a perturbation α
in S0 from data on Γ), at least if we have data for all time.

Theorem 4.3 Let α1 and α2 be admissible perturbations in S0 and w1, w2 the corresponding solutions to
(22)-(25). If w1(t, x) ≡ w2(t, x) for x ∈ Γ and all t > 0 then α1 = α2 (provided the input flux g is not
identically zero).

Proof. We need only show that if w satisfying (22)-(25) is identically zero on (0,∞)×Γ then α ≡ 0. To this
end, consider taking, for any given fixed T > 0, a test function ψ satisfying (33)-(36) with ρj(t, x) = u(T−t, x)
for x ∈ Γ , so that we have ψ(t, x) = u(T − t, x) satisfies (22)-(25). If F is the corresponding functional
defined by equation (31) then we have F ′(S0)α = 0 for all α, since (from equation (32)) we have w = 0 on
ΓT . As a result we have∫

Ω̂T

α(x̂)
(
∇u(T − t, x) · ∇u(t, x) + u(T − t, x)

∂u

∂t
(t, x)

)
dx̂ dt = 0 (38)

for all T > 0. Laplace transform both sides of equation (38) with respect to T (certainly permissible since u
will not grow rapidly for any reasonable input flux g, e.g., any bounded input flux); let U(s, x) denote the
transform. We obtain ∫

Ω̂

α(x̂)(|∇U(s, x)|2 + sU2(s, x)) dx̂ = 0

for all s > 0, from which we conclude that α ≡ 0 (since U is certainly not identically zero for any non-zero
input flux g).

The basis of the reconstruction algorithm is a rather-straightforward implementation of Newton’s method
for the functional F : Pγ → lRJ . At each iteration we compute F (by numerically solving the forward problem
(1)-(4) with the current back surface estimate S). We then compute the functions ψj by numerically solving
(33)-(36) (though this can be done rapidly by re-using the computations done to solve for u). Finally, we
compute the Jacobian of F using equation (37) and update the estimate of the back surface S. More details
and examples are given in the next section.
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5 Numerical Examples

We illustrate the above framework with some computational examples on a two-dimensional domain. We
will use cartesian coordinates x = (x1, x2) and assume, using the notation of Section 2, that the uncorroded
reference domain Ω is a “medicine-capsule” shaped region defined by the rectangular region −10 ≤ x1 ≤ 10,
−1 < x2 < 0, together with a half disk of radius 1/2 at each end, centered at (−10,−1/2) and (10,−1/2).
This domain satisfies the hypotheses of the previously stated theorems. The accessible front surface Γ will
consist of the top half of the region (that portion of ∂Ω lying above x2 = −1/2) and S0 the bottom half. In
the case of corrosion we assume that S0 is of the form x2 = −1 + σ(x1) for some function σ supported in
the interval [−5, 5]. Let uS0(t, x) denote the solution to equations (1)-(4).

Without going into great detail, we remark that in the implementation of our algorithm, we solve the
forward problem by converting (1)-(4) into a boundary integral equation on ∂Ω × (0, T ), which yields

1

2
u(T, x) +

∫ T

0

∫
∂Ω

∂G

∂ny
(T − t, y − x)u(t, y) dsy dt (39)

=

∫
Ω

G(T, y − x)u0(x) dy +

∫ T

0

∫
∂Ω

G(T − t, t− x)g(t, y) dsy dt

where y = (y1, y2) and G(t, y − x) = 1
4πt

e−
|x−y|2

4t is the standard Green’s function for the heat operator in

lR2. We then solve the integral equation numerically by representing u(t, x) =
∑M

k=1
ck(t)φk(x) for suitable

basis functions φk(x) defined on ∂Ω. Inserting this expansion into (39) and collocating at points x = xj

yields a set of integral equations for the ck(t) which we solve with a simple marching scheme based on the
trapezoidal rule. We can then recover the solution u(t, x) for x ∈ Γ. Based on comparison to closed-form
solutions, our numerical solver is accurate to about 4 significant figures.

Newton’s Method Details

Define a function F (S) = (F1(S), . . . , FJ(S)) where Fj(S) is defined by equation (31) and in which d(x, t)
denotes the measured front surface data corresponding to the unknown surface S0, with ρj(x, t) chosen weight
functions (to be specified shortly). As remarked previously, our goal is to find a “root” for the function F
in the set of admissible surfaces P, by using Newton’s method. The functions ρj should (ideally) be chosen
to extract as much useful information as possible from the data d (and yet can also be used judiciously to
regularize the inversion).

Let α be an admissible perturbation of S. From Theorem 4.2 we have, up to linearization, Fj(S + α) −
Fj(S) = F ′

j(S)α where F ′
j(S)α is given by equation (37) and where ψj satisfies equations (33)-(36). Then

F ′(S)(α) = (F ′
1(S)α, . . . , F ′

J(S)α)

is the linearization of F at S.
Newton’s method proceeds in the usual manner: We begin with an initial guess S = S0, then set

Sk+1 = Sk+αk for k = 0, 1, 2, . . ., where αk satisfies F ′(Sk)αk = −F (Sk), and iterate until some termination
condition is met. Of course the equation F ′(Sk)α = −F (Sk) for the update function αk is undetermined.
To remedy this, we seek that (unique) least-squares L2 solution α of minimum norm (an idea that has been
used before, in conjunction with the test function approach, in [4] and [9]). A standard Lagrange multiplier
computation shows that this minimizer is of the form

α(x1) =

J∑
k=1

λkφk(x1) (40)
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where

φk(x) =

∫ T

0

(∇xψk(t, x, S(x)) · ∇xuS(t, x, S(x)) + ψk(t, x, S(x))
∂uS

∂t
(t, x, S(x))) dt (41)

Note that the functions φk as defined are in fact smooth. The coefficients λk can be obtained by using α as
defined by equation (40) in the equation F ′(Sj)αj = −F (Sj), which then distills down to a system MΛ = b
of J linear equations in J unknowns with

Mjk =

∫
Γ

φj(x)φk(x) dx,

b = −F (Sj), and Λ = (λ1, . . . , λJ)T . The matrix M is positive semi-definite. To see this simply note that
for any vector v we have

vT Mv =

∫
Γ

J∑
j,k=1

vjvkφj(x)φk(x) dx =

∫
Γ

(
J∑

j=1

vjφj(x)

)2

dx ≥ 0. (42)

It’s also clear that equality will be obtained in equation (42) (so M will be singular) precisely when∑J

j=1
vjφj(x) ≡ 0 on Γ.

The minimum-norm/least-squares solution to F (S) = 0 can be obtained by factoring M as M = PDPT

with P orthogonal and D diagonal with non-negative entries Dk, k = 1 to J (possible since M is symmetric
and positive semi-definite) then setting λk = Py where y is the n-vector with components yk defined by
yk = (PT b)k/Dk for Dk > 0, yk = 0 for Dk = 0.

Regularization

In fact, we can further regularize the reconstruction in the presence of noise by taking Λ = Py but with y
defined by

yk =

{
(PT b)k

Dk
, Dk > δ

0, Dk ≤ δ
(43)

for some δ > 0 chosen intelligently in accordance with the noise level of the data and geometry of the sample.
To illustrate, let us consider the case described above (the “medicine-capsule” uncorroded reference domain
previously described), and suppose the data d(x, t) contains additive noise r(x, t) with |r(x, t)| ≤ R for all
x, t. The vector e with components

ek =

∫
Γ×(0,T )

r(x, t)ρk(x, t) dx dt (44)

is the error induced in b = −F (Sj). Let αr =
∑

k
εkφk(x) be the error induced in our estimate of α by

the noise, where the vector ε = (ε1, . . . , εJ) is computed from e using equation (43), so ε = Py where
yk = (PT e)k/Dk for Dk > δ, yk = 0 for Dk ≤ δ.

We have |ek| ≤ R
∫
Γ×(0,T )

|ρk(x, t)| dx dt and so

‖e‖2 ≤ R

√∑
k

∫
Γ×(0,T )

|ρk(x, t)| dx dt (45)

where ‖e‖2 is the usual 2-norm of the vector e. From equation (43) and M = PDPT with P orthogonal we
then have

‖ε‖2 = ‖PT ε‖2 ≤ ‖PT e‖2

δ
=

‖e‖2

δ
. (46)
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From αr =
∑

k
εkφk(x) also have

‖αr‖2 = |
∑

k

εkφ|2

≤
∑

k

|εk|‖φk‖2

≤ ‖ε‖2

√∑
k

‖φk‖2
2 (47)

where ‖φk‖2 is the usual two norm of φk as a function on Γ. Combining (45)-(47) yields

‖αr‖2 ≤ R

δ

(∑
k

‖φk‖2
2

)1/2(∑
k

∫
Γ×(0,T )

|ρk(x, t)| dx dt
)1/2

(48)

Now let us place a bound, ‖αR‖2 ≤ B, on the size of the allowable error αr in the Newton step due to the
noise. From the inequality (48), such a bound is obtained if we require δ to satisfy

δ ≥ R

B

(∑
k

‖φk‖2
2

)1/2(∑
k

∫
Γ×(0,T )

|ρk(x, t)| dx dt
)1/2

(49)

Note that all quantities on the right in (49) are known (or estimated) a priori, or computed in the course of
the Newton iteration.

In particular, in the “noise-free” examples which follow we use R = 10−4 (roughly the accuracy of our
forward solver, based on comparison to closed form solutions) and B = 0.3 (our σ function is supported
within the interval [−5, 5] and we limit the stepsize due to noise to uniform magnitude 0.03 over that
interval). We use 10 test functions ρk, translates of simple Gaussian functions (specified below), yielding(∑

k

∫
Γ×(0,T )

|ρk(x, t)| dx dt
)1/2

≈ 5.1. The examples all converge in at most 5 iterations, and we compute,

as part of the Newton iterations,
(∑

k
‖φk‖2

2

)1/2 ≈ 0.21 for the initial iteration (but this quantity ranges

up to 0.61 at the final iteration). We then obtain from equation (49) the bound δ = 2.9 × 10−4 for the
first Newton iteration, up to δ = 7.8 × 10−4 for the final iteration. The actual values of the Dj on the first
iteration range from 9.5 × 10−3 down to 1.7 × 10−5, and 3 of 10 fall below δ. See Figure 1 for plots of the
decay rate of the Dj for varying numbers of test functions.

We make one additional modification to Newton’s method, to improve the global convergence: when
solving for the Newton update Λ = Py where y is given by equation (43), we require that ‖y‖2 ≤ d for
some constant d, i.e., we bound the stepsize. A straightforward Lagrange-multiplier argument shows that
such a solution is unique and given either by the procedure already outlined (so ‖Λ‖ < d and the stepsize
constraint is not active) or Λ = PD(D2 + ηI)−1PT b for a unique choice of η > 0, if the stepsize constraint
is active.

Examples

The reconstructions below are for surfaces S0 defined by x2 = σ1(x1) and x2 = σ2(x1) with σ1(x) =
0.4h(0.2(x+2))+0.2h(0.3(x+4)) and σ2(x) = 0.6h(0.8(x−0.5))+0.5h(0.9(x+1))+0.2h(0.3(x+4)) where
h(x) is defined as h(x) = 16x2(1 − x)2 for 0 < x < 1, and h(x) ≡ 0 otherwise.

In each case we use time interval (0, 1/2), with the temperature u measured at points x1 = −4 + 0.2k,
k = 0 to k = 40 on the top surface x2 = 0 (the interval [−4, 4] on the x1 axis) at each of times t = 0.05j,
j = 1 to j = 10. There is considerable leeway (and analysis which could be done) in picking the functions
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ρj . Since we seek to detect “localized” corrosion (confined to the interval x1 ∈ [−5, 5] on the back surface)
it seems reasonable to use test functions with relatively compact support contained in this interval on the
front surface, where we expect most of the information contained in the data to lie. As such, we take test
functions

ρj(x) = e−c(x−aj)2 (50)

with c = 55/4, aj = −4+8j/11 for j = 1 to j = 10, yielding 10 equi-spaced Gaussians along the top surface
Γ; note that the ρj can depend on time, though ours do not. Indeed, an interesting question for further
analysis is that of how the ρj should vary with time—previous analysis (see [6]) demonstrates that there is
an “optimal time window” in the measured data for the stable recovery of the back surface.

The choice of input flux g can also have a considerable impact on one’s ability to see the back surface,
and there is also further analysis one could do on the “optimal” input flux. We simply take g(t, x1) = δ(t)
for −10 < x1 < 10, where δ(t) denotes a Dirac delta function in time; this is a common model for a “flash
lamp” input flux. Although this may appear to violate the conditions involved earlier in the analysis of the
inverse problem, we can put things into the earlier analytical framework by considering uS(t, x) − u0(t, x),
where u0 denotes the solution to the heat equation on a half space with Neumann data δ(t).

We should note that although we use the same general technique to generate the boundary data and im-
plement Newton’s method, we attempt to mitigate any “inverse crime” by choosing different basis functions
and discretization parameters for the solver.

Since the underlying inverse problem here is quite ill-posed, one expects that any scheme such as this—in
which test functions are used to match moments of the measured and computed data—will yield increasingly
ill-posed systems of equations as the number of test functions increases. In particular, we expect that if one
uses a large number of test functions then the singular values Dk of the matrix M will decay very rapidly.
A steady-state version of this problem was examined in [4]. To illustrate the nature of the ill-posedness in
the present setting, we plot below the singular values of the matrix M obtained using each of 10, 20, and
30 Gaussian test functions as defined by equation (50), equi-spaced on the interval [−4, 4], but with widths
scaled according to the number of test functions (so c = 55/4, 55, and 495/4 for 10, 20, and 30 test functions,
respectively). The resulting singular values, plotted on a logarithmic scale, look like
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Figure 1: Decay of singular values for M.

Given that our cutoff for the Dk typically range from 10−4 to 10−3, it is clear that regardless of the number
and spacing of test functions used, there is a very limited amount of usable information in the data.

The two graphs below show the reconstructions of σ1 and σ2 based on noise-free (up to numerical solver
accuracy) data, but with regularization based on noise level R = 10−4. The solid curves are the actual
functions and the dashed curves the reconstructions.
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Figure 2: Reconstruction for σ1(x) (left) and σ2(x) (right), noise-free.

In each case the Newton method was started with σ ≡ 0 as an initial guess and converged in just 3 iterations,
reducing the residual error

∑
k
F 2

k (S) by a factor of 20 to 60. Even the rather large amplitude and oscillatory
back surface described by function σ2 is reasonably well recovered with this level of noise.

In the second pair of reconstructions below we use σ1 and σ2 as above, but add noise to the data d(t, x).
At each data point (time/space) we added independent Gaussian random noise, standard deviation 0.05. For
reference purposes, the temperature u lies in the range u = 1 to u = 2.5 over the course of the simulation.
The perturbation in the temperature, as compared to the uncorroded domain with back surface σ = 0, is
about 0.5, so the noise is approximately 10 percent of the signal magnitude.

Newton’s method again converges in three to four iterations, reducing the residual by a factor of 5 to 12.
The value of δ in equation (49) ranges around 0.01, and typically eliminates about half of the yk in equation
(43).
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Figure 3: Reconstruction for σ1(x) (left) and σ2(x) (right), noisy.

As one would expect, the surface σ2 is not as well recovered, but rather somewhat blurred, though the
location and magnitude of the corrosion is reasonably estimated.

6 Conclusions

We have presented an algorithm for determining an unknown boundary portion of a domain from a single
Cauchy data pair. This algorithm offers the advantage that it is applicable to a wide class of domains in
lRn. We have also given an explicit expression for the Jacobian of the relevant vector-valued functional. The
effectiveness of this algorithm has been demonstrated on test examples.

The methods used in the present work can be extended in a straightforward way to apply to more general
operators and boundary conditions. For example, the Laplacian of equation (1) can be replaced with a more
general elliptic operator of the form

	 · (a(x̂) 	 u) .

Also, the Neumann boundary conditions (2) and (3) can be generalized to the Robin conditions

∂u

∂η
+ ru = g(t, x)

for (2), and the obvious analogue for (3).
This work raises important and interesting issues relating to the optimal design of such thermal imaging

experiments. From physical principles as well as numerical experiments, it is clear that the specific choices of
such ingredients as the time interval (0, T ), the input flux g(t, x) of equation (2), and even the test functions
ρj used in the definition (31) of the functionals Fj , will bear significantly on the important questions of
stability and resolution. These issues are presently under investigation.
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7 Appendix: Proof of Theorem 4.2

A bit of notation: We will use the following shorthand for certain important vectors:

γ̂ = (γx1 , . . . , γxn−1 ,−1)T ,

σ̂ = (σx1 , . . . , σxn−1 ,−1)T ,

α̂ = (αx1 , . . . , αxn−1 , 0)T .

Then, the unit normal vectors η on the various surfaces can be written

η =
γ̂

‖γ̂‖ on Γ , (51)

η =
σ̂

‖σ̂‖ on S0 ,

η =
σ̂ + εα̂

‖σ̂ + εα̂‖ on S0 + εS .

The vector �ψ, which will prove important in the sequel, is defined as follows:

�ψ =

{
ρε‖γ̂‖η , on Γ ;
−	 (ρε (xn − γ(x̂))) , on Ω ;
−α̂+ ρε‖σ̂‖η , on S0

(52)

A few preliminary calculations now will streamline the derivation to come. These results can be easily
verified by direct calculation. (Ψε is the Gateaux derivative of Ψ.)
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νε = Ψεη + ηε , (53)

where

ηε =

{
0 on Γ ,

α̂
‖σ̂‖ −

(
α̂·σ̂
‖σ̂‖2

)
η on S0 .

(54)

ηn =

{ − 1
‖γ̂‖ on Γ ,

− 1
‖σ̂‖ on S0 .

(55)

ρε(xn − γ(x̂)) =

{
0 on Γ ,
α(x̂) on S0 .

(56)

Finally, if ŷ and ẑ are vectors in lRn, then the following hold:

ŷ · (Ψεẑ) = yn

(
�ψ · ẑ

)
(57)

ŷ · (κεẑ) = ρε (ŷ · ẑ) + �ψ · (ynẑ + znŷ) (58)

Proof of Theorem 4.2: Multiply the left-hand side of (22) by ψ, integrate over ΩT , and use Green’s
identities, as well as equations (25) and (35) to obtain:

∫
∂ΩT

w
∂ψ

∂η
dsdt =

∫
∂ΩT

ψ
∂w

∂η
dsdt+

∫
∂ΩT

ψ	 u · (κεη) dsdt−
∫

ΩT

	ψ · (κε 	 u) dxdt−
∫

ΩT

ρεψ
∂u

∂t
dxdt .

Note that, by virtue of (34), the LHS integral is zero except possibly on Γ. Using (23) and (24) in the
first RHS integral, and (58) in the second and third RHS integrals yields∫

ΓT

w
∂ψ

∂η
dsdt = −

∫
∂ΩT

ψ
∂u

∂νε
dsdt+

∫
∂ΩT

ρεψ
∂u

∂η
dsdt+

∫
∂ΩT

ψ
∂u

∂xn
(�ψ · η) dsdt

+

∫
∂ΩT

ψηn
�ψ · 	u dsdt−

∫
ΩT

ρε(	ψ · 	u) dxdt

−
∫

ΩT

�ψ ·
(
∂ψ

∂xn
	 u+

∂u

∂xn
	 ψ

)
dxdt−

∫
ΩT

ρεψ
∂u

∂t
dxdt

≡ C11 + C12 + C13 + C14 + C15 + C16 + C17 . (59)

Using (53) in C11, (55) in C14, and (52) in C14 and C16 in equation (59) yields

∫
ΓT

w
∂ψ

∂η
dsdt = −

∫
∂ΩT

ψ	 u · (Ψεη) dsdt−
∫

∂ΩT

ψ
∂u

∂ηε
dsdt+

∫
∂ΩT

ρεψ
∂u

∂η
dsdt

+

∫
∂ΩT

ψ
∂u

∂xn
(�ψ · η) dsdt−

∫
ΓT

1

‖γ̂‖ρε‖γ̂‖ψ∂u
∂η

dsdt+

∫
ST

1

‖σ̂‖ψ(	u · α̂) dsdt
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−
∫

ST

1

‖σ̂‖ρε‖σ̂‖ψ∂u
∂η

dsdt

−
∫

ΩT

ρε(	ψ · 	u) dxdt+

∫
ΩT

	 (ρε(xn − γ(x̂))) ·
(
∂ψ

∂xn
	 u+

∂u

∂xn
	 ψ

)
dxdt

−
∫

ΩT

ρεψ
∂u

∂t
dxdt

≡ C21 + C22 + C23 + C24 + C25 + C26 + C27 + C28 + C29 + C20 . (60)

Note that C23, C25, and C27 cancel each other, and that (54) implies that C22 can be taken over S0, rather
than all of ∂Ω. Now, apply (57) to C21 and integrate by parts with respect to x in C29 in equation (60) to
obtain ∫

ΓT

w
∂ψ

∂η
dsdt = −

∫
∂ΩT

ψ
∂u

∂xn
(�ψ · η) dsdt−

∫
ST

ψ
∂u

∂ηε
dsdt+

∫
∂ΩT

ψ
∂u

∂xn
(�ψ · η) dsdt

+

∫
ST

1

‖σ̂‖ψ(	u · α̂) dsdt−
∫

ΩT

ρε(	ψ · 	u) dxdt

+

∫
∂ΩT

ρε(xn − γ)

(
∂ψ

∂xn

∂u

∂η
+

∂u

∂xn

∂ψ

∂η

)
dsdt

−
∫

ΩT

ρε(xn − γ) 	 ·
(
∂ψ

∂xn
	 u+

∂u

∂xn
	 ψ

)
dxdt−

∫
ΩT

ρεψ
∂u

∂t
dxdt

≡ C31 + C32 + C33 + C34 + C35 + C36 + C37 + C38 . (61)

C31 and C33 cancel. In C37 we will use the identity

	 ·
(
∂ψ

∂xn
	 u+

∂u

∂xn
	 ψ

)
=

∂

∂xn
(	ψ · 	u) +

∂ψ

∂xn

∂u

∂t
− ∂u

∂xn

∂ψ

∂t
,

which in turn utilizes (1) and (33). Noting (56) in C36, (61) becomes

∫
ΓT

w
∂ψ

∂η
dsdt = −

∫
ST

ψ	 u · ηε dsdt+

∫
ST

1

‖σ̂‖ψ(	u · α̂) dsdt−
∫

ΩT

ρε(	ψ · 	u) dxdt

+

∫
ST

α̂(x̂)

(
∂ψ

∂xn

∂u

∂η
+

∂u

∂xn

∂ψ

∂η

)
dsdt

−
∫

ΩT

ρε(xn − γ)
[
∂

∂xn
(	ψ · 	u) +

∂ψ

∂xn

∂u

∂t

]
dxdt

+

∫
ΩT

ρε(xn − γ)
∂u

∂xn

∂ψ

∂t
dxdt−

∫
ΩT

ρεψ
∂u

∂t
dxdt

≡ C41 + C42 + C43 + C44 + C45 + C46 + C47 . (62)

Now use (54) in C41, integrate by parts with respect to xn in C45, and integrate by parts with respect to t
(utilizing (4) and (35)) in C46, so that (62) becomes

∫
ΓT

w
∂ψ

∂η
dsdt = −

∫
ST

1

‖σ̂‖ψ(	u · α̂) dsdt+

∫
ST

(
α̂ · σ̂
‖σ̂‖2

)
ψ
∂u

∂η
dsdt+

∫
ST

1

‖σ̂‖ψ(	u · α̂) dsdt
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−
∫

ΩT

ρε(	ψ · 	u) dxdt+

∫
ST

α(x̂)

(
∂ψ

∂xn

∂u

∂η
+

∂u

∂xn

∂ψ

∂η

)
dsdt

−
∫

Ω̂T

ρε(xn − γ)
(
	ψ · 	u+ ψ

∂u

∂t

) ∣∣∣∣∣
xn=γ(x̂)

xn=σ(x̂)

dx̂dt+

∫
ΩT

∂

∂xn
(ρε(xn − γ)) 	 ψ · 	u dxdt

+

∫
ΩT

∂

∂xn

(
ρε(xn − γ)

∂u

∂t
ψ
)
dxdt−

∫
ΩT

ρε(xn − γ)
∂2u

∂t∂xn
dxdt−

∫
ΩT

ρεψ
∂u

∂t
dxdt

≡ C51 + C52 + C53 + C54 + C55 + C56 + C57 + C58 + C59 + C50 . (63)

C51 and C53 cancel. Further, it is easy to verify that

∂

∂xn
(ρε(xn − γ)) = ρε

and
∂

∂xn

(
ρε(xn − γ)

∂u

∂t
ψ
)

= ρε
∂u

∂t
+ ρε(xn − γ)

∂2u

∂xn∂t
.

Using these in C57 and C58, respectively, and using (56) in C56 transforms equation (63) into∫
ΓT

w
∂ψ

∂η
dsdt =

∫
ST

(
α̂ · σ̂
‖σ̂‖2

)
ψ
∂u

∂η
dsdt−

∫
ΩT

ρε(	ψ · 	u) dxdt

+

∫
ST

α(x̂)

(
∂ψ

∂xn

∂u

∂η
+

∂u

∂xn

∂ψ

∂η

)
dsdt+

∫
Ω̂T

α(x̂)
(
	ψ · 	u+ ψ

∂u

∂t

) ∣∣∣∣∣
S0

dx̂dt

∫
ΩT

ρε(	ψ · 	u) dxdt+

∫
ΩT

ρεψ
∂u

∂t
dxdt+

∫
ΩT

ρε(xn − γ)
∂2u

∂xn∂t
dxdt

−
∫

ΩT

ρε(xn − γ)
∂2u

∂t∂xn
dxdt−

∫
ΩT

ρεψ
∂u

∂t
dxdt

≡ C61 + C62 + C63 + C64 + C65 + C66 + C67 + C68 + C69 . (64)

C62 and C65 cancel, as do C66 and C69, as well as C67 and C68. Using (3) and (34), we see that C61 = C63 = 0,
leaving

∫
ΓT

w
∂ψ

∂η
dsdt =

∫
Ω̂T

α(x̂)
(
	ψ · 	u+ ψ

∂u

∂t

) ∣∣∣∣∣
S0

dx̂dt . (65)

Thus, Theorem 4.2 is proved.
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