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Determination of a Potential from Cauchy Data:
Uniqueness and Distinguishability

Communicated by R.P. Gilbert

LESTER F. CAUDILL, JR.
Department of Chemistry, Princeton University, Princeton, NJ 08544

AMS: 35R30, 35R25

Abstract

The problem of recovering a potential ¢(y) in the differential equation:

—Dutay)u=0  (zy)€(0,1)x (0,1)
uw(0,y) = u(l,y) = u(z,0) = 0
u(z,1) = f(z) , uy(z,1) = g(z)

is investigated. The method of separation of variables reduces the recov-
ery of ¢(y) to a non-standard inverse Sturm-Liouville problem. Employing
asymptotic techniques and integral operators of Gel’fand-Levitan type, it is
shown that, under appropriate conditions on the Cauchy pair (f,g), ¢(y)
is uniquely determined, in a local sense, up to its mean. We characterize
the ill-posedness of this inverse problem in terms of the “distinguishability”
of potentials. An estimate is derived which indicates the maximum level of
measurement error under which two potentials, differing only far away from
y = 1, can be resolved.

KEY WORDS: inverse problem, undetermined coefficient, overposed boundary data

(Received for Publication 24 April 1993, in final form 6 February 1994)

1. INTRODUCTION.

For the domain @ = (0,1) x (0,1), consider the problem of determining the

potential ¢(y) € L*(0,1) in
157



158 L.F. CAUDILL, Jr.

—Autgp)u=0 (z,9)€Q
u(0,y) = u(l,y) = u(z,0) =0 (1.1)
u(z,1) = f(z) , uy(z,1) = g(x)
The fuhctions f and g are assumed to be given and f satisfies the condition
f(0) = f(1) = 0. For a general bounded domain  C R™ with smooth boundary,

it is known that ¢(Z) in the differential operator — A+ ¢(Z) is uniquely determined

by complete knowledge of the Dirichlet to Neumann map'

av;
= — 1.2
rn =24 (12
where '€ H7(0Q) and V; € H'(Q) satisfies
~AVi+g(D) V=0 TN
- (1.3)

Vil =F.
faﬂf

The map (1.2) is well defined provided that 0 is.not a Dirichlet eigenvalue of
—A + ¢(£). More precisely, when n > 3, (1.2) uniquely determines ¢(Z) €
L°°(£2) ? and in two dimensions, uniqueness holds provided that ¢(&) is smooth
and sufficiently close to zero®. Recently, it has been shown that uniqueness holds
in a larger class of smooth functions?.

The inverse potential problem (1.2,1.3) is closely related to the Impedance
Tomography Problem: To determine the scalar conductivity 4(Z) > 0 in

V- -({@VU;)=0 Fen

(1.4)
s |0 = 1

from complete knowledge of the Dirichlet to Neumann map

o

A(f) = Y an lsa” (1.5)

Uniqueness for the Impedance Tomography Problem was first shown by Kohn

and Vogelius for analytic conductivities and then extended to the case of piece-

wise analytic conductivities® . Uniqueness for C*°(Q) conductivities in n > 3
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was proved by Sylvester and Uhlmann’. Subsequent work has shown that Lj:his
fegularity assumption can be relaxed?®. A determination of the informa,rtion
contained in partial knowledge of the Dirichlet to Neumann map has also been
analyzed®~!3. For a survey of the Impedance Tomography Problem, the reader

is referred to the paper of Sylvester and Uhlmann?.

i

The connection between (1.2,1.3) and (1.4,1.5) is made by setting ¢ = ——

Vel
and Vy = 7_%Uf , glving

_1 _1r 1 _ 0y
Ag=7TTA T2 4 oy o (1.6)

Consequently, if A,,v|sn and %} 5 € known, then sois A, . Conversely, A,
determines A, .

Consider the potential problem (1.3) for » = 2. In practice, one has access to
only a finite number of Cauchy data pairs (points in the graph of A,), so é. general
g(z,y) cannot be uniquely determined. However, it is reasonable to ask whether,
by imposing additional structure on ¢, unicity can be restored (see, e.g.,'4718).
In the present paper, we consider the special case in which the potential ¢ varies
only in one coordinate direction, that is, ¢(z,y) = ¢(y). Such layered structures
often arise in applications. For example, in the modelling of steady-state heat
distribution, a composite material formed by hot-rolling several metals together
exhibits such behavior. Furthermore, the object being studied may be oriented in
such a way that only a portion of its boundary may be accessible for measurement.
This is reflected in our assumption that the data is given only on the top boundary
of the square.

Uniqueness results for univariate conductivies in two dimensions have been
proved. Kohn and Vogelius® have shown that a finite set of Cauchy pairs uniquely
determines a layered conductivity ¥(z,y) = 7(y) on an infinite strip —co <z <
00, 0 < y < 1. Their method involves reducing the problem to a classical inverse
Sturm-Liouville problem, where uniqueness is known. Sylvester'® proved that a
radial conductivity 4(r) on the unit circle is uniquely determined by the Dirichlet

to Neumann map. The problem of this paper, while similar in many respects,
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is fundamentally different. Our data provides no information about the mean
qg= fol ¢(y)dy and the question of uniqueness up to the mean reduces to a non-
standard inverse Sturm-Liouville problem. Recently, Fang-Lin and Gilbert-Lin
have established conditions under which a positive and radially symmetric ¢ on

the unit disk can be identified from a single Cauchy data pair!4:'7.

The present paper, based on an asymptotic expansion (equation (2.7) below)
derived by Caudill and Lowe?? to quantify the information content in the data
pair (f,¢) in (1.1), has been prepared with two goals in mind. The first goal
is to show that a near-constant potential is uniquely determined up to its mean
by the single Cauchy data pair (f,g). The second goal is to demonstrate the
severe ill-posedness of this problem by determining the degree of measurement
accuracy required to distinguish potentials which differ only far away from y = 1.
Of course, since the data is given in a direction that is perpendicular to the

dependence of ¢, difficulty is to be expected in this worst-case situation.

3

Vi
This paper 1s organized as follows: In section 2 the method of separation

of variables is used to reduce the uniqueness question to the aforementioned
non-standard inverse Sturm-Liouville problem. In section 3 a uniqueness result
is established for potentials ¢ with prescribed mean § which are close to the
constant potential ¢ = §. In section 4 the resolution possible from measurements

of finite precision is discussed.

2. REDUCTION TO STURM-LIOUVILLE FORM.

Using the following expansions for Uy and the known functions f and g¢:

Us(z,y) = ) baXn(2)Ya(y) (2.1a)
f(z) = Z fasinmnz (2.15)
g(z) = Z gnSINTNT (2.1¢)

n=]1
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it is easily verified that Uy satisfies

Ug(z,y) = Z bnYn(y)sinwnz (2.2)
n=1

where Y, satisfies the Sturm-Liouville problem:

=Y, (9) + ay)¥aly) = —n*7*Yaly) (2.3a)
Yn(0) =Y, (1) = BuYn(1) = 0 (2.3b)

with f, = In when fn # 0. When g = 0, it is easily verified that 8, = Tn cothmn

and the resulting eigenfunctions are sinh 7ny . The ill-posedness in recovering ¢(y)
is manifested in the exponential growth of these eigenfunctions.
At first glance, it may seem that a single data pair should carry very little

information about q. However, when the f, in (2.15) are nonzero for all n, the

“partial” Dirichlet to Neumann map

M) = 252 (24)

where Uy is the solution of

—AUs +q(y)Us =0 (z,y) €

(2.5)
is known. The f, are just the eigenvalues of A, :
Ay(sinmnz) = By sinmnc , n>1. .(2.6)

The information carried in the sequence {8,} about the unknown function ¢(y)
was quantified by Caudill and Lowe??, who showed that when ¢ € L°°(0, 1), this
sequence has the asymptotic expansion

; . 2
Br, = Br{q) = nm cothnr +/0 q(y) (-Sl—n}—lfﬂ) dy + O (;;15) - (2.7)

sinh nw
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In particular, it was noted that this sequence, and consequently the overposed

data, carries no information about §, the mean of ¢, defined by

g= /01 q(y) dy.

For our purposes, the potential ¢ will be presumed to belong to the space V,

defined as
v={ge€ Who°(0, 1) : ¢'isleft — continuousinanbhdofy = 1} .

Here, W'>(0, 1) is the Sobolev space of bounded functions possessing bounded

weak derivatives.

In what follows, the term Muntz-Szdsz set will refer to any subsequence

{ni}s2, of the natural numbers N possessing the property

3. UNIQUENESS.

We now state the main result of this section.

Theorem 1. Let g. be a constant, and denote vn = \/n?72 + q.. If fn(q) =
Br(ge) = yn coth v, on a Miintz-Szdsz set for some potential ¢ € V with ¢ = ¢,

then q = q,.

The corresponding result for the two-dimensional problem (1.1) can be stated as

follows.

Theorem 1'. Let ¢ € V, and denote by fS, gt the Fourier sine coeflicients for a

Cauchy data pair corresponding to ¢ = ¢.. If

i _ In
[ANE
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on a Miintz-Szasz set, and if § = ¢., then q = q..

The proof of Theorem 1 is presented through a sequence of lemmas, and
employs an integral operator of Gei’fand—Levitan21 type to reduce the problem
to one involving the moments of a particular kernel function. A similar approach
has been applied to the two-spectrum problem of classical inverse Sturm-Liouville
22—23

theory
Following Gel’fand-Levitan, the solution ¥,(y;¢) of (1) can be represented

sinh v,y

Yo(y;q) =

where M(y,t) solves the Goursat problem

y
+i/ M(y,t)sinh vyt dt, (3.1)
T Jo

n

Myy(y:1) = Mua(w, 1) + (a(y) — 2)M(y,1) =0, 0<t<y<1 (3.2a)

M(y,0) =0 (3.2b)
1 Y
M(y,y) = 5/0 (q(s) —qc)ds. (3.2¢)

It is important to note that M(y,?) is independent of n. Combining representa-

tion (3.1) with condition (2.3b) yields the additional condition
/1 M,y(1,¢t)sinh vt dt = By /01 M(1,t)sinhy,tdt, VneN. (3.3)
0
In terms of M, the hypothesis § = ¢, of Theorem 1 is equivalent to the condition
M(1,1)=0. (3.4)
We also remark that condition (3.2b) implies the condition
M,(1,0) = 0. (3.5)

Using the overposed condition (3.3), integration by parts and conditions (3.4)
and (3.5) yield

1
/ {Mye(1,t) + Mee(1,8)} cosh ypt dt
0

= 9(—1)-2_—'25 cosh v, — My(1,0) (3.6)

2 1
_In / M(1,t)sinhy,(1 — ¢t} dt,
sinh v, Jo
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where the boundary condition (3.2¢} is used to derive the equality

My(1,1)+ M(1,1) = 5

We now consider the behavior of the components of (3.6) for large n.

Lemma 2. Forge V,

1Me(1, )]l oo > [[Mye(1,1) + Mu(1,8)]le0 < 00

Proof. Under the characteristic change of variables { = y + ¢, = y —t, the
solution M(y,t) of (3.2) can be represented as

§ rm
M*(f,n)z_i/() /0 q(a-z'_?.) M*(a,r)d‘rda,

e = (452, E00) — ),

where

From this, one can compute
1 [ [o+ . 1 /7
w0 =a)+ g [Co( ) arendr -1 1o (447) e mar
0 4 Jo 2

and

Myp(y, )4+ Mu(w,1) = 70'(5) ~ 70(0)M (5, )

- i/on {-21-q’ (Q;—Z)M*(&T)Jrq (”:;T) ME(&T)} dr.

The result follows upon letting ¥ — 1 and noting that W>°(0,1) C C([0,1]). O

The next two results are immediate consequences of Holder’s inequality.

Lemma 3. For continuous q, there exists a finite constant A for which

<A

en
n

1
!/ {My:(1,2) + Mee(1,1)} cosh y,t dt
0

Lemma 4. For f € L°(0,1), there exists a finite constant K for which

eTn

<K

/: f(#) coshy,(1 — ) dt

n
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Lemma 5. There exists a finite constant B for which

smhfyn / M(1,t)sinh vy, (1 — t)dtl <B.
" Proof. We have

1 1 /1
/ M(1,t)sinhy,(1 —t)dt = :ym/ Mi(1,t)coshy,(1 —t) dt.
0 n Jo

Lemmas 2 and 4 then imply

smh’}'n/ M(1,t)sinh v,(1 —t)dt.

f M;i(1,t) coshy,(1 —t)dtf

Tn
< _g¢ <B,
sinhy, n

smh Yn

as desired. [
Setting
1
Ap = ne™ / {My:(1,t) + My (1,t)} coshynt dt,
0
Cp = (q(l)T_qc) e~ ™ coshvn ,

f M(1,t)sinhv,(1 —t)dt

Bn - —Mt(l,O) +
sinh Yn

equation (3.6) can be rewritten as

e’

A, =Cre™ + B, ,

n

or
An

Cn= — Bpe™ ", (38)
n

Letting n — oo in (3.8), we conclude that ¢(1) = g.. Hence, C, = 0¥ n. Conse-

quently, we conclude
Ap =0 (ne ),
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i.e. the sequence of real numbers
1
/ {Myu(1,£) + Mye(1,1)} cosh yat dt (3.9)
0
remains bounded as n — oo, In view of the exponential growth of the sequence
{coshyat}or, ,

we can establish the following,.

Lemma 6. Let ¢ € L*(0,1). If meas(suppé) # 0, then

— 00, 7 — 00.

1
/ S(t)e™tdt
0

Proof. We prove the result for the case ¢(z) a step function, the generalization

being easily made. For a partition {xj}f_r__o of [0,1] with zj; < z;, Vj, write

N
$(t) = Z ?ixi(t),

where x; () is the indicator function of the interval (z,_1,z,], and assume ¢ # 0.

Denote by J the largest value of the index j for which ¢; # 0. Then,

1 J zj J TnZj _ aTntj-1
/ ¢(t)evntdt:Z¢jf evntdt=z¢j (e j 7e j )
0 . Tj— n
j=1 I-t

=1
_ eI qu (1 _ e_yn(g;,;-—x.;q))
Yn
J—1
+ Z ¢'j (e-'Yn(xJ""x}') _ e""fn(rJ_-‘Ej—-l))} )
=1

The term in brackets remains nonzero and bounded as n — co. Noting that

Yn & nm for n large, the conclusion of the lemma follows immediately. O

Combining (3.9) with Lemn?a 6, we immediately deduce

|
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Lemma 7.
q(1) — g. = 0;

My (1,8) + Mu(1,6) =0, 0<t<1.
Writing
1
My(l,t) + Mt(l,t) = My(l, 1) + Mt(l, 1) — / {Myt(l,S) + Mtt(l,S)} dS
t

and using Lemma 7 and condition (3.7), one can establish the following key

lemma.

Lemma 8.

My(1,8)+ My(1,8) =0, 0<¢<1.
We may now prove the following.

Lemma 9.

M(1,t) = My(1,t) =0, 0<¢<1.

Proof. From condition (3.3) and Lemma 8, we have
1 1
/ My(1,t)sinh vyt dt = 8, ] M(1,t) sinh v, dt
0 0 '
1
= — cothvp f M(1,t) cosh ynt dt
0
1
= coth vn f My(1,t) cosh ynt dt
0
This can be rewritten as

1
0= / M, (1,t){coth v, cosh ¥t — sinh y,t} dt
0

1
sinh v,

. |
/ My(1,t) cosh yn(1 —t)dt.
0 .

So,
1
/ My(1,t) coshy,(l1—t)dt =0 Vn. (3.10)
0
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In?°, it is shown that the sequence

{(sinhngmt)* }321

. @A ot
is complete up to the mean in L?(0,1) whenever {ni}ie, is a Mintz Szasz s

A similar argument shows that the sequence
{coshva(1 —t)}izs

is complete in L2(0,1) whenever {n;}$, is a Miintz-Szasz set. The assertion of

this lemma now follows from (3.10). [
Proof of Theorem 1. The Goursat problem (3.2), combined with the condition
M(1,t) = M,(1,t) =0

has been shown by Suzuki?® to imply M(y,t) = 0. The result ¢ = ¢, follows

immediately. O

4. DISTINGUISHABILITY OF POTENTIALS.

In the work!!, D. Isaacson introduced the notion of “distinguishability” for the
Impedance Tomography problem (1.4)-(1.5) as a means of characterizing unre-
coverable information in the presence of measurement errors. In the context of
the present problem, one is led to the following notion:

We say that two potentials ¢;(y) and ¢2(y) are distinguishable by measurements

of precision € if

Bn(a1) — Br(gz)| > €

for some n € N. Likewise, the potentials ¢; and ¢, are not distinguishable by

measurements of precision ¢ if for all n € N we have

|Bn(q1) — Br(g2)| < €.

In other words, ¢; and ¢ are indistinguishable if, up to the accuracy of the

measuring instruments, their 3,’s are the same.
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It is indicated by the asymptotic formula (2.7) that the Cauchy data pair
(f,g) of problem (1.1) provides information about the potential ¢(y) in the form

of its moments with respect to the set

{pn(y)}iz; = {(%)}i |

The graphs of the first three of these functions for the case ¢, = 0 are shown in

Figure 1.

0 0.25 0.5 0.75 1
FIGURE 1. The graphs of p,(y), n = 1,2,3.

We note that the lack of separation in these functions away from y = 1 reflects
the fact that the Cauchy data (f,g) is being given at y = 1. In view of Figure 1,
it is to be expected that, up to some tolerance level, the data sequence {8.(¢)}
cannot “detect” a change in ¢(y) away from y = 1. To illustrate this point, and
to provide an idea of the precision necessary to disil;inguish between two such
potentials, we consider the following example:

Define the potential g; on the interval [0, 1] by

_Ja, 0Ly,
‘“(y)‘{o, §<y<1,

where a > 0 and § € (0, 7). We determine those values of @ and § for which ¢

is indistinguishable from the zero potential by measurements of precision e.

Theorem 10. Foralln, 0 <a<ap and0 < § < %;

Bn(gq1) — Bn(0) < 0.0041 6% cosh 61/7? + apy coshwé .
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Corollary 11. For a given measurement precision €, q; 1s indistinguishable from
the zero potential for each a € (0,an) and § € (0, 1) obeying

€

a < .
~ 0.0041 62 cosh §/72 + aps coshwd

The proofs of these results are presented through a sequence of lemmas. But

first, the solution of the forward problem gives

Bulqr) = n A, sinhnw + B, coshnr
md1) = A, coshnm 4+ B, sinhnrt /’
where
A = frn{nmsinh(y, — n7)é — (v, — nm) cosh v, sinh nwé} 41)
" 4n coshyné sinhnm(l — 6) + nr sinh v, cosh nr(1 — 6) (4.
_ fa— Apcoshnr
Bn = sinhnw (42)
and

Yo = V0212 + .

Using #,(0) = nx cothnm,

nw —Ay
IBn(QI) - ﬁn(O) - sinhnr (An coshnm + B, sinh 'n,'.rr) '

It follows from (4.1) and (4.2) that

sinhnmr

nw { (¥n — n7) cosh v, 6 sinh nwé — nr sinh(y, — nm)é }

Ba(g1)—Bn(0) = —— (—J:?)

P

sinhnm | v, coshy,dsinhn7(1 — §) + n7 sinhy,6 cosh nw(1 — §)
3 Ynnln? sinh nmré sinh~,6
= Danhnn { cosh v, 6 — coshnmé "
_ ¥nn?n? coshy,6 coshnmé (tanhnmé  tanhvy,s 43)
B Dsinhnm nm Yr ’ (4

where

D = ~n coshyné sinhna(1l — 6) 4 nax sinh v, 6 coshnm(1 — 6).
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For § > 0, ¥(z) = tanhéz/z is a decreasing function of z. Consequently, (4.3)
gives

Ar(q1) — Bn(0) 20,  Vn,

so that

'ﬁn(ql) - ﬂn(o)l = Bnlq1) — ﬂn(o)-

Lemma 12. The expression D defined above satisfies the bound
D > 4y, sinhnm,

yielding

2 2

cosh Ynd coshnmé { (4.4)

tanhnwé  tanh 7,,5}

nmw Yn

Bnler) = Ba(0) < 25—

nh’n

Proof, Set
9(8) = s coshy,é sinhnm(1 ~ §) + nwsinhv,6 coshnr(l — §) > 0 on [0,1].

Then,
g'(8) = (4% — n*x?)sinh v, 6 sinh na(1 — §)

= asinhy,dsinhnmr(1l — 6) > 0.

which gives
g(8) > ¢(0) = v sinhnr,

and the estimate (4.4) follows.

Next, we derive a bound on the difference term in (4.4).

Lemma 13. Foreachn,0<a<apy and 0 <§ < 1,

tanhnnwé 3 tanh v,6 < 0.34342 621,
nmw Yn 2nmw

yielding
0.17171nwé%a cosh §/n2n? + ajs cosh n7r6

sinh? nw

(4.5)

ﬂn(?l) - ;Bn(o) <
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Proof. An application of the Mean Value Theorem to the decreasing function

b(z) = tanh éz gives
T
tanhnré  tanhyné < sup  (=9'(0)) (7m — ), (4.6)
nm Yn o€(nm,1n)
where

sinh 8z cosh 62 — &z

22 cosh? 6z

~'(z) =

The change of variables y = éz gives

L (Y 2 { sinhycoshy — y)
= — - | = 6 .
qﬁ(y) v (5) ( y? cosh? y

We have

y2sech’y tanh y — tanh y + ysechzy)
: - .
Y

¢'(y) = 267 (

so the critical values of ¢(y) on the interval (énr,6v,) occur when
y?sech?y tanhy — tanhy -+ ysech?y = 0,

which has the solution yo &~ 0.91993767. Now,

$'(y) >0, 0<y<y
#'(y) <0, vo <y,

S0

sup  d(y) < é(yo) ~ 0.34342 6.
(6nw,6vn)

Hence,

tanhnné tanh~,6
— 2T < 0.343426% (4 — )

nmw Tn

< 0.34342625%, (4.7)

where the last inequality follows from the Mean Value Theorem.
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Combining (4.7) with (4.4) yields

nn?

Br(q1) — Bn(0) < ————— cosh¥,6 coshnré {0 3434262——-—}
sinh® nx
_ 0.17171n7é6%a cosh 4,8 cosh nxé

sinh? nx
0.17171n7é% @ cosh 0v/n?7n? + a s cosh mr5

< 2
sinh” nr

for o< ay.
This completes the proof of Lemma 13. [J

1
Proof of Theorem 10. For 0 < § < 5 the right-hand side of (4.5) is decreasing

in n. Indeed, for

H(z) = z cosh év/z2 + aps cosh 6z

sinh? z

on the interval [, co),
H'(z) sinh® z
= cosh64/2? + a cosh 6z[sinhz — z cosh z]
+ 6z cosh 6/2? + afsinh §z sinh z — cosh §z cosh z]
+ zcoshér [% sinh6v/2? 4+ asinhz — (1 — 6) cosh §v/22 + « cosh:v} .

The first two terms in the sum are negative for z > . Writing the term

—%sinhév z? + asinhz — (1 — §) cosh §v/22 + a cosh z as
2?2 +

= 1-9))sinhév/z2? + asinhz
(\/x2 + o ~ ))
+(1-46) (sinh 6v2? + asinhz — cosh 6/2? + cecoshx) , (4.8)

the second term on the right-hand side of (4.8) is seen to be negative, as is the first
term when é < %, and consequently, H'(z) < 0 on [7,00). Thus, the right-hand

side of (4.5) is a decreasing function of n, implying

0) < 0.17171 6%« cosh §+/7% + ayy cosh 76
Palar) = Ba(0) < sinh? 7

< 0.0041 6%« cosh 6+4/72 + apy cosh 6, Vn€N,

as desired. [
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In view of Corollary 11, a unit jump on the interval [0, ] cannot be detected

by measurements of precision € if

e > Q(4),

where

Q(6) = 0.0041 6 cosh 61/ 72 + 1 cosh .

The graph of Q(§) is shown in Figure 2. Selected values of Q(4) are listed in
Table 1.

0.01

0.005

0 0.25 0.5

FIGURE 2. The graph of @(6), for 0 < 6 < 7.

TABLE I. Values of Q(6) for small é.

é Q($)
5 6.9 x 10~4

2 2.4 x 104

1 4.5 x 107°
.01 4.1 x 10~7
.001 4.1 x 107°
.0001 4.1 x 10—

The high degree of ill-posedness is borne out by the exponential behavior
of Q(6). For example, Table I shows that measurements of precision e = 107°

cannot “sense” a unit jump in potential on the interval [0,0.01].
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