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A Nonlinear Filter for Markov Chains
and its Effect on Diffusion Maps

Stefan Steinerberger

Department of Mathematics

Classical Diffusion Maps

We are interested in the interplay between Markov chains on a high-dimensional data set {xi}ni=1 ⊂ Rd and
the inner workings of spectral methods. There are many different methods, see e.g. the work of Belkin &
Niyogi, Coifman & Lafon, Coifman & Maggioni, Donoho & Grimes. Usually, these techniques proceed by
imposing a Markov chain on the data set and analyzing diffusion on the arising graph. A popular and natural
choice for the Markov chain is to declare that the probability pij to move from point xj to xi is

pij =
exp

(
−1

ε
‖xi − xj‖2`2(Rd)

)
∑n

k=1 exp
(
−1

ε
‖xk − xj‖2`2(Rd)

) ,
where the value of ε needs to be chosen depending on the given data as it induces a natural length scale
∼
√
ε which should match the distance between neighbouring points.
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This can work very well: see, for example, the wine data set mapped into two dimensions using a diffusion
map (colors were added afterwards).

Rewarding Self-Consistency

We were motivated by the following example: suppose we are given

x1x5

x2

x3

x4

The standard diffusion paradigm proceeds by defining a random walk. However, given this local structure
one would certainly believe that x1, x2, x3, x4 are well connected while x5 seems to be an outlier. Consider a
random walk starting in x1. A simple computation yields

probability of being in x1 x2 x3 x4 x5

after 1 step 0 1/4 1/4 1/4 1/4
after 2 steps 1/2 1/6 1/6 1/6 0
minimum 0 1/6 1/6 1/6 0

The minimum automatically detects unlikely outliers. Formally, assume we are given {xi}ni=1 ⊂ Rd and an
associated Markov chain described by the matrix P = (pij)

n
i,j=1. We propose using another matrix Q instead:

we obtain the matrix P ∗ by setting pii = 0 and rescaling every column of P so that to we are once again
given a transition matrix. Q is then given by

qij =
min((P ∗)ij, ((P

∗)2)ij, . . . , ((P
∗)k)ij),∑n

m=1 min((P ∗)mj, ((P ∗)2)mj, . . . , ((P ∗)k)mj)
.

We may then proceed with an analysis of the data set using Q instead of P . It seems that k = 2 is most
effective in practice but there are certainly cases where a larger k may prove advantageous.

Examples

1 Cleveland Heart Disease Data Set.

-0.2 -0.1 0.1 0.2

-0.2

-0.1

0.1

0.2

Classical method

-0.10 -0.05 0.05 0.10

-0.10

-0.05

0.05

0.10

0.15

New method

2 Wisconsin Breast Cancer Data Set.
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3 Ionosphere data set.
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Error correction

The method can be easily adapt to detect and correct for error. In the following example, we have ta-
ken a set of points in the shape of a perfect circle and added random noise in the affinity matrix.
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Theoretical results. Let G = (V,E) be a finite graph with the property that every vertex has at most
c ∈ N at distance at most 2 with transition matrix P . Construct G1 by adding every possible edge with
probability 0 < p� 1 and let Q be the affinity assigned by the filter applied to the random walk on G1.

Theorem. The number N of vertices (vi, vj) ∈ V × V that are incorrectly thought of as present by the filter

(P )i,j = 0 and Qij > 0

satisfies

EN ≤ cnp + cn2p2 +
1

2
n3p3.

This implies that the filter can successfully detect |V | fake edges while only making O(1) mistakes on ave-
rage. The trickiest part of the (not very complicated) proof uses the reproducing property of the binomial
distribution

B(B(n, p), q) ∼ B(n, pq)

and combines it with a classical theorem of Wald.
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