

University of Nebraska at Omaha DigitalCommons@UNO

Student Work

5-1-2005

Spatial Implications of Urban Functional Classification: A Study of Small Urban Places in the North-Central United States

Tyler A. Van Meeteren University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Recommended Citation

Van Meeteren, Tyler A., "Spatial Implications of Urban Functional Classification: A Study of Small Urban Places in the North-Central United States" (2005). *Student Work*. 596. https://digitalcommons.unomaha.edu/studentwork/596

This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.

Spatial Implications of Urban Functional Classification: A Study

of Small Urban Places in the North-Central United States

A Thesis

Presented to the

Department of Geography/Geology

and the

Faculty of the Graduate College

University of Nebraska

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts

University of Nebraska at Omaha

by

Tyler A. Van Meeteren

May 2005

UMI Number: EP73236

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP73236

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 THESIS ACCEPTANCE

Acceptance for the faculty of the Graduate College, University of Nebraska, in partial fulfillment of the Requirements for the degree Master of Arts, University of Nebraska at Omaha.

Committee

Chairperson 🔿 212 Date april 19,2005

Spatial Implications of Urban Functional Classification: A Study of Small Urban Places in the North-Central United States

ABSTRACT

Tyler A. Van Meeteren, M.A. University of Nebraska, 2005

Advisor: Dr. Charles R. Gildersleeve

The idea that cities have diverse economic structures and social characteristics is commonly understood. Many times these differences can be traced to historical regional growth or resource availability. Recognition and better understanding of these different types of cities requires their classification. Classification is way to organize complex and diverse information in order to create a better understanding of processes and relationships. One of the ways in which geographers have classified cities, in terms of describing the external relations, is called functional town classification. The simplest way of classifying cites is to identify the distinctive role they play in the city system.

The purpose of this thesis is to examine the spatial distribution of economic functions for the small urban places in the study area using a standard classification method for urban geography, and by utilizing nearest neighbor analysis. This study should produce spatial patterns of distribution based on the site and situation of the place. There may also be a strong influence of function based upon proximity to a larger urban area. The creation of a contemporary taxonomy of the small urban places in the study area, and subsequent understanding of the spatial distribution of dominant economic features should provide the base for future investigation into small urban center relationships and classification.

ACKNOWLEDGEMENTS

The completion of my Masters Degree in Geography would not have been successful without the support from numerous people at the University of Nebraska at Omaha. I would like to thank Dr. Charles Gildersleeve for introducing me to the realm of urban geography. As the chair of my thesis committee, Dr. Gildersleeve did a fantastic job molding the theoretical and methodological foundations for my research. Dr. Gildersleeve's enthusiasm for geography was contagious. I would also like to thank Dr. Michael Peterson for introducing me to cartography and geographic information systems (GIS). Jerry Deichert from the Center for Public Affairs Research was instrumental in organizing my census data for the thesis. Dr. Larry Stephens from the Math Department offered suggestions for statistical analysis. I thank each of these four gentlemen for their leadership and guidance.

Last but certainly not least, I thank my family for their support both emotionally and financially as I completed my thesis. My parents Sheila and Alan have provided unwavering support in my pursuit of a Masters degree. I cannot forget to thank my brother, Bryant, and sister, Alissa, for being exceptional siblings, even though I am not sure they thought I would ever get done! Well, I did!

CONTENTS

	ii
ABSTRACT	iii
	iv
CONTENTS	vi
LIST OF ILLUSTRATIONS	viii
	x
Chapter	
1. INTRODUCTION	1
Nature of Problem	4
Research Objectives	5
Hypotheses and Rationale	5
Significance of Research	8
Study Area	9
Definition of Terms	
Chapter Summary	11
2. LITERATURE REVIEW	12
Traditional Functional Classifications	13
A Guideline for Functional Classifications	20
Multivariate Statistical Analysis	22
Chapter Summary	25

3. METHODOLOGY	27
Data Characteristics and Acquisition	29
Data Organization	30
Creating the Taxonomy	32
Creating the Classification Maps	34
Nearest Neighbor Analysis	
Chapter Summary	
4. ANALYSIS OF RESULTS	
Descriptive Statistics	
Functional Classification	41
Classification Location Distribution	42
Nearest Neighbor Analysis	67
Chapter Summary	68
5. CONCLUSION	70
APPENDIX	76
A. City Percentages by Function (population sort)	76
B. City Percentages by Function (alphabetical sort)	85
C. Functional Classification	94
BIBLIOGRAPHY	99

LIST OF ILLUSTRATIONS

igure Pa	ige
1. Network of Interactions in Urban Geography	2
2. Study Area Location Map	9
3. Chauncy Harris' Functional Classes	13
4. City Functions by Support	16
5. Methodological Model	28
6. MSA Cities	31
7. Eliminated Cities (population 2,500-10,000)	32
8. ArcGIS 9 Query by Function Example	35
9. Nearest Neighbor ArcGIS 9 Application Output	37
10. Study Area Cities	42
11. Mining Cities: by Standard Deviation Values	44
12. Construction Cities: by Standard Deviation Values	46
13. Manufacturing Cities: by Standard Deviation Values	48
14. Wholesale Trade Cities: by Standard Deviation Values	50
15. Retail Trade Cities: by Standard Deviation Values	52
16. Transportation Cities: by Standard Deviation Values	54
17. Information Technology Cities: by Standard Deviation Values	56
18. Finance Cities: by Standard Deviation Values	58
19. Professional Service Cities: by Standard Deviation Values	60
20. Personal Service Cities: by Standard Deviation Values	62

LIST OF TABLES

-

Table	Page
1. Population Information for Study Area	10
2. Census Data: 13 Industry Groups	29
3. Thesis Service Classes	30
4. Mean and Standard Deviations by Function	40
5. Mining Standard Deviation Cities List	43
6. Construction Standard Deviation Cities List	45
7. Manufacturing Standard Deviation Cities List	47
8. Wholesale Standard Deviation Cities List	49
9. Retail Standard Deviation Cities List	51
10. Transportation Standard Deviation Cities List	53
11. Information Technology Standard Deviation Cities List	
12. Finance Standard Deviation Cities List	57
13. Professional Service Standard Deviation Cities List	
14. Personal Service Standard Deviation Cities List	61
15. Public Administration Standard Deviation Cities List	63
16. Diversified Cities List	65
17. Nearest Neighbor Analysis Results	67

Chapter 1

Introduction

The study of urban geography brings several overlapping disciplines including economics, political science, sociology, and history together to examine the complex system of cities. To best understand the nature of urban geography, two important approaches should be outlined. The first is to study the relationships in the spatial distribution and dynamic movement of goods within the cities, or a city system approach. The examination of interaction and distribution patterns, or internal relations, within cities are looking into the city as a system. The second approach, and the one this study employs, is the study of spatial distribution of cities and the complex patterns of movement, and linkages, or external relations that tie them together. (Yeates and Garner 1980) Urban geography can merely be described as the study of cities as systems within the framework of cities (Berry, 1964).

The relationships not only exist amongst other urban areas, but also between cities and the people living in that area. These complex interactions are of significant interest to the urban geographer. Figure 1 illustrates the possible relationships of importance in urban geography. The first possibility of investigation

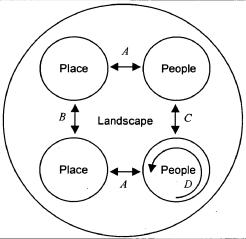


Figure 1: Network of interactions in urban geography adapted from Ray Northam., *Urban Geography*. (New York: Wiley & Sons, 1975), 3.

(A) involves the associations between a place and its population. Another (B) area of inquiry deals with the relationships linking different places. The relationships (C) between people in more than one location can also be researched. The final channel of study (D) includes the associations within one place. (Northam 1976) Each of these interactions occur within the confines of the landscape of the earth.

The study of city patterns began to pick up steam in the first half of the 20th century as N.S.B Gras (1922), Christaller (1933), Losch (1937), and Harris and Ullman (1945) described the nature and origin of systematic variations in the characteristics of urban places. These geographers set the framework for more advanced statistical analysis that future generations could build upon.

The notion that cities have diverse economic structures and social characteristics is commonly understood. Many times these differences can be traced to historical regional growth or resource availability. Recognition and better understanding of these different types of cities require their classification. Classification is a way to organize complex and diverse information in order to create a better understanding of processes and relationships. The relevance and usefulness of classifications in geography is wide-spread throughout the discipline. In urban geography, "generalizations can be made concerning a single group comprised of like items, or one group can be compared and contrasted with one or more other groups" (Northam 1975, 13). The idea that cities differ in terms of economic functions and social characteristics has long

been known. Classification in geography is undertaken in an attempt to "search reality for hypotheses...[and]...to structure reality to test specific hypotheses that have already been formulated" (Yeates and Garner 1980, 95).

One of the ways in which geographers have classified cities, in terms of describing the external relations, is called functional town classification. The simplest way of classifying cities is to identify the distinctive role they play in the city system. These schemes are qualitative in nature and are often highly intuitive. Of the many classifications of this sort, a good example is that undertaken by Aurousseau in 1921. Based on general observations, he identified six types of cities based on the dominant economic functions they perform: administration, defense, culture, production, communications, and recreation. (Aurousseau 1921) Although it was noted that cities may perform a combination of these general functions, it was common to find that one of them dominated to indicate the major role a city plays in the organization of space.

A similar type of general classification was that proposed in 1945 by Harris and Ullman, who recognized three general types of cities: (1) central places performing a wide range of services for local hinterlands; (2) transportation cities performing break-of-point and allied activities for larger regions; and (3) specialized-function cities dominated by one activity, such as manufacturing, or recreation, and serving a wider national market. (Harris and Ullman 1945)

The results of these classifications, when mapped, provide some useful information about the patterns of functional specialization within the city system.

However, there is little gained from a simple organization of facts. There must be a purpose in the classification system because spatial recognition cannot be the only basis for scientific analysis. Other statistical procedures should be undertaken to shed light on possible patterns that may be unseen on a twodimensional representation of the data.

Nature of Problem

We as humans are continually classifying everything from the rocks beneath our feet to the stars beyond our reach. These taxonomic models are continually being examined and studied with appropriate changes being made. Almost all, however, have dealt with larger cities and not urban places with fewer than 10,000 persons. By classifying these urban centers we may be able to see patterns at a micro-scale that could possibly be used to address problems in larger cities.

The nature of functional classification has evolved in the past century, beginning with a qualitative approach by Aurousseau where general observations were the basis. The majority of the functional classifications developed by geographers across the United States were based on cities with more than 10,000 people. Only a small number of classified small cities and towns under 10,000 people, because of the apparent difficulty of processing the grouped employment data for small cities. Now, with the availability of electronic data and

4

faster computers, it is plausible to work with the data as presented by the U.S. Census Bureau.

Over time, many geographers made attempts to be more objective, and this led to several different methods including multivariate statistics being developed. However, no one method has proven to be completely accurate, as all are trying to rationalize an extremely complex and dynamic system.

Research Objectives

There are two principal objectives for this thesis: 1) To create a contemporary taxonomy of the small urban places (population 2,500-10,000) in the study area using a standard classification method for urban geography. 2) To discover and understand the spatial distribution of the dominant economic functions of small cities in the study area.

Hypotheses & Rationale

The five states of Iowa, Nebraska, South Dakota, North Dakota and Minnesota should allow for a broad enough study area containing many discernable spatial patterns of functionality. Based on previous studies, there should be solid evidence supporting the three types of cities by support: central places (a study by Brush in Wisconsin in 1953), special functions, and transport cities. Based on results from other studies, retail centers and manufacturing should be the most common functional class (Freestone *et al.* 2003; Harris 1943;

Nelson 1955). Mining, Transportation and Public Administration would likely be some of, if not the least occurring functions due to the specialization and necessity for resources or other special site requirements. The creation of the taxonomy should result in finding many location specific examples, and more than likely follow typical functional patterns. It is expected that solid evidence will be found supporting the three types of cities by support: central places, special functions, and transport cities. Research on the small urban places of the Great Plains region in the late 1960's by Charles Gildersleeve indicated that North and South Dakota were primarily retail trade dominant. Nebraska was more diversified, and not as trade oriented. Manufacturing has a greater influence in the area east of the Missouri River including Iowa and portions of Minnesota. (Gildersleeve 1969)

Using nearest neighbor analysis, spatial patterns should be found to assist in understanding the distribution of functions throughout the region. When attempting to understand spatial distributions and relationships, geographers must realize that "the classification procedure that is adapted should produce groups of towns about which the greatest number, most precise, and most important statements can be made for the differentiating and accessory characteristics" (Cline 1949, 82). This means that one cannot simply say that group 'X' is located in area 'Z'; we should be able to associate other characteristics of towns in that group. With this in mind, classifications of towns by function may possibly lead to generalizations about the location patterns and the relationships with particular functions and their hinterlands.

The lack of significant data and interest has primarily been the reason for the dearth of research on cities with less than 10,000 in population. With census data more available today, it is possible to successfully complete this research. Studies have occurred since the 1950's on classifying the economic functions of cities – at higher population centers (i.e., above 10,000). These study areas also need to be readdressed since much has changed over the past half century, and geographers ought to study the changes in city functionality over time. The opportunity for a comparative temporal analysis of functionality will be achieved through this research.

There must be a concentrated effort to not just report the results, but be more scientific. "There is nothing inherently wrong with functional classifications per se, yet without reference to the accessory characteristics, they have precious little geographical relevance" (Smith 1965, 548). "The service classifications of urban areas have often proved to be ends in themselves rather than points of departure for further research" (Wilson 1962, 125). With this in mind, the overall purpose of functional classifications in urban geography should be geared towards gaining better understanding of the diverse and dynamic relationships both vertical (function) and horizontal (countryside relationships) that make up the true functionality of a city.

7

While analyzing the small urban center of Minnesota in 1959, John W. Webb claimed that data are difficult to use for small urban centers. He concluded the research by saying "work on a broad canvas should be undertaken, despite the difficulties. Only in this way will the description of the particular be clarified and general principles evolved" (Webb 1959, 72).

Significance of Research

Many studies conducted on classifying the economic functions of cities were done several decades ago. These study areas should be readdressed since much has changed over that time period. Freestone, Murphy and Jenner recently updated a classic city classification of Australian towns, and many new patterns and employment distributions were discovered. (Freestone *et al.* 2003)

Geographers also need to examine and re-evaluate the functional changes in towns over time. Perhaps planners and city administrators can use the results found in this study to assist them in planning the future economy in their cities. This research will create a contemporary classification of small urban places in the upper central United States. "This line of study might be likened to one studying the human heart without regard for its role as a part of the physiological system of the entire body. To study a single city without regard for the whole urban system of which it is part is equally limited and short-sighted" (Northam 1975, 99). There is a need to understand the small cities and towns, in order to truly understand the larger, more complex system. This study is original

in the sense that it is a hybrid of the various studies done on functional city classifications. The framework will be established for further research into understanding the dynamic economic functionality of small urban centers.

Study Area

The area under investigation is a five state area making up the northcentral portion of the United States: Nebraska, Iowa, South Dakota, North Dakota and Minnesota. These five states should allow for a broad enough study area containing many discernable spatial patterns of functionality. The small urban centers are also quite prominent in this region, which will assist in the overall analysis of the character and nature of functional distribution (see Figure 2).

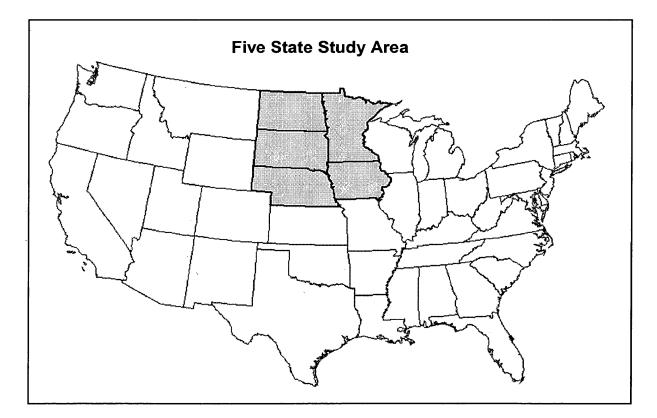


Figure 2: Five state study area location map.

Table 1 shows the 2000 population, land area (square miles), and population density (persons per square mile) for each state in the study area. When compared to the United States as a whole, the study area constitutes a small percentage of the overall population and is generally quite rural.

State	2000 Population	Area (sq mi mi)	Pop. Density
lowa	2,926,324	55,869	52.4
Minnesota	4,919,479	79,610	61.8
Nebraska	1,711,263	76,872	22.3
North Dakota	642,200	68,976	9.3
South Dakota	754,844	75,885	9.9
United States	281,421,906	3,537,438	79.6

Table 1: Population Figures for the five state study area.Source: United States Census Bureau. "http://factfinder.census.gov"

Definition of Terms

Geographic Information System (GIS): A System of computer software, hardware

and data. A GIS is used to help manipulate, analyze and present

information that is tied to a spatial location

Metropolitan Statistical Area: A city of 50,000 or more population or a U.S.

Census Bureau defined urbanized areas of 50,000 or more population and

smaller urban clusters of 10,000 to 49,999 population within a county or

adjacent counties.

- Shapefile: A name for a layer in ArcGIS that contains location descriptions and attribute information for the spatial features in a data set.
- Site & Situation: Site is the physical location of a city, and a situation is the influence of the surrounding area.

Small Urban Place: A city with a population of 2,500 to 10,000 inhabitants

Chapter Summary

The purpose of this thesis is to examine the spatial distribution of economic functions for the small urban places in the study area using a standard classification method for urban geography, and to discover and understand the spatial distribution of the dominant economic functions of these places utilizing nearest neighbor analysis.

This study should produce spatial patterns of distribution based on the site and situation of the place. There may also be a strong influence of function based upon proximity to a larger urban area. The creation of a contemporary taxonomy of the small urban places in the study area, and subsequent understanding of the spatial distribution of dominant economic features should provide the base for future investigation into small urban center relationships and classification.

Chapter 2 follows with a review of the literature on urban geography that specifically addresses varying methods and theories of functional classification. Chapter 3 discusses the methodological design, data collection, and analyses performed in the research study, while chapters 4 and 5 provide an extensive discussion of the results and conclusions of the research study.

Chapter 2

Literature Review

With respect to the discipline of geography as a whole, urban geography is a relatively new field of study, and this has an impact on the quantity of literature available for functional classification. The purpose behind each of these studies is to find relationships in the spatial distribution of economic functions in an attempt to better understand the incredibly complex urban structure. The nature of functional classifications has changed throughout the course of the last 100 years, with ever more concentrated efforts made to produce more objective results. This had led to the application of various statistical methods including multivariate statistical analysis in an attempt to discover relationships within the dynamic urban system.

The literature on functional classification in urban geography presented in this chapter follows this progression described above, with a focus on the importance of understanding the roots of functional classification theory. The chapter is divided into three sections: (1) traditional functional classifications, (2) a guideline for functional classification analysis, and (3) multivariate statistical analysis. The first part examines the foundation of functional classification through the original architects of the discipline. The second section sets the framework for a more scientific and replicable methodological design in city classification. The final portion of the chapter discusses more recent classifications accomplished with the application of multivariate statistical analysis approaches including regression, factor analysis, and cluster analysis.

Traditional Functional Classifications

The idea that cities differ in function has long been understood, dating back to the earliest time of city development Chauncy Harris' (1943) *A Functional Classification of Cities in the United States* was the first to classify cities in the U.S. by economic functions. This classification started a whole new wave of urban geography in the mid 20th century. Many geographers used his model as a base for future attempts at classifying and discovering spatial distribution. Harris studied 1930 census data, including occupation and employment figures. His classification included 984 cities of 25,000 or more people and was based upon the activity of greatest importance in each city (see Figure 3). Harris used the employment figures as the principal basis for classification chart, while the occupation figures were used to supplement the interpretation. Arbitrary class breaks of 74%, 60%, 50%, and 25% were used.

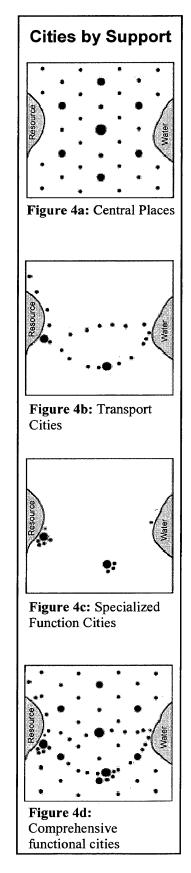
Harris then mapped the location of the cities based on the category he calculated. He concluded that the central-location theory was exemplified by wholesale centers, and retail centers. Mining and resort centers are based heavily on materials or climate. Industrial cities

Manufacturing Cities M' Subtype Manufacturing Cities M Subtype Retail Centers (R) Diversified Cities (D) Wholesale Centers (W) Transportation Centers (T) Mining Towns (S) University Towns (E) Resort and Retirement Towns (X)

Figure 3: Functional Classes used by Chauncy Harris (1943)

have both location factors related to markets and raw materials. The manufacturing belt was shown by the influence of power and labor supply. (Harris 1943) The lasting impact of this article was that Harris attempted to create a quantitative model that could be replicated in the future. He was able to show a spatial pattern existed with his results, which led to further studies by other geographers.

Howard Nelson published A Service Classification of American Cities, in 1955. Nelson used employment data in 24 industry groups for 897 urban concentrations of 10,000 or more people. The data were then arbitrarily grouped into nine major categories of service functions. For each industry group, the average proportion of the labor force engaged in that activity was determined. Most cities didn't have average employment in a given industry; therefore, a variation from the mean existed. This was done because Nelson wanted to create a classification based on clearly stated statistical procedures. Nelson used a more statistical method than his predecessors – standard deviation. He used standard deviation to establish degrees of functional specialization in a given industry group. Nelson calculated three standard deviations above the mean of each industry group, since he was specifically concerned with higher levels of employment. This would allow for a degree of emphasis inside the overall functional specialization in a city. This research discovered many instances of geographical patterns. Manufacturing was the most common of all functions, with more than 1/5 of the 897 cities, and was located in the traditional


manufacturing belt of the country. (Nelson 1955) Retail trade tended to be located more in the central portion of the country, and wasn't present in the region dominated by manufacturing. Nelson's method was a multi-functional approach, which is a stronger method of measuring economic levels than a simple dominant classification.

A landmark article was written by Chauncy Harris and Edward Ullman in 1945 titled The Nature of Cities. The focus is on the support and internal structure of cities. The concept emphasizing that the services the city provides are based upon its hinterland. The service by which the city earns its livelihood depends on the nature of the economy of the surrounding area. The land must produce a surplus in order to support cities. This does not necessarily mean that every city needs to be encompassed by a productive land, since a strategic location may be more important. Three categories of support are discussed by (1) cities as central places, (2) transport cities, and (3) Harris & Ullman: specialized function cities. The first category describes cities as central places performing comprehensive services for a surrounding area. Such cities tend to have an even spatial distribution throughout a productive area (Figure 4a). This is a common occurrence in the study area for this thesis, particularly in the state of lowa. Transport cities tend to perform break of bulk and other services along major transportation routes including rail lines, roads, and seaways (Figure 4b). These cities are often found in linear patterns because other smaller cities play a supporting role along the transportation route. Specialized function cities perform

one service such as mining, manufacturing, or recreation for large areas, and include several smaller cities in the immediate surrounding area that support the dominant function (Figure 4c). Commonly, cities are a combination (see Figure 4d) of the above mentioned factors with the relative importance varying from location to location. (Harris and Ullman 1945)

Also discussed with detail were the internal structures of cities including the concentric zone theory, sector theory, and the multiple nuclei concept. The importance of this article is that Harris and Ullman are providing a strong base for further research in urban geography, within a theoretical framework prescribed in their research. (Harris and Ullman 1945)

A look into small towns was conducted by John Brush in 1953 with *The Hierarchy of Central Places in Southwestern Wisconsin*. This article examines the importance of population on the ability to develop larger trade areas. The influence and character of central places were examined. Locational patterns developed by C.J Galpin (1915), J.H Kolb (1946), and Christaller (1933) are examined. Also, the traffic flow as an

influencing factor was mapped. Brush presents a solid application of central place theory on small towns in Wisconsin. (Brush 1953)

Basic Concepts in the Analysis of Small Urban Centers of Minnesota in 1959 by John W. Webb examined the functional characteristics of cities using a different methodology than previous geographers. Webb endorsed the standard deviation method use by Howard Nelson (1955), L.L Powell (1953), and Steigenga (1955) as a valid method of measuring specialization of service functions. (Webb 1959)

Webb created a method that would account for a function's importance to a city relative to other cities. "The functional index," where the percentage of the employed population in a function is divided by the mean employment in all the towns. Using the U.S. Census data of 1950, Webb created seven categories of functions and calculated the functional index for each category of towns with population 2,500-10,000, and also for populations 10,000-50,000. Webb also attempted to create a system of measuring a town's level of specialization or the "specialization index." Webb concluded by calling for more research on smaller towns to be embarked upon in the future. (Webb 1959)

Functions and Occupational Structure of Cities of the American South, by John Fraser Hart in 1955 is a functional classification system based upon Harris' design of 1943. The purpose of the study was threefold: (1) to discover cities whose function has changed since 1930, (2) to classify cities which have passed the 10,000 population mark since 1930, and (3) analyze the distribution, size, and occupational structure of cities within each functional category. The geographic area examined is the U.S. Census' definition of the South. (Hart 1955)

Hart's study was based primarily on occupational data for the cities over 10,000 in population. This method leads to a mutually exclusive classification based on the function of the city in terms of the people who live there and what they do (similar to what is pursued in this thesis). Hart calculated the industry data for the cities and determine the minimal, quartile, median, and upper decile percentage for each age group. Manufacturing, retail trade, and personal services were found to be the dominant functional service of cities in the south. (Hart 1955)

An examination of small towns was undertaken in an article by Howard Stafford in 1963 titled *The Functional Bases of Small Towns*. Stafford claims that theories developed for central places should hold true for the whole spectrum of city size, from the largest to the smallest. The purpose of Stafford's study was to determine the functional bases for small towns in southern Illinois and compare the results with similar studies throughout the region. His research was based on Thomas' lowa study where data are attained for each town and values are calculated for (1) total number of establishments, (2) total number of functions, and (3) total number of functional units. (Thomas 1960) Stafford confirmed what was generally understood that a relationship existed between population and the three indices by applying simple correlation and regression analysis. The final results of this study found that most towns were service centers. This was consistent to what Berry and Garrison (Berry and Garrison 1958) discovered since small towns simply do not have sufficient threshold populations or large enough trade areas to support a specialized function. Stafford concludes that a whole possible realm of research could be investigated by comparing the results from many regions around the country in an attempt to create generalizations with regards to economic functions in small towns. (Stafford 1963)

Howard Nelson followed up his classification of cities in the United States in 1955 with an article titled *Some Characteristics of the Population of Cities in Similar Service Classifications* in 1957. With regards to concerns over the relevance of classifications as simply a reference tool, Nelson claimed that classifications should be utilized for further and more in-depth analysis of the urban configuration. Analyses have been made of population change, education, age, and labor force, but the main focus of Nelson's research is to investigate possible relationships amongst different functions. Nelson simply used the classifications of U.S. cities as a basis for the study. (Nelson 1957)

It was evident through the research that variations in economic and social qualities of American cities are related to the function or service classes to which a city belongs. Nelson found that variations in the rate of change in population in the 1940 to 1950 decade were strongly affected by a city's leading function. One example of this is that the population in cities classified under personal service and professional service are increasing by more than twice the typical rate.

19

Contrast that with the population change in manufacturing where little to no growth had occurred. (Nelson 1957)

Nelson also addressed the effects of regional location on social and economic characteristics. The regional averages of population increase, education, female labor force, male labor force, age, unemployment, and average earnings were examined for the geographic regions of the Northeast, North Central, South, and West. Nelson concluded that this research indicated a relationship between the service class and regional location on the characteristics of a city. According to the research, the characteristics of a region generally affected people of all classes, ages, and gender. (Nelson 1957)

A Guideline for Functional Classification Analysis

The purpose of functional classifications is to identify the spatial regularities in the distribution and structure or urban functions. Unfortunately, according to Roberts H. T. Smith's Method *and Purpose in Functional Town Classification*, most studies lack a clear and specific objective. Most classifications created ended up being ends to themselves instead of a springboard for future research. Geographers also seem to be satisfied to simply report their findings in broad geographic terms. The overwhelming majority of classifications were be created by urban geographers in order to develop a new methodology and simply display their results, rather than conducting a more detailed analysis of the data. The primary purpose of Smith's article is to review

several classification methods developed in the mid 20th century and point out flaws and offer a blueprint on how to effectively conduct scientific research. (Smith 1965)

The classification procedure that is used should produce groups of towns about which the greatest number, most precise, and most important statements can be made concerning differentiating and accessory characteristics. Furthermore, to be justified on other than pedagogic grounds, any classification should be relevant to a well defined problem. As a result, when towns are classified according to function (the differentiating characteristic), we not only want to say something about the function or combination of functions typical of that group; knowledge of membership in any one group should automatically carry with it knowledge of additional characteristics of the towns in that group. Smith claims it is not difficult to deduce that there are at least two spatial characteristics associated with town functions. First, since there is some spatial order to the distribution of economic activities in general, we can then expect to find distributional characteristics of towns in similar functional classes that are abnormal to those classes. Second, given the notion that function implies a relationship between a town and its hinterland, different functional classes should be connected with different forms of hinterland areas. (Smith 1965) With this thought process, classification of towns by function may lead to the formalization of generalizations about location patterns of towns and the relationships between

towns with particular functions and their hinterlands, which is the essence of this thesis.

Multivariate Statistical Analysis

Hart and Salisbury's (1965) Population Change in Middle Western Villages: A Statistical Approach analyzed population trends in villages (places with incorporated status and populations less than 1,000 persons outside large urban areas) in 1960 for a nine state area of the Midwest. It discusses the process of regression analysis and the manipulation of data to obtain a linear relationship between the dependent (percentage of population change) and independent variables and the need for each variable to have a normal distribution. Scattergrams are used to help identify linear or non-linear relationships between variables. Data that do not conform to a normal distribution should be normalized by use of logarithms or square roots. Upon completion of the regression analysis, the residuals of regression (villages lying outside the standard error band of the line of regression) were then mapped and eventually analyzed by their distance from major population centers, which became another independent variable in the analysis. (Hart and Salisbury 1965)

Hart and Salisbury's research supports the idea that patterns of village growth are too complex to be satisfactorily explained by any simple set of statistical variables. Hart and Salisbury provide a strong argument for the

22

implementation of multivariate statistical analysis in urban geography, particularly when examining population change.

Another article discussing the statistical approach was *What is a Central City in the United States? Applying a Statistical Technique for Developing Taxonomies* in 1998 by Edward Hill, John Brennan and Harold Wolman. This article included a detailed outline of the methodological design using cluster analysis to group cities in the United States. The purpose of the article was to create and discuss a methodological design using cluster analysis to group U.S. central cities, and then employ discriminant analysis to ascertain a statistical based validity for the groups. Overall, the article provides a solid framework by discussing a highly technical step-by-step application of multivariate statistical analysis including several charts and graphs describing the results. (Hill *et al.* 1998)

The most recent study on functional classifications was conducted by Robert Freestone, Peter Murphy, and Alan Jenner in 2003 titled *The Functions of Australian Towns, Revisited.* This inter-temporal research aimed to create a contemporary classification of towns in Australia using principal components analysis and cluster analysis. This article argued for continued classification of urban areas because functionality does change over time, and through their research, several changes had occurred since the last classification in 1965. This article will be used as justification for this thesis project. (Freestone *et al.* 2003) Factor analysis using varimax rotation has been commonly used in classification research because of the ability to identify the underlying structure of complex data sets. However, in the study conducted by Freestone *et al.*, a clear-cut principal components analysis (PCA) with varimax rotation was selected. PCA has the ability to "provide an informative, low dimensional representation of the data" (Boloton and Krzanowski, 1999). PCA was primarily used in their study as an intermediate step towards cluster analysis. (Freestone *et al.* 2003)

Cluster analysis techniques have become more prominent in taxonomic studies. Freestone, *et al*, chose Ward's Method because it had been used in other comparable studies. An advantage of using Ward's Method is not having fixed entries where cases cannot be removed from a cluster even though the cluster structure may change with each new case being introduced. (Freestone *et al.* 2003).

The data used were inclusive of all recognized urban centers using the 1996 census data from the Australian Bureau of Statistics (ABS). The data contained twelve 1-digit Australian and New Zealand Standard Industry Classification codes for all 741 cities with a minimum population of 1,000 people. The results of the research led to an updated economic classification of Australian urban places. (Freestone *et al.* 2003).

Through cluster analysis, there were found to be thirteen distinct groupings of urban places in Australia based on economic factors. A comparison to Smith's (1965) classification showed many notable differences including the increase in overall population, the increase in the number of cities, and the increased functional diversification of cities, among others. It was noted that comparisons could indeed be made even though variations in methodologies existed between the classifications conducted by Smith and Freestone, *et al.* (Freestone *et al.* 2003)

Summary of Literature

Although the time-scale of urban geography is relatively short, the development of methodological techniques and conceptual blueprints as regards to how to generalize and understand the geographic relationships cities have with one another is quite astonishing. Harris, Ullman, Nelson, and Hart set the framework of functional classification as the original architects of the discipline. Smith developed a methodological outline for a more scientific and replicable methodological design in city classifications for the future. More recent applications of multivariate statistical analysis created other avenues for scientific inquiry to be obtained.

Over time, many geographers made attempts to be more objective, and this led to several different methods being developed. However, no one method has proven to be completely satisfactory, as all are trying to rationalize an extremely complex and dynamic system. With this in mind, an attempt to better understand the dynamic relationships both vertical (function) and horizontal (countryside relationships) that make up the true functionality of a city is exceptionally challenging. Therefore, the necessity of understanding the foundation of functional classification theory and methodology is critical to the urban geographer when undertaking the complex and diverse project of creating a taxonomy and attempting to find subsequent relationships. With these thoughts in mind, this study continues with a discussion of the methodology developed and utilized to answer the questions posed by this thesis

Chapter 3

Methodology

In discussing the role of geography within the scope of academic research, Haring, Lounsbury, and Frazier state that "geography is the branch largely concerned with the attainment of spatial knowledge, and is also concerned with the identification, analysis, and interpretation of spatial distributions of phenomena and their locational relationships as they occur on the planet" (Haring *et al.* 1992, 5). The purpose of functional classifications is to identify the spatial regularities in the distribution and structure or urban functions, and this is consistent with the accepted role of geography in academia. The steps explained in this chapter are in line with the two primary objectives for this thesis: 1) To create a contemporary taxonomy of the small urban places (population 2,500-10,000) in the study area using a standard classification of the dominant economic functions of small cities in the study area.

The chapter follows the steps shown in the methodological model as seen in Figure 5. These stages include the acquisition of data, database organization, and evaluation of the data by creating a modern taxonomy and applying nearest neighbor analysis in order to establish spatial distribution patterns. The process was partially adapted from previous functional classifications in urban geography with minor alterations in classes.

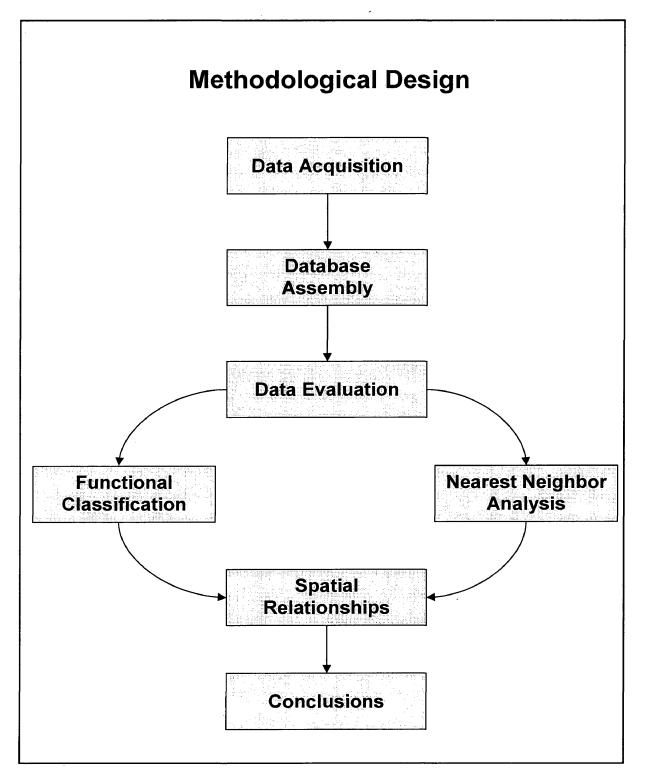


Figure 5: Methodological model applied to the study.

Data Characteristics and Acquisition

Industry data obtained from the 2000 U.S. Census was used for this thesis project. "A common assumption in functional town classification is that the city's labor force is the best single indicator of the structure of the urban economy" (Yeates and Garner 1980, 97). Going with tradition, the data used will be based on the industry of working population in each small urban place in the study area. Other geographical classification studies have also used the industrial census data (Harris, 1943; Webb, 1959; Nelson, 1955, Hart, 1955, Freestone *et al.*, 2003). The data set was obtained in electronic form via the U.S. Census Bureau online at http://www.census.gov. Information was only collected for cities with populations between 2,500 and 10,000 were collected. The data contained the number of employed persons in each urban place, and are divided into 13 major categories. The data were then broken down into more specific industries on several occasions (see Table 2).

INDU	STRY EMPLOYED	Ackley, Iowa	Ackworth, Iowa	Adair, Iowa
2 Total		793	48	393
3 Male		430	21	196
4 Ag	nculture, forestry, fishing and hunting, and mining:	38	T 3 1	20
5 A	griculture, forestry, fishing and hunting	38	3	20
	lining	0	0	0
	nstruction	42	2	36
3 Ma	nufacturing	112	7	34
	olesale trade	31		22
0 Ret	ail trade	51	6	13
1 Tra	nsportation and warehousing, and utilities:	28		8
2 1	ransportation and warehousing	23	0	6
	tilities	5	0	2
	rmation	8	0	4
5 Fin	ance, insurance, real estate and rental and leasing:	9	0	7
6 F	inance and insurance	9	0	2
	leal estate and rental and leasing	0	0	5
8 Pro	fessional, scientific, management, administrative, and waste management services:	20		5
9 F	rofessional, scientific, and technical services	15		4
0 N	fanagement of companies and enterprises dministrative and support and waste management services	0	0	0
1 A	dministrative and support and waste management services	5		1
2 Edu	ucational, health and social services:	. 48	3	24
	ducational services	33	0	21
	lealth care and social assistance	15	3]	З
5 Art	s, entertainment, recreation, accommodation and food services:	16	0	10
6 A	nts, entertainment, and recreation	2	0	0
7 A	ccommodation and food services	14		10
8 Oth	er services (except public administration)	13	0	7
9 Puł U	Dic administration	14	n	6

Table 2: The census data acquired breaks into 13 main categories, as are the sub-categories. The data included both male and female employment figures listed separately. Only the male data are shown here.

Database Organization

A vital and often times overlooked component of a thesis is the organization of data so an effective and accurate assessment can be completed. The initial step taken to accomplish the first objective was to group the 13 industrial categories into services classes for the new taxonomy. Using previous models (Harris 1943 and Nelson 1955) and with consultation of the thesis committee, eleven classes were chosen for this study (see Table 3). The employment by industry data from the census is by place of residence, not place of work. It is important to note the omission of agriculture, forestry, fishing and hunting in this classification since these people are most likely performing activities in the countryside, and this would not be considered an economic function of the city. Also, the combination of educational, health and social services with professional scientific, management, administrative and waste management services was done because these occupations are considered to be "professional" in nature.

Census Classification by Industry Groups	Thesis Taxonomy	Symbol
Agriculture, forestry, fishing and hunting	Omitted	
Mining	Mining	Mi
Construction	Construction	С
Manufacturing	Manufacturing	Mf
Wholesale trade	Wholesale	. W
Retail trade	Retail	R
Transportation and warehousing, and utilities	Transportation	Т
Information	Information Technology	1
Finance, insurance, real estate and rental and leasing	Finance	F
Professional, scientific, management, administrative & waste management	Professional Service	Pf
Educational, health and social services:	Professional Service	Pf
Arts, entertainment, recreation, accommodation and food services	Personal Service	Ps
Other services (except public administration)	Personal Service	Ps
Public administration	Public Administration	Pa

Table 3: The service classes for the taxonomy are shown on the right and the U.S census industry groups from which the data were collected are on the left.

Of the 280 cities in the study area, many were in close proximity of Metropolitan Statistical Areas (MSAs). Within the study area there were 18 MSAs including Omaha, Sioux City, Waterloo-Cedar Falls, Dubuque, Cedar Rapids, Davenport, Iowa City, Des Moines, Duluth-Superior, St. Cloud, Minneapolis-St. Paul, Rochester, Fargo-Moorhead, Grand Forks, Lincoln, Bismarck, Sioux Falls and Rapid City. (see Figure 7) To alleviate the influence of these larger cities, all cities within the 2,500 to 10,000 population range that were contained within contiguous urbanized area of the MSA cities were excluded from the study. This led to a subtraction of 49 cities mostly in the Minneapolis-St. Paul metropolitan area (see Figure 8). The remaining 231 cities were then organized by the number of employed persons for each of the eleven classes (see APPENDIX A for cities sorted by population, and APPENDIX B for cities sorted alphabetically).

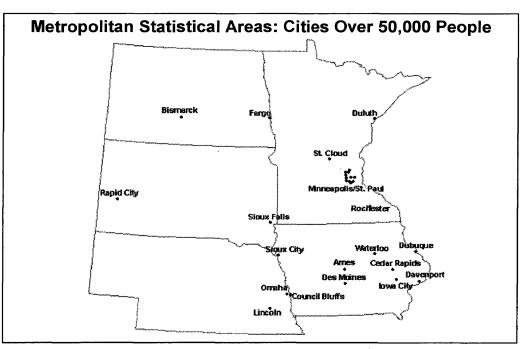


Figure 7: The MSA cities within the thesis study area.

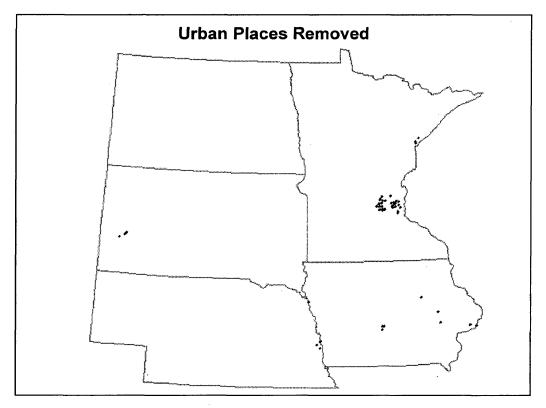


Figure 8: The 49 cities removed from the study because of their location inside of the contiguous area of a MSA city. (34 in MN, 10 in IA, 3 in SD, 2 in NE, 0 in ND)

Creating the Taxonomy

Various methods have been developed and tested throughout the past century, and no single method has been determined to be the best. When determining a method to use for this thesis, it is important to consider the overall objectives of the study. The purpose of this classification is to compare the economic functions of towns within the specified population range in one particular geographic region. With this in mind, the standard deviation method developed by Howard Nelson provides an approach that works well for this study because the degrees of variation lead to a classification of multi-functionality and gives a solid relative comparison of these cities. Furthermore, for the purpose of creating a classification that is both understandable and replicable, the standard deviation method works well.

Standard deviations from the mean of each function were calculated for each of the eleven categories. There are three degrees of variation from the average following the standard deviation breaks. Subjective selection of class breaks has been eliminated by the implementation of an accepted statistical tool such as standard deviation. With regards to the taxonomy, any city over +1 SD from the mean value in manufacturing will be given a Mf1 rating. Over +2 SD's receives a Mf2 rating and + 3 SD or more gets a Mf3 rating. This approach delivers a simple rating that is easily understood. The biased formula for standard deviation was used for this study:

$$z = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

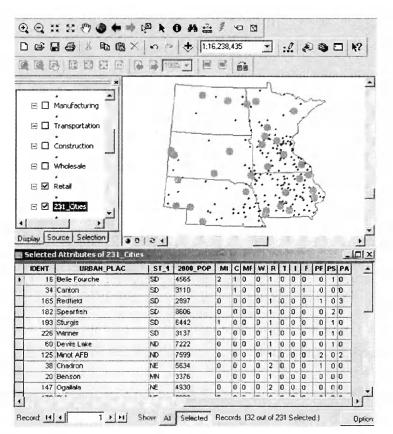
Where: \overline{X} = Sample arithmetic mean

n =Sample size

 $X_i = i^{ih}$ Observation of the variable X

 $\sum_{i=1}^{n} X_{i} =$ Summation of all X_{i} values in the sample

When applied to the 231 remaining cities in the study area, the method described is not mutually exclusive because there is a possibility that a city can exceed the requirements (i.e., + 1SD or more) in more than one service category.


There is also a possibility that some cities will not rank high enough in any of the eleven service categories. These cities are placed into a "diversified" group in the taxonomy, thus the classification has a total of twelve categories.

Creating the Classification Maps

In order to visualize the spatial distribution within a two-dimensional framework, the results of the classification needed to be mapped. There were multiple methods for compiling city location data to be implemented into a GIS mapping program. Since the cities were located within a five state area, it was most logical to use a dataset that included all the states for consistency. ESRI, a leading distributor of GIS software and data, provides a dataset that includes all cities in the United States. The 231 cities in the survey were selected from the ESRI data set using a guery search in ArcGIS 9. A new shapefile was created to be used for adding standard deviation values for mapping purposes. In order to create the maps of economic functionality, an operation called a "join" was completed. A join simply combines the data from two databases through a specified field name, in this case, the city name. However, when dealing with multiple states, often times a city name was found more than once. These duplicate names such as Glenwood (lowa and Minnesota) created an invalid join because the data were combined due to the lack of a unique value for each city. An alternate naming method was established where city names were sorted

alphabetically and an "ID" number was established for each city. This eliminated any problems with duplicate city names.

Once the city location and standard deviation classification datasets were joined together, the mapping of the twelve functions was completed. Each of the twelve economic functions was mapped by using the query search in ArcGIS. A query search allows for the selection of values (cities) based up the attribute data. In this case, each city was given a value of 0, 1, 2, or 3 for each economic function in the classification. The 0 was a null value, and the 1, 2, and 3 indicated the amount of standard deviations above the mean. A visual representation of this process is show below in Figure 9.

Figure 9: Example of selecting cities in ArcGIS 9 based on Standard Deviation values in Retail Trade.

Nearest Neighbor Analysis

Essentially geography is concerned with distributions in space and one the most important distributions the geographer has to consider is that of human settlement. A primary objective of many geographic studies that begin with locations of a variable on a dot map is to determine the form of the pattern of points. The nature of the point pattern can reveal information about the process that produced the geographic results. (McGrew and Monroe 1993) General descriptions have been used in previous functional classifications that include described patterns as "dense" or "sparse." Devising a more precise mathematical description of areal distributions is needed to produce objective results. (Hammond and McCullagh 1975)

Urban geographers are interested in using a method of analysis that discerns objectively between clustered and dispersed spatial distributions, and also distinguishes between degrees of clustering or dispersal. (Yeates 1974) Nearest Neighbor Analysis is a common procedure for determining the spatial arrangement of a pattern of points within a study area. The distance of each point to its closest neighbor is measured, and the average nearest neighbor distance for all points is determined. This method quantitatively defines a scale which measures the degree of departure of an observed spatial distribution from a theoretical random distribution. (Silk 1979) The maximum departure at one end of the scale is absolute clustering, where all points are at the same place. The other end is absolute uniformity, where all points are equidistant from other points. Basically, there are three benchmarks: absolute clustering, absolute randomness, and absolute dispersal. The index ranges from 0, indicating clustering, to 2.15, indicating maximum dispersion. The index value, normally written as R, is calculated by dividing the measured mean distance between nearest neighbor points in a given area, by the mean distance to be expected from a similar number of points randomly distributed in the same area. (Hammond & McCullagh 1975)

Nearest Neighbor Analysis was performed on each economic function of the classification using a Visual Basic application in ArcGIS. (Sawada 2002) The program performed basic Nearest Neighbor Analysis (Clark and Evans 1954) and provided summary statistics of the point distribution for each function. An example output of the application for construction is shown below in Figure 10.

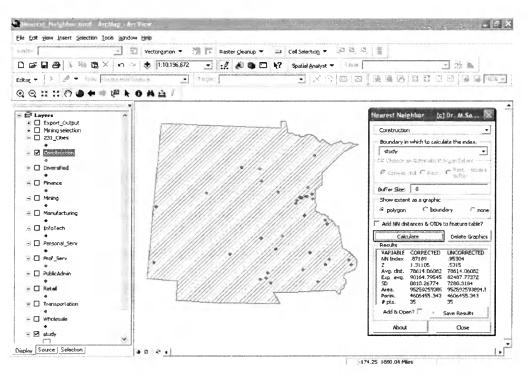


Figure 10: Example output of the Nearest Neighbor Application in ArcGIS 9.

Chapter Summary

Once again, the primary focus of creating a functional classification is to identify the spatial relationships and the distribution of specific urban functions. This chapter followed the methodological model formulated around the two objectives of the thesis. The process was adapted from previous functional classifications within the accepted framework of urban geography.

Staying consistent with previous studies concerning functional classifications, the occupational data obtained from the 2000 U.S. Census was used. Only cities with populations between 2,500 and 10,000, and not contained within the contiguous urbanized area of a MSA city, were collected.

When determining a method to use for this thesis, it is important to consider the overall objectives of the study. The purpose of this classification is to compare the economic functions of towns within the specified population range in one particular geographic region and to discover spatial relationships. The standard deviation method developed provides an approach that allows a multi-functional classification, and provides a firm relative assessment of these cities. The mapping of the classification by economic functions provides a unique insight of the spatial distribution of the cities. Nearest Neighbor analysis is a valid statistical tool for determining spatial distribution in a two-dimensional space.

Chapter 4

Analysis of Results

In this chapter an explanation is given for the results of the functional classification. The first step is to present details of the descriptive statistics for this study and make comparisons with previous studies. The second section includes a detailed discussion of the spatial distribution of each service class within the new functional classification. The final segment is dedicated to the exploration of nearest neighbor analysis results.

Descriptive Statistics

The purpose of this classification is to compare the economic functions of towns within the specified population range in one particular geographic region. Keeping this in mind, the standard deviation method provides an approach that works well for this study because the degrees of variation lead to a classification of multi-functionality and gives a solid relative comparison of these cities.

Standard deviations from the mean of each function were calculated for each of the eleven categories. There are three degrees of variation from the average following the standard deviation breaks. With regards to the new taxonomy, any city over +1 SD from the mean value in mining will be given a Mi1 rating, +2 SD's receives a Mi2 rating, and + 3 SD or more gets a Mi3 rating. This approach delivers a simple rating that is easily understood. The five state study area provided 231 cities of population 2,500 to 10,000 that were not contained within the contiguous area of city with a population of at least 50,000. There were 91 cities in Minnesota, 84 in Iowa, 31 in Nebraska, 17 in South Dakota, and 8 in North Dakota. The average population for the cities in the study area was 4,829.6, and the average employment per city was 2,334.8. Standard deviations from the mean were calculated for each of the eleven categories as discussed in detail in chapter 3. The results are shown below in Table 4. When examining the averages per function, several numbers stick out including the rather high portion of people engaged in professional service industries and manufacturing, and to some extent personal service. The importance of services that provide for the needs of the surrounding countryside is quite evident when reviewing the results.

Several intriguing similarities and differences can be found while comparing the average employment per function in this classification with previous studies conducted by Nelson (1955), Atchley (1967), and Webb (1959).

Symbol	Mean (%)	SD (%)	+1 SD (%)	+2 SD (%)	+3 SD (%)
Mi	0.54	2.01	2.55	4.56	6.57
С	6.41	2.20	8.61	10.81	13.01
Mf	17.49	8.32	25.81	34.13	42.45
W	3.14	1.73	4.87	6.6	8.33
R	12.76	2.84	15.6	18.44	21.28
т	4.81	2.78	7.59	10.37	13.15
i	2.20	1.18	3.38	4.56	5.74
F	5.17	2.87	8.04	10.91	13.78
Pf	28.7 6	5.57	34.33	39.9	45.47
Ps	12.25	4.0	16.25	20.25	24.25
Pa	4.11	2.85	6.96	9.81	12.66
	Mi C Mf W R T I F Pf Ps	Mi 0.54 C 6.41 Mf 17.49 W 3.14 R 12.76 T 4.81 I 2.20 F 5.17 Pf 28.76 Ps 12.25	Mi 0.54 2.01 C 6.41 2.20 Mf 17.49 8.32 W 3.14 1.73 R 12.76 2.84 T 4.81 2.78 I 2.20 1.18 F 5.17 2.87 Pf 28.76 5.57 Ps 12.25 4.0	Mi 0.54 2.01 2.55 C 6.41 2.20 8.61 Mf 17.49 8.32 25.81 W 3.14 1.73 4.87 R 12.76 2.84 15.6 T 4.81 2.78 7.59 I 2.20 1.18 3.38 F 5.17 2.87 8.04 Pf 28.76 5.57 34.33 Ps 12.25 4.0 16.25	Mi 0.54 2.01 2.55 4.56 C 6.41 2.20 8.61 10.81 Mf 17.49 8.32 25.81 34.13 W 3.14 1.73 4.87 6.6 R 12.76 2.84 15.6 18.44 T 4.81 2.78 7.59 10.37 I 2.20 1.18 3.38 4.56 F 5.17 2.87 8.04 10.91 Pf 28.76 5.57 34.33 39.9 Ps 12.25 4.0 16.25 20.25

Table 4: Mean and Standard Deviation values for each function.

Most of the functions were relatively consistent, especially public administration, which was between four and five percent in each of the four studies. Manufacturing in this study was similar to Webb, but much less than the national studies by Nelson and Atchley. Professional Service industries made up an average of almost 29 percent in this study, compared to 11 percent (Nelson), 14.7 percent (Atchley), and 16.9 percent (Webb).

Functional Classification

The creation of a modern functional classification of small towns is the primary objective of the thesis. The cities were classified using the standard deviation results for the eleven economic classes. Of the 231 cities, 45 did not meet the criteria established to be +1 SD in any of the eleven functions. These 45 cities are grouped together in the diversified group, meaning that they are not unusually high in any single function. There were 107 cities that qualified with only one function, 63 cities had two functions at least +1 SD, 14 cities reached three functions, and two cities actually had four functions of at least +1 SD or above (Belle Fourche, SD and Elkhorn, NE). Cities located in North and South Dakota had a high degree of multi-functionality. In fact, 22 of the 25 (88%) cities within those two states had at least two functions with a minimum of +1 SD. The opposite was true in Iowa, where only 23 of the 84 (27%) cities had multi-functionality. The complete results of the taxonomy are located in APPENDIX C.

41

City Classification Spatial Distribution

With the second objective in mind, the following section includes a detailed discussion of the spatial distribution for each of the eleven service functions, plus diversified cities. Focus will be placed on the explanation of site and situation, and other possible factors that could explain the reasoning for inclusion within a particular function. The location of the 231 cities in the study area is shown below in Figure 11. Notice the relatively even dispersion within the corn belt of Iowa and Minnesota and the general bareness in the Dakotas and the sand hills of Nebraska.

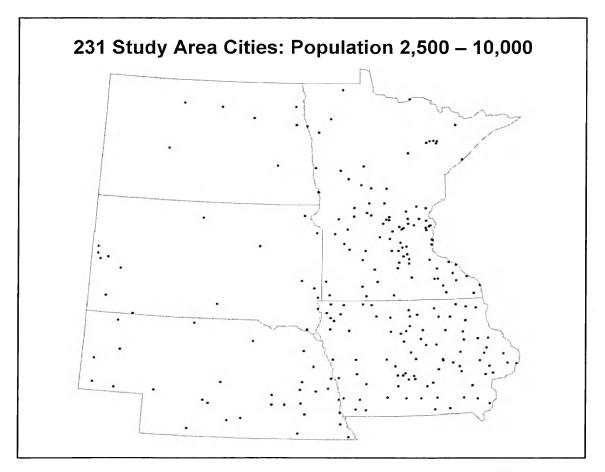


Figure 11: 231 cities in the study area not contained within the contiguous are of a MSA city.

Mining Cities

There are few cities in the study area where mining is considered a significant economic function. (see Table 5) Mining can be viewed as an optimal example of site and situation because this activity only exists where the presence of highly localized natural resources are found. The two distinct clusters of mining activities are located in the iron ore region of northeast Minnesota, and in the Black Hills of South Dakota (see Figure 12). There are however, a few isolated locations in Beulah, North Dakota, Milbank, South Dakota, and Kimball, Nebraska. Mining is the only economic activity that is not reported in every city. Mining activities include sand and gravel pits, coal and metal mining, oil and gas extraction, and limestone quarries. Interestingly, the areas with high levels of mining also tend to have significant levels of personal service activities. Such can be understood because of the location of these cities in more of a comparative wilderness with rugged topography, and timber where vacationers and sportsmen would also be found in elevated quantities.

City	State	Function %	+ SD	
Sturgis	SD	2.98	+ 1 SD	
Milbank	SD	3.53	+ 1 SD	
Two Harbors	MN	3.57	+ 1 SD	
Kimball	NE	3.79	+ 1 SD	
Belle Fourche	SD	6.02	+ 2 SD	
Ely	MN	7.44	+ 3 SD	
Eveleth	MN	10.05	+ 3 SD	
Lead	SD	10.92	+ 3 SD	
Virginia	MN	11.38	+ 3 SD	
Beulah	ND	12.34	+ 3 SD	
Mountain Iron	MN	12.66	+ 3 SD	
Chisholm	MN	13.56	+ 3 SD	

Table 5: Cities above 1, 2, and 3 SD from the mean in mining.

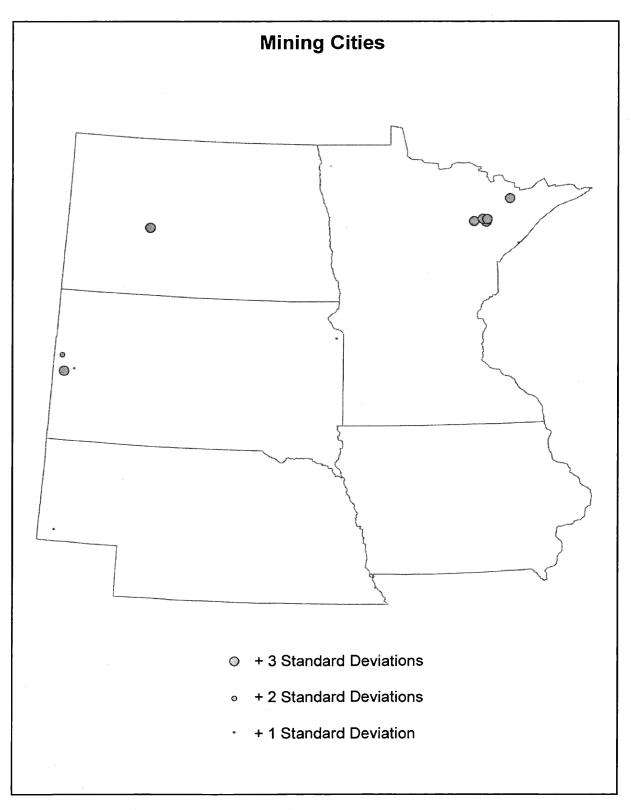


Figure 12: Mining cities above 1, 2, and 3 SD from the mean.

Construction Cities

In terms of the number of cities in a particular function, the 35 cities classified in the construction category are second only to manufacturing (see Table 6). The average employment of 6.4 percent is not especially high, but is higher than six other classes. Construction cities are found to be located near larger cities, transportation routes, or manufacturing cities (see Figure 13). There are 16 cities in Minnesota, nine in Iowa, six in Nebraska, three in South Dakota, and only one in North Dakota. By examining the map, there are two clusters of construction cities around Minneapolis/St. Paul and Omaha where heavy expansion of suburbia is occurring. There are relatively few cities in this class in North and South Dakota, and west of the Omaha area. In Iowa there is a reasonably even distribution of construction cities throughout the state.

City	State	Function %	+ SD	City	State	Function %	+ SD
Valley City	ND	8.56	+ 1 SD	Wahoo	NE	9.70	+ 1 SD
Gering	NE	8.71	+ 1 SD	St. Charles	MN	9.73	+ 1 SD
Grimes	IA	8.84	+ 1 SD	Blair	NE	9.73	+ 1 SD
Spirit Lake	IA	8.89	+ 1 SD	lowa Falls	IA	9.85	+ 1 SD
Elkhorn	NE	8.89	+ 2 SD	Vinton	IA	10.18	+ 1 SD
Montgomery	MN	8.90	+ 3 SD	North Branch	MN	10.29	+ 1 SD
Forest Lake	MN	8.90	+ 3 SD	Mora	MN	10.35	+ 1 SD
De Witt	IA	8.97	+ 3 SD	Belle Fourche	SD	10.35	+ 1 SD
Plainview	MN	9.07	+ 3 SD	Albia	IA	10.65	+ 1 SD
Mobridge	SD	9.07	+ 3 SD	Grant	MN	10.68	+ 1 SD
Dilworth	MN	9.17	+ 3 SD	Belle Plaine	MN	11.08	+ 2 SD
Maquoketa	ίA	9.25	+ 3 SD	Breckenridge	MN	11. 19	+ 2 SD
O'Neil	NE	9.31	+ 1 SD	Annandale	MN	11.48	+ 2 SD
Big Lake	MN	9.36	+ 1 SD	Zimmerman	MN	11.74	+ 2 SD
Glenwood	IA	9.43	+ 1 SD	Plattsmouth	NE	13.01	+ 3 SD
Cokato	MN	9.51	+ 1 SD	Becker	MN	13.23	+ 3 SD
Cherokee	IA	9.52	+ 1 SD	St. Francis	MN	15.34	+ 3 SD
Canton	SD	9.69	+ 1 SD				

 Table 6: Cities above 1, 2, and 3 SD from the mean in construction.

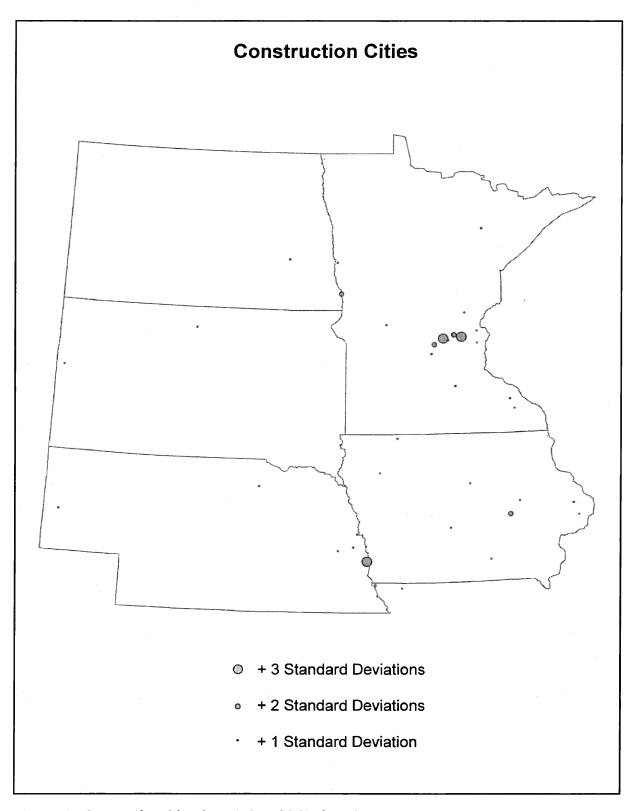


Figure 13: Construction cities above 1, 2, and 3 SD from the mean.

Manufacturing Cities

The number of cities with significant amounts (+1 SD or more) of manufacturing is higher than any other category. Manufacturing tends to be an important part of the economic structure in these urban places where an average of 17.5 percent work in the industry (see Table 7). Most of the 38 classified cities are part of the traditional manufacturing belt that spans from the northeast coast of the United States to roughly the middle of Minnesota and Iowa (see Figure 14). The location of manufacturing cites also has a tendency to follow major routes of transportation such as Interstate 35 through central Iowa and Minnesota. Schuyler, Nebraska was the only city to receive a rating of + 3 SD in manufacturing. North and South Dakota failed to register a single city in the category. Of the 38 cities, 24 (63%) were specialized, meaning no other economic function was significant.

City	State	Function %	+ SD	City	State	Function %	+ SD
Cokato	MN	26.04	+ 1 SD	Crete	NE	30.13	+ 1 SD
West Point	NE	26.14	+ 1 SD	Norwood Young	MN	30.24	+ 1 SD
Mount Pleasant	IA	26.25	+ 1 SD	Pella	IA	30.29	+ 1 SD
Melrose	MN	26.37	+ 1 SD	Sibley	IA	30.31	+ 1 SD
Belmond	IA	26.61	+ 2 SD	Litchfield	MN	30.46	+ 1 SD
Osage	IA	26.68	+ 3 SD	Marengo	IA	30.51	+ 1 SD
Humboldt	IA	26.80	+ 3 SD	Montgomery	MN	30.66	+ 1 SD
Cold Spring	MN	26.92	+ 3 SD	Princeton	MN	30.77	+ 1 SD
Big Lake	MN	27.32	+ 3 SD	Glencoe	MN	31.80	+ 1 SD
Long Prairie	MN	28.01	+ 3 SD	Denison	IA	32.28	+ 1 SD
Fairbury	NE	28.19	+ 3 SD	Goodview	MN	33.13	+ 1 SD
Centerville	IA	28.24	+ 3 SD	Cozad	NE	34.02	+ 1 SD
Wilton	IA	28.61	+ 1 SD	Waseca	MN	34.03	+ 1 SD
Belle Plaine	IA	29.28	+ 1 SD	St. James	MN	34.95	+ 2 SD
Camanche	IA	29 .37	+ 1 SD	Forest City	IA	35.16	+ 2 SD
Lake City	MN	29.64	+ 1 SD	Le Sueur	MN	35.32	+ 2 SD
Garner	IA	29.78	+ 1 SD	Roseau	MN	36.41	+ 2 SD
Webster City	IA	29.92	+ 1 SD	West Liberty	IA	41.66	+ 2 SD
Zimmerman	MN	30.01	+ 1 SD	Schuyler	NE	46.10	+ 3 SD

Table 7: Cities above 1, 2, and 3 SD from the mean in manufacturing.

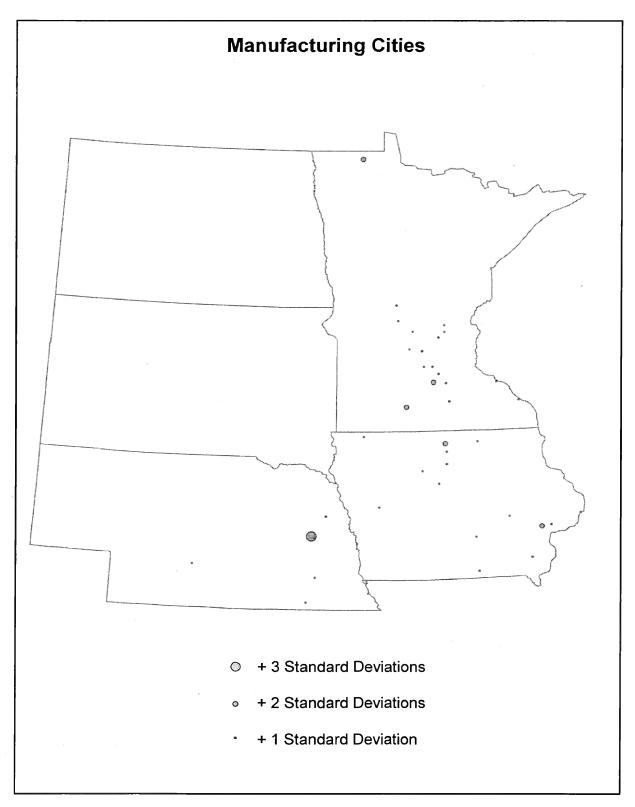


Figure 14: Manufacturing cities above 1, 2, and 3 SD from the mean.

Wholesale Trade Cities

The distribution of wholesale cities follows conventional central place theory where the most significant places (+3 SD) are evenly spaced with smaller, supportive cities found in between (see Figure 15). Wholesaling activities include the sale of commodities in large quantities for retailers and the assembly and sale of merchandise. In this region, farm equipment sales are a significant industry of wholesale trade. These cities are generally located where specialized forms of agricultural produce must be assembled, packaged, and marketed. (Hart 1955) Access to transportation is also a high priority for wholesaling. Also, there are no cities with +3 SD located within 30 miles of MSA cities. The average amount of people working in wholesale trade is relatively small at only 3.1 percent. Even cities with a substantial amount (see Table 8) within the function are typically multifunctional in this region.

City	State	Function %	+ SD	City	State	Function %	+ SD
Park Rapids	MN	4.99	+ 1 SD	Monticello	IA	5.91	+ 1 SD
La Crescent	MN	4.99	+ 1 SD	Waconia	MN	5.95	+ 1 SD
Dyersville	IA	5.09	+ 1 SD	Goodview	MN	5.96	+ 1 SD
Elkhorn	NE	5.12	+ 1 SD	Glenwood	MN	6.40	+ 1 SD
Waukee	IA	5.15	+ 1 SD	Sheldon	IA	6.51	+ 1 SD
Adel	IA	5.28	+ 1 SD	Chisago City	MN	6.75	+ 2 SD
Wyoming	MN	5.37	+ 1 SD	Mountain Iron	MN	7.07	+ 2 SD
Madison	SD	5.40	+ 1 SD	West Union	IA	7.25	+ 2 SD
Rugby	ND	5.52	+ 1 SD	Iowa Falls	IA	8.37	+ 3 SD
Pleasant Hill	IA	5.55	+ 1 SD	Milbank	SD	8.40	+ 3 SD
Wadena	MN	5.62	+ 1 SD	O'Neil	NE	8.80	+ 3 SD
Dilworth	MN	5.69	+ 1 SD	Harlan	IA	10.24	+ 3 SD
Cannon Falls	MN	5.69	+ 1 SD	Chariton	IA	14.20	+ 3 SD
Victoria	MN	5.90	+ 1 SD				

Table 8: Cities above 1, 2, and 3 SD from the mean in wholesale trade.

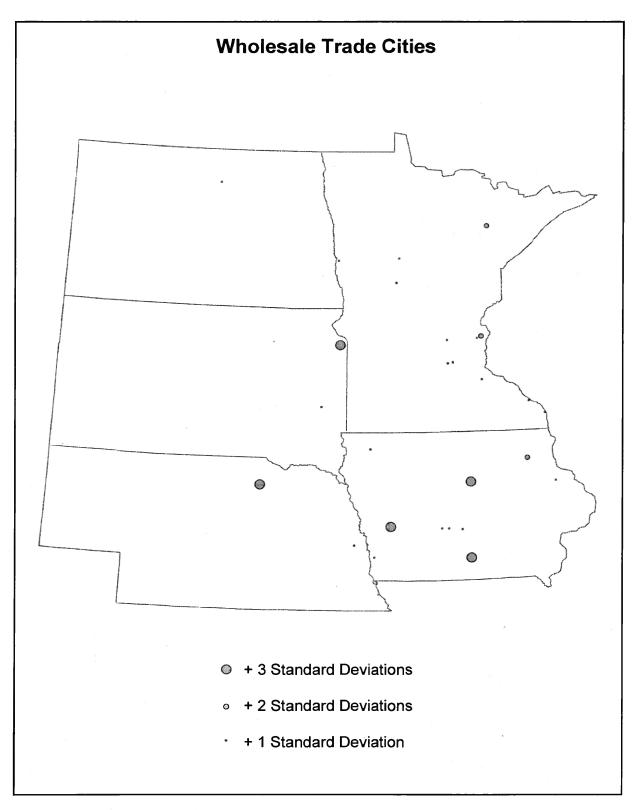


Figure 15: Wholesale Trade cities above 1, 2, and 3 SD from the mean.

Retail Trade Centers

One of the most dispersed functions in the classification are the retail trade cities. These small urban places are responsible for providing goods to the surrounding agricultural population. It could be said that these cities are the backbone of rural America, particularly in this particular region of the country. Cities average 12.76 percent of the workforces in this category. Within the study area, half of the retail cities are specialized due to the high level of employment in this function. (see Table 8). In the Black Hills region, cities are providing merchandise targeting the tourist flow (see Figure 16). Waite Park, Minnesota, just west of Minneapolis is a large shopping area. Sidney Nebraska, with an incredible 29.06 percent engaged in retail trade, is home to sportsmen's superstore Cabela's. Other locations are more dispersed and far away from larger cities, signifying their role in supplying the hinterland.

City	State	Function %	+ SD	City	State	Function %	+ SD
Eveleth	MN	15.63	+ 1 SD	McCook	NE	16.61	+ 1 SD
Monticello	MN	15.74	+ 1 SD	Thief River Falls	MN	16.69	+ 1 SD
Tipton	IA	15.75	+ 1 SD	Winner	SD	16.96	+ 1 SD
Spearfish	SD	15.76	+ 1 SD	New Hampton	IA	17.00	+ 1 SD
Jordan	MN	15.88	+ 2 SD	Red Oak	IA	17.04	+ 1 SD
Wadena	MN	15.99	+ 3 SD	Alexandria	MN	17.11	+ 1 SD
Minot AFB	ND	16.06	+ 3 SD	Windom	MN	17.13	+ 1 SD
St. Charles	MN	16.08	+ 3 SD	Chariton	IA	17.85	+ 1 SD
Redfield	SD	16.11	+ 3 SD	Sturgis	SD	18.02	+ 1 SD
Story City	IA	16.18	+ 3 SD	Devils Lake	ND	18.03	+ 1 SD
Wayne	NE	16.21	+ 3 SD	Benson	MN	18.32	+ 1 SD
East Grand For	ks MN	16.23	+ 3 SD	Chadron	NE	18.45	+ 2 SD
Canton	SD	16.26	+ 1 SD	Ogallala	NE	18.83	+ 2 SD
Winterset	IA	16.26	+ 1 SD	Shenandoah	IA	19.23	+ 2 SD
Belle Fourche	SD	16.32	+ 1 SD	Waite Park	MN	21.35	+ 3 SD
Waukon	IA	16.54	+ 1 SD	Sidney	NE	29.06	+ 3 SD

 Table 9: Cities above 1, 2, and 3 SD from the mean in retail trade.

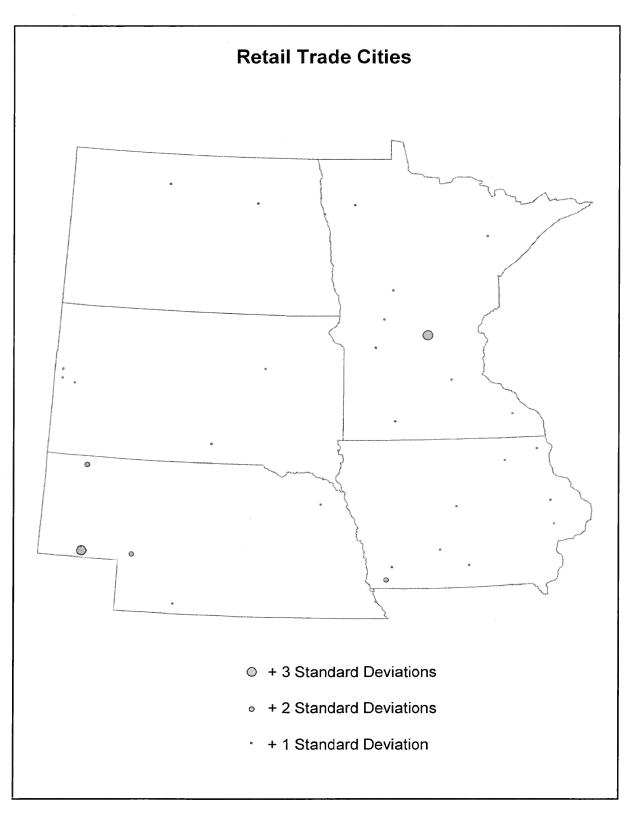


Figure 16: Retail Trade cities above 1, 2, and 3 SD from the mean.

Transportation Cities

Another example of site and situation, to a lesser degree than mining, is that of transportation. Access to large scale routes of transportation such as interstates, railways, or waterways is of critical importance. Only 16 cities reached at least +1 SD from the mean, similar to mining (see Table 10). Typically these cities are found in linear patterns or in groups because the smaller cities play a supporting role along a transportation route. This sort of pattern can be seen in western and extreme southeastern Nebraska (see Figure 17). Oftentimes, cities classified as transportation area also found in another category such as manufacturing, construction, or mining. This category also includes utility based industries like the nuclear power plant in Auburn, and the coal factories associated with Beulah and Nebraska City. The importance of transporting materials across the region from the east to west by railroad and interstate highway is guite evident when examining the amount of transportation cities in Nebraska. In fact, there just as many cities in this category from Minnesota, Iowa, South Dakota, and North Dakota combined as there are in

Ν	e	br	a	sł	ka	•
---	---	----	---	----	----	---

City	State	Function %	+ SD	City	State	Function %	+ SD
Valentine	NE	7.65	+ 1 SD	Clarion	IA	9.73	+ 1 SD
Sibley	IA	7.71	+ 1 SD	Kimball	NE	10.13	+ 1 SD
Hot Springs	SD	7.90	+ 1 SD	Gering	NE	10.46	+ 2 SD
Brandon	SD	7.96	+ 1 SD	Eagle Grove	IA	10.59	+ 2 SD
Nebraska City	NE	8.04	+ 1 SD	Falls City	NE	10.95	+ 2 SD
David City	NE	8.19	+ 1 SD	Beulah	ND	19.26	+ 3 SD
Chisholm	MN	8.22	+ 1 SD	Auburn	NE	22.17	+ 3 SD
Becker	MN	8.28	+ 1 SD	Alliance	NE	27.15	+ 3 SD

Table 10: Cities above 1, 2, and 3 SD from the mean in transportation.

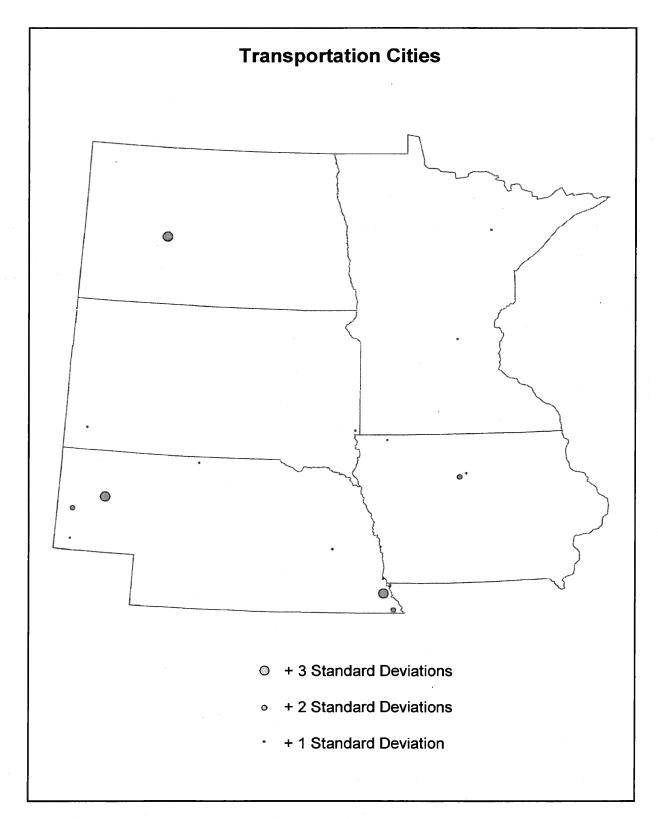


Figure 17: Transportation cities above 1, 2, and 3 SD from the mean.

Information Technology Cities

A new category to the classification is that of information technology. Most of the previous functional studies on cities in the United States either occurred before the computer age or simply grouped communications and transportation together in one class. Industries in this category include newspaper publishing, radio and television broadcasting, libraries, data processing services, software publishing, and other telecommunication services. The average of 2.7 percent is second lowest only to mining, but there were 29 cities with at least +1 SD from the mean (see Table 11). The most intriguing discovery in this service class was the distribution of cities. It is generally thought that information technology jobs are only located in or around a larger city, but this is not the case. A wide spatial distribution of cities, both close and far from larger cities, are found (see Figure 18). There are no information technology cities in North and South Dakota or west of the 98th meridian in Nebraska.

City	State	Function %	+ SD	City	State	Function %	+ SD
Grand Rapids	MN	3.46	+ 1 SD	Jackson	MN	4.28	+ 1 SD
Williamsburg	JA	3.49	+ 1 SD	Norwalk	IA	4.40	+ 1 SD
Afton	MN	3.54	+ 1 SD	Falls City	NE	4.56	+ 2 SD
Appleton	MN	3.57	+ 1 SD	Sauk Centre	MN	4.70	+ 2 SD
Waconia	MN	3.57	+ 1 SD	Winterset	IA	4.74	+ 2 SD
Montevideo	MN	3.68	+ 1 SD	Wayne	NE	4.83	+ 2 SD
Long Prairie	MN	3.74	+ 1 SD	Belmond	IA	4.89	+ 2 SD
Carlisle	IA	3.7 9	+ 1 SD	Vinton	IA	5.03	+ 2 SD
Vermillion	SD	3.7 9	+ 1 SD	Elkhorn	NE	5.08	+ 2 SD
Onawa	IA	3. 89	+ 1 SD	Grinnell	IA	5.11	+ 2 SD
Monticello	IA	3.90	+ 1 SD	Perham	MN	5.26	+ 2 SD
Pleasant Hill	IA	4.13	+ 1 SD	Waseca	MN	5.86	+ 2 SD
Grimes	IA	4.13	+ 1 SD	Blair	NE	7.23	+ 2 SD
Cambridge	MN	4.14	+ 1 SD	Fairfield	IA	7.72	+ 3 SD
Fairbury	NE	4.27	+ 1 SD				

Table 11: Cities above 1, 2, and 3 SD from the mean in information technology.

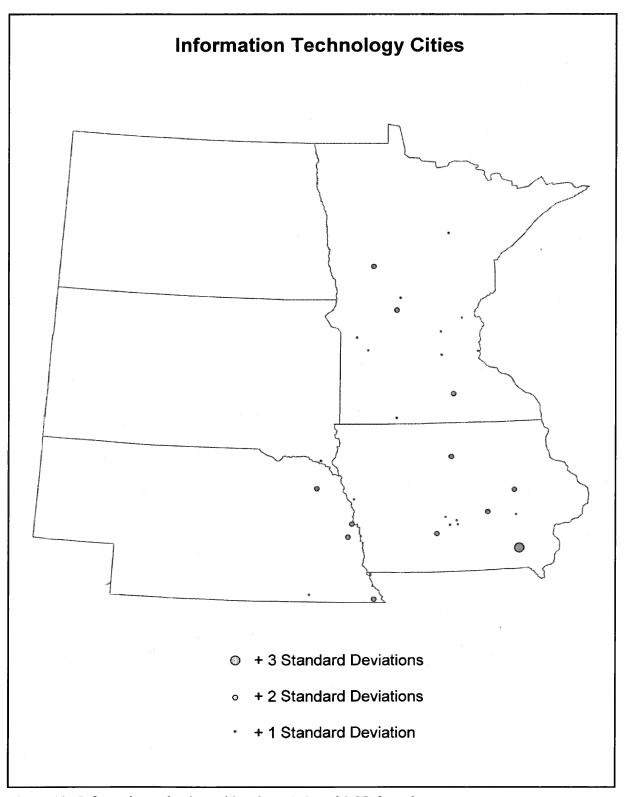


Figure 18: Information technology cities above 1, 2, and 3 SD from the mean.

Finance Cities

Cities included within this category are related to finance, insurance, real estate, and rental and leasing. Only 5.17 percent of the total employment is in the finance class. Previous studies conducted in the United States have found that a considerable amount of the largest cities in the country boast high levels of banking and finance. Typically, this function is not going to be found in excessive amounts in smaller cities. Within the study area, the city of Des Moines, Iowa, is considered an insurance and financial center. A majority of the cities in this category are from the state of Iowa. In fact, eight of the nine highest averages come from the Hawkeye state (see Table 12). The spatial distribution of these cities tends to be clustered around the Des Moines metropolitan area (see Figure 19). Proximity to a larger city can be seen as the rule with cities of this class found around Sioux Falls, Minneapolis/St. Paul, Rapid City, and Omaha. One obvious exception is that of International Falls, Minnesota, Iocated along the border with Canada.

							11
City	State	Function %	+ SD	City	State	Function %	+ SD
Cold Spring	MN	8.18	+ 1 SD	Waverly	IA	10.30	+ 1 SD
Ellsworth AFB	SD	8.33	+ 1 SD	Dell Rapids	SD	10.53	+ 1 SD
Gering	NE	8.37	+ 1 SD	Elkhorn	NE	11.10	+ 2 SD
Victoria	MN	8.40	+ 1 SD	Adel	IA	12.53	+ 2 SD
Wyoming	MN	8.52	+ 1 SD	Winterset	IA	13.08	+ 2 SD
International Fa	lls MN	8.80	+ 1 SD	Missouri Valley	IA	14.60	+ 3 SD
Waconia	MN	8.83	+ 1 SD	Carlisle	IA	14.72	+ 3 SD
Canton	SD	9.13	+ 1 SD	Pleasant Hill	IA	14.86	+ 3 SD
Forest Lake	MN	9.24	+ 1 SD	Brandon	SD	17.12	+ 3 SD
Luverne	MN	9.26	+ 1 SD	Norwalk	IA	17.26	+ 3 SD
Milbank	SD	9.93	+ 1 SD	Grimes	IA	19.25	+ 3 SD
De Witt	IA	10.21	+ 1 SD	Waukee	IA	19.99	+ 3 SD

Table 12: Cities above 1, 2, and 3 SD from the mean in finance.

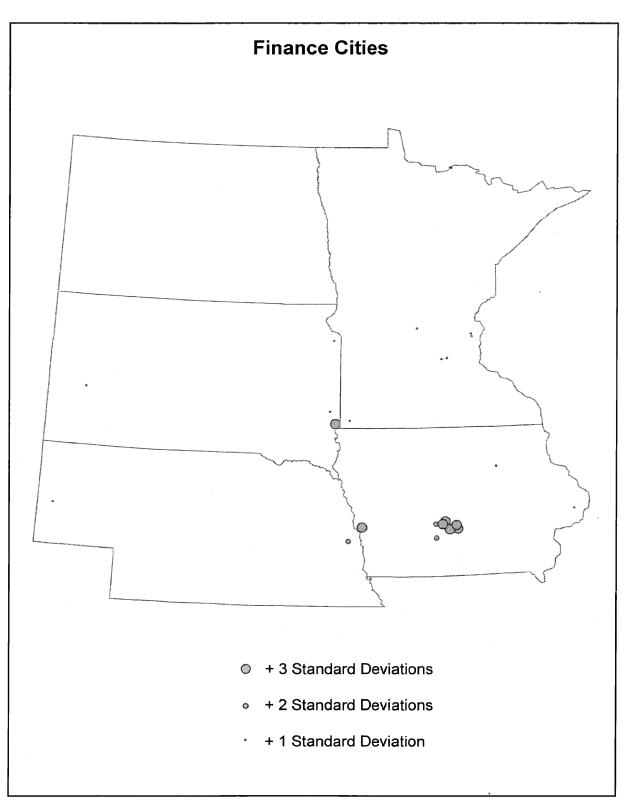


Figure 19: Finance cities above 1, 2, and 3 SD from the mean.

Professional Service Cities

The category of professional services comprises the highest average of any class by a considerable amount. Included in the professional service group are accountants, payroll services, legal services, scientific and technical management, advertising, consulting, educational services, and health care services. The 30 cities in this class all exhibit a substantial amount of average employment ranging from 34 percent to almost 48 percent (see Table 13). Many of these cities are college towns like Grinnell, Orange City, Sioux Center, Chadron, Mount Vernon, Vermillion, and Decorah. The distribution of these cities is widespread and occurs in every state, providing the fundamental educational and health services for the immediate surrounding region (see Figure 20). North and South Dakota have a particularly high proportion of cities in this class. Five of the eight cities in North Dakota, and five of seventeen in South Dakota are classified as professional service cities. Also, all ten cities in the Dakotas are multi-functional.

City	State	Function %	+ SD	City	State	Function %	+ SD
Plainview	MN	34.67	+ 1 SD	Stewartville	MN	38.56	+ 1 SD
Emmetsburg	IA	35.62	+ 1 SD	Grand Forks AF	BND	38.61	+ 1 SD
Redfield	SD	35.93	+ 1 SD	Sisseton	SD	38.99	+ 1 SD
Hot Springs	SD	36.22	+ 1 SD	Seward	NE	39.08	+ 1 SD
Crookston	MN	36.28	+ 1 SD	Sioux Center	IA	39.76	+ 1 SD
Grinnell	IA	36.54	+ 1 SD	Glenwood	IA	39.77	+ 1 SD
Orange City	IA	37.04	+ 1 SD	Vermillion	SD	40.57	+ 2 SD
Grafton	ND	37.05	+ 1 SD	Waverly	IA	40.96	+ 2 SD
Valley City	ND	37.45	+ 1 SD	Byron	MN	41.25	+ 2 SD
Rugby	ND	37.47	+ 1 SD	Pine Ridge	SD	42.90	+ 2 SD
Fairfield	IA	37.56	+ 1 SD	Minot AFB	ND	44.27	+ 2 SD
Baxter	MN	37.79	+ 1 SD	Mount Vernon	IA	44.29	+ 2 SD
Chadron	NE	37.89	+ 1 SD	St. Peter	MN	45.94	+ 3 SD
La Crescent	MN	38.42	+ 1 SD	Morris	MN	46.95	+ 3 SD
St. Joseph	MN	38.45	+ 1 SD	Decorah	IA	47.90	+ 3 SD

Table 13: Cities above 1, 2, and 3 SD from the mean in professional services.

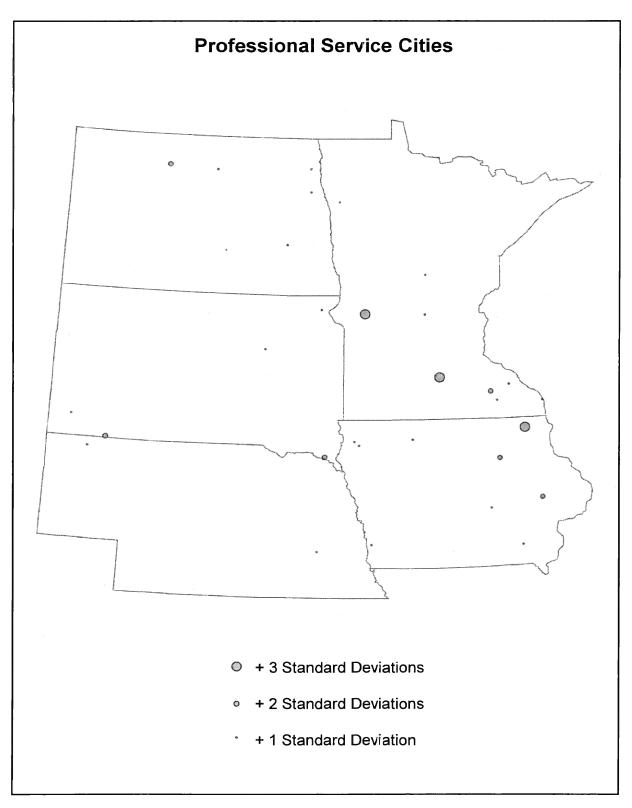


Figure 20: Professional service cities above 1, 2, and 3 SD from the mean.

Personal Service Cities

Personal service is another function that is widely distributed throughout the study area, but each state has a different set of circumstances. The average employment of 12.25 percent is the fourth highest of the eleven functions. Of the 28 cities in this group, ten are in South Dakota, nine in Minnesota, five in Iowa, and only two each in North Dakota and Nebraska (see Table 14). Cities in this category are usually found in areas that attract a large flow of people. The tourist area of the Black Hills is a prime example where five cities, including the largest in the class, Lead, are located (see Figure 21). This region offers a multitude of functions that fit into this class consisting of motels, restaurants, bars, gift shops, sight-seeing, and gambling. The second and third highest cities in personal service, Tama and Toledo, Iowa, are located only a few miles from one another. The Meskwaki Casino and entertainment center provides a substantial amount of employment for these two cities. Many cities in North Dakota are also classified as professional service cities. There is no overlap of classes in any other state.

City	State	Function %	+ SD	City	State	Function %	+ SD
Granite Falls	MN	16.34	+ 1 SD	Minden	NE	17.57	+ 1 SD
Ely	MN	16.63	+ 1 SD	Chisholm	MN	17.79	+ 1 SD
Detroit Lakes	MN	16.70	+ 1 SD	Valentine	NE	17.97	+ 1 SD
Beile Fourche	SD	16.79	+ 1 SD	Vir gi nia	MN	18.33	+ 1 SD
Devils Lake	ND	16.80	+ 1 SD	Winner	SD	18.37	+ 1 SD
Onawa	IA	16.82	+ 1 SD	Sisseton	SD	19.86	+ 1 SD
Spirit Lake	IA	16.85	+ 1 SD	Mobridge	SD	20.33	+ 2 SD
Osceola	IA	16.90	+ 1 SD	Mora	MN	20.84	+ 2 SD
Grand Forks AFB	ND	17.36	+ 1 SD	Pine City	MN	21.28	+ 2 SD
Ellsworth AFB	SD	17.37	+ 1 SD	Spearfish	SD	23.28	+ 2 SD
Sturgis	SD	17.39	+ 1 SD	Pine Ridge	SD	23.89	+ 2 SD
Vermillion	SD	17. 4 0	+ 1 SD	Tama	IA	25.82	+ 3 SD
Redwood Falls	MN	17.50	+ 1 SD	Toledo	IA	29.85	+ 3 SD
Grand Rapids	MN	17.52	+ 1 SD	Lead	SD	39.31	+ 3 SD

Table 14: Cities above 1, 2, and 3 SD from the mean in personal services.

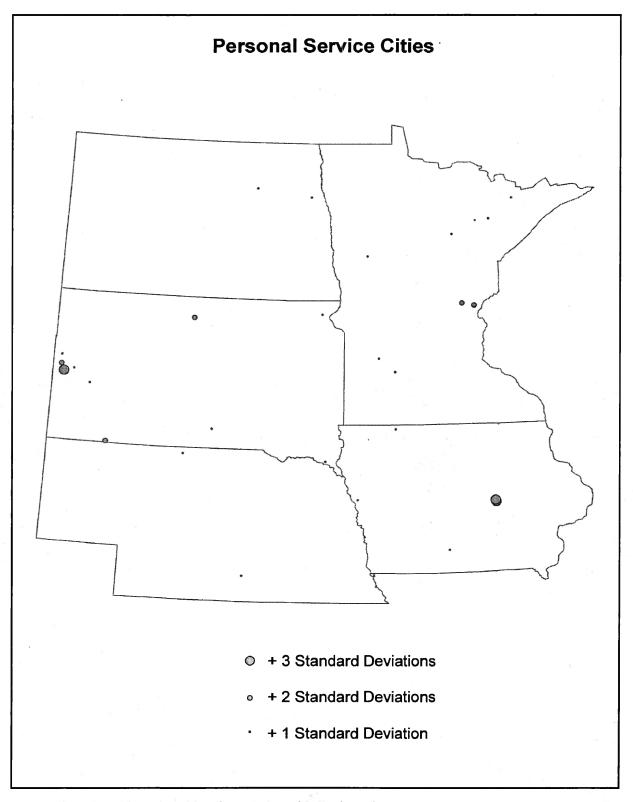


Figure 21: Personal service cities above 1, 2, and 3 SD from the mean.

Public Administration Cities

Cities in this study area providing public administration services are almost always going to be political centers or military installations. The overall average employment in the study area is relatively low at only 4.11 percent, but many cities in this category have significant levels (see Table 15). In other words, much like mining, a city is either fairly low or quite high in public administration. Unlike mining though, the location of these cities is not based on the proximity to a natural resource. The spatial distribution of these cities is quite dispersed (see Figure 22). The three air force bases of Minot, Ellsworth, and Grand Forks are all at least +2 SD from the mean. Pine Ridge, South Dakota, is a significant political center for the Lakota people, and is home to federal government sponsored Bureau of Indian Affairs. Anamosa, Iowa, is home to a state penitentiary. Other cities are local seats of government. All seven cities in North and South Dakota classified as public administration also fall into the professional or personal service class. Only half of the cities in Iowa and Minnesota are multi-functional.

City	State	Function %	+ SD	City	State	Function %	+ SD
Eldora	IA	6.96	+ 1 SD	Toledo	IA	8.25	+ 1 SD
Wahoo	NE	6.99	+ 1 SD	Anamosa	IA	9.75	+ 1 SD
Wabasha	MN	7.05	+ 1 SD	Minot AFB	ND	12.46	+ 2 SD
Sisseton	SD	7.19	+ 1 SD	Redfield	SD	13.52	+ 3 SD
Olivia	MN	7.22	+ 1 SD	Grand Forks AFI	B ND	15.23	+ 3 SD
West Union	IA	7.41	+ 1 SD	Appleton	MN	20.50	+ 3 SD
Grafton	ND	7.45	+ 1 SD	Pine Ridge	SD	22.13	+ 3 SD
Clarinda	IA	7.70	+ 1 SD	Ellsworth AFB	SD	23.80	+ 3 SD

 Table 15: Cities above 1, 2, and 3 SD from the mean in public administration.

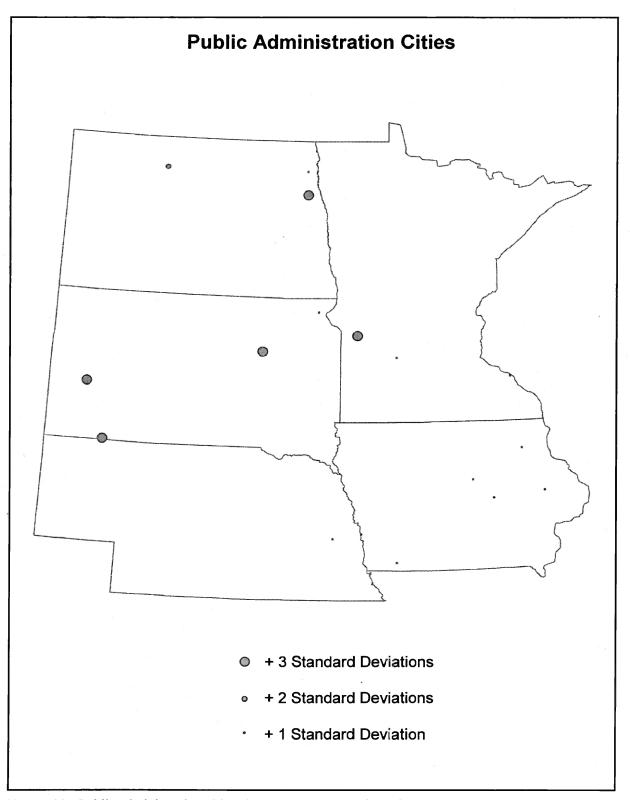


Figure 22: Public administration cities above 1, 2, and 3 SD from the mean.

Diversified Cities

Of the 231 cities within the study area of this functional classification, there are 45 cities that did not reach at least +1 SD in any of the eleven services classes (see Table 16). Iowa alone had 22 of the cities, and Minnesota was second with 16. Nebraska has six cities in the category, North Dakota has one, and South Dakota contains zero. The location of these cities tends to follow the traditional combelt throughout lowa, southern Minnesota, and through southcentral Nebraska (see Figure 19). These cities serve important roles in the local economy despite not having a significant amount of employment in one of the eleven classes. The spacing of these cities is quite even in lowa and southern Minnesota.

City	State	City	State	City	State
Wahpeton	ND	Oak Park Heights	MN	Estherville	IA
Aurora	NE	Pipestone	MN	Grundy Center	IA
Broken Bow	NE	Sartell	MN	Hampton	IA
Central City	NE	Sleepy Eye	MN	Independence	IA
Gothenburg	NE	Spring Valley	MN	Jefferson	IA
Holdrege	NE	Staples	MN	Knoxville	IA
York	NE	Watertown	MN	Le Mars	IA
Bayport	MN	Zumbrota	MN	Manchester	IA
Blue Earth	MN	Algona	IA	Nevada	IA
Caledonia	MN	Atlantic	IA	Oelwein	IA
Kasson	MN	Bloomfield	IA	Perry	IA
Lindstrom	MN	Charles City	IA	Rock Rapids	IA
Little Falls	MN	Clear Lake	IA	Rock Valley	IA
Milaca	MN	Cresco	IA	Washington	IA
New Prague	MN	Creston	IA	West Burlington	IA

Table 16:Diversified cities.

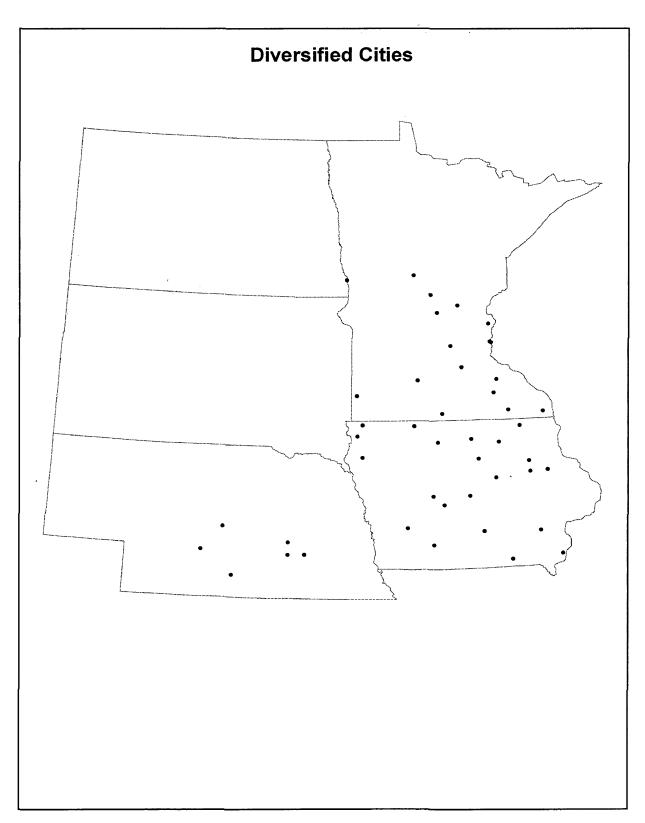


Figure 23: Diversified cities.

Nearest Neighbor Analysis

Many geographers utilize nearest neighbor analysis as a valid statistical tool for determining spatial distribution in a two-dimensional space. The maximum departure at one end of the scale is absolute clustering, where all points are at the same place. The other end is absolute dispersal, where all points are equidistant from other points. The index ranges from 0, indicating clustering, to 2.15, indicating maximum dispersion.

The nearest neighbor results are shown below in Table 17. The columns contain the index value (r value), average distance calculated in miles (Ave. Dist), the expected average distance for the number of points randomly placed in a study area (Exp.Ave.Dist), standard deviation (S.D.), the study area in square miles (Area) and the number of cities per function (# of points). Overall, the point distribution of each function, except retail, was random tending toward clustering.

Function	R Value	Ave. Dist (mi)	Exp.Ave.Dist (mi)	S.D. (mi)	Area (mi ²)	# of Points
All Cities	0.95	19.6	20.6	0.8	367,798	231
Mi	0.67	68.8	102.6	17.6	367,798	12
С	0.87	48.8	56.0	5.5	367,798	35
Mf	0.67	35.8	53.5	5	367,798	38
w	0.77	49.7	64.6	7.2	367,798	27
R	1.02	60.3	58.8	6	367,798	32
т	0.85	74.3	86.8	12.8	367,798	16
I	0.92	38.7	62.1	6.7	367,798	29
F	0.67	46.4	69.0	8.2	367,798	24
Pf	0.78	48.0	61.0	6.5	367,798	30
Ps	0.8	51.0	63.3	7	,367,798	28
Ра	0.83	72.0	86.8	12.8	367,798	16
D	0.64	31.3	48.8	4.2	367,798	45

 Table 17: Nearest Neighbor Analysis results for each economic function.

Retail was random and slightly leaning towards uniformity. The average distance between cities in the transportation class was the highest at 74.3 miles. Diversified cities were the closest together at an average of 31.3 miles. However, those cities were generally clustered towards the southeastern region of the study area.

Summary of Results

It must be noted again that the purpose of functional classifications is to identify the spatial regularities in the distribution and structure or urban functions. This chapter provided an explanation of the results produced by the creation of the contemporary functional classification of cities in the study area. Compared to previous studies on city classification, many service categories were consistent regarding percent of workers. Examples of this are public administration, wholesaling, transportation, and to a certain extent mining. Other economic classes such as personal and professional services were significantly higher in this study than previous research had found in other geographic areas, and city size. There was a noticeable divide in functions from the agricultural portions of lowa, Minnesota and eastern Nebraska to the rest of the study area of western Nebraska, North Dakota, and South Dakota.

Urban geographers are interested in describing the pattern of points within a specified study area. With this in mind, the utilization of nearest neighbor analysis, a method of analysis that distinguishes objectively between clustered

68

and dispersed spatial distributions was used. The results showed that most of the spatial distribution was random, with a tendency towards clustering for every function except retail, which was random tending towards uniformity. The results of the nearest neighbor analysis demonstrate a degree of spatial distribution of a two-dimensional distribution. It is important to reiterate that these cities provide basic connections between the dispersed agricultural populations and the agglomerated urban populations. For the most part, such direct connections as do exist are through the goods and services which are provided in these small towns for the agricultural population surrounding them.

Chapter 5

Conclusion

It is commonly understood that cities have diverse economic structures and social characteristics. Many times these differences can be traced to historical regional growth or resource availability. Recognition and better understanding of these different types of cities results from their classification. Classification is one way to organize complex and diverse information in order to create a better understanding of processes and relationships. The relevance and usefulness of classifications in geography is wide-spread throughout the discipline. In urban geography, "generalizations can be made concerning a single group comprised of like items, or one group can be compared and contrasted with one or more other groups" (Northam 1975, 13).

Location also has been an important dimension in the study of systems of cities. The activities and characteristics of a local community are thought to be influenced not only by its immediate locality, but also by its ecological position with respect to other centers of various sizes. Given the exchange relationships between cities, and the economics of transportation and communication, geographic location is an important aspect of this ecological position. (Fuguitt and Field 1972) The small town is of academic interest because it represents the lower end of the central place continuum. Any generalizations, theories, or laws developed for central places should hold true for larger cities as well as smaller cities. (Stafford 1963)

Harris, Ullman, Nelson, and Hart set the framework of functional classification as the original architects of the discipline. Smith developed a methodological outline for a more scientific and replicable methodological design in city classifications for the future. More recent applications of multivariate statistical analysis created other avenues for scientific inquiry to be obtained. The purpose behind each of these studies is to find relationships in the spatial distribution of economic functions in an attempt to better understand the incredibly complex urban structure.

Within the scope of academic research, "geography is the branch largely concerned with the attainment of spatial knowledge, and is also concerned with the identification, analysis, and interpretation of spatial distributions of phenomena and their locational relationships as they occur on the planet" (Haring *et al.* 1992, 5). The purpose of functional classifications is to identify the spatial regularities in the distribution and structure or urban functions, and this is consistent with the accepted role of geography in academia. There are two primary objectives for this thesis: 1) To create a contemporary taxonomy of the small urban places (population 2,500-10,000) in the study area using a standard classification method for urban geography. 2) To discover and explain the spatial distribution of the dominant economic functions of small cities in the study area.

Any system of classification should provide a vehicle for efficient communication, a set of definitions, and a system of relationships among these definitions. Each label in the classification system should convey the greatest

71

possible meaning in the fewest possible symbols. The categories should be precisely defined, and overlapping should be eliminated wherever possible. The goals of any such system are to allow the investigator to compare groups of cities by type and allow him to reduce hundreds of cities into some kind of order. (Atchley 1967)

Staying consistent with previous studies concerning functional classifications, the occupational data obtained from the 2000 U.S. Census were used. Only cities with populations between 2,500 and 10,000, and not contained within the contiguous urbanized area of a MSA city were examined.

When determining a method to use for this thesis, it is important to consider the overall objectives of the study. The purpose of this classification is to compare the economic functions of towns within the specified population range in one particular geographic region and to discover spatial relationships. The standard deviation method developed provides an approach that allows a multi-functional classification, and provides a firm, relative assessment of these cities. The mapping of the classification by economic functions provides a unique insight into the spatial distribution of the cities. Nearest neighbor analysis is an applicable statistical tool for determining spatial distribution in a two-dimensional space.

It must be noted again that the purpose of functional classifications is to identify the spatial regularities in the distribution and structure or urban functions. This chapter provided an explanation of the results produced by the creation of the contemporary functional classification of cities in the study area. Compared to previous studies on city classification, many service categories were consistent regarding the amount of workers. Examples of this are public administration, wholesaling, transportation, and to a certain extent mining. Other economic classes such as personal and professional services were significantly higher in this study than previous research had found in other geographic areas, and city size. A noticeable divide was formed with functions from the agricultural portions of Iowa, Minnesota and eastern Nebraska to the rest of the study area of western Nebraska, North Dakota, and South Dakota.

Urban geographers are interested in describing the pattern of points within a specified study area. The utilization of nearest neighbor analysis provides a method of analysis that distinguishes objectively between clustered and dispersed spatial distributions. (Berry 1958) The results illustrate that most of the spatial distribution was random, with a tendency towards clustering for every function except retail, which was random tending towards uniformity. The results of the nearest neighbor analysis demonstrate a degree of spatial distribution of a two-dimensional distribution. It is important to reiterate that these cities provide basic connections between the dispersed agricultural populations and the agglomerated urban populations. For the most part, such direct connections as do exist are through the goods and services which are provided in these small towns for the agricultural population surrounding them.

73

The present study, in conjunction with those that have preceded it, lends empirical support to Brush's statement that "small towns and villages in agricultural areas of Anglo-America exist mainly because of their function as central places for the exchange of goods and services, each for its local farm trade area" (Brush 1953, 380). By building one similar study upon another in different areas, progress is made toward valid generalizations concerning the economic functioning of central places, thus making precise prediction more possible. (Stafford 1963)

These small places provide basic connections between the dispersed agricultural populations and the agglomerated urban populations. For the most part, such direct connections that do exist are through the goods and services which are provided in these small towns for the agricultural population surrounding them. Second, even if small towns do not fulfill their role of providing goods and services for a dispersed farm population, the fact remains that these small places exist and that economic activities are performed in them just as they are in larger places. (Thomas 1960)

This thesis establishes the framework for further research into understanding the economic functionality of small urban places. Future research could investigate various issues including temporal studies, because geographers should examine functional changes and spatial distribution as the urban construct evolves. Another aspect that should be carefully examined is the changes in population for cities in a particular region or service class. Other

74

forms of multivariate statistical analyses, such as cluster analysis or regression analysis, could be used to locate groups of cities with similar economic structures. Many plausible avenues can be utilized in order to discover and understand this diverse and complex system, but it is crucial to employ a method that strictly follows the research objective(s) of a particular study.

APPENDIX A

City Employment Data and Percentages by Function (population sort)

Urban Place	ST	Pop	Empl.	¥	Mi%	ပ	د %	¥	Mf %	8	% M	æ	R%	-	π%	-	%1	۲ L	F%	æ	Pf %	۲. ۲	Ps %	Pa	Pa %
Spring Valley	W	2518	1258	•	0.0%	69	5.5%	166	13.2%	28	2.2%	149	11.8%	62	6.3%	8	1.4%	68	7.1%	382	30.4%	182	14.5%	\$	3.7%
Marengo	₹	2535	1321	•	0.0%	67	5.1%	403	30.5%	15	1.1%	169	12.8%	8	2.3%	æ	2.3%	35	2.6%	307	23.2%	178	13.5%	49	3.7%
Toledo	AI	2539	1176	•	0.0%	8	7.7%	145	12.3%	15	1.3%	114	9.7%	8	2.6%	24	2.0%	27	2.3%	281	23.9%	351	29.8%	97	8.2%
West Union	₹.	2549	:1242	•	0.0%	62	5.0%	256	20.6%	06	7.2%	132	10.6%	42	3.4%		0.6%	55	4.4%	295	23.8%	149	12.0%	92	7.4%
Kimball	¥	2559	1214	46	3.8%	59	4.9%	141	11.6%	45	3.7%	150	12.4%	123	10.1%	21	1.7%	11	5.8%	267	22.0%	163	13.4%	23	6.0%
Perham	WN	2559	1140	4	0.4%	. 77	6.8%	283	24.8%	22	1.9%	116	10.2%	56	4.9%	8	5.3%	30	2.6%	324	28.4%	121	10.6%	প্ন	2.3%
Belmond	¥.	2560	1308	•	0.0%	62	6.0%	348	26.6%	29	2.2%	158	12.1%	33	2.5%	64	4.9%	4	3.4%	363	27.8%	87	6.7%	15	1.1%
Olivia	W	2570	1261	•	0.0%	8	6.6%	196	15.5%	35	2.8%	187	14.8%	61	4.8%	=	0.9%	69	5.5%	351	27.8%	103	8.2%	रु	7.2%
Sisseton	8	2572	1113	•	0.0%	99	5.9%	37	3.3%	16	1.4%	131	11.8%	24	2.2%	8	1.6%	57	5.1%	434	39.0%	221	19.9%	8	7.2%
Rock Rapids	Ā	2573	1265	0	0.0%	64	5.1%	202	16.0%	35	2.8%	161	12.7%	59	4.7%	88	3.0%	101	8.0%	347	27.4%	150	11.9%	51	4.0%
Milaca	MM	2580	1061	•	0.0%	68	6.4%	198	18.7%	12	1.1%	155	14.6%	36	3.4%	24	2.3%	47	4.4%	335	31.6%	149	14.0%	21	2.0%
Glenwood	WW	2594	1078	•	0.0%	39	3.6%	161	14.9%	69	6.4%	124	11.5%	59	5.5%	34	3.2%	58	5.4%	329	30.5%	145	13.5%	29	2.7%
Grundy Center	₹	2596	1189	0	0.0%	42	3.5%	227	19.1%	41	3.4%	170	14.3%	64	5.4%	21	1.8%	62	5.2%	316	26.6%	135	11.4%	74	6.2%
David City	¥	2597	1160	•	0.0%	63	5.4%	275	23.7%	90	2.6%	115	9.6%	95	8.2%	s	0.4%	34	2.9%	368	31.7%	63	5.4%	29	5.1%
Wabasha	W	2599	1177	•	0.0%	69	5.9%	239	20.3%	22	1.9%	132	11.2%	55	4.6%	34	2.9%	54	4.6%	333	28.3%	146	12.4%	83	71%
Bloomfield	M	2601	1147	•	0.0%	82	7.1%	248	21.6%	19	1.7%	73	6.4%	20	6.1%	18	1.6%	ß	4.6%	359	31.3%	166	14.5%	37	3.2%
Chisago City	NM	2622	1185	•	0.0%	95	8.0%	209	17.6%	8	6.8%	103	8.7%	29	5.0%	34	2.9%	20	5.9%	365	30.8%	114	9.6%	52	4.4%
Williamsburg	Υ	2622	1348	•	0.0%	11	8.2%	270	20.0%	49	3.6%	189	14.0%	41	3.0%	47	3.5%	28	2.1%	395	29.3%	85	6.3%	44	3.3%
Becker	NW	2673	1413	•	0.0%	187	13.2%	259	18.3%	37	2.6%	168	11.9%	117	8.3%	12 -	%8.0	67	4.7%	334	23.6%	130	9.2%	14	5.0%
Annandale	W	2684	1272	•	0.0%	146	11.5%	223	17.5%	47	3.7%	135	10.6%	59	4.6%	38	3.0%	47	3.7%	355	27.9%	191	15.0%	€	1.5%
Rock Valley	A	2702	1441	•	0.0%	85	5.9%	315	21.9%	57	4.0%	176	12.2%	42	2.9%	18	1.2%	69	4.8%	473	32.8%	134	9.3%	59	2.0%
Cokato	W	2727	1294	0	%0.0	123	9.5%	337	26.0%	28	2.2%	150	11.6%	66	3.0%	58	2.2%	54	4.2%	349	27.0%	128	9.6%	35	2.7%
Tama	Ā	2731	1224	•	0.0%	84	6.9%	249	20.3%	24	2.0%	110	%0 .6	43	3.5%	13	1.1%	43	3.5%	290	23.7%	316	25.8%	38	3.1%
Roseau	W	2756	1417	•	%0.0	42	3.0%	516	36.4%	æ	0.6%	177	12.5%	25	1.8%	37	2.6%	65	4.6%	410	28.9%	76	5.4%	46	3.2%
Zumbrota	W.	2789	1467	•	0.0%	106	7.2%	204	13.9%	64	4.4%	159	10.8%	8	6.1%	29	2.0%	94	6.4%	503	34.3%	165	11.2%	38	2.6%
Montgomery	NW	2794	.1360	-	0.1%	121	8.9%	417	30.7%	55	4.0%	173	12.7%	59	4.3%	8	0.6%	40	2.9%	289	21.3%	148	10.9%	24	1.8%
Sibley	₹	2796	1336	6	0.0%	62	4.6%	405	30.3%	88	2.8%	116	8.7%	103	7.7%	8	2.2%	99	4.5%	316	23.7%	93	7.0%	88	5.1%
Valentine	۳ ۲	2820	1347	•	0.0%	101	7.5%	36	2.7%	65	4.8%	192	14.3%	103	7.6%	16	1.2%	46	3.4%.	435	32.3%	242	18.0%	69	5.1%
Wilton	4	2829	1482		0.2%	\$	2.9%	424	28.6%	67	4.5%	178	12.0%	66	6.7%	47	3.2%	54	3.6%	419	28.3%	97	6.5%	47	3.2%
Afton	W	2839	1552	2	0.3%	94	6.1%	292	18.8%	62	4.0%	125	8.1%	99	4.3%	55	3.5%	86	5.5%	493	31.8%	160	10.3%	16	6.3%
Zimmerman	MN	2851	1516	0	0.0%	178	11.7%	455	30.0%	38	2.5%	179	11.8%	70	4.6%	8	1.2%	73	4.8%	306	20.2%	136	9.0%	38	2.5%
Appleton	NW	2871	644	0	%0:0	06	4.7%	72	11.2%	14	2.2%	. 11	11.0%	35	5.4%	23	3.6%	6	6.2%	150	23.3%	58	9.0%	132	20.5%

₹	3	Emp	۶	Mi%	ပ	ະ ບໍ	ž	Mf %	×	% M	œ.	R %	۲	1%	-	%1	ш	F%	¥	Pf %	Ps	Ps %	Pa	Pa %
	2878	1267	•	0.0%	37	2.9%	371	29.3%	36	2.8%	135	10.7%	65	5.1%	6	%/.0	72	5.7%	331	26.1%	156	12.3%	21	1.7%
ទ	2897	1080	0	0.0%	46	4.3%	33	3.1%	33	3.1%	174	16.1%	41	3.8%	15	1.4%	66	3.6%	387	35.8%	132	12.2%	146	13.5%
¥	2922	1501	0	0.0%	28	1.9%	447	29.8%	59	3.9%	186	12.4%	75	5.0%	8	1.9%	85	5.7%	396	26.4%	94	6.3%	57	3.8%
Ð	2939	1249	7	% 9.0	64	5.1%	99	5.3%	69	5.5%	151	12.1%	89	5.4%	37	3.0%	99	5.3%	468	37.5%	178	14.3%	66	3.1%
¥	2964	1514	4	0.3%	112	7.4%	217	14.3%	18	1.2%	200	13.2%	56	3.7%	35	2.3%	82	5.4%	392	25.9%	266	17.6%	£3	2.8%
W	2965	1415	2	0.1%	118	8.3%	227	16.0%	40	2.8%	189	13.4%	58	4.1%	33	2.3%	20	1.4%	481	34.0%	168	11.9%	62	4.4%
¥	2968	1439	0	0.0%	8	5.6%	234	16.3%	20	3.5%	115	8.0%	140	9.7%	35	2.4%	67	4.7%	442	30.7%	139	9.7%	31	2.2%
MM	2975	1382	0	0.0%	82	5.9%	372	26.9%	43	3.1%	191	13.8%	41	3.0%	7	0.5%	113	8.2%	377	27.3%	121	8.8%	22	1.6%
ß	2980	1517	12	0.8%	<u>1</u>	7.1%	157	10.3%	59	4.5%	168	11.1%	80	5.3%	49	3.2%	160	10.5%	483	31.8%	159	10.5%	45	3.0%
≤	2992	1459	4	0.3%	108 1	7.4%	144	9.9%	38	2.6%	219	15.0%	88	6.0%	36	2.5%	213	14.6%	388	26.6%	159	10.9%	37	2.5%
₽	2998	1386	ŝ	0.4%	6	6.6%	211	15.2%	32	2.3%	172	12.4%	72	5.2%	22	1.6%	56	4.0%	419	30.2%	173	12.5%	68	4.9%
WW	2999	1556	197	12.7%	95	6.1%	21	3.7%	110	7.1%	205	13.2%	8	5.1%	49	3.1%	78	5.0%	432	27.8%	172	11.1%	72	4.6%
WN	3001	1440	•	0.0%	132	9.2%	189	13.1%	82 -	5.7%	203	14.1%	91	6.3%	19	1.3%	11	5.3%	349	24.2%	189	13.1%	83	5.8%
WW	3015	1611	•	0.0%	122	7.6%	302	18.7%	90	1.9%	171	11.0%	40	2.5%	25	1.6%	82	5.1%	543	33.7%	207	12.8%	83	5.2%
ទ	3027	1511	165	10.9%	6	6.1%	R	1.7%	16	1.1%	163 1	10.8%	28	1.9%	27	1.8%	35	2.3%	293	19.4%	594	39.3%	88	2.5%
MM	3029	1634	2	0.1%	123	7.5%	345	21.1%	47	2.9%	217	13.3%	<u>96</u>	5.9%	17	1.0%	94	5.8%	428	26.2%	227	13.9%	29	1.8%
≤	3035	1321	•	0.0%	8	7.0%	216	16.4%	29	2.2%	156	11.8%	36	2.7%	98	2.7%	53	4.0%	404	30.6%	144	10.9%	92	7.0%
NW	3040	1203	•	0.0%	63	5.2%	337	28.0%	9	0.5%	129	10.7%	37	3.1%	45	3.7%	52	4.3%	341	28.3%	137	11.4%	39	3.2%
NW	3043	1311	•	0.0%	36	7.2%	246	18.8%	21	1.6%	191	14.6%	59	4.5%	11	%8:0	32	2.4%	294	22.4%	279	21.3%	63	4.8%
WW	3048	1619	•	0.0%	<u>1</u> 09	6.7%	304	18.8%	87	5.4%	193	11.9%	69	4.3%	48	3.0%	138	8.5%	440	27.2%	154	9.5%	17	4.8%
NW	3070	1426	•	%0 . 0	115	8.1%	230	16.1%	48	3.4%	154	10.8%	82	5.8%	4	0.3%	58	4.1%	433	30.4%	233	16.3%	57	4.0%
MM	3091	1517	0	0.0%	٤٢	4.8%	400	26.4%	29	4.4%	190	12.5%	81	5.3%	40	2.6%	84	5.5%	349	23.0%	131	8.6%	56	3.7%
Ā	3091	1492	•	0.0%	113	7.6%	196	13.1%	49	3.3%	179	12.0%	68	4.6%	58	3.9%	28	1.9%	421	28.2%	251	16.8%	6/	5.3%
W	3104	1311	en	0.2%	83	4.8%	317	24.2%	51	3.9%	201	15.3%	62	4.7%	14	1.1%	4	3.4%	356	27.2%	149	11.4%	28	2.1%
NW	3108	1657	5	0.3%	121	7.3%	501	30.2%	55	3.3%	154	9:3%	76	4.6%	50	1.2%	98	5.2%	399	24.1%	201	12.1%	25	1.5%
ß	3110	1599	•	0.0%	155	9.7%	283	17.7%	63	3.9%	260	16.3%	119	7.4%	37	2.3%	146	9.1%	369	23.1%	8	5.6%	99	4.1%
8	3137	1415	•	0.0%	109	7.7%	9	0.7%	99	4.7%	240	17.0%	92	6.5%	23	1.6%	75	5.3%	368	26.0%	260	18.4%	73	5.2%
9	3152	1516	187	12.3%		3.4%	66	6.5%	∞.	0.5%	171	11.3%	292	19.3%	31	2.0%	61	4.0%	388	25.6%	183	12.1%	99	2.6%
M	3155	1556	13	0.8%	128	8.2%	265	17.0%	26	1.7%	245	15.7%	84	5.4%	31	2.0%	43	2.8%	399	25.6%	187	12.0%	86	5.5%
Ā	3161	1571	0	0.0%	113	7.2%	396	25.2%	2	3.2%	221	14.1%	110	7.0%	23	1.5%	17	1.1%	392	25.0%	135	8.6%	8	5.2%
MN	3162	892	0	0.0%	75	8.4%	183	20.5%	13	1.5%	127	14.2%	43	4.8%	27	3.0%	02	7.8%	199	22.3%	ŧ	12.4%	4	4.9%
S	3171	741	0	0.0%	28	3.8%	0	0.0%	0	0.0%	37	5.0%	9	0.8%	•	0.0%	÷	1.5%	318	42.9%	177	23.9%	164	22.1%

Ps % Pa %	7.6% 27	20.8% 34 2.4%	9.3% 79	12.9% 72 5.7%	11.4% 59 3.4%	10.6% 23	14.2% 79	9.4% 57	8.1% 66	9.4% 64 3.2%	8.5% 90 5.4%	10.8% 41 2.5%	13.5% 54 3.3%	6.1% 120 6.7%	8.9% 64	13.1% 55	12.9% 18	9.6% 60	20.3% 84	9.9% 91	15.6% 105	15.0% 59	10.7% 94	14.1% 55	11.6% 37	11.1% 63	9.1% 62	10.6% 30	16.6% 53	14.4% 97	15.5% 79	
Ps P	124 7	298 20	143 9	163 1;	200 1	165 1	233 1	183 9	131 8	186 9	141 8	173 10	221 1:	109 6	176 8	230 1	212 1:	164 9	307 24	167 9	263 1	267 1:	189 10	232 14	203 1	192 1	144 9	182 11	217 1	254 1	303 11	
Pf %	34.7%	23.0%	30.6%	29.6%	31.2%	22.3%	25.1%	24.7%	24.0%	44.3%	25.4%	26.4%	29.5%	26.0%	41.2%	20.7%	27.9%	33.0%	30.9%	23.0%	27.4%	21.3%	30.5%	22.9%	22.1%	27.4%	25.2%	28.6%	32.4%	22.8%	21.4%	
ч Т	562 3/	329 2:	469 3(374 29	545, 31	347 22	<u> </u>	480 24	388 24	873 44	423 25	424 26	484 29	466 26	815 41	362 2(459 27	564 33	466 3(390 2:	461 27	379 2.	540 3(376 22	387 22	474 27	397 21	489 21	540 37	401	417 21	
%	5.2% 5	3.5% 3	6.5% 4	5.2% 3	2.7% 5	1.7%	4.3% 4	4.7%	4.4%	5.8% 8	12.5% 4	4.3%	2.6% 4	14.7% 4	3.6% 8	6.4%	3.6% 4	2.8% 5	2.8% 4	2.8%	6.0% 4	5.1%	5.6% 5	9.9%	4.0%	3.3% 4	3.6% 3	3.3% 2	5.8%	6.2% 4	5%	
F	84 5.	50 3.	9 9 6.	66 5.	48 2.	26 1.		91 4		115 5.	209 12	69 4.	43 2.	264 14	71 3.	112 6.		47 2	42, 2.	48 2.	101 6.	90 5.	100 5.	163 9.	70 4.	57 3.	57 3.	57 3.	97 5.	110 6.	127 6.	╀
%	1.9% 8	2.2%	1.7% 9	1.1%	0.7%	1.9%	2.5%	3.2%	2.9%	2.6% 1	2.8% 2	0.9% 6	0.5% /	3.8% 2	1.1%	4.3% 1	1.6% (2.1%	1.5%	3.9% 4	1.6% 1	2.3%	2.9% 1	1.8% 1	2.1%	1.3%	1.1%	1.9%	3.2%	0.9% 1	2.0%	╞
-	31 1	31 2	26 1	14 1	12 0	29 1	41 2	62	47 2	51 2	47 2	15 0	8	68 3	21	75 4	26	36	2	66 3	27 1	41 2	51 2	29 1	36 2	2	18	33	53 3	15	39 2	┢
T%	5.5%	1.4%	3.5%	2.1%	4.7%	4.2%	22.2%	2.8%	6.3%	3.2%	5.3%	2.6%	6.1%	6.9%	2.4%	5.8%	4.5%	2.8%	5.5%	4.3%	5.6%	6.9%	4.3%	7.6%	5.0%	3.5%	3.8%	10.6%	2.0%	6.8%	6.0%	
Т	89	20	54	26	82	8	-	5	102	64	8	42	100	123	84	101	74	48	83	72	रु	122	т	124	87	99	8	181	R	119	116	
R %	13.5%	13.2%	16.2%	11.9%	16.1%	10.2%	11.4%	7.1%	18.3%	11.7%	12.9%	13.5%	13.1%	11.0%	14.8%	13.8%	9.5%	8.6%	14.8%	11.5%	12.1%	12.2%	15.0%	13.0%	13.5%	17.0%	13.7%	7.3%	13.6%	15.3%	10.8%	
R	219	189 1	248	150	281	159	186	139	296	231 1	215	217	215 1	198	292	241	156	146		195	204	217	265	213 1	236	294	216	124	226	269 1	210	
% M	3.9%	1.5%	4.5%	5.0%	2.2%	1.5%	1.4%	6.0%	2.0%	2.5%	5.3%	2.5%	2.6%	3.4%	0.8%	2.6%	1.8%	3.0%	3.8%	5.9%	1.2%	4.5%	2.8%	8.4%	4.7%	2.7%	2.7%	4.7%	1.3%	8.8%	2.5%	
M	5	22	69	63	38	24	33	116	33	20	88	4	42	61	15	46	8	25	57	100	21	80	50	138	82	4 6	43	88	21	155	48	
Mf %	14.4%	21.2%	14.0%	15.6%	16.4%	41.7%	9.8%	33.1%	21.2%	10.2%	10.7%	26.7%	13.2%	13.6%	16.1%	20.5%	22.9%	18.2%	1.3%	25.3%	12.3%	12.0%	17.0%	8.2%	26.1%	20.8%	23.2%	20.0%	5.0%	1.3%	20.0%	
¥	233	303	215	197	286	647	160	645	343	201	179	429	217	244	319	359	376	310	30	428	207	214	301	134	457	359	366	341	83	23	389	
C %	9.1%	10.3%	7.8%	7.4%	9.7%	3.2%	2.9%	5.3%	5.6%	4.5%	7.4%	7.2%	5.7%	7.9%	7.2%	5.2%	7.7%	11.2%	9.1%	5.7%	5.1%	8.0%	4.2%	3.8%	5.5%	7.1%	10.6%	8.3%	6.7%	9.3%	11.1%	
c	147	148	120	. 93	170	49	48	104	96	88	124	116	93	141	142	91	126	191	137	97	98	142	75	63	97	12	168	141	112	164 -	216	:
Mi%	0.1%	0.3%	0.7%	%0'0	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.0%	3.6%	0.0%	0.0%	3.5%	0.9%	0.0%	0.0%	0.0%	7.4%	0.0%	0.0%	
Mi	2	5	11	0	3	0	0	0	0	0	80	0	0	0	0	0	9	0	0	0	99	0	0	58	16	•	0	0	124	0	0	
Empl.	1621	1430	1533	1263	1748	1553	1637	1947	1616	1971	1668	1608	1638	1794	1976	1751	1645	1707	1510	1692	1682	1781	1772	1642	1748	1729	1578	1709	1666	1762	1949	
Pop.	3190	3193	3228	3276	3295	3332	3350	3373	3376	3390	3435	3451	3491	3497	3500	3501	3515	3559	3574	3607	3613	3619	3621	3640	3660	3692	3706	3712	3724	3733	3789	
ST	MN	WW	Ρ	MN	NN	AI	뛷	NW	NM	M	Ā	٩	뷛	Ā	W	NW	NW	W	ß	Ă	WW	NE	NW	ß	뛷	A	A	₫.	NW	¥	NM	
Urban Place	Plainview	Mora	Story City	Park Rapids	St Charles	West Liberty	Auburn	Goodview	Benson	Mount Vernon	Adel	Osage	Broken Bow	Carlisle	Byron	Jackson	Sleepy Eye	Breckenridge	Mobridge	Monticello	Two Harbors	Gothenburg	Blue Earth	Milbank	West Point	New Hampton	Albia	Eagle Grove	Ely	O'Neill	Belle Plaine	

Pa %	2.9%	4.6%	3.3%	0.7%	2.4%	2.2%	7.0%	5.5%	1.7%	1.9%	5.2%	2.3%	6.2%	2.9%	2.4%	23.8%	3.2%	2.9%	5.3%	2.6%	2.9%	1.7%	2.4%	2.0%	3.5%	5.8%	4.9%	7.4%	2.6%	5.5%	3.9%	2 06/
Pa	57	76	63	5	4	4 3	134	5	33	41	115	20	66	99	49	237	2	28	114	55	23	37	44	47	83	121	113	161	26	116	8	a
Ps %	12.2%	15.9%	10.7%	8.6%	13.4%	8.9%	13.8%	14.7%	14.6%	7.7%	10.4%	14.1%	13.8%	7.5%	10.9%	17.4%	12.9%	12.6%	11.0%	16.8%	9.7%	15.6%	12.8%	9.0%	·7.6%	9.6%	10.2%	9.3%	14.7%	16.8%	9.8%	15 50/
S	238	263	202	171	273	174	264	267	289	170	231	311	222	152	227	173	282	253	234	362	177	342	233	207	181	200	238	201	315	357	201	343
%₩	24.0%	25.9%	22.8%	28.5%	27.9%	24.3%	24.8%	26.9%	35.6%	34.1%	33.6%	26.2%	36.2%	32.6%	20.4%	26.9%	24.3%	30.4%	31.9%	26.9%	23.6%	30.3%	32.2%	26.7%	34.3%	20.5%	26.9%	37.0%	26.4%	21.9%	25.8%	20.1%
Ł	469	427	430	569	570	473	475	489	705	751	747	577	582	664	424	268	532	611	680	578	431	663	584	614	817	428	626.	801	207	465	531	W
Р%	4.8%	2.4%	5.5%	4.8%	5.3%	2.5%	3.5%	5.1%	3.8%	8.4%	4.5%	4.3%	4.0%	3.2%	3.5%	8.3%	2.9%	3.0%	6.5%	3.1%	3.3%	3.0%	3.0%	3.2%	7.4%	5.1%	4.3%	4.2%	4.9%	3.3%	4.7%	7%
u.	8	4	104	95	108	88	88	93	75	185	66	95	65	65	72	ន	ខ	61	138	67	99	99	54	73	177	107	<u>5</u>	6	105	7	96	ų
%1	1.7%	1.7%	2.4%	2.5%	4.7%	2.5%	1.3%	2.1%	3.1%	1.3%	1.6%	1.8%	2.4%	1.3%	0.5%	1.1%	1.2%	1.8%	2.4%	1.1%	4.3%	2.3%	1.0%	%9.0	1.7%	1.6%	2.1%	1.2%	1.8%	2.5%	1.1%	4 70/
-	R	28	45	20	96	48	24	39	61	28	36	6	R	27	=	=	26	8	51	53	82	51	19	14	\$	34	8	27	8	54	22	2
1%	5.8%	7.3%	3.9%	2.9%	6.3%	5.0%	3.4%	5.7%	4.6%	3.3%	2.6%	3.3%	7.9%	3.2%	5.9%	2.3%	7.6%	2.8%	6.8%	2.5%	4.7%	5.8%	2.6%	2.9%	3.4%	5.8%	4.9%	4.5%	3.0%	4.8%	5.6%	1 40
-	114	121	73	57	129	67	99	1 <u>04</u>	91	72	88	2	127	65	123	ន	166	57	145	53	85	126	48	99	83	120	114	8	2	103	116	10
R %	15.9%	15.6%	10.5%	7.7%	14.8%	14.3%	13.1%	11.2%	9.7%	14.2%	9.9%	12.4%	12.3%	16.5%	10.8%	11.3%	9.4%	11.1%	10.2%	14.0%	9.3%	12.6%	16.0%	8.8%	12.8%	13.5%	17.1%	11.4%	10.2%	16.3%	17.9%	10.4%
æ	311.	258	197	154	302	279	251	203	191	312	219	273	197	337	224	113	207	224	217	300	169	276	290 .	202	305	282	398	247	218	347	367	020
% M	3.6%	3.1%	4.1%	3.3%	3.8%	1.7%	4.1%	2.2%	2.0%	5.9%	1.5%	5.1%	2.1%	4.1%	1.9%	1.4%	1.5%	3.8%	3.0%	2.1%	1.3%	2.2%	5.6%	2.2%	2.5%	3.4%	2.5%	2.2%	3.4%	1.1%	14.2%	3 5.0%
×	8	51	78	99	11	34	79	\$	66	130	34	112	34	84	39	14	32	11	65	45	23	49	102	50	29	11	58	47	2	24	292	2
Mf %	20.7%	9.4%	24.9%	35.3%	13.9%	30.8%	18.0%	20.2%	15.4%	17.7%	19.5%	23.1%	2.9%	18.3%	34.0%	3.3%	29.4%	19.3%	13.5%	21.1%	28.2%	15.8%	16.9%	35.2%	16.3%	26.8%	19.8%	8.2%	23.8%	6.4%	8.9%	13 20/
ž	406	155	469	704	283	599	346	367	304	389	433	508	47	372	708	8	644	388	289	453	515	345	307	808	389	559	459	177	510	136	182	205
ر % د	7.7%	3.7%	7.3%	5.4%	3.8%	6.6%	9.7%	6.0%	4.8%	5.3%	10.7%	5.0%	8.4%	6.8%	5.8%	2.8%	7.0%	4.6%	6.5%	8.9%	6.3%	6.2%	5.9%	5.1%	7.5%	4.7%	5.0%	6.2%	7.6%	10.3%	5.8%	5 70%
с	151	61	138	107	11	128	186	110	95	116	237	110	135	138	120	28	153	92	139	191	115	136	107	117	180	86	116	133	162	220	120	115
Mi%	0.1%	10.1%	%0:0	0.4%	0.0%	0.2%	0.0%	%0:0	0.0%	0.0%	%0.0	0.0%	%6:0	0.0%	0.0%	%0:0	0.0%	0.3%	0.0%	0.0%	0.0%	. %0.0	0.0%	0.0%	0.2%	0.5%	0.1%	0.0%	0.2%	6.0%	0.0%	0 1%
Ϊ	-	166	0	7	0	e	0	0	0	0	0	0	14	0	0	0	0	9	0	0	0	0	0	0	5	¢	2	0	5	128	0	~
Empl.	1958	1651	1882	1993	2042	1947	1917	1820	1979	2203	2220	2202	1607	2038	2081	966	2193	2013	2135	2149	1827	2190	1814	2298	2385	2086	2324	2162	2144	2126	2056	2213
Pop.	3833	3865	3905	3922	3930	3933	3942	3957	3958	4025	4026	4035	4129	4131	4163	4165	4215	4218	4225	4261	4262	4280	4294	4362	4398	4452	4490	4516	4559	4565	4573	4617
ST	NW	NN	AI AI	NW	NM	NW	ų.	NM	۲.	7 NW	NW	A A	n S	A A	۲ ۲	s S	A N	A A	PE B	4	, ₽	NW	NW	A A	NW	4	NW	q	7 NW	SD 4	IA 4	NW
Urban Place	Jordan	Eveleth	Cresco	Le Sueur	Sauk Centre	Princeton	Wahoo	Oak Park Heights	Emmetsburg	Victoria	Grant	Dyersville	Hot Springs	Waukon	Cozad	Ellsworth AFB	Camanche	Hampton	Aurora	Spirit Lake	Fairbury	Pipestone	Wadena	Forest City	Kasson	Humboldt	Windom	Grafton	New Prague	Belle Fourche	Chariton	(INJATMA

Pa %	3.7%	2.9%	5.9%	2.6%	1.4%	4.0%	15.2%	1.5%	2.3%	1.3%	4.2%	3.6%	1.4%	3.3%	3.3%	6.7%	2.3%	2.6%	6.1%	3.0%	3.8%	3.6%	4.3%	5.4%	4.4%	1.5%	3.1%	4.1%	4.1%	9.8%	4.1%
Pa P	73 3	66 2	116 5	66 2	30 1	84 4	29 1	8	58 2	33 1	103 4	95 3	29 1	85 3	30	197 6	69 2	62 2	174 6	72 3	95 3	93 3	112 4	134 5	115 4	38 1	86 3	107 4	114 4	204 9	106 4
Ps %	12.3%	16.9%	10.6% 1	16.1%	9.0%	8.7%	17.4% 1	7.2%	7.2%	10.3%	16.2% 1	13.3%	17.8%	8.7%	11.6%	10.1% 1	8.4%	9.1%	7.9% 1	10.8%	8.9%	7.1%	11.9% 1	10.9% 1	10.1% 1	10.5%	8.7%	6.2% 1	17.5% 1	10.1% 2	5%
Ps P	243 12	384 16	209 1(416 16	188 9	183 8	147 17	182 7	181 7	254 1(402 16	348 13	366 17	224 8	313 11	297 10	248 8	214 9	228 7	263 1(222 8	184 7	310 11	269 10	264 10	267 1(161 6	488 17	212 1(242 9.
Pf%	31.9% 2	24.7% 3	26.1% 2	38.5% 4	24.7% 1	24.1% 1	38.6% 1	25.6% 1	33.3% 1	38.4% 2	23.8% 4	28.6% 3	20.2% 3	27.3% 2	47.0% 3	31.0% 2	30.0% 2	33.2% 2	26.0% 2	28.5% 2	28.7% 2	28.0% 1	26.1% 3	39.8% 2	26.8% 2	14.4% 2	38.6% 2	23.5% 1	20.5% 4	25.7% 2	33.3% 2
P P	632 31	561 24	515 26	994 38	516 24	509 24	327 38	644 25	833 33	947 38	588 23	745 28	415 20	705 27	1264 47	916 31	885 30	779 33	747 26	695 28	714 28	725 28	680 26	978 39	699 26	368 14	1087 38	611 23	573 20	537 25	851 33
F%	6.4% 6	5.7% 5	5.8% 5	2.9% 9	2.4%	13.1% 5	3.7% 3	6.2% E	1.4% 8	5.8% 5	6.4% 5	2.6% 7	2.7% 4	10.2% 7	3.6% 1	14.9% 9	19.2% 8	6.4% 7	20.0%	3.4% 6	3.8% 7	5.0% 7	3.6% E	6.2% 5	3.0% 6	2.9% 3	3.9% 1	4.8% 6	4.8%	4.8%	7.7% 8
	127 6.	129 5.	114 5.	75 2.	50 2.	276 13	31 3.	157 6.	35 1.	142 5.	158 6.	67 2.	56 2.	264 10	97 3.	439 14	568 19	151 6.	575 20	84 3.	94 3.	129 5.	94 3.	153 6.	79 3.	75 2.	109 3.	125 4	133 4.	101	197 7.
1%	1.7% 1	0.2% 1	4.6% 1	2.6% 7	3 %6:0	4.7% 2	0.0%	0.7% 1	2.9%	2.5% 1	1.6% 1	2.0% 6	1.5% 5	1.0% 2	3.3% 5	4.1% 4	4.1% 5	5.0% 1	3.2% 5	1.3% 8	1.8%	2.5% 1	3.7% 5	2.6% 1	0.8% 7	1.3%	1.1% 1	2.2% 1	1.1% 1	3.0% 1	4.1% 1
-	34 1	5	90 4	66 2	18 0	100 4	0	17 0	72 2	62 2	40 1	53 2	30 1	25 1	88 3	122 4	122 4	118 5	93 3	32 1	44 1	64 2	96 3	64 2	22 0	33 1	30 1	58 2	30 1	63 3	106 4
1%	2.9%	5.1%	11.0%	2.4%	5.9%	4.4%	4.5%	6.4%	5.1%	4.5%	7.0%	2.8%	8.2%	5.4%	2.6%	5.4%	4.2%	5.8%	4.0%	3.6%	2.0%	6.1%	5.6%	3.5%	4.2%	4.4%	4.6%	2.6%	6.4%	5.7%	3.4%
T	57	115	216	62	123	92	38	160	128	110	174	53	169	140	71	160	123	137	114	88	49	159	145	85	110	112	129	67	178	120	87
R %	11.3%	11.1%	10.3%	15.4%	11.5%	16.3%	13.9%	9.5%	10.1%	15.4%	18.8%	8.1%	10.6%	12.0%	10.8%	9.3%	10.0%	12.4%	11.6%	11.2%	15.0%	14.3%	12.3%	12.5%	14.3%	8.0%	15.6%	13.9%	15.0%	15.4%	10.8%
ч	224 1	252 1	203 1	397 1	240 1	343	118	240	254 1	380 1	466 1	211	219 1	310 1	290	275	296 1	290 1	335 1	274 1	374 1	370 1	321 1	307	372 1	204	439	361 1	418	322 1	277 1
% M	3.5%	3.3%	3.4%	2.0%	0.7%	3.6%	1.3%	4.2%	6.5%	5.0%	3.3%	2.1%	3.6%	3.5%	1.0%	5.6%	3.5%	3.2%	5.1%	8.4%	2.8%	10.2%	1.5%	3.1%	4.4%	1.3%	3.3%	2.3%	3.6%	3.4%	1.6%
W	69	75	68	52	15	75	Ŧ	105	163	123	82	54	75	91	27	164	104	74	148	204	69	265	39	75	114	33	92	29	101	11	41
Mf %	16.7%	23.3%	14.4%	11.6%	34.9%	8.5%	4.6%	22.9%	20.8%	12.5%	8.0%	29.6%	14.1%	17.4%	8.7%	8.0%	8.3%	10.0%	6.7%	13.8%	21.1%	11.1%	21.4%	5.7%	20.4%	46.1%	13.7%	31.8%	18.7%	15.1%	18.8%
Mf	331	529	283	299	729	180	99	577	520	308	199	773	290	449	235	236	244	234	192	335	526	288	559	141	532	1176	385	828	522	315	480
С%	8.0%	5.9%	5.9%	5.1%	6.5%	8.2%	0.2%	15.3%	4.9%	3.7%	6.3%	4.5%	6.2%	9.0%	4.5%	5.0%	8.8%	10.2%	8.5%	9.9%	8.0%	7.8%	7.2%	9.4%	9.5%	4.9%	6.3%	7.5%	6.8%	5.5%	6.7%
v	158	133	116	133	135	174	2	386	123	91	155	117	127	232	122	148	261	239	245	240	198	202	188	232	248	126	178	194	189	115	171
Mi%	0.0%	%0.0	%0.0	0.2%	%0.0	0.3%	0.0%	0.0%	0.0%	%0.0	0.2%	%0.0	13.6%	0.7%	0.1%	0.0%	0.0%	0.7%	0.3%	0.7%	0.0%	0.2%	0.0%	0.0%	0.0%	0.5%	0.0%	0.3%	%0.0	0.0%	0.0%
Mi	0	0	0	4	0	7	0	0	0	0	9	0	279	19	2	0	0	17	8	16	0	9	0	0	0	12	0	7	0	0	0
Empl.	1981	2272	1972	2585	2086	2110	847	2517	2503	2465	2475 -	2608	2057	2585	2692	2954	2951	2347	2876	2436	2490	2587	2609	2459	2606	2551	2819	2604	2789	2092	2558
Pop.	4626	4659	4671	4681	4695	4768	4832	4910	4914	4923	4930	4950	4960	5049	5068	5070	5098	5102	5126	5193	5257	5282	5346	5358	5369	5371	5411	5453	5459	5494	5520
ST	A	٩.	NE	MN	NW	A	g	WN	A	NW	¥	NM	NW	IA .	NW	Ă	١٩ ا	A	¥.	A	A	¥	MN	¥	Ą	ЧЧ	NW	NW	MN	A	MN
Urban Place	Jefferson	Osceola	Falls City	St. Joseph	St. James	Winterset	Grand Forks AFB	St Francis	Sheldon	La Crescent	Ogallala	Lake City	Chisholm	De Witt	Momis	Pleasant Hill	Grimes	Vinton	Waukee	lowa Falls	Manchester	Harlan	Montevideo	Glenwood	Cherokee	Schuyler	Stewartville	Glencoe	Redwood Falls	Anamosa	Cambridge

Pa %	1 2.3%	6 6.5%	2.3%	2.1%	3 5.3%	4 4.3%	5 7.7%	0 5.2%	2 4.5%	8 4.8%	%9:0	3 5.4%	2.3%	1.5%) 2.4%	4 3.5%	7 3.9%	3.1%	2 5.3%.	5.2%	1.8%	2.2%	2.0%	5 3.4%	4 6.3%	3.4%	5 4.0%	0 4.0%	2.2%	1 5.3%	
Pa	- ²⁸	196	69 	. 67	6 163	6 124	165	, 170	6 122	6 108	20	153	69	47	8	<u> </u>	6 107	96 98	6 172	6 156	69 63	67	¢ 16	6 115	6 224	° 68	6 115	6 140	81	171	ŀ
% sd	12.2%	10.0%	11.9%	15.0%	15.7%	13.2%	6.6%	10.6%	13.1%	12.6%	11.4%	8.2%	11.0%	9.2%	11.5%	8.3%	11.8%	12.5%	13.4%	17.4%	12.6%	8.5%	15.5%	11.0%	10.4%	12.1%	12.6%	10.9%	8.8%	11.5%	
Ps	31	301	354	479	484	379	213	¥	358	283	385	231	330	289	378	247	322	399	435	526	435	260	580	373	374	340	362	384	319	374	
Р4%	25.8%	37.8%	37.0%	30.7%	37.9%	26.8%	32.4%	26.5%	28.3%	22.6%	39.8%	31.4%	30.1%	26.8%	20.5%	25.8%	20.7%	20.9%	39.1%	27.8%	28.7%	30.6%	22.1%	26.2%	33.9%	30.2%	28.1%	26.2%	27.5%	37.4%	
£	629	1136	1103	626	1170	0/1	694	860	772	509	1347	885	899	839	674	773	565	667	1271	840	991	939	830	891	1216	851	805	928	995	1217	
F%	3.4%	7.1%	4.4%	7.9%	3.1%	5.8%	2.8%	17.1%	4.6%	2.9%	3.1%	4.4%	2.6%	11.1%	4.2%	6.0%	5.1%	5.1%	4.8%	6.6%	4.5%	2.9%	4.9%	3.8%	5.8%	3.4%	8.8%	9.2%	8.8%	3.6%	
Ľ.	87	213	130	251	26	165	20	555	126	65	106	124	ш	347	137	180	139	162	155	201	156	68	185	130	208	36	252	327	319	118	1
%1	3.2%	2.4%	2.1%	4.8%	2.4%	2.2%	1.5%	0.9%	1.2%	1.4%	1.9%	2.1%	3.1%	5.1%	1.3%	2.8%	2.2%	0.9%	2.1%	2.6%	1.5%	2.4%	2.0%	1.6%	2.0%	3.0%	1.9%	3.3%	3.6%	1.8%	
-	82	72	62	154	73	8	8	30	34	31	63	99	94	159	42	8	61	30	29	6/	52	74	76	2	72	84	53	116	129	58	1
%1	4.0%	3.0%	2.3%	2.1%	2.7%	%0:1	2.5%	8.0%	3.1%	4.8%	3.4%	3.9%	3.6%	5.7%	6.4%	3.3%	2.9%	7.0%	5.1%	2.0%	3.8%	2.8%	2.6%	5.0%	3.9%	4.3%	3.8%	5.3%	2.0%	2.9%	
T.	103	89	69	67	8	200	54	258	55	108	115	111	107	171	209	66	78	223	165	59	132	86	96	170	140	121	109	186	ч	93	
R %	19.2%	13.7%	14.7%	16.2%	18.5%	8.9%	11.6%	11.8%	14.4%	13.2%	11.1%	12.9%	9.1%	13.5%	12.8%	13.6%	17.0%	29.1%	9.7%	18.0%	14.7%	10.8%	21.3%	13.1%	12.3%	15.1%	13.0%	12.6%	13.7%	14.6%	
æ	492	412	438	517	570	256	248	384	392	297	375	364	272	422	421	406	465	928	316	545	507	333	<u>8</u> 01	447	14	426	373	447	496	473	
% M	2.2%	3.2%	1.8%	2.4%	2.0%	3.4%	1.7%	2.4%	3.1%	3.6%	3.7%	2.5%	2.3%	5.1%	4.2%	2.9%	3.3%	3.3%	3.7%	1.7%	5.4%	1.8%	4.3%	2.4%	1.7%	2.3%	0.9%	3.3%	6.0%	2.9%	100
M	56	97	54	75	62	26	98	78	84	80	127	11	69	160	137	88	6	106	120	20	186	56	163	83	99	99	25	118	215	6	1
Mf %	20.1%	9.1%	18.7%	10.2%	2.4%	15.5%	25.7%	10.2%	18.3%	28.2%	15.2%	22.4%	30.1%	13.1%	27.3%	23.5%	20.7%	7.5%	11.4%	5.2%	18.1%	30.5%	17.9%	25.4%	15.7%	18.3%	23.1%	16.0%	20.0%	8.2%	
μĮ	514	273	556	326	74	444	551	331	499	636	515	633	006	409	668	704	566	240 -	372	158	624	935	672	864	564	516	662	565	722	268	
د % د	6.0%	6.4%	4.0%	5.1%	3.2%	7.1%	2.7%	6.8%	5.1%	3.6%	5.6%	5.1%	3.4%	8.9%	9.4%	9.3%	8.1%	5.6%	3.7%	7.7%	5.9%	4.4%	6.1%	5.3%	7.2%	6.3%	3.3%	8.9%	6.9%	8.6%	
v	153	192	118	164	100	204	57	221	140	80	189	143	103	278	308	277	221	178	120	233	205	136	227	179	258	177	2	315	248	281	
Mi%	0.0%	0.0%	0.0%	%0:0	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	%0.0	0.2%	0.2%	%0.0	0.2%	0.2%	0.4%	0.4%	0.0%	3.0%	0.3%	0.0%	0.5%	0.4%	0.0%	0.2%	0.0%	0.2%	0.0%	0.2%	1000
jy	0	0	0	0	4	0	0	0	. 0	0	0	5	7	0	9	S	12	13	0	ഒ	6	0	18	12	0	ź	•	9	•	2	
Empl.	2558	3006	2978	3189	3088	2868	2143	3241	2728	2252	3388	2820	2987	3127	3291	2993	2729	3193	3252	3025	3447	3070	3752	3402	3582	2819	2864	3539	3612	3250	
Pop.	5546	5555	5582	5583	5634	5636	5690	5693	5741	5924	6002	6014	6028	6062	6063	6112	6197	6282	6319	6442	6540	6562	6568	6656	6658	6692	6703	6798	6814	6826	1000
ST	IA	NM	¥	NE	NE	NE	A	SD	٩	Ă	۲	Ă	NE	ΨN	NW	₹.	۲	¥	ШN	ß	ß	NW	NW	Ā	Ā	≤	NW	NW	W	Q	-
Urban Place	Shenandoah	Baxter	Orange City	Wayne	Chadron	Holdrege	Clarinda	Brandon	Aigona	Centerville	Sioux Center	Independence	Crete	Elkhorn	Big Lake	Maquoketa	Red Oak	Sidney	Seward	Sturgis	Madison	Litchfield	Waite Park	Estherville	Nevada	Oetwein	International Falls	Forest Lake	Waconia	Valley City	

Pa %	3.7%	6.6%	3.2%	3.3%	3.3%	5.7%	3.6%	1.3%	4.2%	12.5%	3.3%	5.2%	3.0%	3.1%	2.6%	3.1%	1.9%	4.4%	3.7%	4.3%	2.1%	2.7%	3.9%	6.1%	3.8%	3.9%	4.1%	2.2%	4.2%	1.8%	3.9%	2.0%
Pa	132	221	11	115	117	186	131	51	161	<u>163</u>	120	172	104	111	88	107	8	174	156	175	32	122	163	234	152	172	174	85	160	79	1 66	5
Ps %	11.0%	16.8%	14.7%	12.2%	10.5%	16.7%	15.2%	14.6%	13.0%	13.1%	9.0%	14.6%	13.9%	14.0%	17.5%	13.3%	11.1%	13.6%	9.7%	14.9%	14.0%	12.4%	9.5%	14.2%	14.7%	8.8%	11.9%	23.3%	9.6%	12.8%	13.2%	10 50/
Ps	390	559	510	424	368	544	555	589	492	171	328	480	473	527	583	455	482	540	404	601	609	563	402	539	583	392	510	888	363	550	565	483
۲%	28.8%	32.7%	22.8%	26.9%	24.7%	28.2%	31.9%	29.8%	27.3%	44.3%	27.7%	31.9%	27.5%	30.6%	32.5%	33.1%	26.2%	28.5%	26.0%	28.2%	30.8%	47.9%	27.4%	36.3%	26.7%	21.0%	34.2%	32.5%	29.8%	26.2%	20.8%	41 0%
¥	1021	1088	789	935	864	920	1169	1201	1035	579	1016	1051	940	1157	1081	1130	1144	1133	1086	1140	1338	21:79	1154	1381	1061	930	1462	1238	1125	1125	893	1877
F %	4.4%	5.4%	4.2%	6.1%	3.0%	4.7%	3.8%	4.6%	4.2%	4.4%	5.6%	2.3%	7.1%	8.4%	3.5%	3.1%	6.7%	6.3%	4.8%	5.5%	5.1%	3.5%	3.0%	3.8%	2.9%	5.2%	3.5%	5.9%	2.3%	4.4%	3.6%	10 3%
u.	156 156	181	1 6	212	104	152	139	18	<u>6</u>	57	204	75	243	316	118	<u>1</u> 07	294	251	199	222	221	161	126	145	115	229	149	225	87	191	156	17
%1	2.6%	3.1%	1.7%	1.7%	2.1%	1.7%	1.4%	7.2%	2.8%	0.7%	2.9%	0.5%	2.0%	1.8%	3.5%	1.9%	2.0%	2.3%	2.2%	2.5%	2.9%	2.1%	1.9%	2.2%	1.6%	5.9%	1.2%	1.6%	2.2%	2.3%	1.1%	2 40/2
-	8	102	2 8	59	74	57	51	291	108	6	105	15	69	69	.115	65	88	9	92	<u>1</u>	127	94	81	8	65	260	51	8	82	8	8	a t
T %	3.3%	2.5%	8.0%	2.4%	4.3%	5.3%	6.2%	5.0%	5.2%	2.0%	4.8%	2.6%	3.1%	10.5%	5.5%	2.5%	4.9%	5.2%	5.7%	7.4%	4.3%	1.5%	5.3%	3.4%	4.2%	3.3%	4.4%	3.2%	4.2%	3.1%	27.2%	3 0%
-	116	82	279	85	150	173	28	202	138	26	176	8	106	395	184	2	213	207	239	301	185	67	223	128	169	146	189	122	158	135	1164	9
R %	15.2%	18.0%	15.1%	14.4%	9.6%	15.4%	16.2%	15.2%	13.4%	16.1%	12.0%	14.5%	13.0%	12.0%	13.9%	11.4%	15.7%	16.6%	13.3%	12.1%	13.2%	11.6%	8.7%	10.0%	16.7%	10.7%	10.2%	15.8%	15.1%	17.1%	10.5%	12.7%
æ	539	009	522	500	337	502	594	612	26	210	4	477	444	455	464	390	686	<u>660</u>	553	489	575	528	366	380	664	474	436	60	569	735	451	la a
% M	4.0%	2.1%	1.4%	2.3%	3.7%	2.0%	3.2%	1.8%	2.5%	0.6%	3.5%	2.2%	1.3%	2.8%	2.0%	4.2%	4.5%	2.7%	4.8%	2.8%	4.8%	2.5%	2.2%	2.6%	4.4%	1.9%	2.1%	1.0%	1.9%	2.9%	2.0%	7 2%
N	141	02	50	80	129	65	118	72	95	8	130	11	43	106	65	144	196	109	201	112	209	114	92	<u>1</u> 0	176	8	6	40	11	124	87	104
Mf %	16.9%	5.3%	17.5%	21.1%	32.3%	11.7%	7.8%	10.4%	18.9%	2.8%	24.3%	19.0%	24.0%	6.2%	12.4%	21.2%	18.8%	9.5%	18.6%	14.7%	14.9%	10.9%	29.9%	12.5%	18.4%	34.0%	17.3%	5.9%	26.2%	22.0%	9.0%	12 0%
Mf	600	177	607	733	1129	380	287	419	716	36	891	624	820	235	411	722	821	376	775	596	648	495	1262	476	733	1509	740	225	666	943	384	500
с%	7.1%	5.9%	8.1%	7.9%	4.9%	5.9%	8.3%	9.7%	5.7%	1.3%	4.6%	5.4%	3.5%	8.7%	5.0%	3.6%	7.5%	6.4%	10.3%	5.8%	6.1%	3.7%	5.6%	5.2%	4.6%	4.3%	6.6%	5.3%	3.2%	6.1%	3.4%	3.4%
υ	252	196	282	276	171	193	304	392	216	17	167	179	119	329	168	123	325	253	429	236	266	167	235	198	183	191	282	201	121	264	146	156
Mi%	0.2%	0.0%	0.0%	0.0%	0.0%	%0:0	0.2%	%0.0	0.2%	1.0%	%0:0	%0.0	0.4%	0.4%	1.0%	0.5%	%70	0.7%	%0.0	%0:0	%0:0	0.4%	%0:0	0.1%	0.0%	0.0%	0.0%	1.9%	0.0%	%0.0	0.1%	%0.0
Mi	6	0	0	0	0	0	8	0	9	13	0	0	12	15	33	17	6	26	0	0	0	20	0	5	•	0	•	72	•	0	5	ė
Empl.	3544	3327	3468	3482	3497	3258	3659	4027	3797	1308	3664	3291	3412	3776	3327	3409	4359	3974	4169	4042	4341	4549	4218	3806	3978	4434	4277	3814	3772	4296	4287	4582
Pop.	7047	7222	7228	7257	7339	7348	7501	7512	75 <u>9</u> 7	7599	7633	7719	7731	7751	7764	7812	7868	7994	8023	8081	8161	8172	8176	8192	8410	8493	8586	8606	8751	8820	8959	8968
ST	A	QN	W	A	A	MN	NW	B	A	9	A	NW	AI.	¥	NW	¥I	NW	Ч	NM	빌	Ŋ	¥.	A	NW	NW	WN	ĝ	ß	₹	WN	ЫR	4
Urban Place	Washington	Devils Lake	Nebraska City	Atlantic	Denison	Detroit Lakes	East Grand Forks	Blair	Creston	Minot AFB	Релту	Little Falls	Knoxville	Gering	Grand Rapids	Charles City	Monticello	McCook	North Branch	York	Clear Lake	Decorah	Webster City	Crookston	Thief River Falls	Waseca	Wahpeton	Spearfish	Mount Pleasant	Alexandria	Alliance	Waverly

Pa %	2.2%	.3.9%	2.7%	2.0%	3.2%	3.7%	3.4%	1.8%
Pa	101	149	121	67	167	195	173	92
Ps %	12.2%	18.3%	11.9%	8.1%	10.1%	13.8%	17.4%	12.6%
Ps	562	702	544	396	530	722	891	659
Н%	36.5%	27.9%	22.0%	37.6%	31.6%	45.9%	40.6%	32.9%
¥	1688	1069	1003	1843	1652	2400	2078	1718
۴%	5.5%	2.7%	5.9%	6.8%	5.4%	2.7%	3.1%	4.4%
u.	255	102	269	334	281	140	160	228
%1	5.1%	2.8%	2.3%	7.7%	2.9%	2.3%	3.8%	1.1%
-	236	109	106	379	153	118	194	56
1 %	4.3%	3.6%	5.8%	2.3%	4.4%	3.2%	3.1%	1.7%
⊢	199	139	265	115	231	168	161	6
R %	10.2%	14.6%	14.4%	12.4%	15.4%	6.3%	13.3%	6.9%
č	471	558	658	609	805	330	681	363
% M	2.4%	2.6%	3.6%	2.6%	4.2%	2.0%	1.9%	2.4%
Ň	113	66	164	129	219	106	67	126
Mf %	17.6%	6.9%	22.5%	13.5%	16.8%	14.4%	8.7%	30.3%
ž	812	265	1024	662	875	750	445	1584
ະ ເ	2.7%	5.2%	6.6%	6.0%	5.9%	3.5%	3.4%	5.0%
ပ	124	200	299	293	310	184	175	263
Mi%	0.0%	11.4%	0.0%	0.1%	0.0%	0.5%	0.0%	0.0%
ž	0	436	0	7	0	27	0	•
Empl.	4620	3830	4560	4907	5223	5224	5122	5229
Pop	9105	9157	9237	9509	9641	9747	9765	9832
ST	Ŋ	WW	¥	Ā	NW	WN	ß	A
Urban Place	Grinnell	Virginia	Le Mars	Fairfield	Sartell	St. Peter	Vermillion	Pella

APPENDIX B

City Employment Data and Percentages by Function (alpha sort)

Pa %	5.4%	6.3%	3.9%	1.8%	4.5%	3.9%	9.8%	1.5%	20.5%	3.3%	4.8%	5.3%	6.5%	4.9%	5.0%	5.5%	1.7%	4.1%	1.1%	4.1%	2.6%	2.4%	1.3%	3.2%	5.3%	5.2%	3.5%	3.3%	3.2%	4.4%	3.2%	4.1%
Pa	90	26	62	6/	122	166	204	19	132	115	62	114	196	4	11	116	21	79	15	99	39	80	51	37	94	170	60	54	64	62	2	5
Ps %	8.5%	10.3%	9.1%	12.8%	13.1%	13.2%	10.1%	15.0%	9.0%	12.2%	14.2%	11.0%	10.0%	12.4%	9.2%	16.8%	12.3%	15.5%	6.7%	8.1%	12.1%	11.5%	14.6%	14.5%	10.7%	10.6%	9.6%	13.5%	8.9%	11.9%	12.9%	9.5%
Ps	141	160	144	550	358	565	212	191	58	424	233	234	301	11	130	357	156	303	87	131	183	378	589	166	189	344	164	221	176	168	282	242
Pf %	25.4%	31.8%	25.2%	26.2%	28.3%	20.8%	25.7%	27.9%	23.3%	26.9%	25.1%	31.9%	37.8%	22.3%	23.6%	21.9%	26.1%	21.4%	27.8%	24.0%	25.6%	20,5%	29.8%	31.3%	30.5%	26.5%	33.0%	29.5%	41.2%	34.0%	24.3%	33.3%
¥	423	493	397	1125	772	893	537	355	150	935	411	680	1136	199	334	465	331	417	363	388	388	674	1201	359	540	860	564	484	815	481	532	851
F%	12.5%	5.5%	3.6%	4.4%	4.6%	3.6%	4.8%	3.7%	6.2%	6.1%	4.3%	6.5%	7.1%	7.8%	4.7%	3.3%	5.7%	6.5%	3.4%	4.4%	4.0%	4.2%	4.6%	4.6%	5.6%	17.1%	2.8%	2.6%	3.6%	1.4%	2.9%	7.7%
U	209	88	57	191	126	156	₫	47	40	212	02	138	213	<u>ور</u>	67	ч	72	127	44	11	61	137	184	53	100	555	47	43	11	20	63	197
% 	2.8%	3.5%	1.1%	2.3%	1.2%	1.1%	3.0%	3.0%	3.6%	1.7%	2.5%	2.4%	2.4%	3.0%	0.8%	2.5%	0.7%	2.0%	4.9%	2.9%	2.0%	1.3%	7.2%	1.6%	2.9%	0.9%	2.1%	0.5%	1.1%	2.3%	1.2%	4.1%
-	47	55	18	86	34	8	63	88	23	59	41	51	72	27	12	5	6	39	64	47	31	42	291	18	51	30	36	8	21	32	3 8	1 6
۲%	5.3%	4.3%	3.8%	3.1%	3.1%	27.2%	5.7%	4.6%	5.4%	2.4%	22.2%	6.8%	3.0%	4.8%	8.3%	4.8%	5.1%	6.0%	2.5%	6.3%	19.3%	6.4%	5.0%	6.1%	4.3%	8.0%	2.8%	6.1%	2.4%	4.1%	7.6%	3.4%
-	88	99	60	135	84	1164	120	59	35	85	363	145	89	43	117	103	65	116	33	102	292	209	202	70	77	258	84	<u>5</u>	48	58	166	87
R%	12.9%	8.1%	13.7%	17.1%	14.4%	10.5%	15.4%	10.6%	11.0%	14.4%	11.4%	10.2%	13.7%	14.2%	11.9%	16.3%	10.7%	10.8%	12.1%	18.3%	11.3%	12.8%	15.2%	6.4%	15.0%	11.8%	8.6%	13.1%	14.8%	13.4%	9.4%	10.8%
œ	215	125	216	735	392	451	322	135	11	500	186	217	412	127	168	347	135	210	158	296	171	421	612	73	265	384	146	215	292	189	207	277
% M	5.3%	4.0%	2.7%	2.9%	3.1%	2.0%	3.4%	3.7%	2.2%	2.3%	1.4%	3.0%	3.2%	1.5%	2.6%	1.1%	2.8%	2.5%	2.2%	2.0%	0.5%	4.2%	1.8%	1.7%	2.8%	2.4%	3.0%	2.6%	0.8%	2.8%	1.5%	1.6%
×	88	62	43	124	84	87	11	47	14	80	ន	65	26	13	37	74	36	48	29	33	ŵ	137	72	19	50	78	52	42	15	40	32	41
Mf %	10.7%	18.8%	23.2%	22.0%	18.3%	9.0%	15.1%	17.5%	11.2%	21.1%	9.8%	13.5%	9.1%	20.5%	18.3%	6.4%	29.3%	20.0%	26.6%	21.2%	6.5%	27.3%	10.4%	21.6%	17.0%	10.2%	18.2%	13.2%	16.1%	16.0%	29.4%	18.8%
ž	179	292	366	943	499	384	315	223	72	733	160	289	273	183	259	136	371	389	348	343	66	668	419	248	301	331	310	217	319	227	644	480
°2	7.4%	6.1%	10.6%	6.1%	5.1%	3.4%	5.5%	11.5%	4.7%	7.9%	2.9%	6.5%	6.4%	8.4%	13.2%	10.3%	2.9%	11.1%	6.0%	5.6%	3.4%	9.4%	9.7%	7.1%	4.2%	6.8%	11.2%	5.7%	7.2%	8.3%	7.0%	6.7%
O,	124	94	168	264	140	146	115	146	30	276	48	139	192	75	187	220	37	216	62	8	52	308	392	82	75	221	191	8	142	118	153	171
Mi%	0.5%	0.3%	0.0%	%0.0	%0'0	0.1%	%0.0	0.0%	%0.0	%0:0	0.0%	%0.0	%0:0	%0:0	%0.0	6.0%	%0.0	%0:0	%0:0	%0:0	12.3%	0.2%	0.0%	%0:0	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%	%0'0
Mi	8	5	0	0	. 0	5	0	0	0	0	0	0	0	0	0	128	0	0	0	0	187	9	0	0	0	0	0	0	0	2	0	0
Empl.	1668	1552	1578	4296	2728	4287	2092	1272	644	3482	1637	2135	3006	892	1413	2126	1267	1949	1308	1616	1516	3291	4027	1147	1772	3241	1707	1638	1976	1415	2193	2558
Pop.	3435	2839	3706	8820	5741	8959	5494	2684	2871	7257	3350	4225	5555	3162	2673	4565	2878	3789	2560	3376	3152	6063	7512	2601	3621	5693	3559	3491	3500	2965	4215	5520
ST	ΙA	NW	٩	NW	٩	ЯR	٩	NW	NW	٧i	NE	NE	NW	NW	NW	ß	٩	NW	٩	NW	QN	NW	NE	¥	NM	ន	NW	ų	WW	NW	Ą	NW
Urban Place	Adel	Afton	Albia	Alexandria	Algona	Alliance	Anamosa	Annandale	Appleton	Atlantic	Auburn	Aurora	Baxter	Bayport	Becker	Belle Fourche	Belle Plaine	Belle Plaine	Belmond	Benson	Beulah	Big Lake	Blair	Bloomfield	Blue Earth	Brandon	Breckennidge	Broken Bow	Byron	Caledonia	Camanche	Cambridge

3795 20 3110 11 3497 11 3497 11 2924 22 2996 12 2634 33		% IW	υ	ະ ກ	ž	Mf %	2		2	1 %	х Т	-	% 	<u>u</u>	Я.	¥	Ff %	å	Ps %	Pa	Pa %
	2038 0	%0:0	113	5.5%	500	24.5%	116	5.7%	261 12	12.8% 81	4.0%	% 36	1.8%	111	5.7%	469	23.0%	251	12.3%	56	2.7%
	1599 0	0.0%	155	9.7%	83	17.7%	8	3.9%	260 16	16.3% 119	9 7.4%	% 37	2.3%	146	9.1%	369	23.1%	6	5.6%	66	4.1%
	1794 0	%0 : 0	141	7.9%	24	13.6%	61	3.4%	198 11	11.0% 123	3 6.9%	% 68	3.8%	264	14.7%	466	26.0%	109	6.1%	120	6.7%
	2252 0	%0 [.] 0	8	3.6%	636	28.2%	8	3.6%	297 13	13.2% 108	8 4.8%	31	1.4%	65	2.9%	209	22.6%	283	12.6%	108	4.8%
	1386 5	0.4%	91	6.6%	211	15.2%	32	2.3%	172 12	12.4% 72	5.2%	% 22	1.6%	28	4.0%	419	30.2%	173	12.5%	68	4.9%
_	3088 4	0.1%	6	3.2%	74	2.4%		2.0%	570 18	18.5% 84	1 2.7%	├	2.4%	6	3.1%	1170	37.9%	484	15.7%	163	5.3%
4573 2(2056 0	0.0%	<u> </u>	5.8%	182	8.9%		14.2%	367 17	17.9% 116	6 5.6%	% 22	1.1%	8	4.7%	531	25.8%	201	9.8%	8	3.9%
7812 34	3409 17	0.5%	123	3.6%	722	21.2%	144 4	4.2%	390 11	11.4% 84	1 2.5%	% 65	1.9%	107	3.1%	1130	33.1%	455	13.3%	107	3.1%
5369 2(2606 0	%0 ^{.0}	248	9.5%	532	20.4%	114	4.4%	372 14	14.3% 110	0 4.2%	23	0.8%	۶2 ۱۹	3.0%	669	26.8%	264	10.1%	115	4.4%
2622 1	1185 0	%0:0	32 32	8.0%	509	17.6%	8	6.8%	103 8.	8.7% 59	5.0%	34	2.9%	2	5.9%	365	30.8%	114	% 9.6	52	4.4%
4960 2(2057 279	9 13.6%	127	6.2%	290	14.1%	75	3.6%	219 10	10.6% 169	9 8.2%	30	1.5%	28	2.7%	415	20.2%	366	17.8%	29	1.4%
5690 2	2143 0	0.0%	57	2.7%	551	25.7%	36	1.7%	248 11	11.6% 54	1 2.5%	% 33	1.5%	53	2.8%	694	32.4%	213	9.6%	165	7.7%
2968 1/	1439 0	0:0%	8	5.6%	234	16.3%	33	3.5%	115 8.	8.0% 140	0 9.7%	% 35	2.4%	67	4.7%	442	30.7%	139	9.7%	ы	2.2%
8161 4:	4341 0	0.0%	266	6.1%	648	14.9%	209 4	4.8%	575 13	13.2% 185	5 4.3%	% 127	2.9%	221	5.1%	1338	30.8%	609	14.0%	92	2.1%
2727 1:	1294 50	%0 [:] 0	123	9.5%	337	26.0%	8	2.2%	150 11	11.6% 39	3.0%	% 28	2.2%	2	4.2%	349	27.0%	128	9.6%	35	2.7%
2975 1:	1382 0	0:0%		5.9%	372	26.9%	43	3.1%	191 13	13.8% 41	3.0%	2 %	0.5%	113	8.2%	377	27.3%	121	8.8%	23	1.6%
4163 20	2081 0	0.0%	120	5.8%	708	34.0%	39	1.9%	224 10	10.8% 123	3 5.9%	% 11	0.5%	5 72	3.5%	424	20.4%	227	10.9%	49	2.4%
3905 11	1882 0	0.0%	138	7.3%	469	24.9%	78 4	4.1%	197 10	10.5% 73	3.9%	% 45	2.4%	104	5.5%	430	22.8%	202	10.7%	63	3.3%
7597 3	3797 6	0.2%	216	5.7%	716	18.9%	95	2.5%	509 13	13.4% 198,	8, 5.2%	% 108	2.8%	160	4.2%	1035	27.3%	492	13.0%	161	4.2%
6028 29	2987 7	0.2%	103	3.4%	006	30.1%	69	2.3%	272 9.	9.1% 107	7 3.6%	% 94	3.1%	11	2.6%	668	30.1%	330	11.0%	69	2.3%
8192 31	3806 5	0.1%	198	5.2%	476	12.5%	100	2.6%	380 10	10.0% 128	8 3.4%	% 84	2.2%	5 145	3.8%	1381	36.3%	539	14.2%	234	6.1%
2597 1	1160 0	0.0%	63	5.4%	275	23.7%	30	2.6%	115 9.	9.9% 95	8.2%	% 5	0.4%	3	2.9%	368	31.7%	63	5.4%	59	5.1%
5049 2	2585 19	0.7%	232	9.0%	449	17.4%	91	3.5%	310 12	12.0% 140	0 5.4%	% 25	1.0%	5 264	10.2%	705	27.3%	224	8.7%	85	. 3.3%
8172 4	4549 20	0.4%	167	3.7%	495	10.9%	114	2.5%	528 11	11.6% 67	1.5%	% 94	2.1%	161	3.5%	2179	47.9%	563	12.4%	122	2.7%
2980 1	1517 12	0.8%	108	7.1%	. 157	10.3%	, 69	4.5%	168 11	11.1% 80) 5.3%	% 49	3.2%	160	10.5%	483	31.8%	159	10.5%	45	3.0%
7339 3-	3497 0	0.0%	171	4.9%	1129	32.3%	129	3.7%	337 9.	9.6% 150	0 4.3%	% 74	2.1%	104	3.0%	864	24.7%	368	10.5%	117	3.3%
7348 32	3258 0	0.0%	193	5.9%	380	11.7%	65	2.0%	502 15	15.4% 173	3 5.3%	% 57	1.7%	152	4.7%	920	28.2%	544	16.7%	186	5.7%
7222 3:	3327 0	0.0%	196	5.9%	177	5.3%	20	2.1%	600 18	18.0% 82	2.5%	% 102	3.1%	181	5.4%	1088	32.7%	559	16.8%	221	6.6%
3001 1/	1440 0	0.0%	132	9.2%	189	13.1%	82	5.7%	203 14	14.1% 91	6.3%	% 19	1.3%		5.3%	349	24.2%	189	13.1%	83	5.8%
4035 22	2202 0	0.0%	110	5.0%	508	23.1%	112 \$	5.1%	273 12	12.4% 72	3.3%	% 40	1.8%	95	4.3%	577	26.2%	311	14.1%	50	2.3%
3712 1;	1709 0	0.0%	141	8.3%	341	20.0%	98	4.7%	124 7.	7.3% 181	1 10.6%	% 33	1.9%	21	3.3%	489	28.6%	182	10.6%	8	1.8%
MN 7501 36	3659 8	0.2%	304	8.3%	287	7.8%	118	3.2%	594 16	16.2% 228	8 6.2%	% 51	1.4%	6 139	3.8%	1169	31.9%	555	15.2%	131	3.6%

Pa %	7.0%	1.5%	23.8%	3.2%	1.7%	3.4%	4.6%	2.9%	2.0%	5.9%	2.0%	4.0%	3.8%	3.1%	4.1%	2.7%	5.4%	2.9%	3.3%	7.4%	15.2%	2.6%	4.0%	5.2%	2.3%	2.2%	6.2%	2.9%	3.6%	4.3%	+
Pa	66	47	237	ន	8	115	76	ß	67	116	47	1	22	11	107	29	134	57	6 2	161		86	57	115	69	101	74	58	8	124	╀
Ps %	10.9%	9.2%	17.4%	16.6%	14.6%	11.0%	15.9%	9.7%	8.1%	10.6%	%0.6 _	10.9%	6.3%	14.0%	6.2%	13.5%	10.9%	9.4%	15.0%	9.3%	17.4%	17.5%	16.3%	10.4%	8.4%	12.2%	11.4%	12.6%	7.1%	13.2%	
۶.	144	289	173	277	289	373	263	177	396	209	207	384	8	527	161	145	269	183	267	201	147	583	233	231	248	562	135	253	184	379	
Pf %	30.6%	26.8%	26.9%	32.4%	35.6%	26.2%	25.9%	23.6%	37.6%	26.1%	26.7%	26.2%	26.4%	30.6%	23.5%	30.5%	39.8%	24.7%	21.3%	37.0%	38.6%	32.5%	30.4%	33.6%	30.0%	36.5%	26.6%	30.4%	28.0%	26.8%	
¥	404	839	268	540	705	891	427	431	1843	515	614	928	396	1157	611	329	978	480	379	801	327	1081	433	747	885	1688	316	611	725	0//	
F%	4.0%	11.1%	8.3%	5.8%	3.8%	3.8%	2.4%	3.3%	6.8%	5.8%	3.2%	9.2%	5.7%	8.4%	4.8%	5.4%	6.2%	4.7%	5.1%	4.2%	3.7%	3.5%	4.1%	4.5%	19.2%	5.5%	5.2%	3.0%	5.0%	5.8%	
u.	53	347	83	67	75	130	4	99	334	114	73	327	85	316	125	58	153	6	8	6	31	118	28	66	568	255	62	61	129	165	
1%	2.7%	5.1%	1.1%	3.2%	3.1%	1.6%	1.7%	4.3%	7.7%	4.6%	0.6%	3.3%	1.9%	1.8%	2.2%	3.2%	2.6%	3.2%	2.3%	1.2%	0.0%	3.5%	0.3%	1.6%	4.1%	5.1%	1.8%	1.8%	2.5%	2.2%	
-	36	159	Ħ	ន	61	54	28	82	379	6	14	116	58	69	85	34	64	62	41	. 27	•	115	4	36	122	236	21	8	2	83	
%1	2.7%	5.7%	2.3%	2.0%	4.6%	5.0%	7.3%	4.7%	2.3%	11.0%	2.9%	5.3%	5.0%	10.5%	2.6%	5.5%	3.5%	2.8%	6.9%	4.5%	4.5%	5.5%	5.8%	2.6%	4.2%	4.3%	5.4%	2.8%	6.1%	7.0%	ļ
-	36	171	23	33	16	170	121	8	115	216	99	186	75	395	67	59	85	5	122	86	R	184	82	58	123	199	64	57	159	ğ	
R %	11.8%	13.5%	11.3%	13.6%	6.7%	13.1%	15.6%	9.3%	12.4%	10.3%	8.8%	12.6%	12.4%	12.0%	13.9%	11.5%	12.5%	7.1%	12.2%	11.4%	13.9%	13.9%	10.8%	9.6%	10.0%	10.2%	14.3%	11.1%	14.3%	8.9%	
Ř	156	422	113	226	191	447	258	169	609	ζġ	202	447	186	455	361	124	307	139	217.	247.	118	464	154	219	296	471	170	224	370	256	
% M	2.2%	5.1%	1.4%	1.3%	2.0%	2.4%	3.1%	1.3%	2.6%	3.4%	2.2%	3.3%	3.9%	2.8%	2.3%	6.4%	3.1%	6.0%	4.5%	2.2%	1.3%	2.0%	3.4%	1.5%	3.5%	2.4%	3.4%	3.8%	10.2%	3.4%	
8	29	160	14	21	93	8	51	23	129	89	ŝ	118	20	<u>1</u> 6	ß	69	75	116	8	47	=	59	\$	3	104	113	4	11	265	6	
Mf %	16.4%	13.1%	3.3%	5.0%	15.4%	25.4%	9.4%	28.2%	13.5%	14.4%	35.2%	16.0%	29.8%	6.2%	31.8%	14.9%	5.7%	33.1%	12.0%	8.2%	4.6%	12.4%	16.1%	19.5%	8.3%	17.6%	19.1%	19.3%	11.1%	15.5%	
¥	216	409	33	83	304	864	155	515	662	283	808	565	447	235	828	161	141	645	214	17	30	411	230	433	244	812	227	388	288	444	
۲% ۲%	7.0%	8.9%	2.8%	6.7%	4.8%	5.3%	3.7%	6.3%	6.0%	5.9%	5.1%	8.9%	1.9%	8.7%	7.5%	3.6%	9.4%	5.3%	8.0%	6.2%	0.2%	5.0%	8.1%	10.7%	8.8%	2.7%	3.5%	4.6%	7.8%	7.1%	
U	93	278	28	112	95	179	61	115	293	116	117	315	28	329	194	39	232	104	142	133	2	168	115	237	261	124	42	92	202	204	I
Wi%	0.0%	%0:0	0.0%	7.4%	0.0%	0.4%	10.1%	0.0%	0.1%	%0:0	0:0%	0.2%	0.0%	0.4%	0.3%	%0:0	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	0.0%	%0:0	0.0%	0.0%	0.0%	0.3%	0.2%	%0:0	
W	0	0	0	124	•	12	166	0	~	0	0	9	0	15	1	•	0	•	0	0	•	33	•	0	•	-	•	g	9	0	
Empl.	1321	3127	966	1666	1979	3402	1651	1827	4907	1972	2298	3539	1501	3776	2604	1078	2459	1947	1781	2162	847	3327	1426	2220	2951	4620	1189	2013	2587	2868	
Pop.	3035	6062	4165	3724	3958	6656	3865	4262	9509	4671	4362	6798	2922	7751	5453	2594	5358	3373	3619	4516	4832	7764	3070	4026	5098	9105	2596	4218	5282	5636	
ST	₹	¥	S	NW	M	A.	NM	¥	₹	¥	¥	NW	¥	¥	NW	NW	₹	NW	¥	Ð	₽	WW	¥	W	₹	A	₹	\$	₹	¥	
Urban Place	Eldora	Elkhorn	Ellsworth AFB	Ely	Emmetsburg	Estherville	Eveleth	Fairbury	Fairfield	Falls City	Forest City	Forest Lake	Garner	Gening	Glencoe	Glenwood	Glenwood	Goodview	Gothenburg	Grafton	Grand Forks AFB	Grand Rapids	Granite Falls	Grant	Grimes	Grinnell	Grundy Center	Hampton	Harlan	Holdrege	

Pa %	5.4%	4.0%	3.0%	3.1%	3.7%	2.9%	3.5%	6.0%	3.0%	1.3%	3.6%	2.7%	0.7%	2.5%	5.2%	2.2%	5.2%	3.2%	3.8%	1.8%	3.8%	3.5%	3.7%	4.4%	3.7%	2.0%	3.3%	2.8%	12.5%	2.5%	5.6%
Pa	153	115	72	55	2	22	83	13	<u>1</u>	8	95	121	13	88	83	29	172	39	84	ន	95	104	49	174	56	21	55	\$	<u>1</u>	37	ā
Ps %	8.2%	12.6%	10.8%	13.1%	12.3%	12.2%	7.6%	13.4%	13.9%	10.3%	13.3%	11.9%	8.6%	39.3%	12.8%	8.5%	14.6%	11.4%	15.5%	12.6%	8.9%	8.3%	13.5%	13.6%	8.6%	14.0%	14.1%	17.6%	13.1%	10.9%	20.202
şq	231	362	263	230	243	238	181	163	473	254	348	544	171	594	207	260	480	137	343	435	222	247	178	540	131	149	232	266	171	159	207
Pf %	31.4%	28.1%	28.5%	20.7%	31.9%	24.0%	34.3%	22.0%	27.5%	38.4%	28.6%	22.0%	28.5%	19.4%	33.7%	30.6%	31.9%	28.3%	29.1%	28.7%	28.7%	25.8%	23.2%	28.5%	23.0%	31.6%	22.9%	25.9%	44.3%	26.6%	30.0%
¥	885	805	695	362	632	469	817	267	940	947	745	1003	569	293	543	939	1051	341	644	991	714	773	307	1133	349	335	376	392	579	388	AEA
F %	4.4%	8.8%	3.4%	6.4%	6.4%	4.8%	7.4%	5.8%	7.1%	5.8%	2.6%	5.9%	4.8%	2.3%	5.1%	2.9%	2.3%	4.3%	9.3%	4.5%	3.8%	6.0%	2.6%	6.3%	5.5%	4.4%	9.9%	5.4%	4.4%	14.6%	7 201
F.	124	252	84	112	127	8	171	и	243	142	67	269-	35	35	82	68	75	52	205	156	94	180	35	251	84	47	163	82	57	213	ę
%1	2.1%	1.9%	1.3%	4.3%	1.7%	1.7%	1.7%	1.7%	2.0%	2.5%	2.0%	2.3%	2.5%	1.8%	1.6%	2.4%	0.5%	3.7%	1.7%	1.5%	1.8%	2.8%	2.3%	2.3%	2.6%	2.3%	1.8%	2.3%	0.7%	2.5%	1 50/
-	99	53	32	75	34	33	4	21	69	62	53	106	50	27 -	25	74	15	45	38	52	4	84	31	91	40	24	59	35	6	36	8
1%	3.9%	3.8%	3.6%	5.8%	2.9%	5.8%	3.4%	10.1%	3.1%	4.5%	2.8%	5.8%	2.9%	1.9%	2.5%	2.8%	2.6%	3.1%	4.4%	3.8%	2.0%	3.3%	2.3%	5.2%	5.3%	3.4%	7.6%	3.7%	2.0%	6.0%	5 502
-	Ē	109	88	101	57	114	82	123	106	110	73	265	57	28	40	86	8	37	16	132	49	66	30	207	81	36	124	95	26	88	5
R %	12.9%	13.0%	11.2%	13.8%	11.3%	15.9%	12.8%	12.4%	13.0%	15.4%	8.1%	14.4%	7.7%	10.8%	11.0%	10.8%	14.5%	10.7%	10.4%	14.7%	15.0%	13.6%	12.8%	16.6%	12.5%	14.6%	13.0%	13.2%	16.1%	15.0%	14 80.
~	364	373	274	241 -	224	311	305	150	444	380	211	658	154	163	171	333	477	129	230	507	374	406	169	660	190	155	213	200	210	219	222
% M	2.5%	%6.0	8.4%	2.6%	3.5%	3.6%	2.5%	3.7%	1.3%	5.0%	2.1%	3.6%	3.3%	1.1%	1.9%	1.8%	2.2%	0.5%	3.5%	5.4%	2.8%	2.9%	1.1%	2.7%	4.4%	1.1%	8.4%	1.2%	0.6%	2.6%	2 80/
N	4	25	204	46	69	20	29	45	43	123	54	164	99	16	8	56	11	9	78	186	69	86	15	109	67	12	138	8	80	38	5
Wf %	22.4%	23.1%	13.8%	20.5%	16.7%	20.7%	16.3%	11.6%	24.0%	12.5%	29.6%	22.5%	35.3%	1.7%	18.7%	30.5%	19.0%	28.0%	13.3%	18.1%	21.1%	23.5%	30.5%	9.5%	26.4%	18.7%	8.2%	14.3%	2.8%	9.9%	1 20/
ž	633	662	335	359	331	406	389	141	820	308	773	1024	704	25	302	935	624	337	295	624	526	704	403	376	400	198	134	217	36	<u>14</u>	ę
ະ ຮ	5.1%	3.3%	9.9%	5.2%	8.0%	7.7%	7.5%	4.9%	3.5%	3.7%	4.5%	6.6%	5.4%	6.1% [`]	7.6%	4.4%	5.4%	5.2%	5.2%	5.9%	8.0%	9.3%	5.1%	6.4%	4.8%	6.4%	3.8%	7.4%	1.3%	7.4%	0.1%
υ	143	94	240	91	158	151	180	59	119	91	117	299	107	92	122	136	179	63	115	205	198	277	67	253	73	89	ទ	112	11	108	137
Mi%	0.2%	0.0%	0.7%	0.0%	0.0%	0.1%	0.2%	3.8%	0.4%	0.0%	0.0%	0.0%	0.4%	10.9%	0.0%	0.0%	0.0%	0.0%	0.1%	0.3%	0.0%	0.2%	0.0%	0.7%	0.0%	0.0%	3.5%	0.3%	1.0%	0.3%	70 U%
Mi	5	0	16	0	0	-	5	46	12	0	0	0	. 1	165	0	0	0	0	ر	6	0	5	0	26	0	0	58	4	5	4	c
Empl.	2820	2864	2436	1751	1981	1958	2385	1214	3412	2465	2608	4560	1993	1511	1611	3070	3291	1203	2213	3447	2490	2993	1321	3974	1517	1061	1642	1514	1308	1459	1510
Pop.	6014	6703	5193	3501	4626	3833	4398	2559	7731	4923	4950	9237	3922	3027	3015	6562	7719	3040	4617	6540	5257	6112	2535	7994	3091	2580	3640	2964	7599	2992	3574
ST	Ą	MN	A	NM	A	MN	NM	PE	A	MN	MN	¥.	MN	8	NW	NM	MN	MN	WW	ß	AI	A I	AI	R	NM	NM	8	뛷	₽	AI	US.
Urban Place	Independence	International Falls	lowa Falls	Jackson	Jefferson	Jordan	Kasson	Kimball	Knoxville	La Crescent	Lake City	Le Mars	Le Sueur	Lead	Lindstrom	Litchfield	Little Falls	Long Prairie	Luverne	Madison	Manchester	Maquoketa	Marengo	McCook	Melrose	Milaca	Milbank	Minden	Minot AFB	Missouri Valley	Mohridae

% 55	% W	¥		ະ ບ	U	1	%I		Ξ	Ξ	Empl. MI
	30.7%	417	+	~ í	8.9%		121 8	121 8	1 0.1% 121 8	1 0.1% 121 8	1360 1 0.1% 121 8
% 100	25.3%	428	4		5.7%		67	0.0% 97	67	0.0% 97	1692 0 0.0% 97
% 196	18.8%	821	80		7.5%		325	0.2% 325	9 0.2% 325	0.2% 325	9 0.2% 325
% 22	21.2%	303.	3(10.3%		148	0.3% 148	5 0.3% 148	0.3% 148	5 0.3% 148
5 27	8.7%	235	3		4.5%		122	0.1% 122	2 0.1% 122	0.1% 122	2 0.1% 122
	26.2%	066	S,		3.2%		121	0.0% 121	0 0.0% 121	0.0% 121	0 0.0% 121
% 20	10.2%	201	R		4.5%	88 4.5%	88	0.0% 88	88	0.0% 88	0 0.0% 88
6 110	3.7%	57	3		6.1%	95 6.1%	95 6	12.7% 95 6	95 6	12.7% 95 6	197 12.7% 95 6
% 50	17.5%	607	90		8.1%		282	0.0% 282	0 0.0% 282	0.0% 282	0 0.0% 282
% 60	15.7%	564	56		7.2%		258	0.0% 258	258	0.0% 258	0 0.0% 258
% 46	20.8%	359	ñ		7.1%		122	0.0% 122	0 0.0% 122	0.0% 122	0 0.0% 122
% 73	23.8%	510	من		7.6%		162	0.2% 162	162	0.2% 162	5 0.2% 162
% 201	18.6%	775	12		10.3%		429	0.0% 429	0 0.0% 429	0.0% 429	0 0.0% 429
6 131	6.6%	261	3		6.5%		259	0.0% 259	0 0.0% 259	0.0% 259	0 0.0% 259
% 55	30.2%	501	5		7.3%		121	0.3% 121	121	0.3% 121	5 0.3% 121
% 9	20.2%	367	18		6.0%		110	0.0% 110	110	0.0% 110	0 0.0% 110
	18.3%	516	ò		6.3%		177	0.2% 177	7 0.2% 177	0.2% 177	7 0.2% 177
82	8.0%	199	, ≅		6.3%		155	0.2% 155	6 0.2% 155	0.2% 155	6 0.2% 155
% 35	15.5%	196	÷		6.6%		83	0.0% 83	83	0.0% 83	0 0.0% 83
% 49	13.1%	196	₩		7.6%		113	0.0% 113	113	0.0% 113	0 0.0% 113
6 155	1.3%	23	2		9.3%		164	0.0% 164	164	0.0% 164	0 0.0% 164
% 54	18.7%	556	ž		4.0%		118	0.0% 118	0 0.0% 118	0.0% 118	0 0.0% 118
% 40	26.7%	429	4		7.2%		116	0.0% 116	0 0.0% 116	0.0% 116	0 0.0% 116
% 75	23.3%	529	ŝ		5.9%		133	0.0% 133	133	0.0% 133	0 0.0% 133
% 63	15.6%	197	¥		7.4%	93 7.4%	63	0.0% 93	0 0.0% 93	0.0% 93	0 0.0% 93
% 126	30.3%	1584	15		5.0%		263	0.0% 263	0 0.0% 263	0.0% 263	0 0.0% 263
% 22	24.8%	283	R		6.8%		11	0.4% 77	4 0.4% 77	0.4% 77	4 0.4% 77
% 130	24.3%	891	ő		4.6%		167	0.0% 167	167	0.0% 167	0 0.0% 167
% 21	18.8%	246	12		7.2%	95 7.2%	36	0.0% 95	36	0.0% 95	0 0.0% 95
0	0.0%	0	Ľ		3.8%	28 3.8%	28	0.0% 28	28	0.0% 28	0 0.0% 28
k 49	15.8%	345	3		6.2%		136	0.0% 136	136	0.0% 136	0 0.0% 136

R.

Pa Pa%	27 1.7%	213 6.4%	197 6.7%	43 2.2%	107 3.9%	146 13.5%	114 4.1%	51 4.0%	29 2.0%	46 3.2%	39 3.1%	167 3.2%	49 2.4%	38 1.5%	172 5.3%	58 2.3%	58 2.3%	68 5.1%	98 3.1%	20 0.6%	80 7.2%	18 1.1%	85 2.2%	55 2.6%	46 3.7%	59 3.4%	38 1.5%	30 1.4%	66 2.6%	195 3.7%	28 2.1%	
Ps %	7.6%	13.8%	10.1%	8.9%	11.8%	12.2%	17.5%	11.9%	9.3%	5.4%	14.3%	10.1%	13.4%	10.5%	13.4%	7.2%	12.2%	7.0%	12.5%	11.4%	19.9%	12.9%	23.3%	16.8%	14.5%	11.4%	7.2%	%0.6	16.1%	13.8%	11.4%	Ì
Ps	124	456	297	174	322	132	488	150	134	76	1.78	530	273	267	435	181	311	93	399	385	221	212	888	362	182	200	182	188	416	722	149	976
₩%	34.7%	23.8%	31.0%	24.3%	20.7%	35.8%	20.5%	27.4%	32.8%	28.9%	37.5%	31.6%	27.9%	14.4%	39.1%	33.3%	25.8%	23.7%	20.9%	39.8%	39.0%	27.9%	32.5%	26.9%	30.4%	31.2%	25.6%	24.7%	38.5%	45.9%	27.2%	10 00
Æ	562	788	916	473	565	387	573	347	473	410	468	1652	570	368	1271	833	659	316	667	1347	434	459	1238	578	382	545	644	516	994	2400	356	1001
F %	5.2%	8.0%	14.9%	2.5%	5.1%	3.6%	4.8%	8.0%	4.8%	4.6%	5.3%	5.4%	5.3%	2.9%	4.8%	1.4%	3.4%	4.5%	5.1%	3.1%	5.1%	3.6%	5.9%	3.1%	7.1%	2.7%	6.2%	2.4%	2.9%	2.7%	3.4%	, oo c
LL	84	265	439	48	139	39	133	101	69	65	99	281	108	75	155	35	87	8	162	106	57	60	225	67	68	48	157	50	75	140	4	Ę
%1	1.9%	2.1%	4.1%	2.5%	2.2%	1.4%	1.1%	3.0%	1.2%	2.6%	3.0%	2.9%	4.7%	1.3%	2.1%	2.9%	3.2%	2.2%	0.9%	1.9%	1.6%	1.6%	1.6%	1.1%	1.4%	0.7%	0.7%	0.9%	2.6%	2.3%	1.1%	1 10
-	31	11	122	48	61	15	30	38	18	37	37	153	96	33	67	72	82	8	30	63	18	26	09	23	18	12	17	18	99	118	14	ŝ
%1	5.5%	7.1%	5.4%	5.0%	2.9%	3.8%	6.4%	4.7%	2.9%	1.8%	5.4%	4.4%	6.3%	4.4%	5.1%	5.1%	4.0%	7.7%	7.0%	3.4%	2.2%	4.5%	3.2%	2.5%	6.3%	4.7%	6.4%	5.9%	2.4%	3.2%	4.7%	A 201
F	68	235	160	26	8/	41	178	59	42	25	68	231	129	112	165	128	103	103	223	115	24	74	122	53	62	82	160	123	62	168	62	120
R %	13.5%	11.8%	9.3%	14.3%	17.0%	16.1%	15.0%	12.7%	12.2%	12.5%	12.1%	15.4%	14.8%	8.0%	9.7%	10.1%	19.2%	8.7%	29.1%	11.1%	11.8%	9.5%	15.8%	14.0%	11.8%	16.1%	9.5%	11.5%	15.4%	6.3%	15.3%	1 E CO/
2	219	392	275	279	465	174	418	161	176	177	151	805	302	204	316	254	492	116	928	375	131	156	601	300	149	281	240	240	397	330	201	000
% M	3.9%	3.1%	5.6%	1.7%	3.3%	3.1%	3.6%	2.8%	4.0%	% 9.0	5.5%	4.2%	3.8%	1.3%	3.7%	6.5%	2.2%	2.8%	3.3%	3.7%	1.4%	1.8%	1.0%	2.1%	2.2%	2.2%	4.2%	0.7%	2.0%	-2.0%	3.9%	100 0
M	64	104	164	34	6	33	101	35	57	8	69	219	11	33	120	163	56	æ	106	127	16	30	40	45	28	38	105	15	52	106	51	8
Mf %	14.4%	10.4%	8.0%	30.8%	20.7%	3.1%	18.7%	16.0%	21.9%	36.4%	5.3%	16.8%	13.9%	46.1%	11.4%	20.8%	20.1%	30.3%	7.5%	15.2%	3.3%	22.9%	5.9%	21.1%	13.2%	16.4%	22.9%	34.9%	11.6%	14.4%	24.2%	43 7%
Ŧ	233	345	236	599	566	33	522	202	315	516	99	875	283	1176	372	520	514	405	240	515	37	376	225	453	166	286	577	729	299	750	317	385
с%	9.1%	13.0%	5.0%	6.6%	8.1%	4.3%	6.8%	5.1%	5.9%	3.0%	5.1%	5.9%	3.8%	4.9%	3.7%	4.9%	6.0%	4.6%	5.6%	5.6%	5.9%	7.7%	5.3%	8.9%	5.5%	9.7%	15.3%	6.5%	5.1%	3.5%	4.8%	A 20
c	147	431	148	128	221	46	189	64	85	42	64	310	11	126	120	123	153	62	178	189	99	126	201	191	69	170	386	135	133	184	63	178
Mi%	0.1%	0.2%	0.0%	0.2%	0.4%	0.0%	0.0%	%0:0	0.0%	0.0%	% 9.0	0.0%	0.0%	0.5%	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.4%	1.9%	0.0%	0.0%	0.2%	0.0%	0.0%	0.2%	0.5%	0.2%	70.0
Ш.	2	7	0	3	12	ο.	0	0	0	0	1	0	•	12	ò.	0	0	•	13	•	•	9	72	•	0		•	•	4	-27	3	-
Empl.	1621	3314	2954	1947	2729	1080	2789	1265	1441	1417	1249	5223	2042	2551	3252	2503	2558	1336	3193	3388	1113	1645	3814	2149	1258	1748	2517	2086	2585	5224	1311	2810
Pop.	3190	6887	5070	3933	6197	2897	5459	2573	2702	2756	2939	9641	3930	5371	6319	4914	5546	2796	6282	6002	2572	3515	8606	4261	2518	3295	4910	4695	4681	9747	3104	5411
ST	WN	NE	¥	MN	¥I	ß	NW	Ā	Ā	MN	Q	NW	NW	¥	Ë	Ā	M.	Ā	₽	₹	ទ	NW	ß	Ā	W	WN	NW	NW	WN	WN	WN	NW
Urban Place	Plainview	Plattsmouth	Pleasant Hill	Princeton	Red Oak	Redfield	Redwood Falls	Rock Rapids	Rock Valley	Roseau	Rugby	Sartell	Sauk Centre	Schuyler	Seward	Sheldon	Shenandoah	Sibley	Sidney	Sioux Center	Sisseton	Sleepy Eye	Spearfish	Spirit Lake	Spring Valley	St Charles	St. Francis	St. James	St. Joseph	St. Peter	Staples	Stewartville

Pf Pf% Ps Ps	469 30.6% 143 9.3%	840 27.8% 526 17.4%	290 23.7% 316 25.8%	1061 26.7% 583 14.7%	399 25.6% 187 12.0%	281 23.9% 351 29.8%	461 27.4% 263 15.6%	435 32.3% 242 18.0%	1217 37.4% 374 11.5%	2078 40.6% 891 17.4%	751 34.1% 170 7.7%	779 33.2% 214 9.1%	1069 27.9% 702 18.3%	333 28.3% 146 12.4%	995 27.5% 319 8.8%	584 32.2% 233 12.8%	475 24.8% 264 13.8%	1462 34.2% 510 11.9%	830 22.1% 580 15.5%	930 21.0% 392 8.8%	1021 28.8% 390 11.0%	428 26.2% 227 13.9%	747 26.0% 228 7.9%	664 32.6% 152 7.5%	1877 41.0% 483 10.5%	979 30.7% 479 15.0%	1154 27.4% 402 9.5%	392 25.0% 135 8.6%	347 22.3% 165 10.6%	387 22.1% 203 11.6%	295 23.8% 149 12.0%	
F %	6.5%	6.6%	3.5%	2.9%	2.8%	2.3%	6.0%	3.4%	3.6%	3.1%	8.4%	6.4%	2.7%	4.6%	8.8%	3.0%	3.5%	3.5%	4.9%	5.2%	4.4%	5.8%	20.0%	3.2%	10.3%	7.9%	3.0%	1.1%	1.7%	4.0%	4.4%	
u.	66	201	43	115	43	27	101	46	118	160	.185	151	102	54	319	54	89	149	185	229	156	94	575	65	472	251	126	17	26	20	55	
1%	1.7%	2.6%	1.1%	1.6%	2.0%	2.0%	1.6%	1.2%	1.8%	3.8%	1.3%	5.0%	2.8%	2.9%	3.6%	1.0%	1.3%	1.2%	2.0%	5.9%	2.6%	1.0%	3.2%	1.3%	2.4%	4.8%	1.9%	1.5%	1.9%	2.1%	% 9.0	
-	6 26	6/ 9	6 13	6 65	6 31	6 24		6 16		-	6 28	6 118	6 109	6 34	6 129	6 19		6 51	6 76	k 260	6 93	6 17		6 27	6 108	k 154		k 23	% 29	ہ 36	8	
T%	3.5%	2.0%	3.5%	9 4.2%	5.4%	2.6%	5.6%	3 7.6%			3.3%	7 5.8%	9 3.6%	4.6%	2.0%	2.6%	3.4%	9 4.4%	3 2.6%	6 3.3%	6 3.3%	5.9%	4 4.0%	3.2%	2.0%	2.1%	3 5.3%	0 7.0%	4.2%	5.0%	3.4%	
% T	% 54	% 59	% 43	% 169	% 84		% 94				% 72	% 137	% 139	% 54	% 71	% 48	% 66	% 189	96 %	% 146	% 116	96 %	% 114	% 65	% 91	% 67		% 110	% 65	% 87	% 42	
8	8 16.2%	5 18.0%	110 9.0%	4 16.7%	245 15.7%	4 9.7%	4 12.1%	192 14.3%	473 14.6%	11 13.3%	312 14.2%	290 12.4%	8 14.6%	132 11.2%	496 13.7%	290 16.0%	1 13.1%	436 10.2%	11 21.3%	4 10.7%	9 15.2%	217 13.3%	335 11.6%	16.5%	580 12.7%	517 16.2%	366 8.7%	21 14.1%	159 10.2%	236 13.5%	132 10.6%	
% R	% 248	% 545		% 664		% 114	% 204			% 681			% 558			-			% 801	% 474	% 539			% 337				% 221				┝
M	9 4.5%	0 1.7%	4 2.0%	176 4.4%	6 1.7%	15 1.3%	1 1.2%		2	7 1.9%	130 5.9%	4 3.2%	9 2.6%	2 1.9%	215 6.0%	102 5.6%	79 4.1%	0 2.1%	3 4.3%	4 1.9%	141 4.0%	7 2.9%	148 5.1%	4 4.1%	104 2.3%	75 2.4%	2 2.2%	0 3.2%	24 1.5%	2 4.7%	0 7.2%	
% W	14.0% 69	% 50	20.3% 24	18.4% 17	17.0% 26	12.3% 1	12.3% 21	% 65		.6 %	17.7% 13	0% 74	66 %	20.3% 22	20.0% 21	16.9% 10	18.0% 7	17.3% 90	9% 163	34.0% 84	16.9% 14	21.1% 47	6.7% 14	18.3% 84	12.9% 10	10.2% 7	29.9% 92	25.2% 50	41.7% 2	26.1% 82	20.6% 90	
W		8 5.2%						5 2.7%		5 8.7%		4 10.0%	5 6.9%			-			2 17.9%					-				-		-		┢
% Mf	% 215	% 158	% 249	% 733	% 265	% 145	% 207	% 36		% 445	% 389	2% 234	% 265	% 239	% 722	% 307		% 740	% 672	% 1509	% 600	% 345	% 192	% 372	% 590		<u> </u>	% 396	% 647	% 457	% 256	
c C	120 7.8%	233 7.7%	84 6.9%	183 4.6%	128 8.2%	90 7.7%	86 5.1%	101 7.5%		175 3.4%	116 5.3%	239 10.2%	200 5.2%	69 5.9%	248 6.9%	107 5.9%	186 9.7%	282 6.6%	227 6.1%	191 4.3%	252 7.1%	123 7.5%	245 8.5%	138 6.8%	156 3.4%	164 5.1%	235 5.6%	113 7.2%	49 3.2%	97 5.5%	62 5.0%	200
Ni%	7%	%0	%0	%0	8%	%0	%9	%0	2%	%0	%0	7%	4%	%0	%0	%0	%0	%	5%	%0	2%	1%	3%	%0	%0	%0	%0	%0	%0	9%	%0	Į
Mi N	11 0.	90 3.	0 0	0	13 0.	0	60 3.	0 0	5 0	0 0	0 0	17 0.	436. 11	0	0	0	0	0	18 0.	0	6 0	2 0	8	0 0	0 0	0	0	0	0	16 0.	0	
Empl.	1533	3025	1224	3978	1556	1176	1682	1347	3250	5122	2203	2347	3830	1177	3612	1814	1917	4277	3752	4434	3544	1634	2876	2038	4582	3189	4218	1571	1553	1748	1242	0767
Pop. E	3228 1	6442 3	2731 1	8410 3	3155 1	2539 1	3613	2820 1	6826	9765 5	4025 2	5102 2	9157	2599 -	6814	4294	3942	8586 4	6568	8493 /	7047	3029	5126	4131 2	8968	5583	8176 4	3161	3332	3660	2549	
ST P	IA 37	sp 6	IA 21	MN 8	IA 3	IA 21	WN 3(NE 21	19 DN	S OS	MN 4	IA 5	.6 NW	MN 2	WN 61	MN 4:	NE 3	ND N	WN 6	MN 8	N N	WN 3	IA 5	IA 4	IA 8	NE NE	8	3	IA 3	NE 3	IA 2	- -
Urban Place	Story City	Sturgis	Tama	Thief River Falls	Tipton	Toledo	Two Harbors	Valentine	Valley City	Vermillion	Victoria	Vinton	Virginia	Wabasha	Waconia	· Wadena	Wahoo	Wahpeton	Waite Park	Waseca	Washington	Watertown	Waukee	Waukon	Waverly	Wayne	Webster City	West Burlington	West Liberty	West Point	West Union	Milliometrue

Pa %	3.2%	4.9%	5.2%	4.0%	4.8%	4.3%	2.5%	2.6%
Pa	47	113	73	84	11	175	.38	38
Ps %	6.5%	10.2%	18.4%	8.7%	9.5%	14.9%	9.0%	11.2%
Ps	- 26	238	260	183	154	601	136	165
μ%	28.3%	26.9%	26.0%	24.1%	27.2%	28.2%	20.2%	34.3%
ž	419	626	368	509	440	1140	306	503
F %	3.6%	4.3%	5.3%_	13.1%	8.5%	5.5%	4.8%	6.4%
ч	54	100	75	276	138	222	73	94
%1	3.2%	2.1%	1.6%	4.7%	3.0%	2.5%	1.2%	2.0%
1	47	48	23	100	48	101	18	29
1%	6.7%	4.9%	6.5%	4.4%	4.3%	7.4%	4.6%	6.1%
T	66	114	92	92	69	301	20	06
R %	12.0%	17.1%	17.0%	16.3%	11.9%	12.1%	11.8%	10.8%
R	178	398	240	343	193	489	179	159
% M	4.5%	2.5%	4.7%	3.6%	5.4%	2.8%	2.5%	4.4%
M	67	58	99	75	87	112	8	5
Mf %	28.6%	19.8%	0.7%	8.5%	18.8%	14.7%	30.0%	13.9%
Mf	424	459	10	180	304	596	455	204
%Э	2.9%	5.0%	7.7%	8.2%	%2'9	5.8%	11.7%	7.2%
ပ	43	116	109	174	109	236	178	106
Wi%	0.2%	0.1%	0:0%	0.3%	0.0%	0.0%	0.0%	0.0%
¥	3	2	0	7	0	0	0	0
Empl.	1482	2324	1415	2110	1619	4042	1516	1467
Pop.	2829	4490	3137	4768	3048	8081	2851	2789
ST	Ą	WN	ß	Ā	NW	¥	WN	WN
Urban Place	Wilton	Windom	Winner	Winterset	Wyoming	York	Zimmerman	Zumbrota

APPENDIX C

Functional Classification

Functional Classification

KEY

Plus 1SD Plus 2SD Plus 3SD

Mining	Mi	Mi2	Mi3
Construction	C	C2	C3
Manufacturing	Mf	Mf2	Mf3
Wholesale Trade			
Retail Trade	R	R2	R3
Transportation	T	T2	T3
Information Technology	1	12	13
Finance	F	F2	F3
Professional Service	Pf	Pf2	Pf3
Personal Service	Ps	Ps2	Ps3
Public Administration	Pa	Pa2	Pa3
Diversified	D		

lowa

Function

Adel	.W F2
Albia	.C
Algona	.D
Anamosa	.Pa
Atlantic	.D
Belle Plaine	.Mf
Belmond	.Mf 12
Bloomfield	.D
Camanche	.Mf
Carlisle	.I F3
Centerville	.Mf
Chariton	.W3 R
Charles City	.D
Cherokee	.C
Clarinda	.Pa
Clarion	.T

Clear LakeD
CrescoD
CrestonD
De WittC F
DecorahPf3
Denison Mf
DyersvilleW
Eagle Grove T2
EldoraPa
EmmetsburgPf
EsthervilleD
Fairfield I3 Pf
Forest City Mf
Garner Mf
Glenwood C Pf
Grimes C I F3
Grinnell I2 Pf
Grundy Center D

Hampton	.D
Harlan	.W3
Humboldt	.Mf
Independence	.D
Iowa Falls	.C W3
Jefferson	.D
Knoxville	.D
Le Mars	.D
Manchester	.D
Maquoketa	.C
Marengo	.Mf
Missouri Valley	.F3
Monticello	.WI
Mount Pleasant	.Mf
Mount Vernon	.Pf2
Nevada	.D
New Hampton	.R
Norwalk	.I F3
Oelwein	.D
Onawa	.l Ps
Orange City	.Pf
Osage	.Mf
Osceola	.Ps
Pella	.Mf
Perry	.Mf
Pleasant Hill	.WIF3
Red Oak	.R
Rock Rapids	.D
Rock Valley	.D
Sheldon	.W
Shenandoah	R2
Sibley	.Mf T
Sioux Center	
Spirit Lake	
Story City	R

Tama	Ps3
Tipton	R
Toledo	Ps3 Pa
Vinton	C l2
Washington	D
Waukee	W F3
Waukon	R
Waverly	F1 Pf2
Webster City	
West Burlington	D
West Liberty	Mf2
West Union	W2 Pa
Williamsburg	I
Wilton	Mf
Winterset	R l2 F2

Minnesota

Afton I
AlexandriaR
Annandale C2
Appleton I Pa3
BaxterPf
BayportD
Becker C3 T
Belle Plaine C2
BensonR
Big Lake C Mf
Blue EarthD
Breckenridge C2
Byron Pf
Caledonia D
CambridgeI
Cannon Falls W
Chisago City W2

Chisholm	Mi3 T Ps
Cokato	C Mf
Cold Spring	Mf
Crookston	Pf
Detroit Lakes	Ps
Dilworth	C W
East Grand Forks	R
Ely	Mi Ps
Eveleth	Mi3 R
Forest Lake	C F
Glencoe	Mf
Glenwood	W
Goodview	Mf W
Grand Rapids	I Ps
Granite Falls	Pf
Grant	C
International Falls	F
Jackson	I
Jordan	R
Kasson	D
La Crescent	W Pf
Lake City	Mf
Le Sueur	Mf2
Lindstrom	D
Litchfield	Mf
Little Falls	D
Long Prairie	Mf I
Luverne	
Melrose	Mf
Milaca	D
Montevideo	I
Montgomery	C Mf
Monticello	
Mora	C Ps2
Morris	Pf3

Mountain Iron	Mi3 W2
New Prague	D
North Branch	
Norwood Young America	
Oak Park Heights	D
Olivia	Pa
Park Rapids	W
Perham	12
Pine City	Ps2
Pipestone	D
Plainview	C Pf
Princeton	Mf
Redwood Falls	Ps
Roseau	Mf2
Sartell	D
Sauk Centre	12
Sleepy Eye	D
Spring Valley	D
St. Charles	CR
St. Francis	C3
St. James	Мf
St. Joseph	Pf
St. Peter	Pf3
Staples	D
Stewartville	ΡF
Thief River Falls	R
Two Harbors	Mi
Victoria	WF
Virginia	Mi3 Ps
Wabasha	
Waçonia	WIF
Wadena	WR
Waite Park	R3
Waseca	Mf 1
Watertown	D

Windom	R
Wyoming	W.F
Zimmerman	C2 Mf
Zumbrota	D

Nebraska

Alliance	T3
Auburn	ТЗ
Aurora	D
Blair	C I2
Broken Bow	D
Central City	D
Chadron	R2 Pf
Cozad	Mf F
Crete	Mf
David City	T
Elkhorn	C W I2 F2
Fairbury	Mf I
Falls City	T2 I2
Gering	C T2 F
Gothenburg	D
Holdrege	D
Kimball	Mi T
McCook	R
Minden	Ps
Nebraska City	T
Ogallala	R2
O'Neil	C W3
Plattsmouth	C3
Schuyler	Mf3
Seward	Pf
Sidney	R3
Valentine	T Ps
Wahoo	C Pa

Wayne	R I2
West Point	Mf
York	D

North Dakota

Beulah	. Mi3 T3
Devils Lake	. R Ps
Grafton	. Pf Pa
Grand Forks AFB	. Pf Ps Pa3
Minot AFB	.RPf2Pa2
Rugby	.WPf
Valley City	.CPf
Wahpeton	.D

South Dakota

Belle Fourche Mi2 C R Ps
BrandonTF3
CantonCRF
Dell Rapids F
Ellsworth AFBF Ps Pa3
Hot SpringsT Pf
LeadMi3 Ps3
MadisonW
MilbankMi W3 F
MobridgeC Ps2
Pine RidgePf2 Ps2 Pa3
RedfieldR Pf Pa3
SissetonPf Ps Pa
SpearfishR Ps2
SturgisMi Ps
VermillionI Pf2 Ps
WinnerR Ps

BIBLIOGRAPHY

- Atchley, Robert C. "A Size-Function Typology of Cities." *Demography* 4, no. 2 (1967): 721-733.
- Aurousseau, M. "The Distribution of Population: A Constructive Problem." Geographical Review 11, (1921): 563-592.
- Berry, Brian. "A Note Concerning Methods of Classification." Annals of the Association of American Geographers 48, no. 3 (1958): 300-303.
- Berry, Brian. "Cities as Systems Within Systems of Cities." *Regional Science* Association, Papers and Procedures 13, (1964): 147-165.
- Berry, Brian, and William Garrison. "The Functional Bases of the Central Place Hierarchy." *Economic Geography* 34, (1958): 145-154.
- Boloton, P.J., and W.J. Krzenowski. "Characterization of Principal Components for Projection Pursuit." *The American Statistician* 53, (1999): 108-111.
- Brush, John E. "The Hierarchy of Central Places in Southwestern Wisconsin." *Geographical Review* 43, no. 3 (1953) : 380-402.
- Clark, Audrey N. *The Penguin Dictionary of Geography*. London: Penguin, 1998.
- Clark, P.J., and F.C. Evans. "Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations." *Ecology* 35, (1954): 445-453.
 - Cline, G. "Basic Principals of Soil Classification." Soil Science 67, (1949): 83.

Environmental Systems Research Institute, Inc. (ESRI). ArcGIS 9.

- Environmental Systems Research Institute, Inc. (ESRI). Using ArcView GIS. Redlands: Environmental Systems Research Institute, Inc., 1996.
- Freestone, Robert, Peter Murphy, and Alan Jenner. "The Functions of Australian Towns, Revisited." *Tijdschrift voor Economische en Sociale Geografie* 94, no. 2 (2003): 188-204.

- Fuguitt, Glen, and Donald Field. "Some Population Characteristics of Villages Differentiated by Size, Location and Growth." *Demography* 9, no. 2 (1972): 295-308.
- Gildersleeve, Charles. "Changing Patterns of Communities in the Midwest." *Business in Nebraska* 48, no. 16 (1969): 1-5.
- Hammond, Robert, and Patrick McCullagh. *Quantitative Techniques in Geography: An Introduction*. London: Oxford University Press, 1975.
- Haring, Lloyd L., John F. Lounsbury, and John W. Frazier. *Introduction to Scientific Research*. Boston: WCB McGraw-Hill, 1992.
- Harris, Chauncy. "A Functional Classification of Cities in the United States." Annals of the Association of American Geographers 33 no. 1, (1943): 86-99.
- Harris, Chauncy, and Edward Ullman. "The Nature of Cities." The Annals of the American Academy of Political and Social Science 242, (1945): 7-17.
- Hart, John Fraser. "Functions and Occupational Structure of Cities of the American South." *Annals of the Association of American Geographers* 45, no. 3 (1955): 269-286.
- Hart, John Fraser, and Neil E. Salisbury. "Population Change in Middle Western Villages: A Statistical Approach." *Annals of the Association of American Geographers* 55, no. 1 (1965): 140-60.
- Hill, Edward W., John F Brennan, and Harold L Wolman. "What is a Central City in the United States? Applying a Statistical Technique for Developing Taxonomies." *Urban Studies* 35, no. 11 (1998): 1935-1969.
- McGrew, Chapman J. Jr., and Charles B. Monroe. An Introduction to Statistical Problem Solving in Geography. Dubuque: WCB, 1993.
- Nelson, Howard. "A Service Classification of American Cities." *Economic Geography* 31, no. 3 (1955): 189-210.
- Nelson, Howard J. "Some Characteristics of the Populations of Cities in Similar Service Classifications." *Economic Geography* 33, no. 2 (1957): 95-108.

Northam, Ray M. Urban Geography. New York: Wiley & Sons, 1975.

Pownall, L.L. "The Functions of New Zealand Towns." Annals of the Association of American Geographers 43, (1953): 352-350.

Sawada, M. Nearest Neighbor GIS Application. 2002.

- Silk, John. *Statistical Concepts in Geography*. London: George Allen & Unwin, 1979.
- Smith, Robert. "Method and Purpose in Functional Town Classification." *Annals of the Association of American Geographers* 55, no. 3 (1965): 539-548.
- Stafford, Howard Jr. "The Functional Bases of Small Towns." *Economic Geography* 39, no. 2 (1963): 165-175.
- Steigenga, W. "A Comparative Analysis and a Classification of Netherlands Towns." *Tijdschrift voor Economische en Sociale Geografie* 46, (1955): 108-119.
- Thomas, Edwin N. "Some Comments on the Functional Bases for Small Iowa Towns." *Iowa Business Digest*, (1960): 10.
- United States Census Bureau. "2000 Industry Data." http://www.census.gov. Viewed September 15, 2004.
- Webb, John. "Basic Concepts in the Analysis of Small Urban Centers of Minnesota." Annals of the Association of American Geographers 49, no. 1 (1959): 55-72.
 - Wilson, M.G. "Some Population Characteristics of Australian Mining Settlements." *Tijdschrift voor Economische en Sociale Geografie* 53, (1967): 125.
 - Yeates, Maurice. An Introduction to Quantitative Analysis in Human Geography. New York: McGrew-Hill, 1974.
 - Yeates, Maurice, and Barry Garner. *The North American City*. New York: Harper & Row, 1976.