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A Convergent Reconstruction Method for an Elliptic
Operator in Potential Form

LesTER F. CAuDILL, JR.

Department of Chemistry, Princeton University, Princeton, New Jersey 08544

Submitted by Thomas 8. Angel!

Received September 30, 1993

We investigate the problem of recovering a potential g{x) in the equation
—Au + gq(x)i = 0 from overspecified boundary data on the unit square in R The
potential is characterized as a fixed point of a nonlinear operator, which is shown
to be a contraction on a bail in C*. Uniqueness of g{x) follows, as does convergence
of the resulting recovery scheme. Numerical examples, demonstrating the perfor-
mance of the algorithm, are presented. © 1995 Academic Press, Inc.

1. INTRODUCTION
For the unit square = (0, 1) X (0, 1), consider the inverse problem of

determining the univariate potential g(x} € C* ([0, 1]) in the boundary
value problem

—Au+tgu=0, (x,y)€Q, (1.1a)
u(0,y) = foly), (1.1b)
u(l,y) = fi(y). (1.1¢)
uy(x, 0) = go(x), (1.1d)

uy(x,1) = g(x), (1.1e)

from the single overposed data measurement
u(x, 1) = h(x). (1.1)

The purpose of this paper is twofold: to show that conditions can be
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CONVERGENT RECONSTRUCTION METHOD 45

given on the boundary data under which the inverse problem (1.1) has at
most one solution ¢, and to produce a convergent numerical scheme for
reconstructing g from the overposed data 4. Cannon and Rundell [3] proved
uniqueness for such a layered potential on the quarter plane {(x,y):x,y >
0}, but the techniques used are different than those of the present paper.

The approach taken is to characterize the coefficient g(x) as a fixed point
of a nonlinear operator Tj, constructed via the fixed point projection (FPP)
method of Pilant and Rundell [14, 15]. (For a discussion of the FPP method,
the reader is referred to [16].) It is shown that under suitable conditions,
T, is locally a contraction on the Holder space C* ([0, 1]). This result has
two consequences: identifiability of g(x) from a single data measurement
along the top boundary, and convergence of the reconstruction scheme
given by

q(k) = Th [q(k_l)].

We indicate the dependence of the convergence rate on various quantities
by explicitly computing a bound on the contraction constant.

We remark that the main results of this paper are achieved by controlling
the norm of the overposed data & in the space C?** a norm only slightly
stronger than that on the space C?, where g is presumed to lie. Thus, this
inverse probilem is only mildly ill-posed, relative to the case where q =
g(y), which has been shown to be very ill-posed [4, 5]. These results are
consistent with the ‘“metatheorem,” normally attributed to Cannon [1],
which states that the overposed data measurement should be taken (in
some sense) ‘“‘parallel” to the undetermined coefficient.

A closely related problem, which has received more attention, is the so-
called layered conductivity problem, achieved by replacing the differential
equation in (1.1) by

-V-(a(x)Vu) =0,

where the univariate conductivity a is to be determined. Uniqueness ques-
tions for this problem under various hypotheses have been studied by
Cannon [1] and Cannon and DuChateau [2].

The inverse problem analyzed in this paper is a special case of the general

problem of determining g(X) in

—Au + g(xX)u =0, IEDCR"

from data measurements taken on the boundary aD of D. For n = 3, it
has been shown under various hypotheses that ¢ is uniquely determined
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by knowledge of all possible Cauchy data pairs on oD [11, 12, 18, 21, 22].
A global uniqueness result was proved by Sylvester and Uhlmann [20].
Partial results for the n = 2 case have been obtained [4, 17-20]. The general
problem in R? was recently answered in the affirmative by Nachman [13]
for the conductivity problem.

In practice, one has only a finite number of Cauchy data pairs, so a
general g(x, y) cannot be uniquely determined. However, it is reasonable
to ask whether, by imposing additional structure on g, unicity can be re-
stored (see, e.g., [6-10]). The present paper represents a step in this direc-
tion, in which only one Cauchy data pair is given. Additionally, the object
being studied may be oriented in such a way that only a portion of its
boundary may be accessible for measurement. This is reflected in our
assumption that the data is given only on the top boundary of the square.

This paper is organized as follows: In Section 2 we describe the notation
used and give assumptions on the data. This section also includes some
useful estimates concerning the Green’s function for —A. In Section 3, the
operator T}, is defined and shown to be a self-map on a ball in C* ([0, 1]).
In Section 4, T, is shown to be a contraction. The paper concludes with
numerical examples, demonstrating the effectiveness of this reconstruc-
tion method.

2. NOTATION AND ASSUMPTIONS

Let |||, denote the Holder norm, given by

1Ak =111l + | fles

where the a-seminorm |-|, is defined as

flo=sup LRI e 0.1y,
XF#y lx - yl
It will be useful to introduce the function ¢ as the harmonic function
satisfying the boundary conditions (1.1b)-(1.1e).
We make the following assumptions on the data in (1.1):

Al k€ C*a ([0, 1]) with m = min,ep, 1| A(x) > O.

A.2. The overposed data 4 is compatible with the “‘primary’’ data
(1.1b)—(1.1e), in the sense that there exists a C*>** function which attains
the boundary values (1.1b)—(1.1f).

A3. g(x) = 0. (This simplifies the presentation.)
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A.4. The boundary data is chosen to make [|¢;,. small.

Denote by G the Green’s function for —A with homogeneous boundary
conditions of the type (1.1b)—(1.1e). G is given by

G =G,y 6m) = 5-log|F - & + w@ - B, 1)

for X = (x,y), £ = (¢ 1) € Q, where w is harmonic in & for each ¥ € (.
It follows from Green’s theorem that the solution u of (1.1a)-(1.1e) is
representable as

L[l
u(r,y) = W y) - [, [ Gl yi & ma(@ue mande.  (22)
We will make frequent use of the rather large null space of the operator
111 o
G,[f]1= [, [ Gulx.y & mfE M dnde,  feC
It follows from the boundary conditions obeyed by G that
1
o G yi & mydn =0,

for all x, y, £ € (0, 1), with x # £ As a result,

[. ]} Gty e @ dnde= || fi&) [ [ G yiem) dn] d¢=0
for any f € C* ([0, 1]). This allows us to form identities such as

f:) ﬂ) Gyy(x, y: & mulg, m) dndé
- j; f; Gyy(x, y: & m[u(é, m) — u(§ y)] dnd,

a tactic which will be used repeatedly in the sequel. Similarly, we have the
null space properties

4lf1= [, [} Gulx.yi & fcm) dgdn =0
Gulf1= [} [} G, y: & AD dnag = 0,

for any f € C* ([0, 1]).
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Next, we gather some estimates on integrals which will arise in our

analysis. The proofs of the first two lemmas follow from the representation
(2.1) via straightforward techniques and will not be presented here.

LemMMA 2.1. The following integrals are bounded independent of
(x,y) €

1t
Jofo|G(x’Y§§’ﬂ)|dnd§
1 {1
IU j() |Gy(x’y; §, 7))| d'f)df
L [1
f"j“'G”(x’y;f’")l’x_§|°|}’*72|"'dnd§ maz=0,m+a=2

Jo

Lemma 2.2. The following integrals are bounded independent of
s (0, 1)

f; Gy (x,y: & n)(n— y)dn| dé

f; f(l, |G(s, 1, & )l |s — &|]*dndE
.[(1) [;IGN(S’ L gnlls — élrdndé

CoroLLARY 2.3. For a, m > 0, each of the constants defined below
is finite:

11
Cila,my=sup | [ 1G, (x.y; & n)l Ix — lly — ol dndé
Xy

11

Cotay = sup [ [ 1Gyuls, 13 6.l Is — éldn dg
11

Cs = sup fo [1G, e, y; & )| dnag

111

Cuey=sup [} [[1G.(5,1:& s — &l dmdg

111
Cs= sup f(] Io |G(x, y; £ m)| dn dE.
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To demonstrate the application of these ‘“‘null space properties’ relevant
to our analysis, we prove the estimates in the next two lemmas.

LeEMMA 2.4.
etyull = syl + Ci(0, Dlesl<llglle + C3C1(0, 1)]leel|Niglz-

Proof. From (2.2), we use the null space property of 4§, to obtain

ey, 9)] = Wiy, ) + ) | [ GnCx, 3 & ma(@ute m) dnl dé

[} Gyt 3 & MOl 1) — (&) dn\ i

1
= |¢h(x, y)| + f()
From Taylor’s Theorem we have, for some point o(£) between 7 and y,

'uyy(x, )’)l = Wyy(x,y)l + f:) Fq(é’)“un(f’ U(f))]
“[], G, (x,y; & m(n—y) d'n’ d¢.

Consequently,
eyl = Nyl + €10, Dt ligll (2.3)
Similarly,
bl =l + Collel-llgll- (2:4)

Combining estimates (2.3) and (2.4) establishes the lemma. |

LemmMma 2.5. For p, g € C*([0, 1]), denote by u = u(q) the solution to
the BVP (1.1a)-(1.1e) corresponding to q, and denote by v = v(p) the
solution corresponding to p. Then, for |q|., ||p|l. sufficiently small,

L
I = ol =5 — g el — ol @3)

C,C
lee, = vl = Cilldl-llg = pli- + 57 L Plledilg = ple, - 26)

1 - Cy|pl
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sy = v = 5o A ol = pll = Ml el = plhe - 27)

Proof. For (x,y) € ,

u(x,y) = vee )l = L[ [ G ys & m)a() — p(Oluté, ) dndé

[ [} Glays & mp(@)lute m) — v(& ) dn d

= [lull-|G(x, y; -, Netllg = pll
+ 1pllNG e, y; - Mt — Ve

So,

e = Vil = Collull<lig — pll= + Csllpllollec = v,
yielding (2.5). Similarly,

ey = vylle = Collullalla — pll- + Collpllafiu = v,

which, combined with (2.5), yields (2.6). Finally, the null space property
of §,, allows us to write

Iuyy(xv y) - V,Vy(xa y)l

=

[} [} Gputey: & Ma(®) — (Ot ) dn dé‘

-+

f :) f ; Gyy(x, y; & mp(E[ul€, m) — v(€ m)] dn dg’

f :) f :] Gy, (x, y; & Mq(é) — p(O[u(& m) — u(é 1)) dn d.g‘
+ 'J’(l) f; G‘V)’(x’ y; g’ U)P(f)[(u(f» T’) - V(g, 77))

— (u(§,1) = v(& 1)) dnag|.
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Using Taylor’s Theorem and assumption A.3, we have, for some points

a(§). z(§) € (n. 1),

()~ (1) =l o) AL,

[u(€, m) — v(& M) — [u(€, 1) — v(§ 1))

= [itn(& 2(8) = Vonl &, 2(E))] (—"—’é—l)f

Thus,
(5. ) = vy (5, )
<Ml Pl 16yl - 12 dna
o leleltn = vl 116 ey mln = 17 dm e
so that

C1(0, )|l |- o= pll + Ci(0, 2)||pll-

”“yy - Vyy”=u = 2 p“a _—“—2—“—”“)’,\/ - "’yy“=m

and (2.7) follows. |

3. ITERATIVE SCHEME

Let u satisfy (1.1). Following [14, 15], we project the differential equation
(1.1a) onto the boundary y = 1 and rearrange to obtain

e, 1) Fuy(x, 1) R(x) +ouy(x, 1)
q(x) = u(x, l)y B h(x)

Noting that the right-hand side depends on g, define an operator 7, on
C«([0, 1]) by

K 1
T,lq)) = 2 ;(Z;-"(x ).
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If u solves (1.1), then g is a fixed point of T,. Conversely, denoting by u(q)
the solution of (1.1a)-(1.1e) for a given g, we have

TueoreMm 3.1.  If |igll. is sufficiently small, then u(q) satisfies (1.1) if and
only if q is a fixed point of T,,.

Proof. Let q be a fixed point of T},. Then,

uxx(x7 1’ CI) + u)’y('xv 1’ q)

q(x) = a(r 1.
Since g = T,[q], we conclude
q()[A(x) — u(x, 1;9)] = H'(x) — uxlx, 1; q). (3.1)

Setting B(x) = h(x) — u(x, 1; g), (3.1) and the compatibility conditions on
h at x = 0 and x = 1 imply that 8 obeys
—B'(x) +q(x)Bx)=0, x&(0,1)

B(0) = B(1) = 0. G2

It is known that u,, the smallest eigenvalue for (3.2), obeys the bound

7 = llgll- = so.

Consequently, if |g|. < m, the only solution of (3.2) is trivial. Thus, if
lall. < 7,

u(x, 1; q) = h(x);

ie., u(q) solves (1.1). 1

In light of this result, the inverse problem (1.1) can be restated in terms
of fixed points of the operator 7.

For R > 0, let B = {g € C«[0, 1]):|q|l. = R}, the ball of radius R
around zero in C*([0, 1]). To show the operator T, has a fixed point, we
first establish the following result.

THEOREM 3.2. There exists an Ry > 0 such that T,: Bx — By for each
R € (0, Ry).

Proof We must show that, for some R > 0, [lgl. = R implies
ITxlqllle = R. First, Tx[q] can be expressed as
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Tilalte) =D o [ 16, (3,1 6 ma(ue m) ddé

(3.3)

Using techniques similar to those employed in the proofs of Lemmas 2.4
and 2.5, we can derive the inequality

1 Talglle = Adidrec(-, 1) = Bl + Aslglle + Adllgllz + Adllg

b (3.4)

where the A; are independent of q. (The derivation of this estimate can
be found in the Appendix.) In light of (3.4), we will have |[T[g]|l. = R for
lgll. = R. provided R obeys

Al (-, 1) = K. + AsR + AgR* + A;RP = R.

The factor ||y (-, 1) — A"||, can be controlled by |gll.. so we need only
consider the (strict) inequality

AsR + AR? + AR < R,
or, equivalently,
As + AR + AR < 1.

This inequality will hold for sufficiently small R, provided As < 1. As has
the form

A
As = —+ B,
5 m ”‘»b,\)

L)

where A and B do not increase as 1/m and |¢,,/|. decrease. The boundary
data has been chosen to make [|¢,,]. small, so A5 can be made small by
increasing m. Thus, T, is a self-map on By, as asserted. |

4. EXISTENCE AND UNIOUENESS OF A FIXED POINT

We now state our main result.

THEOREM 4.1.  Under the assumptions outlined, for R sufficiently small,
T}, possesses a unique fixed point in Bp.
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CoroLLARY 4.2.  Under the assumptions outlined, the overposed bound-
ary value problem (1.1) has a unique solution.

The proof of Theorem 4.1 will show that 7} is a contraction on By, from
which we conclude

CoroLLARY 4.3.  The sequence of iterates defined by
g% = T,[q% )

converges in C® to the unique solution g of (1.1).

Proof of Theorem 4.1. For p, g € Bg, denote by u = u(q) the solution
of the BVP (1.1a)-(1.1e) corresponding to ¢, and denote by v = v(p) the
solution corresponding to p. In the Appendix, we derive the estimate

7o) - Tapll = { Atk + 2ol -pb @

where A and B do not increase as [ju,,|,, and 1/m decrease. It follows that
Ty is a contraction on By for some R > 0. This proves Theorem 4.1. |

Remark. Note the dependence of the contraction constant on the ratio
[le¢,,]lo/m. This is to be expected, for if the ratio is very small, then

_ M)t u,xlig)  A(x)
Ty[q] = h(x) =~ h(x)

and q becomes essentially a readoff.

5. NumEericaL EXAMPLES

The following numerical examples illustrate the effectiveness of the itera-
tive scheme defined in Corollary 4.3. In each case, we discretize the problem
by considering the boundary value problem (1.1) on an evenly spaced grid
of size N X N. Starting with an initial guess of ¢ = 0, we solve the direct
problem (1.1a)-(1.1¢) for u(g”). The next update g'" is then formed via

g V() = TulgOlx), Jj=1,.., N

This procedure is repeated for a prescribed number / of iterations. In each
of the following examples, N = 40 and [ = 5.
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1
a o 0.5 1
b 0.5 1
0.1
0.05
c 0 0.5 1

Fic. 1. (a) The reconstructed and (b) the actual g,. (¢) The absolute error in the reconstruc-
tion of g(x).

Figure 1 shows the reconstruction of the C'-function,

4096(x — H(x — B2, =x=%
gi(x) = .
0, otherwise.

Table I shows the relative error in the reconstructions, as well as the value
of the residual |k — u'(-, 1)|=, where ' solves the direct problem for the
reconstruction ¢.

As a second example, we consider a function g, which is Holder continu-
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TABLE 1

The Relative Supnorm and L2-Norm Errors in
the Reconstruction of g, and the Value of the
Corresponding Residual

Supnorm L>-Norm Residual

0.0093 0.0052 6.3 x 107

ous, but not continuously differentiable. Figure 2 shows the reconstruction
of the function

X, O=sx<#%
7x) = 1—x, l=x=1.
0.5
a g 0.5 1
0.5
b g 0.5 1
0.1
0.05
L e,
c0 0.5 1

Fic.2. (a)The reconstructed and (b) the actual g,. (c) The absolute error in the reconstruc-
tion of gx(x).
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TABLE I

The Relative Supnorm and L*-Norm Errors in
the Reconstruction of g,, and the Value of the
Corresponding Residual

Supnorm L%Norm Residual

0.0102 0.0097 6.6 x 107*

Again, Table II reflects both the relative error in the reconstruction and
the value of the corresponding residual.

In order to test the effectiveness of our method in reconstructing functions
in L*(0, 1), we consider the discontinuous function

-1, 0=x<p
q3(x)={

1, t<x=1.

As before, Fig. 3 and Table 111 reflect the accuracy of this reconstruction.

6. CONCLUSIONS

We have investigated the problem of recovering a univariate potential
g(x) in (1.1) on the unit square in R? from a single overposed boundary
measurement along y = 1. We have demonstrated that this inverse problem
is only mildly ill-posed, in the sense that the map from the overposed data
to the unknown potential is bounded, provided we control the data in a
slightly stronger norm. In our case, data from the Holder space C*** leads
to local existence and uniqueness of a potential in C*.

We have characterized the solution ¢ of (1.1) as a fixed point of an
operator, and have shown that this operator is a contraction near g = 0
in C°. This leads to an iterative scheme which provides very satisfactory

TABLE HI

The Relative Supnorm and L2-Norm Errors in
the Reconstruction of ¢,, and the Value of the
Corresponding Residual

Supnorm L2-Norm Residual

0.0054 0.0035 5.0 < 1074
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0.05

c0 0.5 1

Fic.3. (a) The reconstructed and (b) the actual g3. (c) The absolute error in the reconstruc-

tion of gi(x).

reconstructions on example potentials possessing various degrees of
smoothness.

APPENDIX
Derivation of Inequality (3.4). From (3.3),

h"(x) — l/l”(X, 1) + _}_

Tl = |50 L[} [} Gl 116 ma(@ulé, m) dmd).

From the null space property of the operator 4,,, we have
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[} Gyl 1: & ma(Outé, m) d§|

“u,vy“w I i 9
=2 gl [, [ 1Gu(x 13 & ml(n — D2 dmde,

so that

" s Dl . €10, 2t
gl < B et D GOkl

Next, we estimate |Tj[g]l.. For x; # xa,

ITalq)(x)) =~ Tulgl(x2)]

- ’h"(xl) — o 1) R(x) = thdxa, 1)‘
- h(x,) h(x2)

1

res

j :, J :, Gy(x1, 15 €, mq(&)u(é, m) dn dé (A2)

1
h(x,)

J (l) j :] Gyy(x2. 1: & mq(§)u(§ m) dn dg’ ,

Note that

h"(xl) B l/’Jur(xls 1) _ h”(x2) - wxx(x2a 1) - ||h||a||¢’XX(s 1) _ h”“ﬂ |x —x Ia
h(x\) h(x,) B m? b

and denote by [, the integral terms in (A.2). Then,

1
h(x,)

I = ’ [L[ 16 1 & m) = Goulxa, 13 & MIa(@utE, M d dfl

1 1 11
" ' (h(xl) - h(xz)) j() JU G,y (X2, 15 & mq(£)u(é, m) dn df\

E[[] + 112.

As above,
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1 1 Ll
I = ’(h“(}—ﬁ - m) J(, f” Gyy(x2, 1 & M€, m) — u(€ )] dn d«f}

Ci(0, 2)|A|ullte, 4| lgll<
- i )|2| ”2 woll=lqll e — 2.
m

Next, writing [, as

1, =

’

/T(l_l)j f :J J ; Gyyds, 1 & mg(D)u(é, m) — u(& 1)) dndéds

Taylor’s Theorem yields, for some point o(£) in the interval (7, 1),

1 X f1 1
m=—[7f] lq(g)u,,(g, (&) [ Gonls. &M= 1) dnk déds. (A3)
Integration by parts on the innermost integral yields

[, Guels, &M= 1) dn = ~Gpls. 1L6.0) = (5. )

1
+ J , Culs, 1€ mydm,

where &(s, £) = G,u(s. 15 & m)(n — 1)],..- Noting that [, |¢(s, &)] d& = 0,
we see from (A.3) that

he= o [ 1 (@6 o(©)Gunts, 1: £,0) de s
e[ f [} Guts. 1 & M@ o(&)) dm| deds
Mol p i 5 £ o) agas
b [ ] G 1€ la(®) — gl (@) amag s

b [ ) [ 1Gnts 1 6 Ml o(6) — s o) dmt s
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m

= xo + I-q-H—,tﬂE rl [ [ 1G5 1:8 e = sl an g ds

”CI” ““n”w fxﬂ f{)[ |G, 1, & M€ — sl dndéds

_ {Mluqnznuynm ( Gl | CONaEY

m m m

where
1
M, = sup f [Guds.1: £.0)| e

Thus, we have the estimate

lTh 1(x1) — ](xz)}
- {thmm-, D) =, €Ol }| o

m? 2m’

m m 1]

([l | Ctedobel, SOkl

Dividing both sides by |x, — x,||* > 0 and taking suprema over x, # x, yields

T (qll, = Vel 1) = {C,(O, 2 llie, -lgll-

m? 2m?

+ A4l”“y”ﬂC + CZ(a)H"_vn CZ(l)H”HH }H ”

m m
Combining this with estimate (A.1) gives
174l = Adllyrec-, 1) = Al + Aclsyllllglle + Aslletyyllollglle,

where the A; are independent of g. Lemma 2.4 and the estimate (2.4)
then yield

HTIi[qmu = A4H‘l’x.x’('s 1) - h”Hrv + AS“QH" + Aﬁ”‘ln?ﬁ + A7“£]HZ~

where
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p , 0,2l . Cy(0,
o= (MG (G0, CODH,, CO.2)y, )

This proves inequality (3.4). |
Proof of Inequality (4.1). For x € (0, 1),

[Tulq](x) — Tu[p)(x)|

— u.V.V(x’ 1) — Vyy(xo 1)
- h(x)

;;5 [ [} Gt 1 6 la(@ute, m) ~ p(ow(e )] dn dg.

=

75 Jo 2 Gt s & mute mlg(e) - p(O) an dg,

+

Hl)_ci f ; j ; Gy (x, 15 & mp(O)[u(& m) — v(€ m)] dn a'g‘

512+13.

First, from Taylor’s Theorem and the null space property of §,,, we have
111
=216t 14 (616 — 206D - (009~ oDl a

* U o Jo Gt 1 & mlg(x) = pJu(é n) dm d-_f,

[} 6x. 136 Dl@@® — po)
~ (@) ~ pG)ut,m) — u(é 1)] dn dg{

+

[} [} Gyt 1: & Ma) ~ polluts, ) — (e 1)] dn dg!
= “”y)'”‘”’g —'pla j; f:) ley(x, L& ,,,,)Hg~ x,g(n _ 1)2 d,n dg

+ “uyy”m“g - pr j(‘) f:) Iny(x’ 1: ¢, n)((n — 1)2 d.n d¢



CONVERGENT RECONSTRUCTION METHOD 63

- (Ci(a, 2) + C1(0,2)) e
2

yy”"-”q = Pla- (A4)

Next, write
= ];;(1;3 [1 ]2 G, 15 & Mp(®N (&, m) = v(& m)

— (& 1) —v(&1)] dny df‘
(A.5)

<12k 111G ot Gt m) — vt )
= (u(§,1) — v(§1))| dndé.
Now, by the Mean Value Theorem,
(e, m) = V(& M) = (u(£.1) = v(E D) < bty = v,Jl(1 = ).

Further, for (x, y) € {},

|uy(x’y) - vy(x, y)l =

[, (x, 1) —vi(x,1)] — J; [1e,,(x, 8) — v, (x,5)] ds
= f; l“yy(xa 5} — Vyy(x’s)l dis| = ”“yy - Vyy"m(l —¥)-

By combining these estimates with (A.5) and Lemma 2.5, we obtain

IPl=llteyy = vyslle 1 2
<Ml = 2le 111 ln - 12 ana

_ C(0,2)]p.
m

= Ci(0. 2)M|pll.luy,lllg — Pl

”uyy - vyy"w

Combining this with (A.4) yields

Tl - Tilplle = { S 2L COD 4 77151602 bl —

(A.6)
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Next, we estimate |Tj[g] — Ta[p]le. For x; # X3,

KTulg)(x1) — Tulp](x0)} — {Tulg)(x2) = Tu[p1(x2)H

=

1 1
h(x,) j(ll fo [Gyy(x1, 1 €, n) — ny(xz, 1; & )]

X [g(&)u(é& ) — p(E)v(& M]dn drf\

' \(h(il) i) oot

X [q(&)u(é m) — p(E)v(E, n)]dn dﬁ‘

1
h(x,)

=

[; J'(l) [ny(xl’ 1,6 m) — ny(xz, 1; & )

X [q(€) = p(O)u(s, n) dn df}

1
h(x,)

+

f; j; [G)’,V(xl’ 1’ gv 77) - ny(x;z, 1’ §7 U)]P('f)
X [u(g& m) — v(& m)ldn df‘

(M) [ 1 16

T\ hGey(e)

X [q(8) — p(§)]u(€, m) dn d‘f\

+

(W) J’(l) f; Gyy(x2, 15§ m)p(8)

X [u(&,n) — v(& n)ldnde

EI4+15+16+17.

First,
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() = A(x)N 1o . B
b= ’ (W&T) [, ] Gy, 1: & ()& m) = v(& )

— (& 1) —v(& )] dn d§l

< BBl Vol ey i) [ [ 16,y 1: 6 mlCn = 17 amae

C1(0, 2)||p|l-|l.
= T ”“yy - vyy”°°|x1 — x|

a

(0, 2)]pll il M
=== g — pllalxi = ol

Next, we write I, as

(%) f; f(l) Gyylx2,15 €, 1)

Iy =

X [(g(€) — p(&) — (g(x) — p(x)]u(& n) dndé

h(x;) — h(x)\ (1 . B
" ’( hx(x,)h(xz) ) fo [O Gyy(x2, 1; & Mg(x) — p(x)]u(, ) dndé|.

As in the estimate of integral /,, we have

Cl(a’ 2)'h|¢! a
16 = -—"'émT—" lluyy||w|q - plalxl - x2|

h(x;) — h(x:)
h(x1)h(x3)

JT] f; G, (x2, 15 € m)

X [q(x) — p()][u(€, m) — u(£,1)] dn dé‘

Cia,2) + C,(0,2
< (G DL COD) g - phies

Continuing, we have

15:

h(}rl) ﬁ ﬁ; [Gyy(x1, 15 & m) — Gyplx2, 1; & mp(€)
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X [(u(€ ) —v(&m) — (u(§ 1) —v(§,1)] dn d&\

= ‘ h(jc]) f f f ;p(§)[un(§, o(£) — vi(& a(9)]

X [ Gypuls, 13 & m)(n = 1) dn g ds

As in the estimate of integral /;,, we integrate by parts on the innermost
integral to obtain

155-1——
m

[ [} Gt 16,006 18D — v (] s

L1
m

[ 13 ]2 Gt 15 6 (@)l 9(8)) — vt (€] d ds

=]+ 15
As before, in light of Lemma 2.5,

= M1||P||«»||uy — vy“w I,
m

<SPy (S g i, - 5

m

ISI

- xz|

= MiKi(p)lpllull-llg — pllabxs — xal.

Making use of the null space property of §,,, we bound /s; by

[2]2 ]} Guts, 1.6 mlo(® — (5]

1
Ien < —
2=

X [u(& o(£)) — vi(& o(£))) dndéds

L [ 1) Gt 15 6 MPONaE 0(8) = o6 0(E)

= (Unf(s, 0)) = vyfs, ols)))] dndé ds
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C@lpl. (0l

= m ”uy - Vy“alel — x| + "}"W—Huyy - Vyy”wlxl — x|
C;C » _—

= (S i ol + S R |

X ||plllg — pllaxr — x|
= K(p, 9llpllallg — pllalxr — xal.

Combining this with (A.7) yields

Is = {M K (p)|ull- + Kap, @)} Plladlg — P||a|X1 - le.

Finally, consider I;:

14:

Wlﬂjé J; [Gylxr, 156 m) = Gz, 15 € m)]

X [q(&) ~ p(Ollu(, m) — u(é, 1)} dndéds

ml& 2(8))

1
X[} el 15 € m)(m — 1)? dm dg ds.

Integrating by parts twice with respect to 7 yields

L=s- \ [ ], 1a® = p(@unfe (&)

X {dn(& ) + (s, ) + Guls, 1, £,0) — 2Gi(s, 15§, 0)} dn df‘

3 2]} [ Guls. 1: £ mla(® ~ p(o)

XUy 2(8)) dndéds) =1y + Loy,

where ¢y(s, & = =Gy(s, 1; § m(n — 1)%],-1 and éa(s, &) = —2G.(s, 1;

&nm(n—

Dlvzs. Noting that | [en(s. O] d = I |guls. 8] dé = 0, we have
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M +M
ta= (M2 g = phdes . (A8

where M, = 2||G(-, 1; -, 0)||.. Next, we can use the null space property
of 6, to estimate /Iy, by

Lo =5 |21 [, G 1: £ I@(®) = p(@tn(& 2(8)

—(q(8) — p())uty(s. 2(s)}] dn dé s

_ Cu@lul.
2m

lg = pllfxr ~ xal-

This, combined with (A.8) yields

C + M, + M,
o= { UMM e — b, =

Collecting all of these estimates, we have

I[Tulg](x) — Talplx:)] — [Tulgl(x2) - Th[P](xz)H

< C4(a) + M| + M2
2m

bl = plins — x4

+ {[‘4I1<l(p)”u“"J + KZ(pv q)}“p”a“q - p”ulxl - X2|

N {Cl(a, 2) + C(0,2)

}MMmmmq—muﬁ—xw

2
(L0 1 iy~ plb, =
which leads to
Tulg] = Tulp]l.
- {Q(a) +le tM: Clea2) F C0.2) ), | GO, 22)"M“ W,
m 2m 2m



CONVERGENT RECONSTRUCTION METHQD 69

x upnm} el —
S MKl + Kap. Pl — Pl

Combined with (A.6), this gives us

I1T:lq] — Tulp]ll

- {Cl(a, 2) + C(0,2) Cila) + My + M,

+ MC,(0,2)|p|l- +

2 2m
Ci(a,2) + C,(0,2) C,(0,2)M
+ m? ! |h‘n + _-LQF— |h’a“p”°° “u}’y”a"q - p”a

+{M,Ki(p)llull- + Ka(p. g)Hplllig — pll

=LA+ i} b =l

which is (4.1). |
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