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Abstract 

Intrinsic to the transition towards, and necessary for the suc-
cess of digital platforms as a service (at scale) is the notion 
of human computation. Going beyond ‘the wisdom of the 
crowd’, human computation is the engine that powers plat-
forms and services that are now ubiquitous like Duolingo and 
Wikipedia. In spite of increasing research and population in-
terest, several issues remain open and in debate on large-
scale human computation projects. Quality control is first 
among these discussions. We conducted an experiment with 
three different tasks of varying complexity and five different 
methods to distinguish and protect against constantly under-
performing contributors. We illustrate that minimal quality 
control is enough to repel constantly underperforming con-
tributors and that this effect is constant across tasks of vary-
ing complexity. 

Introduction 

At the center of the debate on large-scale human computation 
projects is invariably a discussion of quality. This is due in 
part to the fact that a suitable and scalable mechanism for the 
ex-ante detection of constantly underperforming contributors 
has yet to be introduced. Commonly used tactics include 
qualification tests (Batram et al. 2014), pre-set qualifications 
(Sarasua & Thimm 2013); constructing trust models to de-
termine the probability of diligent work (Wang et al. 2013; 
Ipeirotis et al. 2010; Krause & Porzel 2013); hidden gold 
standard questions (Oleson et al. 2011); and the use of met-
rics such as solution acceptance (Dukat & Caton 2013) (Re-
lated Work).  

In this work, we present a study that illustrates that con-
stantly underperforming contributors will not take on tasks 
that feature quality control mechanism. Here we note that we 
do not use the term spammer, as we cannot predict the inten-
tion of our contributors. Our research employs a 3 x 5 facto-
rial experimental design of three task types with varying 
complexities and five different quality control methods to 
measure the impact of quality control and task complexity on 
output quality (Study Design). 

Our results indicate that the quality control methods does not 
have a significant impact on response quality. In the experi-
ment, it was sufficient to simply state that a qualification test 
is necessary to repel constantly underperforming contribu-
tors (Results).  

In our experiment, most contributors were diligent. Con-
stantly underperforming contributors by our definition were 
only present in conditions with no quality control. We argue 
that expansive quality control support and applications are 
unwarranted and that more resources should be dedicated to 
adequate training of contributors in order to raise the overall 
quality of crowdsourced contributions (Conclusion).  

Related Work 
The aspect of quality and quality control within Crowdsourc-
ing platforms appears in many ways. In general, Kittur et al. 
(Kittur et al. 2013) differentiate “up-front task design” and 
“post-hoc result analysis” as the two main approaches to con-
trol work quality in the context of crowdsourcing. 

Pre-Selecting Contributors 
Crowdsourcing platforms provide the means for employers 
to pre-select contributors based upon specific task require-
ments or employer preferences. Geiger et al. (Geiger et al. 
2011) define pre-selection as “a means of ensuring a mini-
mum ex-ante quality level of contributions.” In other words, 
an employer will use a pre-selection process or test to miti-
gate the risk of poor quality solutions. Pre-selection screens 
potential contributors based upon the completion of some 
process that demonstrates certain knowledge or skills. 

Oleson et al. (Oleson et al. 2011) examine this process, which 
is typically performed via multiple-choice tests, and high-
light as well as subsequently criticise a key assumption in 
this approach: that if the contributor passes the test, they will 
then perform the task well, even in the absence of direct or 
tangible incentives to do so. Similarly, if the contributor fails 
the test they may be banned from the task but not necessarily 
for the right reasons. This method, however, is simple to im-
plement and also typically performs well. Pre-selection via 
qualification tests is also likely to act as a barrier for “scam-
mer” contributors, but diligent contributors may also not se-
lect the task due to an increased effort on their part. Answers 
to a qualification test may also be shared amongst users, 
which will reduce its effectiveness. A closely related point is 
the representativeness of the test to the task. 

Qualification Tests 
Some platforms use a qualification test, to not only determine 
the abilities of a contributor, but also access and assess their 
basic properties, as this information is often not available to 



crowd employers. Stolee and Elbaum (Stolee & Elbaum 
2010) and Chen et al. (Chen et al. 2011) are examples here. 
They state that a qualification can also capture demographic 
(and similar) properties of the contributor, for example geo-
graphical location. This does, however, massively distort the 
concept of a qualification if personal attributes of a contrib-
utor are considered.  

One issue that seems to be overlooked in the literature is the 
transferability and transitivity of a crowd sourcing qualifica-
tion. Qualifications can be transferred between tasks of the 
same employer, due to the knowledge that an employer may 
have on previous interactions with a contributor. This is not 
the case for other employers of “similar” tasks. From this 
point of view, Dukat and Caton argued in (Dukat & Caton 
2013) that a lack of standardized testing or at least an ac-
cepted definition of certain qualifications presents itself as an 
urgently needed facet of crowdsourcing platforms, in order 
to prevent contributors redundantly performing “similar” 
qualification tests.  

In Task Quality Control 
An alternative method to assessing contributor quality pro-
posed by Sheng et al. and Ipeirotis et al. (Sheng et al. 2008; 
Ipeirotis et al. 2010) is to infer a level of trust in the contrib-
utor via the accuracy of their solutions. Trust, however, 
quickly becomes a complex and nuanced topic highly spe-
cific to the context in which it is considered. Also as an in-
herently intangible and intransitive construct it is very diffi-
cult to measure quantitatively; key for approximating (auto-
matically) a contributor’s propensity for a diligent or reliable 
work. Thus, Kern et al (Kern et al. 2010) capture the trust-
worthiness of contributor based on prior experience. They 
redundantly schedule tasks to multiple contributors to pro-
vide a basis to compare and estimate contributor reliability. 
This method, demonstrated to yield high quality solutions. 
Yet without careful management the method is expensive in 
terms of redundantly issuing tasks (direct costs) and the ad-
ditional (computational) effort needed to assess solution 
quality. Similarly, managing the crowd with respect to “re-
jected” answers can have other adverse effects, especially if 
the contributor has acted diligently. Oleson et al. (Oleson et 
al. 2011) identify possible effects as: a loss in reputation for 
the employer, directed employee complaints, and the poten-
tial black listing of diligent contributors.  

Oleson et al. (Oleson et al. 2011) propose the use of gold 
standard questions to assess solution quality and contributor 
ability.  In their approach, subtasks with known solutions are 
injected into the task. The presence of these questions ena-
bles the accuracy of a given contributor to be estimated in 
task, and help improve the quality of their solutions by 
providing an explanation why the solution is incorrect. 
Therefore, contributors can receive instant feedback on the 
accuracy of their performance. The approach, however, is 
limited to tasks that have a finite set of definite answers, and 
is inappropriate for tasks that rely on forms of subjectivity. 
However, such a mechanism provides a basis to also train a 

contributor, and enable a contributor to self-evaluate their 
performance through system feedback. Where the latter fa-
cilitates an integral element in the definition of competence: 
the evaluation of self-efficacy.  

Competence and Self-Efficacy 
Bringing in the notion of self-efficacy, and by extension 
competence, leads to the discussion on what it means to be a 
competent crowd contributor. Dukat and Caton (Dukat & 
Caton 2013) as well as Dow et al. (Dow et al. 2012) discuss 
this at a high level. They identify that a competent crowd 
contributor is not only able to complete the task, but also 
willing to undertake the task at hand diligently, and finally 
cognoscente of their own limitations. We can observe that 
today crowdsourcing platforms use several mechanisms to 
assess contributor reliability and capabilities before, during 
or after task completion. The focus of these measures is ar-
guably to minimize the risk of lower quality solutions, but 
ultimately do not actually provide concrete quality assurance 
at the individual contributor level. At best these measure act 
as an artificial proxy for contributor “competence” and 
mainly allow employers to pre-select potential contributors, 
but not actually the competence of the contributor, and by 
extension their likelihood to mindfully, diligently, and accu-
rately perform the task.  

Given the findings in recent literature, we propose the fol-
lowing research question in order to evaluate the suitability 
of quality assurance measures in crowdsourcing:  

RQ: What is the relationship between quality control and 
perceived response quality in microtasks?  

We hypothesize that the quality control method does not 
have a significant impact on contributor’s response quality 
and that only in the complete absence of quality control we 
will find constantly underperforming contributors. 

Figure 1: Crowdsourcing interface for the web-fragment an-
notation task. The interface is identical for all tasks. The rat-
ing slider (bottom) is only visible for our Raters when they 

judge the quality of a response. 



Study Design 
To investigate our question our study had a three (task com-
plexity) by five (quality control methods) factorial and be-
tween groups design. The experiment investigates three tasks 
of varying complexity resulting in three levels of the task 
complexity factor. We hypothesize the order of tasks in terms 
of complexity to be as follows semantic similarity (least 
complex), question answering (more complex), and text 
translation (most complex).  

We repeated each task five times with different methods of 
quality control. For the first level of the control factor (none) 
we did not perform any quality control. For the second level 
(fake) we announced very prominently in the task description 
that we use introductory quizzes to check the qualification of 
contributors, yet contributors did not get a test. The third 
level (intro) announces an introductory quiz and requires 
contributors to complete the quiz with 80% accuracy. In the 
fourth level (auto) we added a basic machine learning system 
to estimate the quality of a response and report this estimate 
to contributors. The system provides feedback on a three 
level scale (good, acceptable, unacceptable). Finally, in the 
fifth level (wizard) we replaced the ML-system by a human 
observer that decides on the response quality. The scale was 
identical to the one used by the ML-system. 

We recruited all contributors via crowdflower. To control 
possibly confounding variables, provide feedback, and per-
form our own quality control we redirected contributors to 
our own webpage. After completing the task contributors get 
a code that they use to receive their payment through the 
crowdflower interface. The user interface was identical for 
all 15 (three by five) conditions. In all conditions contribu-
tors were shown three examples of correctly solved tasks and 
a description of the task. We also used the same interface to 
collect quality ratings from human judges. A screenshot of 
the interface as seen by the judges can be found in Figure 1.  

To ensure a between groups design we used IP-tracking and 
browser fingerprinting to ensure that contributors do not con-
tribute to more than one condition. To ensure contributor pri-
vacy only hashes of fingerprints and IP’s were stored. 

Automated Feedback 
The automated feedback system applied in the level auto of 
the control factor requires some explanation. Experiments 
show that in some natural language tasks (Runge et al. 2012) 
the quality of a response can be estimated with a high accu-
racy by a combination of time needed to complete a single 
request and the numbers of characters typed. Although the 
values of both variables and their meaning differ from task 
to task, a machine learning classifier is able to learn the rela-
tionship between the two variables (features) and the re-
sponse quality with minimal training data.  

For our auto level, we classify responses into three different 
classes (good, acceptable, unacceptable) using a random for-

est classifier (Breiman 2001). Supervised classifiers need la-
beled training data. We classified 90 responses of each task 
by hand. We randomly selected responses and classified 
them into the three classes until there were 30 samples per 
class. We normalized the training data randomly, selecting 
exactly 30 samples per class.  

For the experiment a random forest classifier was chosen, as 
tree-based classifiers are less sensitive to outliers and unbal-
anced sample sets (Cieslak & Chawla 2008). In the given 
tasks, it is likely that we encounter outliers such as a contrib-
utor opening a task and leaving her working place for a 
while. Classifiers such as support vector machines are more 
sensitive to such outliers. Our classifier generated 10 random 
trees using Gini impurity (Breiman 1996) as split criterion. 
We used the classifier that is part of pythons sklearn package 
(Pedregosa & Varoquaux 2011). 

When the classifier estimates the response quality to be un-
acceptable we show a general warning that the response 
might need revision. If the response was acceptable, we did 
not show a message. For good responses, we showed a mes-
sage stating that the response was of good quality. The mes-
sages appeared as a red text immediately after a contributor 
responded to a request. 

Measurements 
We consider two independent variables the quality control 
method and task complexity as well as one dependent varia-
ble perceived response quality. To measure perceived re-
sponse quality we asked two human judges to rate each re-
sponse on a scale from 0.0 (low quality) to 1.0 (high quality) 
in 10 increments. We calculated the average perceived re-
sponse quality for each contributor as our measurement for 
quality. We consider contributors with an average perceived 
response quality below 0.6 as constantly underperforming. 
That means contributors with 40% unacceptable responses. 

Judges used a web interface that was identical to the contrib-
utors interface. Judges saw the initial request and answer. 
Additionally judges had a slider to rate the response quality. 
The interface did not show the rating of our automated feed-
back system. We ensured that the process was blind. We ran-
domly selected responses from all conditions and judges did 
not know the condition of a response. These judges were not 
involved in generating the training data for the automated 
feedback nor did they participate in the wizard conditions. 
We recruited the judges’ offline from our lab. 

We measure and report the agreement between judges using 
Krippendorff’s Alpha (Krippendorff 1970). Additionally we 
measure the correlation between our ML-systems prediction 
and our human judges. As our data violates the assumptions 
of the Pearson Product-Moment correlation we use Spear-
man’s ρ. 

Furthermore, the three tasks are tested for instruction clear-
ness and contributor satisfaction using the build in metrics 



provided by crowdflower. Upon completion of a task, con-
tributors can take a satisfaction survey. Contributors score 
the task on a 0-5 scale for overall satisfaction, instruction 
clearness, test question fairness, payment, and ease of job. 
Results of these quizzes are reported with each task. 

Procedure 
We collected all data for three independent tasks of varying 
complexity from the domain of natural language processing. 
The main interface for contributors is identical for all tasks. 
Figure 1 shows a screenshot of the user interface for the ques-
tion-answering task. Table 1 shows the distribution of our 
contributors by level of quality control method and task com-
plexity. 

 None Fake Intro Auto Wizard 
Semantic 17 19 17 18 19 
Question 19 17 16 19 18 
Translation 16 17 18 19 20 

Table 1: Distribution of contributors over all fifteen condi-
tions. 

Word-based Semantic Similarity 
Semantic similarity plays an important role for many natural 
language processing tasks, especially word sense disambig-
uation and information retrieval (Feng et al. 2008; Navigli 
2009). Humans are better than algorithms at rating semantic 
similarity between two words (Batram et al. 2014). Involving 
paid online contributors can reduce costs, but the response 
quality is harder to predict. Constantly under-performing 
contributors are still an issue for such tasks (Krause & Porzel 
2013). Different algorithmic approaches do exist (Strube & 
Ponzetto 2006; Yang & Powers 2005; Resnik 1995) but are 
not yet able to reproduce human level results (Radinsky et al. 
2011). The task issued in this treatment is itself not very com-
plex, only requiring a good command of the English lan-
guage. To ensure this we restricted contributors origin to be 
in the US, UK, or Canada. 

We further restricted the task using a standard dataset that 
was introduced by Finkelstein et al. (Finkelstein et al. 2001) 
that consists of 353 word pairs. In the experiment, we re-
cruited 90 contributors and collected ~9,500 responses on the 
353 word pairs.  

Question Answering 
Understanding natural language is still a challenging field for 
artificial systems (Krause 2014a). Answering questions 
given in natural language or finding relevant search results 
to these questions are, despite the recent success of systems 
such as IBM Watson (Ferrucci et al. 2010), unsolved chal-
lenges (Aras et al. 2010; Krause 2014b). Standard data sets 
for question answering seem too easy for human annotators 
with access to the internet. Therefore, we designed a set of 
50 questions so that using the question as a search string does 
not will not reveal the correct answer right away. 

We randomly selected 10 questions to be test questions for 
conditions with an introductory test (Intro, Auto, Wizard). 
We designed sets of possible answers to these 10 test ques-
tions by hand. Each answer set had ~10 answers from at least 
three different people. Answers were collected off-line from 
students and members of our research group. The response 
quality of a contributor is estimated by the semantic similar-
ity between the contributor’s response and our exemplary an-
swers. We take the highest similarity value as an estimate of 
quality. The method is calibrated by testing each of the hand-
made answers against the remaining answers in each set. The 
average similarity of answers on a scale from 0.0 (no simi-
larity) to 1.0 (perfect similarity) is 0.65 (SD: 0.25). Re-
sponses within a margin of one standard deviation were con-
sidered acceptable. 

Each contributor could answer up to 80 questions. We col-
lected 5,089 responses (57 on average) from 89 contributors 
on crowdflower. We collected 1,017 responses on average 
for each control level. 

Text Translation 
Text translation is a demanding task even for humans as in-
depth knowledge of two different domains, the target and the 
source language, is required. Various approaches exist; ap-
plying crowdsourcing to translation targeted paraphrasing 
(Resnik et al. 2010) and iterative collaboration between mon-
olingual users (Chang et al. 2010) are two examples. Other 
common approaches utilize mono- or bilingual speakers to 
proofread and correct Machine Translation results (Zaidan & 
Callison-burch 2011).  

For our experiment, we use a popular Wikipedia article in 
German on the Brandenburg Gate. Native speakers of Ger-
man prepared a set of sentences from this article. For the set, 
we took the first 150 sentences from the respective article. 
Headlines, incomplete sentences and sentences that con-
tained words in a strong dialect were removed. We requested 
translations for the remaining sentences from contributors 

Figure 2: Perceived response quality for all fifteen conditions. 
Colors indicate the three different tasks. The lines are meant 

as visual aids. Error bars indicate standard error. 



via crowdflower. As the target language was English we used 
the same quality prediction method for conditions that in-
cluded a pre-test as for the question answering task.  

We allowed each contributor to translate up to 100 sentences. 
We collected 2,119 translations for the Vietnamese set and 
2,002 translations for the German set (total 4121) from 90 
contributors (46 on average). We collected 825 sentences on 
average in each control condition. 

Results  
Before we analyze our data for main and interaction effects, 
we want to ensure that our presumption that the three differ-
ent tasks have a distinct complexity is reasonable. We indeed 
found that the response quality is significantly lower for 
complex tasks. This indicates that the tasks do differ in their 
complexity. This is in line with the self-assessment of con-
tributors through crowdflowers satisfaction survey. We 
found that Ease Of Job negatively correlates with our pre-
sumed complexity ranking. The correlation is significant 
with p < 0.001. Table 2 shows the results of the satisfaction 
survey. 

 satisfaction clearness  fairness  payment ease 
Similarity 3.8 3.8 3.7 4.5 4.3 
Question 3.6 3.4 3.5 4.1 3.7 
Translate 3.7 3.9 3.3 4.4 3.1 

Table 2: Results of the self-assessment of our contributors on 
crowdflower. From left to right the columns refer to overall 

satisfaction, instruction clearness, test question fairness, pay-
ment, and ease of job. It is not possible to calculate a SD as 

crowdflower only offers aggregated data. 

Additionally we ensure that our metric is reasonable. We use 
perceived quality as our measurement as this measure allows 
investigating quality over different tasks. Table 3 shows that 
our judges have a substantial agreement on quality through-
out all tasks. 

 Participants Judges Krippendorff’s   
Similarity 90 2 0.808 
Question 89 2 0.838 
Translate 90 2 0.815 

Table 3: Inter-rater agreement on perceived response quality. 
The results are homogenous for all three tasks and indicate a 

substantial agreement between our judges. 

Before testing our results for significance, we ensured that 
our data is suitable for parametric tests. We used the Shapiro-
Wilk test for normality (Royston 1982) for each condition 
and did not find significant differences from a normal distri-
bution.  

As we have different numbers of contributors in our condi-
tions, we also verified that our conditions have equal vari-
ance for the dependent variable prior to executing an analysis 
of variance (ANOVA). As the distributions do not differ sig-
nificantly from normal distributions we use Bartlett's test for 
homoscedasticity (equal variance) (Bartlett 1937). We found 
that the variance does not differ significantly between our 
conditions t(4) = 2.764 , p = 0.598 .  

As our data does not hold evidence that it violates the as-
sumptions of the ANOVA, we analyze main and interaction 
effects with a two-way ANOVA to compare the effect of 
quality control and task complexity on the independent var-
iable perceived response quality. Table 4 shows the results 
of this test. 

 df SS MS F p sig. 
(C)ontrol 4 1.036 0.259 28.988 0.001 *** 
(T)ask 2 0.557 0.279 31.165 0.001 *** 
CxT 8 0.220 0.028 3.082 0.002 ** 
Residuals 254 2.270 0.009    

Table 4: ANOVA results of main and interaction effects. The 
first row shows the effect of the quality control method. The 
second row the effect of the task. The third row shoes the in-

teraction effect between both factors. 

From the ANOVA results, we conclude that task complexity 
as well as the used quality control method have a significant 
influence on the perceived response quality. Furthermore, we 
found a significant interaction between both factors. We use 
Welch Two Sample t-test with Holm-Bonferroni correction 
as our post hoc comparison method. Table 5 shows the dif-
ferences between levels of the control factor. 

Comp. M1 SD1 M2 SD2 T df p Sig. 
none fake 0.63 0.09 0.80 0.11 -8.21 100 0.00 *** 
none intro ... ... 0.79 0.12 -7.72 97 0.00 *** 
none auto ... ... 0.78 0.13 -7.67 105 0.00 *** 
none wiz. ... ... 0.79 0.13 -8.17 106 0.00 *** 
fake intro 0.80 0.11 0.79 0.12 0.44 102 0.66  
fake auto ... ... 0.78 0.13 0.74 106 0.46  
fake wiz. ... ... 0.79 0.13 0.25 107 0.80  
intro auto 0.79 0.11 0.78 0.11 0.29 104 0.77  
intro wiz. ... ... 0.79 0.13 -0.20 105 0.85  
auto wiz. 0.78 0.11 ... ... -0.50 111 0.62  

Table 5: Results of Welch two sample t-tests with Holm cor-
rection comparing all levels of the quality control factor.  

 
Figure 3: Task complexity affects response quality. The most 
complex task text translation (right) has a significantly lower 
average response quality than the more simplistic semantic 
similarity task (left) and the question answering task (mid-

dle). The figure shows a violin plot (Hintze & Nelson 1998). A 
violin plot combines a boxplot and a kernel density plot. 

Thick dark lines indicate 1st and 3rd quartiles the red lines 
population means. 



Task Complexity Affects Response Quality 
We also analyze effects for each level of the task complexity 
factor. We assume that the average response quality will de-
teriorate for tasks with higher complexity. As seen in Table 
6 and Figure 3 this assumption holds for our experiment. Alt-
hough this may seem obvious it illustrates that, the initial as-
sumption on task complexity is accurate. The Pearson mo-
ment correlation is 1.0 with an associated p < 0.001. 

Comp. M1 SD1 M2 SD2 T df p Sig.
Sem. Quest. 0.81 0.13 0.77 0.11 2.45 169 0.02 *
Sem. Trans. ... ... 0.70 0.10 6.07 167 0.00 ***
Quest Trans. 0.77 0.11 0.70 0.10 4.10 177 0.00 ***

Table 6: Results of Welch two sample t-tests with Holm cor-
rection. The first line compares level semantic to level question 
of the task complexity factor. Line two compares level seman-

tic to translation and line three question to translation. 

The Differences between Quality Control Meth-
ods are Insignificant 
The results indicate that there is a significant difference be-
tween the levels none of control and the other four levels. 
The resulting p-values are below the 0.001 alpha-level as 
seen in Table 5. Other levels do not differ significantly. Table 
7 shows means and standard deviations between all levels of 
our two factors. Figure 4 further illustrates that the finding is 
constant for all tested tasks. 

We also investigated the proportion of constantly underper-
forming contributors. We consider a contributor below a 
quality level of 0.6 constantly underperforming. We found 
that in all conditions with no quality control we had a sub-
stantial amount of contributors (N = 22) with an average re-
sponse quality below 0.6. In all other conditions combined, 
we only found 11 contributors under this threshold. The pro-
portion of underperforming contributors in the none condi-
tions is 0.42. Compared to the other conditions with a pro-
portion of only 0.05 this is value is extremely high. 

 Semantic Question Translation 

 M SD M SD M SD 
none 0.62 0.09 0.68 0.09 0.60 0.08 
intro 0.84 0.11 0.78 0.09 0.74 0.11 
fake 0.85 0.10 0.81 0.11 0.72 0.09 
auto 0.89 0.07 0.76 0.06 0.70 0.10 
wizard 0.83 0.11 0.81 0.13 0.73 0.07 

Table 7: Means and standard deviations for perceived quality. 
Rows contain the five different quality control methods while 

columns contain the different tasks of the experiment. 

Machines can predict Response Quality almost 
as well as Humans 
In the auto level of the quality control factor a ML-System 
predicted the response quality of contributors based on two 
features (number of characters typed and time needed to 
complete a request). To estimate the quality of this prediction 
we calculated the correlation between our ML-systems pre-
diction and the average perceived quality. The ML-system 
rated responses on a scale with three ordered values (unac-
ceptable (1); acceptable (2); good (3)). As this scale is ordi-
nal and violates the assumptions of Pearson’s Product-Mo-
ment correlation we analyzed the correlation using Spear-
man’s ρ.  We found a substantial correlation between the pre-
dictions and the average perceived quality of our human 
judges ρ(937020) = 0.71, p < 0.001. The correlation between 
the two human judges in comparison is ρ(463061) = 0.85, 
p<0.001. In contrast, the human raters who replaced the ML-
system in our wizard condition achieved a correlation of 
ρ(705574) = 0.78, p<0.001. 

 Conclusion 
In this paper, we investigated the effect of different quality 
control methods on the response quality of contributors for 
tasks of varying complexity. We found as expected that our 
tasks differ in complexity and confirmed the hypothesized 
order to be as follows semantic similarity (least complex), 
question answering (more complex), text translation (most 
complex). 

We found that constantly underperforming contributors (by 
our definition contributors with less than 40% acceptable re-
sponses) are almost not present in all conditions of our ex-
periment with a quality control method in place. We however 
found a substantial amount of constantly underperforming 
contributors (almost 45%) in our control conditions (none) 
without a quality control method. 

Only mentioning a required introductory test (without actu-
ally doing the test, the fake level of the control factor) was 
sufficient to achieve the same response quality as with other 
quality control methods. Even immediate human generated 
feedback was not able to raise response quality above the 
level of this faked introductory test. As hypothesized, the re-
sponse quality does not differ across the different quality 
control methods. It only differs significantly between the 
none conditions (M = 0.63, SD = 0.03) and conditions with 
quality control (M = 0.79, SD = 0.05). This is an increase of 
more than 25% in response quality. 

Figure 4: Quality control affects response quality yet only if 
there is no quality control at all. The differences in means be-

tween quality control methods are not significant.  



We therefore conclude that constantly underperforming con-
tributors are aware of the fact that their contribution might 
fall short of required quality standards when taking a task. 
This also means that very basic quality control methods are 
sufficient to promote diligent work.  

It is however debatable if our fake introductory test would 
keep these results over time. It is very likely that contributors 
realize that the tests are not conducted. However, we also 
demonstrated that extremely simple machine learning meth-
ods with task independent features as proposed by Krause et 
al. (Krause 2014b) can predict response quality on the fly. 
Such methods may provide quality control for tasks similar 
to the ones explored in this paper.  

 Limitations and Future Work 
While a 3x5 factorial model is sizable, future work should 
cover more of the scope of quality control mechanisms to 
assure the transferability of these results. Furthermore, it has 
yet to be seen if tasks in other domains than natural language 
processing yield similar results. 

As already noted we recognize that our minimal control 
mechanism (fake) without enforcement is not sustainable - 
contributors can and will quickly realize that no quality con-
trol has in fact been enforced. A sustainable and low cost 
mechanism to elevate the performance of diligent but under-
performing contributors must be developed and tested to 
complete the scope of this research. 

As shown in this work, after an even-basic controlling for 
response quality, underperformance per task drops consider-
ably. A worthy area of future research is support systems for 
those who worked diligently but are still underperforming. 
This is both for the requestor's side (i.e., task description 
writing) as well as the contributor's side (i.e., educational ma-
terials).  

Particularly worthwhile would be the investigation of mone-
tary incentivization of contributors' education (see e.g., 
(Krause et al. 2016; Suzuki et al. 2016). Monetized educa-
tion-based tasks could create the scenario that contributors 
are both learning to complete more and more complex tasks, 
while gaining skills and funding to be applied in their offline 
lives. An envisioned mechanism for this could be Massively 
Open Online Courses, where contributors register for the 
course to learn increasingly complex skills, and are finan-
cially rewarded with successful task mastery. Realized in its 
full depth and scope, this progressive step would contribute 
to the comprehensive enhancement of both crowdwork from 
a quality perspective and the overall, real life skillset of the 
contributors. 
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