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SPATIAL ANALYSIS OF TOPOGRAPHY 
FOR GLACIER MAPPING 

IN THE WESTERN HIMALAYA 
(Abstract)

Lubica Cverckova, MA 
University of Nebraska, 2007 

Advisor: John F. Shroder

Understanding climate change requires accurate assessment of the Earths cryosphere, 
as glacier fluctuations directly and indirectly reflect changes in radiative forcing and tem
perature and precipitation patterns. Direct assessment of alpine glaciers in high-mountains 
is notoriously difficult, and assessment from space represents the only practical alternative 
for assessing regional and global ice-fluctuation patterns. The mapping of debris-covered 
glaciers is especially problematic, as glacier surfaces exhibit spectral reflectance patterns 
similar to surrounding rock and sediment. Therefore, multispectral analysis of satellite im
agery does not permit accurate delineation.

Consequently, the use of satellite-derived topographic information and spatial analysis 
were evaluated for mapping the Raikot and Sachen Glaciers at Nanga Parbat mountain in 
the Pakistan Himalaya. Geomorphometric analyses were used to generate first- and second- 
order topographic parameters. These were utilized to generate homogeneous elemental-form 
objects, which were evaluated for glacier mapping. Topo-sequence information was also ex
amined and represents the slope-angle altitude function within slope facet objects.

The results indicate that it is difficult to characterize the hierarchical topographic orga
nization of glaciers using topographic parameters and elemental form objects. Even though 
only one level of the topographic hierarchy was attempted, elemental form objects appear to 
be more useful than topographic parameters, as they represent a combination of topographic 
information. In addition, elemental-form objects can be used to identify and map selected 
glacial features without further aggregation to another level in the hierarchy. Toposequence 
information was found to be of value in differentiating glacier versus non-glacier surfaces. 
Collectively these results indicate that spatial analysis of the topography can be used for 
glacier mapping, although accurate digital elevation models are required, along with more 
sophisticated approaches for quantitatively characterizing the topography. It is suggested



that specific topographic primitives and glacier landforms be individually characterized and 
integrated into a landscape topographic hierarchy in order to accurately characterize and map 
debris-covered glaciers. Finally, special attention to the concept of scale must be formally 
accounted for in analysis procedures.



V

The main role o f scientists is to investigate what reality is as well as to under
stand the past and present in order to figure out what the future holds. Despite 
science’s efforts to provide objective, trustworthy answers to difficult questions, 
it is not always able to gain public faith. Understanding reality can be a never- 
ending process with no start and no end, full o f faults as well as progress. But 
the main question still remains: Is human kind prepared to know what reality 
is?

To my parents
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Chapter 1 

Introduction

glaciers covered part of the Earth’s 

Glaciers play a significant role in 

landscape evolution for the areas north of 40° latitude, and in mountains and high plateaus 

at all latitudes. Mountain glaciers, together with ice caps and snowy mountain ranges, hold 

2% of the fresh water of the Earth. They represent a significant water resource, especially in 

arid and semi-arid climates. Consequently, it is important to monitor glaciers to determine 

how they are responding to climate forcing.

Even in today’s era of general glacier recession (Shroder et al., 2000b), ~  10 percent 

of the land surface is under glacier cover (Bloom, 1998). Research documents the signifi

cant influence of modem glaciation on landscapes, especially in high altitude environments, 

where glaciation plays a major role in relief production (Bishop and Shroder, 2000a; Bishop 

et al., 2003). On the north side of the Nanga Parbat mountain in Pakistan, for example, 

Gardner and Jones (1993) calculated the rate of glacial denudation to be 4 — 6 mm a l . Such 

rapid denudation reduces the lithospheric mass and results in isostatic and localized tectonic 

uplift. With increasing elevation, climate change and glaciation modify the topography by 

further reducing lithospheric mass, which increases topographic relief even more (Bishop et

At the beginning of the Pleistocene Ice Age large 

surface, and formed at least 30% of today’s landscape.
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al., 1998b). This represents complex interactions between tectonic, climate and surface pro

cesses (figure 1.1) (Bishop and Shroder, 2000a; Zeitler et al., 2001a; Zeilter et al. , 2001b).

Climate

Earthquakes

Magmatic
Processes

Erosion

Tectonic
Processes

Weathering

Denudation

Accumulation

Transportation
M ountain

Topography
Exogenous
Processes

Endogenous
Processes

Figure 1.1: Conceptual model of mountain geodynamics. Mountain topography is the ulti
mate result of endogenous, exogenous processes and climate.

Glaciers, especially the Himalayan ice masses, are thought to be very vulnerable to cli

mate warming due to high altitudes and highly variable debris cover. They are “summer 

accumulation types” that strongly depend on summer monsoonal precipitation and cool sum

mer temperatures (Ageta and Higuchi, 1984). It follows, therefore, that glaciers are one of 

the best indicators of climate change (Sharp, 1960). Furthermore, rapid glacier advances and 

retreats can lead to major slope failures (Bishop et al., 1998a). In addition, supraglacial ice- 

dammed and moraine-dammed lakes, formed in the terminus region of a glacier, commonly 

lead to a chaotic potential for glacier lake outburst floods (GLOFs), destruction of property 

and loss of human life in areas downstream (Wessels et al., 2002).

Understanding mountain geodynamics and climate change require accurate assessment



3

of the Earth’s cryosphere. Glacier fluctuations directly and indirectly reflect changes in ra

diative forcing, temperature and precipitation patterns (Bishop et al., 2001). Direct assess

ment of alpine glaciers in high mountains is notoriously difficult, and assessment from space 

represents the only practical alternative for assessing regional and global ice-fluctuation pat

terns (Bishop et al., 2001). Remote sensing technology today, however, provides a potential 

solution for the monitoring of mountain glaciers, but it cannot be used easily for complete 

glacier mapping, as the lower debris-covered parts of Himalayan glaciers exhibit spectral 

reflectance patterns similar to surrounding rock and sediement. Therefore, multispectral 

analysis of satellite imagery does not permit accurate mapping and assessment (Cverckova 

et al., 2004).

Bishop et al. (2001) and Bonk (2002) evaluated scale-dependent information derived 

from satellite remote sensing to map glacial surfaces, by incorporating detailed field mea

surements and geomorphometric analysis into mapping efforts. They found morphomet- 

ric parameters to be very useful in delineating glacial features and some landforms. Over 

time, the use of morphometry or ’orometry’ (Sonklar, 1973) has shifted from comparison 

of mountain shapes to morphometric characterizations that represent process-form relation

ships (Montogomery et al., 2001) as well as to the extraction and classification of terrain 

features from digital elevation models (DEMs) (e.g., Bishop et al., 2001; Hammond, 1964; 

Wood and Sneel, 1960). Despite the proliferation of empirical research in geomorphometry, 

there is still no systematic approach to effectively model the complexities of mountain to

pography (Rasemann et al., 2004).

Numerous scientists have tried to utilize morphometric parameters to automate geomor- 

pological mapping at different scales, and are using physically-based models for estimating 

rates of erosion and simulating landscape evolution (Hofierka and Suri, 1999; Minar, 1998; 

Mitasova et al., 1996a,b). While physically based models have produced promising results 

(Hofierka and Suri, 1999), they do not consider the hierarchical organization of the topogra- 

phy.
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Characterizing the spatial organization of mountain topography is essential for under

standing self-organization mechanisms of landscape evolution. Furthermore, we need to 

address the issue of scale and the various hierarchical levels of organization that are usually 

neglected, although critical for understanding spatial relationships and patterns (Albrecht 

and Car, 1999).

Assessing scale-dependent surface processes and topography can be addressed using ge

ographic information system (GIS) technology and digital elevation models (DEMs). Anal

ysis and modeling of the topography have provided new insights into erosion processes, 

possible feedback mechanisms, and the polygenetic nature of topographic evolution, which 

control relief production and the spatial complexity of the landscape (Bishop and Shroder, 

2000a; Brozovik et al., 1997; Burbank et al., 1996; Shroder and Bishop, 1998a).

Bishop et al. (2001) and Bonk (2002) were among the first to investigate the theoretical 

and practical aspects of hierarchical organization of topography for glacier mapping, using 

object-oriented data modeling, geomorphometry, and sc ale-dependent analysis. Their au

tomated approach using a two-level hierarchical model was reasonable enough to delineate 

portions of the Raikot Glacier on the Nanga Parbat massif. They suggested, however, that 

additional analysis was required to characterize complex glacier topography.

1.1 Nature of the Problem

The analysis of Western Himalayan topography involves understanding the feedback 

mechanisms that control topographic evolution (Bishop and Shroder, 2000a). To be able to 

understand landscape evolution, we need to understand the underlying processes that create 

them (Phillips, 1999). The study of geomorphic processes can be difficult because they are 

highly scale-dependant (spatio-temporal) (Mark and Aronson, 1989).

A common way of dealing with scale (see appendix) in scientific research is the hierar

chical approach. Hierarchy theory (see appendix) was formally described by Koestler (1967)
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as an alternative to the application of classic reductional experimental science in the study 

of human behavior. He used the term ’hierarchy’ for a tree-like structure of a system, which 

can be subdivided into smaller subsystems that in turn can be subdivided into next smaller 

subsystems and so on. The smallest subsystems from a morphology perspective can be re

ferred to as ’elemental terrain form objects (ETFO)’, which exist at a small geographic scale, 

and which may exhibit homogeneous morphometric properties, such as slope, slope-aspect 

and curvature (figure 1.2)

Terrain Feature 1 Terrain Feature 2 ... Terrain Features n

Landform Feature 2Landform Feature 1 ... Landform Features n

Elemental Terrain 
Form Object 1

Elemental Terrain 
Form Object 2

... Elemental Terrain 
Fonn Objects n C

SJjoso
pC

DD
■e

Figure 1.2: Hierarchical characterization of mountain landforms. The topography is a hierar
chy, such that elemental terrain forms objects represent the lower-level terrain-form objects. 
At higher level, terrain-features are defined based upon the spatial aggregation of multiple 
elemental terrain-form objects, and subsequent higher-order feature, landform features result 
from the spatial aggregation of objects from the appropriate lower level.

It follows then, that hierarchy theory can be used in the characterization of landforms, 

as the topography is a hierarchy, such that ETFOs represent one relatively low-level object. 

At higher levels, terrain-features, such as moraines and ice cliffs can be defined based upon 

the spatial aggregation of ETFOs, and subsequent landform features, such as a glaciers re

sult from the spatial aggregation of objects from the appropriate lower levels (Bishop et al., 

2001).

In addition, hierarchy theory attempts to reduce the level of complexity and explain the
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spatial hierarchical structure of the topography (Bishop et al., 2001). Reducing the complex

ity does not always result in losing too much information, but it is related to techniques of 

managing the complexity and multi-scaled dependency of hierarchically structured attributes 

(Suryana and Hoop, 1994).

Another advantage of using a hierarchical description of landscape is that it gives in

formation about the topology of topography. The knowledge of spatial topology provides a 

basis for utilizing geomorphometric characteristics in mapping surface processes that oper

ate at various hierarchical levels. Furthermore, there maybe unique relationships associated 

between object attributes at each hierarchical level as well as across them that potentially 

contain information about the polygenetic evolution of a landscape (Bishop et al., 2001).

A new methodology, as well as new morphometric parameters, need to be developed and 

evaluated that capture the morphogenetic information associated with these forms and their 

scale-dependency. Furthermore, the approach needs to account for the changing morphom

etry of a glacier’s surface as it advances or retreats, as well as the similarity of topographic 

characteristics generated by other surface processes.

1.2 Research Objectives

The topographic complexity at Nanga Parbat results from dynamic interactions be

tween climate and tectonics that consequently affect surface processes. Alpine glaciers at 

Nanga Parbat, however, differ in their activity as a result of climate change and local to

pographic variation, and they exhibit unique topographic characteristics at various scales 

that can be captured by spatial analysis. Development of a space-based approach allows 

for glacial monitoring and the study of mountain dynamics that are the result of multi-scale 

feedback mechanisms. Mapping of alpine glaciers using satellite imagery is not feasible 

due to similar spectral reflectance patterns of debris-covered glaciers and surrounding rocks.



7

Geomorphometric analysis has the potential to investigate the complexities of mountain ge

omorphology and topography. Consequently, the overall objective of the research is to eval

uate the utility of topographic information and spatial analysis for mapping alpine glaciers 

at Nanga Parbat, Pakistan.

Specific research objectives include:

• Evaluation of topographic parameters for characterizing glacier surface characteristics. 

This includes traditional first-order and second-order derivatives and new morphome

tric parameters that include a scale-of-analysis such as openness.

• Evaluation of toposequence information for characterizing glacier/non-glacier sur

faces. Glacier features contain unique geometric properties that can be described by 

using suitable combinations of morphometric parameters and elemental form objects. 

The slope-altitude function within a basin will be compared to determine if it can 

uniquely be used to identify glacier surfaces.

• Evaluation of the utility of object-oriented analysis for characterizing alpine glaciers. 

Object-oriented data modeling and analyses will be used to study the efficacy of di

agnostic landform mapping, as the object-oriented data model can represent the real 

world on the conceptual level, such as it seeks to characterize conceptual entities (e.g. 

elemental forms, terrain features, and landforms) as objects and can be used to char

acterize topological relationships.

1.3 Hypotheses and Rationale

There is a need for better understanding landscape organization and topographic evolu

tion. It has been surmised that mountain topography is hierarchical and exhibits reoccurring 

patterns of forms, such that the glacial surface can be divided into small homogeneous units, 

elementary terrain form objects, which can be further connected into larger, more complex,



less homogeneous units, that constitute landform features (figure 1.2). This hypothesis is 

based upon hierarchy theory, which emphasizes the spatial organization of topography as a 

result of climate, tectonic, and surface processes. Surface processes are spatially and tempo

rally constrained, such that processes that generate ETFOs operate at local scale (i.e. inter

nal topographic forcing). Furthermore, processes that generate higher-order forms operate at 

larger scales and incorporate more processes (i.e. external forcing of climate and tectonics). 

By anticipating that there are unique attributes associated with scale-dependent hierarchi

cal structures of mountain topography, such as internal morphometric variability, it should 

be feasible using geomorphometry to depict the spatial patterns associated with topographic 

structure at a variety of scales. The work of Bishop et al. (2001) and Bonk (2002) has demon

strated the feasibility of this concept.

A description of topographic complexity involves developing additional geometric and 

contextual information, such as spatial topology. Topological relations such as adjacency 

and connectivity are important aspects of morphogenetic relationships that dictate differ

ences in matter, process and topographic complexity. Furthermore, shape indices should 

enable identification of terrain features and assist in characterizing terrain objects. This over

all hypothesis is based upon the assumption that mountain topography inherently contains 

morphologic, morphogenetic and morphodynamic information related to the polygenetic na

ture of landscape evolution, and that this information can be extracted from DEMs using 

geomorphometric analysis (figure 1.3).

Specific hypotheses and rationales as related to the specified objectives are as follows:

• It is hypothesized that traditional first- and second-order topographic parameters can

not be directly used to accurately map glaciers. This is because the magnitudes of 

the metrics are not unique for glacier surfaces, and a multitude of surface processes 

generate similar topographic conditions. It is anticipated that their greatest value will 

be in the generation of topographic primitives such as ridges, and in the generation
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Figure 1.3: Relations among basic geomorphologic categories (modified from Minar, 1992).

of elemental form objects. It is also anticipated that the topographic parameter called 

openness will be of minimal value as it represents a globally-controlled metric whose 

magnitude is dependent upon the scale-of-analysis. Because the inherent scale-of- 

analysis for a particular glacier is not accurately known, its utility for automated map

ping is limited, unless it is uniquely combined with other topographic information.

• It is hypothesized that toposequence information has the potential to be used effec

tively to differentiate between glacier and non-glacier surfaces, because it represents 

the slope-altitude function for the slope-facet structure of the topography. The slope- 

facet structure of glaciers surfaces should be highly variable compared to alpine basin 

topography because the glacier surface is highly active and slope facets should be rel

ative small in size compared to large steep slope alpine basin slope facets. Given these 

differences, glacier slope facets should exhibit relatively lower slope angles and relief 

in the ablation area.

• Finally, it is hypothesized that object-oriented data modeling and analysis can be used 

to accurately characterize various aspects of the hierarchical structure of mountain to

pography. Specifically, spatial analysis and object-oriented data modeling should en

able the study of spatial patterns on glaciers. Although very little work has been done 

on formalizing the object hierarchy and on the methodology for generating objects at
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various hierarchy levels, it is anticipated that elemental form objects generated from 

individual topographic parameters will be of limited value, although objects generated 

from multiple topographic parameters will be very useful. It is expected that unsuper

vised cluster analysis will be an effective approach for enforcing the homogeneity rule 

in the generation of elemental form objects.

1.4 Significance of Research

The Western Himalayas represent the world’s highest mountains that exhibit active 

tectonics and climate change. They are home to some of the largest and most active glaciers 

on Earth. Accurate assessment and mapping of these glaciers is required in order to under

stand climate change, landscape evolution, natural hazards and water resources.

Glacier characterization and mapping requires a multidisciplinary approach. It is nec

essary to use remote sensing, geomorphometry, geomorphology and GISscience to address 

issues of surface characteristics, topography, and scale-dependence. This requires applica

tion of data modeling and spatial analysis.

This research should provide insight into the feasibility of using hierarchy theory for 

complex topographic characterization, and consequently give us more information about 

landscape self-organization as it relates to process and form (i.e. morphogenetics). Devel

opment of data models and computer analysis used in this research should provide better 

information about glacier morphology and the use of morphometric parameters generated 

fromDEMs. '

Perhaps the most significant benefit of this research will be to assist in the accurate delin

eation of glaciers to permit monitoring and change detection. Glaciers in Pakistan have al

ready significantly impacted settlement, communications, natural resources, and economies. 

In Pakistan, there are approximately 1, 214 glaciers that dominate the hydrology of many



11

basins (Bishop et al., 1995). Better assessment and monitoring is essential so that informa

tion can be used for hazard assessment and management of resources for people living in 

these high-altitude environments.
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Chapter 2 

Literature Review

Mapping debris-covered glaciers is a difficult task (Cverckova et al., 2004). It involves 

utilization of knowledge such as spatial organization of landscapes, glacier geomorphology, 

geomorphometry, and the utility of geographic information technology and digital elevation 

models (DEMs). Therefore, a review of the literature will focus on the following topics:

• Nanga Parbat Massif - climate, tectonic and surface processes conditions.

•  Hierarchy Theory and Mountain Topography - Spatial organization of mountain 

landscapes.

•  Glacier Mapping - Geomorphometric analysis, GIS spatial analysis and remote sens

ing.

2.1 Nanga Parbat Massif

The extreme topography of Nanga Parbat mountain has been recognized as unusual 

in terms of active surface processes that result in ferocious denudation rates. Zeitler (1985) 

was among the first scientists who studied exhumation rates using fission-track dating of 

bedrock at Nanga Parbat, one of the fastest growing mountains in the world (Burbank et al.,
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1996; Shroder and Bishop, 1998a). He calculated exceptionally rapid rates of uplift of ~  10 

mm yr-1 over the past few million years (Bishop et al., 1998b). The later work of Zeitler 

(1989) and Winslow et al. (1994) estimated exhumation rates of 4 to 8 mm yr-1. Burbank et 

al. (1996), using cosmogenic-radionuclide exposure ages, calculated bedrock incision rates 

by the antecedent Indus River. His research brought the estimates of incision rates to about 

2 — 12 mm yr-1 (Shroder et al., 1999). Shroder et al. (1999) made 15 preliminary measure

ments of glacier and river incision rates based upon which they calculated valley incision 

rates that average ~  2.2 db 1.1 cm yr-1 .

Gardner and Jones (1993) concluded that glacial processes were responsible for remov

ing large amounts of sediments from Nanga Parbat mountain. They estimated glacier de

nudation as high as 4.6 - 6.9 mm yr-1 . During the last decade Shroder (1998b); Shroder 

et al. (1999) and Shroder and Bishop (2000a) explored unroofing and glacial characteristics 

of different glaciers at Nanga Parbat mountain. They pointed out that unroofing of Nanga 

Parbat is caused not only by differential denudation but also by differential incision that was 

responsible for the huge knife-edged massif with the steepest relief on the planet.

Slope failures were recognized to be responsible for unroofing of the massif as well 

(Shroder, 1998b; Shroder et al., 1999). They were examined very precisely by Code and 

Sirhindi (1986); Owen (1989) and Goudie et al. (1984) in the Raikot-Astor region of Nanga 

Parbat and the Atabad Hunza area. There were also other authors who studied uplift and 

consequently denudation rates at the Nanga Parbat massif, e.g. Amano and Taira (1992); 

France-Lanord et al. (1993) and Montogomery (1994), who concluded that high rates of 

denudation result in a reduction of lithospheric mass, which can cause isostatic uplift that 

results in increases in elevation, climate change and glaciation.

The advent of geographic information systems (GIS) technology, as well as new devel

opment in remote sensing, created opportunities for advanced glaciological and geomorpho- 

logical studies. Among the first GIS approaches to studying Nanga Parbat mountain were
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reported by Bishop et al. (1998b). It was multidisciplinary research investigating the rela

tionship between tectonic and surface processes, denudation and uplift using remote sensing 

for image acquisition, and multispectral analysis and geomorphometric analysis of a digital 

elevation model, derived from a satellite imagery. GIS and pattern recognition procedures 

were applied to analyze topographic complexity and the geomorphology of the massif. The 

results of the geomorphometric approach, specifically slope analysis, applied to the Raikot 

basin showed high variation of slope with altitude. The high variation is associated with 

various processes; such that maximum slope angles were associated with faulting and river 

incision, whereas minimum slope angles were associated with glaciation.

Considerable potential exists for the classification of remotely sensed data and spatial 

data with the use of artificial neural network (ANN) technology (Civco, 1993; Foody et al., 

1995; Zhou and Civco, 1996). Bishop et al. (1999) investigated the utility of ANN for classi

fying supraglacial characteristics of alpine glaciers and to identify spectral patterns that were 

associated with the surface topography of glaciers at Nanga Parbat. ANN technology was 

also utilized to classify categories of debris-load classes for some of the glaciers at Nanga 

Parbat. They trained each ANN to recognize between: (1) bare glacier ice; (2) shallow debris 

on white ice; (3) moisture-laden, shallow debris; (4) thick debris-topographic high and; (5) 

thick debris-topographic low.

Also important were the findings of Bishop and Shroder (2000a) who used virtual reality 

coupled with morphometric analysis to analyze complex topography at Nanga Parbat. The 

results revealed a hierarchical organization of topography as well as extreme relief as a result 

of tectonic uplift, extreme denudation, and lithology/structure. Furthermore, they used satel

lite imagery to identify geomorphic events by examining erosion and deposition features. In 

addition, they recognized the significance of the shape of valleys modified either by river 

incision or glaciation using terrain-curvature analysis. The spatial distribution of extreme 

concavity was associated with river incision that shaped the valleys into the characteristic 

”V” shape. On the other hand, glaciation modified the valleys into significant ”U” shapes.
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They concluded there was a significant influence of glaciation on the landscape and the relief 

structure at Nanga Parbat. \

The effect of glaciation was further investigated in the research of Bishop et al. (2003). 

A better capability of deriving the information from satellite imagery was achieved by ra

diometric calibration, specifically by using the Minnaert-correction method, to account for 

topographic effects. Both river incision and glaciation proved to be major geomorphic agents 

responsible for relief production at Nanga Parbat, although glaciation generates the greatest 

mesoscale relief at high altitudes. At intermediate altitudes, warm-based glaciation decreases 

meso-scale relief. The results show a differential influence of glaciation on the relief struc

ture of the landscape.

The multidisciplinary research conducted at Nanga Parbat shows that the massif has un

dergone extreme environmental change over a very short period of geological time. Glacial, 

fluvial, and slope processes have played very important roles at different times in unroofing 

of the massif. Therefore, Nanga Parbat is not in a topographic steady state. New param- 

eterizations for numerical modeling are needed to investigate microclimate, surface runoff, 

and glacial processes that influence erosion and relief production. In addition, new informa

tion extraction approaches from satellite imagery are required. This can be accomplished by 

developing and utilizing spatio-temporal theories of mountain topographic organization and 

developing new GIS-based techniques for modeling these complexities (Bishop et al., 2002, 

2003; Shroder and Bishop, 2000a).

2.2 Hierarchy Theory and Mountain Topography

Characterization of terrain spatial organization is essential in understanding landscape 

self-organization mechanisms. In an attempt to characterize the complex nature of land

scapes, a theoretical foundation should guide data modeling and analysis efforts. There are 

several issues that need to be met once hierarchy theory is used for landscape mapping, such
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as formalizing hierarchy theory, encountering the scale-dependency of geomorphic forms or 

mapping units, and developing a procedure for spatial aggregation of forms. Mapping of 

spatially organized topography begins with the characterization of the topographic primi

tives that include first- and second-order derivatives of the elevation field. It then involves 

identification of fundamental spatial units that compose the landscape. Numerous theories 

and viewpoints about spatial organization of topography have been developed by various sci

entists of different nations, for example, by geoecologists of the German-Swiss school (e.g., 

Baume, 1991; Hasse, 1969; Mossimann, 1990) who initiated the theory of fundamental units 

or elemental forms in the early 1970’s and 1980’s. They referred to the basic, or the most 

homogeneous elemental forms as a ’geotop’.

In geomorphology the nature of elemental forms was often described using geometry, 

for example, Krcho (1973, 2001) and Lastockin (1987) characterized elemental forms on 

the basis of homogeneous geometric parameters. The approach of Krcho has been based 

on the morphometric homogeneity of the surface by using morphometric parameters calcu

lated for a single location on the basis of its nearest neighbors, such as slope, aspect, profile, 

tangential and planimetric curvatures (Etzelmiiller and Sulebak, 2000). Krcho’s approach 

continued with the theoretical combination of morphometric parameters to create elemental 

forms. The problem with the procedure is that defined surfaces are morphometrically homo

geneous inside, but their boundaries often do not correspond to the inner georelief structure 

(Minar, 1992). The problem of indeterminate boundaries represents one of the issues in the 

complexities of characterization of elemental forms (Borrough and Frank, 1996).

Geometry, however, often used in defining morphometric properties of terrain, has not 

been thoroughly investigated for mapping of glacial surfaces. Bishop et al. (2001) was 

among the first to define forms or hierarchical structures of glacial surfaces using morphom

etry. The results indicated that slope-angle and slope-aspect have the potential to delineate 

the boundaries of glaciers. Similarly, curvature was found to be of value for identifying 

glacier features such as moraines and ice cliffs. Overall, the result of using morphometric
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parameters proved to be valuable, but not completely adequate for automated mapping. An 

improved approach is needed to produce elemental forms that that are the result of the com

bination of morphometric parameters. Furthermore, it is important that automated modeling 

of landforms accounts for the inherent scale-dependency of elemental forms and landform 

features.

Bishop et al. (1998a) investigated the use of scale-dependent variation, derived from 

satellite imagery, to characterize glacier features that are the result of, for example, ice 

movement, ablation and supraglacial fluvial action. The result of scale-dependent analy

sis indicated that reflectance variation from fractured white-ice (seracs) exhibits a fractal 

pattern, whereas reflectance variations from other glacier surfaces exhibit a fractal pattern 

only within specific scale ranges (i.e. multi-fractality).

It is essential that the idea of spatial scale be viewed in a hierarchical context (hierarchical 

scale), such that a system consists of a group of lower-level subsystems, while each subsys

tem is composed of lower-level subsystems, thereby defining a hierarchical organization. It 

follows then that spatial scale plays an important role in defining a hierarchical description 

of landscape. Given that an important objective is to define the hierarchical organization of 

topography, it is essential to identify those morphometric parameters that are most useful in 

defining the nature of elemental form objects.

Yokoyama et al. (2002) developed the metric ’openness’, which is a relatively new mor

phometric parameter that accounts for the meso-scale curvature characteristic of the topogra

phy. Openness expresses dominance (exposure) versus enclosure of a location on an irregular 

surface (Pike, 2002). Etzelmiiller and Sulebak (2000) provided an overview of morphometric 

parameters concerning permafrost distribution and periglacial processes, which could be re

lated to hierarchical levels. They distinguished between point parameters, catchment-related 

parameters, compound parameters, and topography-based distributed models as follows:

• Point parameters - altitude, slope, aspect, curvature. From these, other parameters are
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derived, such as focal statistical measures (e.g. slope mean), relief/roughness measures 

(e.g. curvature standard deviation), and hypsographic measures (e.g. altitude skew).

• Catchment-related parameters - run-off response, glacier flow, slope geomorphol

ogy

• Compound parameters - involve combinations of point with catchment related pa

rameters, such as wetness-index, erosion index and roughness index.

• Topography-based models - are physical-based models involving specific topographic 

parameterizations that can be used to generate other landscape variables such as sur

face temperature, irradiance and other energy balance parameters presented in Kumar 

et al. (1997).

On the other hand, Dikau (1989, 1992) defined a hierarchical space into different levels of 

relief, such that features and landforms exist at scales representative of picorelief, nanorelief, 

microrelief, mesorelief, and macrorelief, up to megarelief.

The concept of elemental forms is only one such idea that could represent a basic level 

in hierarchical organization. The concepts of genesis and dynamics are two other properties 

that should be taken into consideration in complete landscape mapping. Minar (1995), as 

a representative of the Slovak geomorphic school, argued that the current nature of a geo- 

morphologic systems dictates the existing organization of the topography. He presented the 

theory of elemental forms as morphometrically, morphogenetically and morphodynamically 

homogeneous basic terrain elements. He concluded that it is difficult to provide an exact 

expression of connection among these elementary form properties using a general geomor- 

phologic equation, although the approach has potential and can be used for regional geo- 

morphological mapping. It is interesting that despite all the definitions of elemental forms 

and/or hierarchy theory, there are no formal mathematical guidelines or rules established to 

define the organization structure (Brandli, 1996). In addition, computation has not kept pace
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with the development of theory to test and evaluate various concepts. Examples include in

determinate boundaries, spatial aggregation of terrain-form objects and the formulation of 

functional levels not adequately stated in theory.

Hughes (1991) defined aggregation as an object-oriented abstraction, in which a relation

ship among objects is represented by a higher level, composite or aggregated objects. Bishop 

et al. (2001) evaluated the cluster analysis technique to create higher-order landform objects 

based upon their attributes. The chosen approach proved to be useful only if the attributes 

are unique for different landforms. Consequently, they questioned the nature of relationships 

between object attributes to be used as a basis for spatial aggregation. Furthermore, they 

stated that an obstacle in accurate characterization of elemental forms is not associated with 

the concept of homogeneity, but it is related to ontological issues and the problem of defining 

the topology of elemental forms.

Such a topological model was developed by Falcidieno and Spagnuolo (1991). The 

model, however, can be tested and verified on large sets of real data, but the samples that 

the authors used are rather artificial, and do not exhibit the problem cases that are abundant 

in real data (Brandli, 1996). Clearly, more research is required to examine all aspects of 

hierarchy theory as applied to topography.

2.3 Glacier Mapping

Early Exploration

The first authentic description of glaciers appears in the writing of Munster (1544). The 

fact that glaciers are in motion was first noticed en passant by Josias Simler in 1574. These 

studies, however, remained unknown for over a century until Swiss J. J. Scheuchzer recorded 

his investigations in his Itinera Alpina (1705) in which he cites Simler’s earlier observations 

(Seligman, 1949).
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Europe and especially Switzerland originated the studies of alpine glaciers and conti

nental ice-sheets. Recognized is the work ’’Essai sur la Constitutuion Geognostique des 

Pyrenees” by Jean de Charpentier, and especially well known is ’’Etude sur les Glaciers” by 

Jean Louis Rodolphe Agassiz who preceded a rather superior work by Charpentier by one 

year (Fairbridge, 1968).

In Karakoram and Northwest Himalaya Dainelli (1922) pioneered the observation of 

quaternary glaciation. He mapped and speculated about glacial effects down the Indus and 

northward into Hunza (Shroder, 1989a). On Nanga Parbat Mountain, beginning 1934, the 

German expedition attempted to climb the mountain and produced a detailed topographic 

1:50, 000 map of Nanga Parbat. Its glaciological surveys provide the basis for all subsequent 

glaciological research in the region (Finsterwalder, 1935). Subsequent observations at the 

Raikot glacier were made by Troll (1938), Pillewizer (1956) and Gardner (1986) (Shroder, 

1993).

Geomorphometry, GIS and Remote Sensing 

A better understanding of glacier denudation, morphology and glacier mass balance can 

be obtained by glacier feature detection and mapping (Bishop et al., 2000b). Geomorphom

etry played an important role in defining mathematical features of terrain before the advent 

of GIS and remote sensing capabilities.

Morphometrical characterization of topography was developed by Gauss (1827) and by 

Maxwell (1870). Gauss (1827) created the basis of modern differential geometry of sur

faces, which is a theory of surface geometrical forms described locally, that is, by curva

tures. Maxwell (1870) developed the theory of ’’land surface and gravitational field”, which 

considers the land surface for the whole Earth and its gravitational field. The problem with 

the theory is that it does not account for land surface boundaries. Speight (1973) wanted 

to solve this problem using the concept of regions which represented restricted land surface 

areal analysis.
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Independently, Evans (1972) and Krcho (1973) studied local morphometric variables, 

such as profile, planimetric and profile curvatures that are absent in the theory of Gauss 

(1827). Curvature is an important parameter, because it depicts important information re

garding the shape of an object resulting from surface processes (Mackay et al., 1992).

With the advent of geographic information systems (GIS) and digital elevation mod

els (DEMs), morphometric parameters can be routinely generated and incorporated into an 

analysis. Wilson and Gallant (2000) provided an excellent overview of theoretical and math

ematical techniques for extracting features for geomorphologic, hydrologic and biologic ap

plications. Among the first GIS-based approaches to studying the Nanga Parbat massif were 

reported by Bishop et al. (1998b).

GIS technology coupled with new data from satellite sensors has generated new op

portunities for advanced glaciological and geomorphologic al studies (Bishop et al., 2002). 

Launching of the weather satellite TIROS-1 in 1960 demonstrated that snow-covered areas 

could be delineated from space (Bishop et al., 1998a). Thus, remote sensing studies have 

added much to understanding alpine-glaciers and ice fields in numerous environments (e.g. 

Bayr et al. (1994); H allet al. (1988, 1989); Williams et al. (1991) and Bishop et al. (1995, 

1998a)). Nakawo et al. (1993) made one of the first remote sensing studies of a Himalayan 

debris-covered glacier in an attempt to improve estimates of surface ablation. With the use 

of multi-spectral satellite data combined with detailed held measurements, they were able to 

classify the ablation area of the Khumbu Glacier in Nepal, into snow, bare ice, and thin and 

thick debris. With the launch of the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) in late 1999, the GLIMS (Global Land Ice Measurement from Space) 

Project was designed as an international project to ascertain the extent and condition of the 

world’s glaciers (Bishop et al., 2000b).

Monitoring the cryosphere from space can produce valuable information about glacier 

mass balance, spatial extent, terminus location and glacier facies. Accurate mapping of 

glaciers can be problematic, however, because of difficulties in spectral variation, clouds,
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and differential illumination (Bishop et al., 2000b; Cao and Liu, 2001). Bishop et al. (2000b) 

examined various approaches to evaluate the feasibility for automated analysis of glaciers 

at Nanga Parbat. They utilized geomorphometric analysis to assist in glacier-extent map

ping, spatial analysis to describe glaciers with geomorphic criteria, and pattem-recognition 

for mapping supraglacial features. Their results indicated that integration of the above ap

proaches enables accurate characterization of debris-covered glaciers in high Asia.

Remote sensing and geomorphometric analysis of DEMs are also used to investigate 

the complexities of mountain geomorphology and topography (Bishop et al., 1998a,b, 1999; 

Chase, 1992; Koons, 1995). For example, ANN have been used for classifying supraglacial 

characteristics of alpine glaciers and to identify spectral patterns that are associated with the 

surface topography of glaciers (e.g.,Bishop et al., 1999). Considerable potential exists us

ing artificial neural network (ANN) technology (Civco, 1993; Foody et al., 1995; Zhou and 

Civco, 1996).

Among the first to characterize and map glacial features and/or glacial versus non-glacial 

surfaces using hierarchy theory is the work by Bishop et al. (2001) and Bonk (2002). They 

presented a two-level hierarchical approach. This did not, however, accurately characterize 

the glacial surface, but their results did prove the inherent feasibility of the approach for 

glacier mapping.

Collectively, the literature demonstrates the need for further research into all aspects of 

landform mapping. Numerous issues associated with organization theory, scale, numeri

cal techniques, computation and empirical validation need to be formalized and evaluated. 

This research will focus on the evaluation of morphometric parameters and the generation of 

elemental form objects.
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Chapter 3 

Study Area

Nanga Parbat mountain is perceived by many as a unique topographic, lithologic and 

structural feature (Seeber and Pecher, 1998; Zeitler and Chamberlain, 1991). It is a knife- 

edged, east-west-trending ridge that stands out alone from the main Himalaya and Karako

ram ranges in northern Pakistan (Bishop et al., 1998b). The great height of 8125 m, makes 

Nanga Parbat not only the ninth highest mountain in the world, but also a great challenge for 

mountaineers.

Nanga Parbat represents the generalized study area, but specifically, the Raikot Glacier 

located on the north side, and the Sachen Glacier on the eastern side are the focus of this 

work (figure 3.1). The Raikot and Sachen Glaciers were selected because they are funda

mentally different in their character, which will allow for comparison of results. Raikot 

Glacier is a typical alpine-type glacier, with a continuous ice-stream from the accumulation 

area to the ablation area. Sachen Glacier, on the other hand, does not have its accumulation 

and ablation zones physically connected, and ice and snow avalanches are the only source 

of nourishment into its ablation area (Cverckova et al., 2004). In addition, Sachen Glacier 

belongs to the least efficient glaciers on the mountain, with its associated rock glaciers, ver

sus Raikot Glacier, which is representative of the most active glaciers with rapid plug flow
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(Shroder et al., 2000b). Lastly, the topographic position of these glaciers causes solar irra- 

diance variations that have a significant impact on glacier dynamics. Sachen Glacier located 

on the eastern side, receives more solar radiation, which causes ablation at much higher 

elevations.

r ** WW,

Figure 3.1: SPOT 3 ortho-rectified NIR image of Nanga Parbat. Raikot Basin (yellow line) 
and Sachen Basin (blue line) are depicted. Fault lines are diagrammatic.

3.1 Nanga Parbat

Evolution and Surface Processes 

At about 120 Ma ago the convergence of the Indian and Asian continents started (Rolland, 

2002). Following the continental collision of India with Asia ~  50 Ma ago, the Indian plate 

continued to move north to force up the Hindu Kush and Himalaya chain from Afghanistan 

to Burma (Seeber and Pecher, 1998). The Nanga Parbat pop-up structure was initiated at
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~  1 2 — 10 Ma, as a tectonic aneurysm caused by the rapid incision of the Indus River 

(Burbank et al., 1996; Shroder and Bishop, 2000a; Zeitler et al., 2001a; Zeilter et al. , 2001b). 

Rapid incision resulted in high surficial denudation rates, rapid uplift ~  10 mm yr-1 , and 

extreme relief with the steepest relief on the planet; a ~  7 km rise up on the north side of tne 

mountain over a 21 km horizontal distance (figure 3.2), c. 6 km on the eastern side, and c. 5 

on the south side. (Bishop and Shroder, 2000a; Zeitler, 1985).

Figure 3.2: Nanga Parbat, as seen from the north. Nearly 7000 meters of relief is visible 
between the summit and the Indus River at its base. Photograph by Anne Meltzer.

Besides river incision, other surficial processes also contributed to denudation of the 

massif, such as glaciation, floods and mass movements. The most typical mass movement 

processes that occur are slope failures that initiate the sediment-transfer cascade (Shroder and 

Bishop, 2000a). It has been concluded that major glaciation during the Pleistocene, as well as 

minor fluctuations during Holocene (table 3.1), increased the opportunity for undercutting 

of slopes (Cornwell and Hamidullah, 1992; Hewitt, 1964; Shroder, 1989a,bX The largest



26

rockfalls and rockslides occur on all sides of the mountain in the Diamir, Rupal, Astor and 

Indus valleys. Some are associated with the peripheral faults. All types of mass movement 

are the main source of the thick debris cover on the glaciers radiating from the massif. The 

main slope failures include Tap, Doian, Mushkin rockslide, the well known catastrophic 

Liachar-Indus landslides, the Raikot-Biale debris avalanches and the Rupal alpine basins

with debris fans (Shroder et al., 2000b).

Western Himalaya Nanga Parbat Time Dating Method
H olocene

Pasu II Modern 20 th century (Ct.) WS, D, G
Pasu I Little Ice Age Several Cts. ago to late 19f/'C t. WS, D, G ,14C
Batura Neoglacial Early-M iddle Holocene G, WS, 10Be, 14C, IRSL

Pleistocene
Ghulkin 11 ?Drang 34 -  38 ka 10 Be
Ghulkin I ?High Moraine? 47 ka G, TL

Borit Jheel High Moraine? 50 -  65 ka G, TL, 3 He
Yunz (Gorikot?) 139 ka TL

Early M iddle Glaciation (Jalipur?) c. 250 ka? S
Shanoz-Bunthang 1.1 -  1.25Ma G, S, PM

Table 3.1: Tentative glacial chronology during the Quaternary in the Western Himalaya and 
Nanga Parbat (after Derbyshire et al., 1984; Derbyshire, 1996; Shroder, 1993). Dating Meth
ods: D - dendrochronology; G - geomorphic position; IRSL - infrared stimulated lumines
cence; PM - palaeomagnetic estimate; S - stratigraphic position; TL - thermoluminescence 
dating; WS - weathering and soil development; 14C - radiocarbon dating; 10Be and 3He - 
cosmogenic nuclide dating.

Glaciers represent one of the most important geomorphic agents responsible for denuda

tion of high mountain topography. At Nanga Parbat, glacier denudation is estimated at 4.6 

- 6.9 mm yr-1 (Gardner and Jones, 1993). Nanga Parbat is extensively glacierized by 69 

separate glaciers that cover an area of 302 km2 with an ice volume of 25 km3 (figure 3.1;

3.4) (Kick, 1980). Thus, glaciers play an important role in sediment transfer, and have very 

high supraglacial debris-load variability (Bishop et al., 1995, 1998a,b).

Morphometric description o f the Nanga Parbat Massif 

The hypsometry of Nanga Parbat (figure 3.3) reveals that around 69% of the landscape
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lies within the 3000 — 0000 m range (Bishop and Shroder, 2000a). Cumulatively, a very 

small percentage (4%) of land lies at an altitude higher than 6000 m (Bishop et al., 2002). 

The average elevation is c. 3000 m (Bishop and Shroder, 2000a).

(%)

1999 9 2999  9 3999  9 4999.9  5999.9  6999  9 7999.9  8125

— frsquency — cumulative e l e v a t i o n  'Jn .

Figure 3.3: Altitude distribution of the landscape at Nanga Parbat (Bishop and Shroder, 
2000a).

Modern glacierization is the most extensive on the north side of the massif, with the mean 

elevation of the glaciers at ~  5140 m. On the south side, the mean glacial altitude is 4720 

m, with ice reaching down to 3000 m (Bishop et al., 2002; Shroder and Bishop, 2000a). The 

altitude distribution statistics at Nanga Parbat reflect the dominance of a glacial landscape 

and the knife-edged ridge of the massif at high altitude. Figure 3.4 summarizes elevation 

characteristics of the massif.

Slope characteristics reveal valuable information about the effects of various geomorphic 

agents on the landscape: for example shallow slope angles are usually associated with broad
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flat valley floors with a typical U-shape, modified by glaciation and glacierization. The 

relationship between slope angles and altitude is not linear, and the maximum slope angles 

are high over all altitudes at the massif. Maximum mean slope angles ~  45° are associated 

with the Raikot Fault Zone, slope failures and active river incision with typical V-shaped 

valleys at elevations ranging from 1500 - 2000 m. Al intermediate altitudes from 3000 - 

5000 m, minimum slope angles decrease as the result of erosion by warm-based glaciers and 

deposition of hummocky moraines (Bishop et al., 2000b). With increasing elevation mean 

slope angles again increase due to a decrease in temperature, cold-based, non-erosive ice, 

and the dominance of mass movement. The mean slope angle over Nanga Parbat is c. 32° 

(Bishop and Shroder, 2000a).

Height 
<m)
8000 ■ ■

7000 ■ - 

6000 - •

5000 ■ -

4000 • ’

3000 ■ •

2000 • *

1000 ■ ■

Figure 3.4: Digital elevation model (DEM) of Nanga Parbat, depicting Raikot Basin (yellow 
line) and Sachen Basin (blue line). Graph (on the left) summarizing the basic elevation 
characteristics.

Tectonics and Geology 

Many scientists have studied faults of the Nanga Parbat massif, specifically the Raikot 

and Stak faults (figure 3.1) (Butler and Prior, 1988; Lawrence and Ghauri, 1983; Madin,

Nanga Pai bat
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1986; Searle, 1991). They found that the recent rapid uplift has been caused by the faults. 

Further, much of the recent uplift of Nanga Parbat, or more than 10 km of exhumation in the 

last 10 Ma, of which over 6 km has occurred in the last 1.3 Ma (Chamberlain et al., 1989; 

Zeitler, 1985), has been a result of thrust culmination on the Raikot Fault-Liachar Thrust 

(Searle, 1991).

Two new major shear zones have been identified by Schneider et al. (1999): the north- 

and west-dipping Rupal shear, and the southeast-to east-dipping Diamir shear. The two shear 

zones represent a conjugate pair of reverse faults that defines a crustal-scale pop-up structure. 

The pop-up structure thus provides a straightforward mechanism to accommodate the major 

upward displacement of Nanga Parbat, along with very rapid cooling, young plutonism, and 

deeply exposed basement. Further, they suggest that the Nanga Parbat pop-up structure 

initiated c. 10 Ma on the basis of crystallization ages of granites, and the mica cooling ages 

located adjacent to the principal bounding shear zones (e.g. Schneider et al., 1997, 1999a,b).

Nanga Parbat has been also recognized as an unusual portion of the crust that has areas 

of exceptionally young metamorphic and igneous rocks (Shroder and Bishop, 2000a). Three 

main geologic units have been identified from structurally lowest to highest:

• The Shengus Gneisses - fine-grained and finely laminated with amphibolite-grade pelitic 

and psammitic gneisses and subordinate amphibolites and calc-silicate gneisses. The 

present minimum thickness of the unit is 5 km. The protolith of the Shengus Gneiss 

was probably shale, marl, arkosic sandstone, and limestone (Madin et al., 1989).

• The lskere Gneisses - is predominantly coarse-grained, coarsely layered amphibolite- 

grade biotite gneiss, with subordinate biotite schist, amphibolite, and calc-silicate 

gneiss with thickness at least 8 km, but no complete section exists. The protolith of the 

lskere Gneiss is interpreted as intermediate-composition plutonic rocks intruded into a 

sequence of arkosic and greywacke sandstones with minor marl and limestone (Madin 

et al., 1989).
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• The Haramosh Schist - is a unit of medium to coarse-grained amphibolite-grade biotite 

schist and gneiss, with marble, calc-silicate gneiss, and subordinate amphibolite. The 

various lithologies occur in layers that range from 1.0 cm to 1.0 m thick. Although 

the range of lithologies and mineralogy is the same as that of the lskere Gneiss, the 

two units can be distinguished by the relative lack of coarse biotite orthogneiss in the 

Haramosh Schist. The minimum measured thickness of the unit is 2.5 km, but as 

much as 10 km may be exposed on the inaccessible north face of Haramosh massif. 

The protolith of the Haramosh Schist is interpreted as a sequence of sediments similar 

to the sedimentary component of the lskere Gneiss (Madin et al., 1989).

Climate

The great height of Nanga Parbat serves as a climatic divide between the continental air 

masses of cold and arid central Asia and the monsoonal maritime air mass of the Arabian 

Sea, leaving various regions of the massif in rainshadow. In general, the southeast slopes 

are affected by northwest monsoon winds, leaving the southwest and northwest slopes in 

rainshadow (Scott, 1992). Further, climatic gradients represent strong control over the de

nudation processes on Nanga Parbat (Hewitt, 1993).

Local microclimate varies considerably with altitude, aspect and local relief. The val

ley floors have very dry, near-desert conditions with mean annual precipitation of less than 

200 mm (Scott, 1992), versus on the peaks where precipitation can exceed 2000 mm (Gard

ner, 1986). Above ~  5000 m, precipitation falls as snow (Bishop et al., 2002). Maximum 

summer temperatures are up to 50°C (Gardner, 1986). Westerly winter storms also strongly 

impact the mountain. Precipitation is less than 120 mm yr1 at altitudes below 2500 m, but 

rises to more than 8000 mm yr1 at elevations above 4500 m (Kick, 1980).
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3.1.1 Raikot G lacier

The dynamic nature of the L4-km-long Raikot Glacier (figure 3.5) produces significant 

glacier topographic relief (Bishop et al., 2001). It is located on the steep north side of the 

mountain, and it decends into a series of tumbled ice cliffs at an angle of about 51° at an 

altitude of 5000 m (Shroder, 1989a). Because of this upper steep gradient, the upper portions 

of the glacier exhibit very high ice-flow velocities (Bishop et al., 2001). From the elevation 

of 5000 m to its terminus at ~  3175 m, the glacier exhibits a more gentle slope of about 9° 

(Shroder et al., 2000b).

White icc stream

Debris cover

Debris-covered
terminus

Figure 3.5: 3D visualization of SPOT 3 ortho-rectified NIR image of Raikot Basin.

The Raikot Glacier has an area of 32 km2 (table 3.2) (Shroder et al., 2000b). Its equi

librium line altitude (ELA) lies at ~  4800 m above sea level (asl) (Owen et al., 2003), and 

exhibits an accumulation/ablation area ratio of 0.G0 (Gardner and Jones, 1993). Daily ice 

velocities range from 12 to 39 cm per day (Shroder et al., 2000b) with erosion rates ~  5 

mm per year in the 1980’s (Gardner and Jones, 1993). The position of the Raikot basin on 

the north side of Nanga Parbat mountain creates very good conditions for glacier growth to
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very high as well as very low elevations due to lower solar radiation on northern mountain 

slopes. The upper parts of the watershed extend to 7845 m, and the lowest areas reach 1125 

m. It follows, that the relief of the Raikot watershed is 6720 m (see figure 3.7) (Bishop et al., 

2002).

Basin Planimetric 
area (km2)

Surface 
area (km2)

Perimeter
(m)

Raikot 174.1 220.7 77, 110.9
Sachen 57.7 71.6 45,578.0

Table 3.2: Comparison of Raikot and Sachen basin statistics (Bishop et al., 2002)

The maximum basin slope angles are associated with the lowest altitudes, where the 

basin reaches the Indus Valley around 1700 m, with mean slope angles up to 45°. In the 

middle parts of the Raikot Glacier mean slope angles decrease, as a result of active glacial 

processes that cause the creation of U-shaped valleys. Mean slope angles continue to rise 

with increasing elevation and reach the maximum ~  50° near the summit, at a small plateau 

called the Silver Saddle.

The terminus of the Raikot Glacier, however, exhibits extensive debris cover up to 5 m in 

thickness (Bishop et al., 2001). The glacier exhibits efficient sediment transfer mechanisms, 

whereby moraines are eroded away and transported to the fluvial system by glacial meltwater 

and catastrophic flooding (Bishop et al., 1999).

3.1.2 Sachen G lacier

The Sachen Glacier (figure 3.6), is ~  8 km in length, with the upper parts of the 

terminus at an elevation of c. 3500 m. The Sachen Glacier is a medium-size glacier on the 

massif (see table 3.2). Wide and flat accumulation zones are at elevations above 5000 m. 

The lowest elevation of the Sachen basin is at 2127 m and the watershed exhibits 4268 m of 

relief (see figure 3.7).
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The Sachen Glacier exhibits a low gradient, especially in its wide ablation area at c. 

5°, has lower ice velocities and produces limited ineltwater that cause a very inefficient 

transfer mechanism for the removal of debris. This results in huge moraines at Rama in 

its forefieid and a pronounced digitate terminus with four lobes. The iobes were formed 

from breakout through lateral and end moraines as rock glaciers with pronounced transverse 

ridges, furrows, and steep fronts at the angle of repose (Bishop et al., 1999: Bishop and 

Shroder, 2000a; Shroder et al., 2000b).

Debris-covered terminus 
w i th associated rock glaciers

Snow cover

Figure 3.6: 3D visualization of SPOT 3 ortho-rectified NIR image of Sachen Basin.

Kick (1962) was the first to note no change in the movement of the Sachen Glacier since 

first described in the 19th ct. It is presumed the Sachen Glacier is in the process of formation 

into a rock glacier as the glacier exhibits poor sediment transfer to ineltwater and very low 

ice velocity, which decreases gradually downward into the mass, and forms typical trans

verse ridges and furrows. Low ice velocity and sediment transfer favors formation of rock 

glaciers (Shroder et al., 2000b).

Low sediment transfer efficiency, down wasting and low ice velocity of the Sachen Glacier
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results from having very little cold-based ice and plentiful warm-based ice. No presence of 

fim-fields contributes to formation of rock glaciers at the glacier. Sachen Glacier has a very 

small meltwater discharge with rare outburst floods that causes accumulation of debris from 

unvegetated slopes and thick supraglacial debris. In addition, the Sachen Glacier has no 

trunk river at the terminus and very static, small drainage portals. It is still unknown whether 

the internal ice of the rock glaciers that make up part of the Sachen Glacier is glacier ice or 

permafrost.

Four rock glaciers have been identified at Sachen Glacier. The West Sango rock-glacier 

lobe has a classic rock-glacier form, with a large number of transverse ridges and furrows 

across it. It has been observed that the lobe broke through the lateral moraine, and has de

flated, probably because of reduced avalanche nourishment or recent climate warming. The 

East Sango lobe is not that well developed, and actually it has been overrun by large amount 

of debris and ice resembling a kinematic wave. A third rock glacier was developed across 

from the Gurikal icefall at an altitude of c. 3800 m. The last rock glacier evolved above 

Sango lake, and it has been observed that since 1936 the feature had ablated a great amount 

with no ice left on its surface and instead only a debris cover occurs now (Shroder et al., 

2000b).
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Figure 3.7: Raikot and Sachen watersheds comparison of elevation characteristics (Bishop 
et al., 2002) The graph on left shows elevation curves of the two watersheds. The minimum 
elevation of Raikot Basin (red line) is at 1125 m and its maximum is at 7845 m. The lowest 
areas of Sachen watershed (blue line) reach 2127 m and the upper parts extend to G395 m. 
The graph on right plots relief characteristics for both watersheds. Raikot Basin (yellow) 
exhibits G728 m of relief and Sachen basin (blue) 42G8 m.
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Chapter 4 

Methodology

Application of hierarchy theory requires a rigorous methodological design that will 

define topographic elements and incorporate a scale-dependent hierarchical organization of 

elements. Such a methodological framework has been partly developed to test the potential 

of using topographic information derived from a digital elevation model (figure 4.1) and 

includes an object-oriented analysis approach (figure 4.2) for geomorphological mapping of 

alpine glaciers.

4.1 Digital Elevation Model and Data Preprocessing

Surface processes play a fundamental role in dictating the nature of the Earth’s sur

face. Consequently, the topography contains information about the polygenetic evolution of 

the landscape. An important objective is to be able to extract information about the land

scape from digital elevation models, although point, spatial and topological information and 

relationships must be used (Wilson and Gallant, 2000).

With the emergence of new imaging sensors such as SPOT and ASTER, digital elevation 

models can be routinely generated. The DEM used in this analysis comes from Bishop et al. 

(1998b). It was generated from a SPOT 3 panchromatic stereo-pair acquired on 27 and 28
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Satellite Imagery

STEREO AUTOCORRELATION

DEM

GhOMORPHOMfc IR IC  »SIS
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Profile
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O penness
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O penness

- Process, analysis - Output, result of the analysis

Figure 4.1: Methodological design (part I.) Geomorphometric analysis is applied to DEM to 
produce morphometric properties.



38

SPATIAL AND OBJECT-ORIENTED ANAL YSES
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C urvature ETFOs Curvature ETFOs Curvature ETFOs Curvature ETFOs

Figure 4.2: Methodological design (part II.) The second part of methodological design con
sist of series of analysis where the final product is focused on producing sieved objects of 
the first level in hierarchy (ETFOs) and toposequence objects.

October 1996.

DEM preprocessing was used to reduce high-frequency variation in altitude and enhance 

the lower-frequency information content. In order to obtain a high quality DEM at high al

titudes, morphometric information from a relatively large scale topographic map was used 

to account for problem areas caused by spectral saturation. Correlation failures result from 

highly reflective features, such as snow and ice that reduce spectral variation. A 1:50,000 

scale map was used, although spectral saturation was confined to the highest portions of the 

massif and these areas do not influence the analysis or mapping results. This resulted in a 

DEM with a spatial resolution of 20 m and an absolute vertical accuracy of ±8  -12m.  The
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DEM covers a radius of ~  30 km centered over Chongra Peak on the Nanga Parbat massif 

(Bishop et al., 1998b, 2003).

4.2 Geomorphometric Analysis

The Earth’s surface can be considered a static spatial surface over a selected time 

interval A 0 in a Cartesian coordinate system Ofx,y,z described as a function of two variables 

(a function without t) that can be expressed in the general form:

where 2 is the altitude ([mj), and x  and y are the two-dimensional spatial coordinates (Krcho, 

2001 ).

Because the particular analytic form of equation 4.2.1 is actually not known, the un

known function in a DEM is usually substituted by an interpolation function which can take 

on numerous mathematical properties. With spatial interpolation it is possible to estimate 

the distribution of altitudes given that an adequate sample has been obtained. Numerous 

approaches to spatial interpolation exist and each algorithm produces unique results.

Every topographic surface has unique properties about the spatial variability of 2 . Fol

lowing the work of Krcho (1973, 1991, 2001), we can define the first partial derivatives of 

the surface in the form:
i h  ()z

-x- = 77-. ^  =  77- .  (4.2.2)Ox ay

such that zx and zy are the first derivatives.

The second partial derivatives (the partial derivatives of second order) of the function 

(4.2.1) are in the form:

/(•*■■ /./)■ (4.2.1)

d.rlh)
(4.2.3)



40

4.2.1 F irst-order M orphom etric  Parameters

The altitude field can be used to estimate the morphometric parameters, which are the 

first- and second-order derivatives of the surface. These derivatives measure the rate at which 

altitude changes in response to changes in the x and y direction. Using the first-order deriva

tive (equation 4.2.2), slope-angle (/3) and slope-azimuth (<p) of the terrain can be computed. 

First derivatives are further used for computation of the second-order derivatives (equation 

4.2.3), that describe the rate of change of the first derivative in the x and y directions, or the 

curvature in those directions. The variable zxy represents the second derivative that describes 

the rate of change of the first derivative in the x and y direction, or the twisting of the surface 

(Wilson and Gallant, 2000).

4.2.1.1 Slope Angle (6) and size of gradient (|grad z|)

The slope angle can be defined at at every point and represents the angle between 

a horizontal plane and the plane connecting two points by the following equation (Minar, 

1998):

{ = arc-tail y/:~ +  (4.2.4)

Slope angle can be defined as a vector with not only a direction but a quantity or gradient

(|grad z|), defined as:
j  _______

I</<•'„/ '-! =  “  =  t a n J  = v/ ^ +  -:fr  (4.2.5)

where F \ is a normal vector, perpendicular to surface, and F 2 is a vector for a given point 

parallel with the surface. F x and F 2 are gravitational vectors that approximately point to 

the center of the Earth. Their size depends on the value of the slope-angle, and they are 

determined by the intensity of the Earth’s gravitational field, which can be expressed as:

F  =  r u g . (4.2.6)
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where m is the weight of an particle and g is the gravitational acceleration for a given point 

on the Earth’s surface that is a function of altitude and latitude. The value of the gradient 

determines the velocity of moving material, and its spatial variability dictates acceleration or 

deceleration.

4.2.1.2 Slope-Aspect of the Terrain (0)

Slope-azimuth </>, which is commonly referred to as slope-aspect, is the cardinal direc

tion or orientation angle of the slope. Its value ranges from 0 to 360 degrees. It is computed 

as:

O = arctaii —. (4.2.7)

Aspect values can be converted to transformed sine and cosine values to represent linear 

east-west and north-south orientation variation. Sine values range from —1 (west direction) 

to 1 (east direction), while cosine values range from —1 (south direction) to 1 (north direc

tion). The linearization of slope-aspect is demonstrated in figure 4.3.

Sine and Deviation
Cosine from North

225 °90

Deviation from North  
Cosine of Aspect 
Sine o f Aspect

Figure 4.3: Transformations of aspect values (Jenness, 2006).
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4.2.1.3 Profile Curvature (Kp)

Profile curvature is the degree of concavity or convexity of a surface in the vertical 

plane of a flow line (figure 4.4). Flow lines are imaginary lines on the terrain oriented in the 

direction of maximum slope (Minar, 1998; Mitasova and Hofierka, 1993). The curvature of 

a flow line in the direction normal to the Earth’s surface can be defined as follows (Krcho,

As was mentioned earlier, the gravitational influence F at the Earth’s surface can be 

represented as tan ((3) =  \gradz\, respectively. The importance of utilizing profile curvature 

is that it reflects the change in slope-angle along the flow direction and thus controls the 

change of velocity of mass flowing down the slope (Minar, 1998; Mitasova and Hofierka, 

1993).

4.2.1.4 Planimetric Curvature (K c )

Planimetric curvature is the degree of concavity or convexity of the surface, in the 

horizontal plane, in the direction perpendicular to the direction of steepest slope (figure 4.4). 

It reflects change in slope-azimuth angle and influences the divergence (K c < 0, concave 

form in the direction of contours) and convergence (K r > 0, convex form in the direction 

of contours) of water flow (Mitasova and Hofierka, 1993). It can be expressed as follows 

(Krcho, 2001):

2001):

Kp (4.2.8)

(4.2.9)
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4.2.1.5 Tangential Curvature ( I \ t )

Mitasova and Hofierka (1993) have suggested that tangential curvature ( Kt) (figure

4.4) is more appropriate than planimetric curvature for studying flow convergence and diver-

be defined as the curvature of the normal plane in a direction of tangent to the contour line, 

which is perpendicular to the gradient. It can be defined as follows (Krcho, 2001):

Figure 4.4: Schematic visualization of vertical, horizontal and tangential planes.

4.2.1.6 Scale-Dependent Curvature Analysis

Yokoyama et al. (2002) developed a relatively new image-processing technique that 

generates an angular measure of surface form that they called “Openness”. It characterizes 

the topographic dominance or enclosure of any location on an irregular surface represented 

by a DEM. The measure incorporates the terrain line-of-sight (viewshed) principle and is 

calculated from zenith and nadir angles along eight DEM azimuths (0°, 45°, 90°...315°) (fig

ure 4.5). Openness is expressed in two modes. Positive openness <pi, or “above ground”,

gence because it does not take on extremely large values when slope angles are small. It can

(4.2.10)

Vertical
Plane Tangential
(Kp) Plane (Kt)
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emphasizes convex features of topography (figure 4.6). Its negative counterpart, ’’below- 

ground” openness <ipL emphasizes concave features (figure 4.6)(Yokoyama et al., 2002).

The metric can be computed for different values of L, to emphasize fine- or coarsc-scale 

features. In other words, the metric is scale-dependent in how it characterizes surface curva

ture.

Positive

A

Negative

Figure 4.5: Surface openness defined in terms of zenith and nadir angles. Zenith angle D o /, 
or (90 — D jL), and nadir angle °r (90 +  DdL), calculated along one of eight azimuths 
D within L. L is radial limit of calculation for chosen point on DEM. Dots are height along 
terrain profile. Positive openness is the mean value of D</>l ; negative openness is the mean 
value of D iJjl . Elevation angles D ^L  and DSL can be either positive or negative, depending 
on the character of the topography around the central point A (Yokoyama et al., 2002).

Figure 4.6: Positive (left) and negative (right) openness shown schematically for values < 
90°. The heavy irregular line is terrain surface; L is the radial limit of calculation for the 
chosen point (large dot) on the DEM (Yokoyama et al., 2002).
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4.3 Elementary Terrain Form Objects

Delineation of elementary terrain form-objects (ETFOs) on the basis of homogeneous 

morphometric attributes is a first step towards hierarchically characterizing alpine glaciers. 

For each morphometric parameter an unsupervised classification method using the ISO

DATA ’’Iterative Self-Organizing Data Analysis Technique” clustering algorithm was chosen 

as an aggregating technique. The method groups grid cells based upon the concept of statis

tical separability using a euclidean distance measure. Consequently, this fulfills the require

ment of homogeneity. Through experimentation an appropriate number of cluster classes 

was chosen for each morphometric parameter.

Bishop et al. (2001) evaluated the previous approach and indicated that morphometric 

parameters should be combined to generate initial objects. Therefore, various combinations 

of slope, slope-azimuth, and curvature were utilized and evaluated to generate form-objects. 

Specifically, slope-facet objects were also generated. In order to generate meaningful form- 

objects, a series of spatial analysis routines had to be utilized.

4.3.1 Spatial C lum ping

The initial aggregated results were submitted to a clumping algorithm. Spatial clump

ing assigns a unique category value to each localized cluster or clump that exhibits a con

tiguous cell category value (figure 4.7). This procedure is done for each initial classification, 

which results in identifying thousands of ETFOs. This is required so that each form-object 

is uniquely identified thereby permitting object-oriented analysis.

4.3.2 Spatial Sieving

The results from clumping indicated that many clumps or objects are the result of 

noise in the DEM. To rectify this, spatial sieving was used to filter out form-objects that
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Figure 4.7: Clumping algorithm applied to slope-aspect ETFOs. The colors depict the form- 
objects and the numbers represent their clump identification value.

were smaller that a minimum specified size (two pixels). The sieve technique identifies 

form-objects smaller than the threshold and examines the neighborhood form objects. It 

then assigns neighboring values to the pixels of the form-object in question based upon a 

dominance rule (figure 4.8).

I’he sieve technique works very well when the pixels are surrounded by only one neigh

boring value. There is a dilemma w'hen the pixels are surrounded by more than one neigh

boring value although the rule of dominance dictates that the form-object in question will be 

assigned the value of the most dominant neighboring form-object (figure 4.9). In this way, 

form-objects are made more homogeneous and error is removed from the analysis.

4.4 Object-Oriented Analysis

One research objective was to investigate the utility of object-oriented analysis for 

mapping of alpine glaciers. This approach involves computing the inherent attributes of each 

ETFO to support aggregation at the next level of the hierarchy (figure 4.2). It is important to
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Figure 4.8: Elimination of single or two-pixel form-objects by assigning neighboring form- 
object identification values to the small form-object.

Figure 4.9: Multiple form-object boundary condition. The single pixel form object will be 
assigned the red-colored form-object identification value.

consider and understand the complexity of the topography that can be represented by various 

geometric and contextual metrics. That is why the object-oriented approach was utilized to 

generate toposequence information

4.4.1 Toposequence Inform ation

Toposequence information represents variation of a topographic parameter across al

titude. Consequently, toposequence information represents a two variable function. For 

example, landscape hypsometry is a toposequence function. In this work a toposequence 

function was generated for each slope-aspect object. The first part of the analysis involved 

the generation of slope-aspect objects as defined earlier. The second part of the analysis in

volved the computation of the slope-altitude function, within each slope-aspect object. The
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relief within each object was divided into ten relative altitude ranges, and the average slope- 

angle was computed for each altitude range. The procedure resulted in 10 altitude ranges 

within each slope-aspect object (figure 4.10). Slope-aspect objects of smaller size that did 

permit the computation of 10 relative altitude bins were not included in the analysis.

Altitude P a n g e  S lo p e  A n g le  (in d e g r e e s )
1 30 75
2 42 48
3 37 21
4 37 25
5 3594
G 36.30
7 35 48
8 37 35
9 39.20
10 36 57 lo meters

Figure 4.10: A schematic division of slope-aspect objects into 10 altitude ranges and their 
slope-angle values.
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Chapter 5 

Results

5.1 Morphometric Analysis
(

Visual examination of morphometric parameters for the Raikot and Sachen Glaciers 

show that variation in the magnitude of some parameters are highly correlated with land

scape and glacier features. Figures 5.1, and 5.2 show slope-angle variations for Raikot and 

Sachen Glaciers that depict steep slope-angles associated with valley walls, lateral moraines 

and glacier edges, and relatively low slope-angles associated with the glacier surface. Similar 

results were obtained from Bishop et al. (1998b), Bishop and Shroder (2000a) and Bishop 

et al. (2001) and low slope-angles are the result of dynamic glacier processes that erode 

the landscape and redistribute sediment. Glaciers are active erosion agents and therefore 

modify the hypsometry compared to surrounding terrain, which is more resistant to change 

and exhibits less effective erosional agents. The slope-angle parameter effectively delineates 

glacier-modified topography from non-glacial very well, although some glaciated terrain still 

exhibits relatively high slope-angles. Portions of ablation valleys, and the areas where they 

meet steep surrounding walls can be delineated. There are, however, discrepancies using this 

metric in determining the glacier surface from the ablation valleys, moraines, and outwash



50

plain. In addition, the glacier boundaries in the terminus region cannot be effectively delin

eated using the slope-angle metric.

The slope-aspect parameter (figures 5.3, and 5.4) highlights some glacier boundaries very 

well, as there is a significant directional difference where the glacier flows perpendicular to 

" steep valley walls. This is more the case with the Raikot Glacier compared to the Sachen 

Glacier. Sine and cosine transformations of slope-aspect (figures 5.5, 5.6, 5.7, and 5.8) de

pict this pattern reasonably well. This indicates that the slope-aspect parameter is important 

in mapping the structural characteristics of the topography, although it cannot be used alone 

to delineate debris-covered glaciers. In addition, slope-aspect variations depict lateral and 

medial moraines and other supraglacial characteristics. Figure 5.9 depicts sharp changes 

in slope-aspect that does highlight a relatively large portion of the boundary of the Raikot 

Glacier in the ablation area.

Profile curvature does an excellent job in depicting the boundary of the Raikot and 

Sachen glaciers due to profile convexity and concavity (figures 5.10, and 5.11). Bishop et 

al. (2001) and Bonk (2002) pointed out the potential of profile curvature to highlight convex 

ridge tops and lateral moraines. Similarly, the geometric relationships between glacier flow 

direction and valley wall orientation generates concave curvature which highlights the edge 

of the glaciers. In addition, concavity delineates the boundaries of past ablation valleys in 

the Raikot Basin, as well as lobes boundaries at the terminus of the Sachen Glacier.

Planimetric curvature also provides very valuable information about glacier surface to

pography (figures 5.12, and 5.13). The results of planimetric curvature contain a distinctive 

homogeneous spatial pattern of relative planarity commonly associated with the glacier sur

face. This is in contrast to non-glacier surfaces where the landscape exhibits relatively high 

spatial variability in concavity and convexity. Because of this characteristic of planimet

ric curvature, variations in the complexity of the landscape can be differentiated. It is also 

clear that this metric accurately identifies the crests and low points of ridges and valleys, 

thereby delineating geometric conditions that can be used for delineating glacier boundaries.



51

It should be noted however, that results for Raikot are better than for Sachen and that not all 

glacier boundaries can be identified.

Figures 5.14, and 5.15 show heterogeneity of glacier topography as characterized by tan

gential curvature. In general, the metric highlights the crests of ridges and the low points 

of valleys. The metric does a reasonable job of enhancing the boundaries of the Raikot and 

Sachen glaciers. This is demonstrated in tangential curvature boundary maps (figures 5.16, 

and 5.17), although non-glacier boundaries cannot be differentiated from glacier boundaries 

without more sophisticated analysis. These results are similar to those obtained from plani

metric curvature.

Positive and negative openness metrics computed at various scales characterize the hemi

spherical curvature of the landscape. Using a radius of 100 m (figures 5.18, 5.19, and 5.20, 

5.21), the metric highlights and delineates major portions of the Raikot and Sachen Glaciers. 

Specifically it highlights all those portions of the landscape that effectively have relatively 

low slopes including glacier surfaces and ablation valleys. In this way the results are very 

similar to slope-angle distributions. It does appear, however, that the negative openness met

ric does a better job of delineating the glacier boundaries. It is difficult to determine if the 

results from using a radius of 500 m (figures 5.22, 5.23, and 5.24, 5.25) produces signif

icantly different results. In general, the “negative” metric seems to produce better results 

than the ’’positive” metric, and more detailed analysis seems warranted to determine what 

the effective difference of scale-dependent analysis is, and whether it provides useful infor

mation.

Collectively, it has been determined that the morphometric parameters characterize a va

riety of morphological conditions, and that each metric contains useful information about the 

topography and glacier surfaces. In many cases, each morphometric parameter was found to 

be valuable in helping to delineate glacier boundaries. It was found, however, that no indi

vidual parameter could be used exclusively to precisely delineate glacier boundaries, from a 

computer-assisted analysis perspective. Conversely, numerous metrics could be used by an
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analyst to accurately delineate the boundary of the glaciers via human interpretation. This 

indicates that in order to automate glacier mapping, these parameters must be collectively uti

lized and combined in a unique way to accurately characterize some aspect of topographic 

structure not characterized by individual parameters.
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Figure 5.1: wSlope-angle map of Raikot Glacier.
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Figure 5.2: Slope-angle map of Sachen Glacier.
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Figure 5.3: Slope-aspect map of Raikot Glacier.
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Figure 5.4: Slope-aspect map of Sachen Glacier.
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Figure 5.5: Cosine slope-aspect map of Raikot Glacier.



58

r>
0 )

5 S.1
'/> ^ 5
T5 O

J J CO

1

Figure 5.6: Cosine slope-aspect map of Sachen Glacier.
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Figure 5.7: Sine slope-aspect map of Raikot Glacier.
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Figure 5.8: Sine slope-aspect map of Sachen Glacier.
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Figure 5.9: Slope-aspect boundaries of Raikot Glacier.
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Figure 5.10: Profile curvature map of Raikot Glacier.
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Figure 5.11: Profile curvature map of Sachen Glacier.
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Figure 5.12: Planimetric curvature map of Raikot Glacier.



65

V  v J f r M L .

s :v  f^ 'Z *
*£, \, * JQ&V*
~ \  A t+ ^ iS * /- ' 7

%k> ‘ *

Figure 5.13: Planimetrie curvature map of Sachen Glacier.
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Figure 5.14: Tangential curvature map of Raikot Glacier.



Figure 5.15: Tangential curvature map of Sachen Glacier.
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Figure 5.16: Tangential curvature boundaries of Raikot Glacier.
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Figure 5.17: Tangential curvature boundaries of Sachen Glacier.
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Figure 5.18: Positive openness map of Raikot Glacier with 100 m radius.
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Figure 5.19: Negative openness map of Raikot Glacier with 100 in radius.
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Figure 5.20: Positive openness map of Sachen Glacier with 100 m radius.
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Figure 5.21: Negative openness map of Sachen Glacier with 100 m radius.
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Figure 5.22: Positive openness map of Raikot Glacier with 500 m radius.
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Figure 5.23: Negative openness map of Raikot Glacier with 500 m radius.
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Figure 5.24: Positive openness map of Sachen Glacier with 500 m radius.
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Figure 5.25: Negative openness map of Sachen Glacier with 500 m radius.
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5.2 Elementary Terrain-Form Objects

An important research objective is to demonstrate that elementary terrain-form objects 

(ETFOs) can be used to characterize features on a glacier surface. Implementation of the 

methodology generates thousands of ETFOs for each geomorphometric parameter. Conse

quently, visual examination was used to determine which parameters are the most important 

in generating ETFOs that identify and delineate glacier surface features.

Figures 5.26, and 5.27 show the spatial pattern of slope-angle ETFOs for Raikot and 

Sachen Glaciers. The results of classifying the slope-angle metric produce very useful in

formation related to the influence of glaciation on topography. The results of this work and 

Bonk (2002) demonstrate how glacier processes reduce the slope angles of the topography 

due to glacier erosion and redistribution of sediment. The result of these glacier processes are 

large homogeneous slope-angle objects that permit the identification of glacier surfaces that 

are actively eroding, and of low-slope surfaces such as ablation valleys and erosion surfaces 

resulting from past glaciation. Both the Raikot and Sachen Glacier surfaces are depicted 

by these large ETFOs. Unfortunately these ETFOs do not accurately delineate the glacier 

surface because ablation valleys and valley bottoms also exhibit relative shallow slope. Con

versely, the topography associated with resistant rocks exhibits smaller ETFOs with a higher 

spatial frequency of objects. In general, slope-based ETFOs provide an indication of modern 

glacial versus non-glacial topography.

Glacier surfaces are the result of dynamic interactions involving ice flow, erosion, and 

mass balance. Consequently, glacier topography is highly varied and can result in signif

icant relief and slope-aspect variations. The results demonstrate this, although there are 

limits to characterizing this and other properties of glacier surfaces due to DEM resolution. 

Nevertheless, the results show significant variation of slope-aspect ETFOs compared to the 

surrounding topography. In addition, this results in smaller objects and high spatial variabil

ity of objects over glacier surfaces. This is caused by rapid changes in the glacier surface
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compared to more resistant rock slopes that do not rapidly change. This is why they exhibit 

large homogeneous slope-aspect ETFOs. This can be clearly seen in the Raikot basin (figure 

5.28). For less active glaciers like the Sachen, the difference in the size and spatial frequency 

of objects is less pronounced (figure 5.29).

Results for profile curvature-based objects are interesting (figures 5.30, and 5.31). They 

do not appear to characterize any glacier feature, although they do provide an indication of 

the flow-direction on the glacier surfaces. This is especially true for the Sachen Glacier.

Similarly, planimetric curvature-based objects do not characterize specific glacier fea

tures, although they do exhibit an interesting dendritic pattern that is associated with ridges 

and local topographic highs (figures 5.32, and 5.33). In the case of the Sachen Glacier, it 

appears that the magnitude of curvature may be used to differentiate the glacier surface from 

the surrounding topography.

Given that tangential curvature is highly correlated with planimetric curvature, tangen

tial curvature-based object results are expected to be similar to planimetric curvature-based 

object results (figures 5.34 and 5.35). This was the case and the objects depict the ridges and 

valleys of glacier topography. Other important glacier geomorphological features were not 

characterized. It is clear that the curvature-based parameters and objects cannot be utilized 

alone to depict glacier surface features, although they are valuable for delineating glacier 

boundaries in many instances.

The spatial distribution of openness-based objects has a similar pattern to slope-angle- 

based objects, characterized by relatively large objects over the glacier surface (figures 5.36, 

5.37, and 5.38, 5.39, and 5.40, 5.41, and 5.42, 5.43). There is effectively little difference in 

the results generated from positive and negative openness, given a particular scale parameter 

value. As with curvature-based objects, openness-based objects do not characterize specific 

glacier features. Furthermore, the use of a different scale parameter value does not appear to 

generate significantly different results.

Bishop et al. (2001) suggested that the ETFOs should be generated from the combination
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of morphometric parameters and not from a single metric. Consequently, slope-facet objects 

can be generated from the combination of slope and slope-aspect parameters. Slope-facet 

objects are displayed in figures 5.44, and 5.45. The concept of slope-facets is an extremely 

important one, as it represents one form of the spatial structure of the topography. The re

sults indicate that slope-facets can be used effectively to characterize glacier boundaries. The 

Raikot and Sachen glaciers were both reasonably delineated. In some places, however, the 

boundaries are not delineated, although this is associated with the way in which the slope- 

angle metric is used to generate slope-facet objects. It is obvious from previous results that 

curvature is very important in delineating the glacier boundaries. Consequently, the effective 

integration of curvature into the generation of slope-facet objects should solve the problem 

of delineating glacier boundaries in the ablation zone.

Collectively, these results along with the outcome of Bishop et al. (2001) and Bonk 

(2002) studies demonstrate the tremendous potential of generating and utilizing ETFOs in 

glacier and geomorphological mapping. It is clear, however, that ETFOs generated from 

a single morphometric parameters are of little utility. It is also clear that finding a way to 

effectively integrate morphometric parameters may be a challenge. It was found, however, 

that slope-facets can be used to accurately delineate glacier boundaries.
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Figure 5.26: Slope-angle ETFOs map of Raikot Glacier.
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Figure 5.27: Slope-angle ETFOs map of Sachen Glacier,
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Figure 5.28: Slope-aspect ETFOs map of Raikot Glacier.
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Figure 5.29: Slope-aspect ETFOs map of Sachen Glacier.
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Figure 5.30: Profile curvature ETFOs map of Raikot Glacier.



8 6

Figure 5.31: Profile curvature ETFOs map of Sachen Glacier.
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Figure 5.32: Planimetric curvature ETFOs map of Raikot Glacier.
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Figure 5.33: Planimetric curvature ETFOs map of Sachen Glacier.
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Figure 5.34: Tangential curvature ETFOs map of Raikot Glacier.
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Figure 5.35: Tangential curvature ETFOs map of Sachen Glacier.
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Figure 5.36: Positive openness ETFOs map of Raikot Glacier with 100 m radius.
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Figure 5.37: Negative openness ETFOs map of Raikot Glacier with 100 m radius.
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Figure 5.38: Positive openness ETFOs map of Sachen Glacier with 100 m radius.
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Figure 5.39: Negative openness ETFOs map of Sachen Glacier with 100 m radius.
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Figure 5.40: Positive openness ETFOs map of Raikot Glacier with 500 m radius.
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Figure 5.41: Negative openness ETFOs map of Raikot Glacier with 500 m radius.
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Figure 5.42: Positive openness ETFOs map of Sachen Glacier with 500 m radius.
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Figure 5.43: Negative openness ETFOs map of Sachen Glacier with 500 m radius.
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5.3 Toposequence

Slope-angle profiles from slope-aspect objects demonstrate the potential of the differ

entiation of an active glacier surface from non-glacier topography. As previous mentioned, 

glacier surfaces exhibit high spatial variability of slope-facets due to a rapidly changing sur

face. Consequently, slope-facet slope angles are relatively small compared to the surrounding 

basin slopes. The object-oriented toposequence analysis was based on slope-aspect objects 

that are closely related to slope-facets, and generated an altitude-slope-angle function for 

each object. The results for five locations on the Raikot Glacier are displayed in figures 

5.46 and 5.47. Notice that the slope angles are relatively low for the entire glacier surface. 

Conversely, steep valley-walls exhibit greater relief and high slope-angles. The results of a 

profile across the valley are displayed in figures 5.48 and 5.49. Notice the difference in slope 

angles for the relative altitude ranges, with the glacier surface characterized by low slope 

angles, and the valley-wall characterized by high slope angles. This analysis demonstrates 

the potential of using object oriented analysis for characterizing the spatial structure of the 

topography and for identification and classification of landscape features and characteristics. 

Toposequence information represents a unique type of information that has not been effec

tively utilized in geomorphological mapping. Its integration into an object-oriented analysis 

approach needs to be further investigated.
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Figure 5.44: vSlope-facets ETFOs map of Raikot Glacier.
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Figure 5.45: Slope-facets ETFOs map of Sachen Glacier.
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Figure 5.46: Map of toposequence objects at Raikot Glacier with profile points along the 
glacier (see figure 5.47 for resulting slope-angle curves of chosen profile points/slope-aspect 
objects).
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Figure 5.47: Toposequence profiles depicting si ope-angles values of ten different altitude 
ranges within chosen slope-aspect objects along Raikot Glacier (see figure 5.46 for the loca
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Figure 5.48: Map of toposequence objects at Raikot Glacier with profile points across the 
glacier (see figure 5.49 for resulting slope-angle curves of chosen profile points/slope-aspect 
objects).
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Figure 5.49: Toposequence profiles depicting slope-angles values of ten different altitude 
ranges within chosen slope-aspect objects across Raikot Glacier (see figure 5.48 for the lo
cation of slope-aspect objects or profile points).
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Chapter 6 

Discussion

Automated mapping of glacier surfaces is a very difficult endeavor. The effective 

utilization of hierarchy theory to characterize and map the complexity of glacier topogra

phy is also difficult because a model of a hierarchical system has not been formalized, and 

mathematical rules to characterize objects at different levels is poorly defined. The existing 

literature on the use of hierarchy theory is extremely theoretical (Baume, 1991; Hasse, 1969; 

Koestler, 1967; Mossimann, 1990), with little practical guidance. There have been some 

attempts to utilize morphometric fields and hierarchy theory in surface mapping (Bishop et 

al., 2001; Bonk, 2002; Dikau, 1992; Minar, 1995), however, there are still many issues to be 

addressed.

This research demonstrates that it is very difficult to account for the scale-dependent na

ture of topography. To address this, elemental form objects must be correctly identified and 

delineated. The issue of geomorphometric primitives is related to form objects, however, 

the concept of geomormorphic features versus form features/objects must be differentiated. 

Furthermore, the use of morphometric parameters is an issue related to generating primitives 

and elemental forms. Techniques to accomplish this as well as aggregation techniques to 

generate the next hierarchical level of objects needs to be developed and tested. Similarly, 

the concepts of homogeniety and heterogeniety must be better developed, as each may have
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a role in establishing the hierarchical nature of topography. Finally, the role of spatial and 

object-oriented analysis must be carefully considered as a means for accomplishing geomor- 

phological mapping. These issues are addressed in the following sections.

6.1 Geomorphometry

Visual examination of the geomorphometric parameters revealed unique attributes as

sociated with topographic structure, glacier surface characteristics, and surface processes 

(Bishop et al., 2001, 2003). Slope-related information is very important for mapping glaciers. 

In particular, the slope angle can be used for differentiating glacier surface from the sur

rounding topography, as glaciers in the western Himalaya exhibit relatively shallow slopes. 

In many instances, slope-angle can be used to delineate portions of the glacier, as steep slopes 

are found along the boundary of the glaciers.

Slope-aspect information is also very important as it defines one aspect of the topo

graphic structure. Given that many glaciers flow in a perpendicular direction to valley walls, 

the boundaries of glaciers are sometimes oriented in opposite directions to the walls, making 

it possible to delineate the glacier in those locations. It is also clear that on some glaciers, the 

highly dynamic nature of glacier surface changes dictates high spatial variability in slope- 

aspect caused by rapid ice deformation. This is not the case on valley walls that exhibit more 

resistant rock surfaces.

The slope-curvature metrics, which have been explored by many (Gauss, 1827; Krcho, 

1973; Mackay et al., 1992; Pike, 2002; Yokoyama et al., 2002) also provide valuable infor

mation about the topography and glaciers. Ridges and valleys can be accurately identified 

and the boundary of glaciers can be delineated, as the base of a glacier boundary is frequently 

concave. Profile- planimetric- and tangential curvatures characterize a different aspect of to

pographic curvature.



108

The openness metrics, introduced by Yokoyama et al. (2002), characterized the meso- 

scale curvature of the topography. When applied over glacierized basins, it highlighted the 

valley bottoms, which also correspond to glacier surfaces, as they are found in valley bot

toms. Similarly, other features such as ablation valleys also get highlighted. Consequently, 

the metrics are not extremely valuable for uniquely identifying glacier surfaces. Visual exam

ination of the results show that the openness metric with a radius of 100 m better highlights 

glacier boundaries than using a radius of 500 m. More research, however, needs to be con

ducted to determine how meso-scale curvature information can be fully exploited for glacier 

mapping.

Bishop et al. (2001) indicated that single topographic parameters cannot be used for di

agnostic landform mapping because each morphometric parameter characterizes different 

aspects of the topography. When slope-angle, slope-aspect, planimetric, profile, and tangen

tial curvature information are integrated via human interpretation, it is possible to delineate 

and map glaciers. Automating this process is difficult and the topographic information must 

be integrated in a systematic way. Research has not yet adequately addressed this issue. It 

can potentially be addressed, however, by formalizing various concepts and features related 

to topography. Some examples include topographic primitives, topographic structure, and 

toposequence information. Formalizing these concepts will require the fusion/integration of 

morphometric information.

Bishop et al. (2000b) also pointed out a non-linear slope-altitude relationship, where 

shallow slope angles were also found over broad flat valley floors and at high-altitude ero

sion surfaces. This demonstrates that the simple utility of the magnitude of morphometric 

parameter will not uniquely permit the classification of glaciers and other landforms. A sys

tematic multi-parameter approach that is based on a scale-dependent model is required.

It is clear that morphometric parameters must be combined (Bishop et al., 2001). Object- 

oriented analysis offers the potential to address this and scale issues in landform mapping.
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It also permits the generation and utility of addition information such as geometry and ty

pology, that can be used to formalize important concepts such as slope-facet structure and 

toposequence information.

6.2 Elementary Terrain-Form Objects

Generating form-objects is the basis of formalizing the hierarchical nature of the to

pography. In order to do so, methods must be used to permit the identification of spatially 

homogeneous morphometric parameters. The work of Krcho (1973, 2001), Lastockin (1987) 

and Minar (1995), examined the topic from a theoretical perspective. The method of cluster 

analysis was used in this research to generate primitive form-objects. The concept of mor

phometric homogeneity has been criticized by some information scientists and they indicate 

that this should not be the basis of aggregation of simple objects into high-order objects 

(Brandli, 1996). This point is valid if the results do not uniquely correspond to topographic 

structure or landform features. This was the case for most of the simple form objects that 

were generated, with the exception of slope-facet objects which do correspond to legitimate 

topographic structure. Furthermore, Bishop et al. (2001) found that the combination of cur

vature information can produce form objects that do correspond to geomorphic features, and 

there spatial combination can be used to identify and map glacier features such as moraines, 

ice-cliffs, and supraglacial lakes. Consequently, the concept of homogeneity is valid in the 

generation of slope-facets.

The utility of most of the form objects to characterize topographic structure and glacier 

features was extremely limited. This was due to utilizing one morphometric parameter and 

the clustering algorithm. The clustering algorithm enforces the homogeneity rule and works 

relatively effectively for the slope-aspect parameter, because it defines the directional struc

ture of the topography. Curvature information needs to be integrated with slope-aspect ob

jects so that breaks in the slope can further generate sub-objects that accurate define slope
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facets. In addition, slope-curvature objects are required that define planar, concave and con

vex slope objects. To accomplish this, methodological procedures other than cluster analysis 

are needed.

Dikau (1992) indicated the potential of slope-facets, and that they represent a fundamen

tal form object. Visual examination of terrain slope-facets indicate that they can be used 

to delineate glacier boundaries. In addition, lateral moraines and ablation valleys are also 

characterized appropriately. More research involving the combination of slope information 

with slope-aspect to generate slope-facets is warranted.

Toposequence information was found to be valuable for glacier mapping. The results 

demonstrate that if accurate slope-facet object can be generated, the slope-angle altitude 

function can be used to differentiate slope-facets on- versus off- glacier in some instances. 

The relief within the slope facet could also be a useful object parameter. It would still be 

difficult, however, to differentiate valley bottom from glacier surface because both exhibit 

low slope. Other information such as the slope curvature-altitude function might permit dif

ferentiation. Another possibility is the hypsometric curve. This approach has significant 

potential, however, more research is still warranted.

Finally, the generation of elemental form objects that accurately characterize topographic 

structure permit the generation and utility of additional information such as shape and topol

ogy. For example, ice cliffs exhibit a unique shape that is entirely different from other glacier 

and landscape features. Similarly, elongated linear features such as moraines, and highly ir

regular shape such as rivers can be uniquely identified and mapped. Very little work on shape 

has been conducted, although the geometric attributes of landscape features is very impor

tant.

Similarly, spatial relationships and contextual information such as distance, direction, 

connectivity, and containment can be used to assist in mapping efforts. There is a paucity 

of research on this topic, as the problems of generating basic forms must be solved before 

applied research on object geometry and typology can be effectively conducted.
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Given the conceptual and practical complexities associated with utilizing hierarchy the

ory to characterize topography, only a few studies have applied it for glacier mapping. A 

rigorous theoretical framework is required to guide research. As previously mentioned, any 

approach must utilize contextual and geometric information and topology to assist in prob

lem solving. Topological properties, such as connectivity and adjacency in a hierarchical 

model could reveal important information on morphogenetics which could also be used as 

criterion for the spatial aggregation of form objects into higher-order objects and terrain 

features. Scientists do not currently know the value of hierarchy theory in characterizing to

pographic structure, or the number of hierarchical levels that glacier topography or mountain 

landscapes in general.

Several important questions still remain: 1) What type of form objects are needed to 

characterize topographic structure? 2) What object-attributes are necessary at different lev

els in the hierarchy? 3) What concept or method serves as the basis of aggregation at a 

particular hierarchical level? This research demonstrate that the use of hierarchy theory has 

tremendous potential in landform mapping. Simple form objects can accurately characterize 

some aspects of topographic structure and geomorphic features. The answers to the other 

questions are not clear at his point in time, but theoretical research has demonstrated the 

feasibility. With the advent of new data sources, high quality digital elevation models and 

more advanced geographic information technology, researchers can better assess the utility 

of hierarchy theory and object-oriented analysis for glacier and landform mapping.
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Chapter 7 

Conclusion

It is essential to understand climate forcing, as it partially controls environmental 

change and resource availability. It is widely known that alpine glaciers directly and in

directly respond to climate. Consequently, glacier assessment can provide valuable infor

mation on climate change. Assessing alpine glacier fluctuations in complex mountain en

vironments poses unique logistic, political and technological challenges. Furthermore, we 

have much to learn about their complex interactions with the atmosphere, other surface pro

cesses and lithosphere that also dictate changing conditions. Glacier distributional change 

is perhaps one of the most basic forms of information that is needed to provide insight into 

climate warming and negative mass balance. Accurate geometric information, however, can 

be difficult to obtain, and glacier mapping poses unique challenges to the remote sensing 

and GIScience communities. Consequently, the objectives of this research were to explore 

the use of topographic information and object-oriented analysis for automated mapping of 

alpine glaciers.

The overall objective was to evaluate the utility of topographic information and spatial 

analysis for glacier mapping. Geomorphometric analyses were performed to generate first-
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and second- order morphometric parameters. These parameters were found useful in high

lighting different characteristics of the topography, and do permit delineation and mapping 

of glaciers when utilized in mapping via human interpretation. Slope angle and curvature pa

rameters were most useful in highlighting the boundaries of the Raikot and Sachen glaciers. 

The openness metrics, which characterize meso-scale curvature, were useful in highlighting 

valley bottoms. It follows therefore that the results of geomorphometric analyses support the 

overall hypothesis that unique attributes associated with scale-dependent hierarchical struc

tures of mountain topography can be depicted by morphometry.

The first objective was to evaluate topographic parameters for generating elemental form- 

objects. It was found that individual morphometric parameter cannot be used to generate 

form-objects that are representative of topographic structure or landform features. The re

sults do show however, that a combination of morphometric parameters is required to appro

priately characterize the topography. Slope facets, which represent the combination of slope 

and slope-aspect information, can be utilized effectively to represent topographic structure 

and assist in differentiating glacier topography from other basin topography. Slope-facets do 

characterize glacier boundaries if they are accurately computed. The challenge is to utilize 

slope angle and slope-curvature information to highlight changes in the slope for a particular 

slope direction. The results indicate that other topographic primitives and form-objects must 

also be utilized for a more accurate characterization of glacier topography. Furthermore, 

the results clearly reveal the importance of geomorphometric analysis and that the topog

raphy can be represented using hierarchy theory. This also supports the hypothesis that a 

scale-dependent approach could work, although this was not specifically demonstrated, as 

multiple levels in the hierarchy are needed. Nevertheless, more robust geomorphometric 

techniques are needed to permit effective combination of morphometric fields.

The second objective was to evaluate the feasibility of topo-sequence information for
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characterizing glacier/non-glacier surfaces. Toposequence generated from object-oriented 

analysis demonstrate the usefulness of this approach. First, it should be noted that the gener

ation of elemental form-objects defines a component of the topographic structure. Informa

tion for each component is then generated. This information can be land cover, topographic, 

geometric, and/or topological in nature. This greatly facilitates mapping, although, only to

pographic information was used in this study. Topo-sequence information, as used in this 

study, represented the slope-altitude function within slope-aspect objects. The results clearly 

indicated the value of object-oriented analysis for glacier mapping. In addition, the results 

support the hypothesis that toposequence information can effectively differentiate between 

glacier and non-glacier surfaces. The concept of topo-sequence needs to be further devel

oped and used in object-oriented analysis.

The last objective was to demonstrate that an object-oriented approach to analysis could 

facilitate glacier mapping and topographic representation. The approach requires the trans

formation of a field into discrete objects that represent some aspect of the topography. Clus

ter analysis, utilized to accomplish the spatial-aggregation process is of little use once im

plemented in a spatial aggregation of elemental form-objects into higher-order objects and 

represents a critical research area. Theoretically, some elemental form-objects can be ag

gregated to represent and map some terrain/landform features. Classic examples include 

moraines and ice-cliffs that are part of a glacier. Slope facets were the only elemental form- 

object that reasonably characterized the topography. Furthermore, the hierarchical structure 

should be better formalized as specific forms and features may require different aggregation 

techniques. This work, and the work of Bonk (2002) clearly demonstrates that another ap

proach needs to be developed and evaluated.
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This research has extended the findings of Bonk (2002) and shown the value of object- 

oriented analysis. It is very critical, however, that new methods be utilized to combine ge

omorphometric parameters. Another significant issue is the production of highly accurate 

DEMs, which serve as the basis of mapping. Furthermore, the integration of land-cover in

formation can be valuable. Finally, given that there are so many different geomorphometric 

parameters, an evaluation of their utility for landform mapping seems warranted.

Important information may result from shape analysis. Numerous features have unique 

shape characteristics such as ice -cliffs, moraines, and rivers. Numerous shape metrics exist 

and can be applied to elemental form-objects. The problem is the original classification that 

is required in order to obtain a good spatial representation of the form object. If the spatial 

distribution of the object can be identified, shape information can be used to automatically 

detect unique features. This can help in defining the hierarchical nature of the topography. 

In addition, shape may help to identify the process genetics that created a selected feature, 

as the shape of the topography or feature is the result of dominant and interacting processes, 

which operate over a range of spatial and temporal scales.

Advanced spatial-topological analysis offers the possibility of exploring the relationships 

among terrain features. Proper understanding of the contextual interrelationships may pro

vide information about the self-organization properties of the topography. Software that 

permits the collective integration of the aforementioned information would greatly improve 

alpine glacier mapping capabilities. Until then, glacier mapping of debris-covered glaciers 

remains a difficult task. This research is a small step in that direction.
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Appendix A 

Appendix

Scale

Lam and Quattrochi (1992) give three connotations of scale in the Earth Sciences:

• Cartographic scale or map scale - denoted as a ratio, refers to the proportion or dis

tance on a map to the corresponding distance on the ground (Cao and Lam, 1997).

• Geographic scale - the spatial extent of a study area; large scale (1 : 10, 000,1 : 5000) 

covers a small area with more detail whereas small scale (1 : 50, 000,1 : 100,000) 

covers a large area with less detail. It follows that geographic scale can be also called 

extent or domain, which is the area or volume over which observations are made.

• Operational scale - refers to the spatial extent of phenomena and processes; opera

tional scale is 4D spatio-temporal scale.

Furthermore scale can be:

• Measurement scale - refers to the size of an area upon which the measurement of a 

property is based, e.g. the measurement scale associated with a DEM is the spatial 

resolution or grid resolution, which serves as the basis for characterizing the altitude 

field (Cao and Lam, 1997).
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• Hierarchical scale - is based upon hierarchy theory, which characterizes landscape as 

the hierarchical organization of the topography. Thus, hierarchical scale refers to the 

size of the objects that present the hierarchical organization (Dikau, 1992).

Recently, other terms are used in relation to the scale problem and modeling at different 

scales. Most important of these are (cf. Bierkens et al., 2000):

• Support - is the largest volume or area for which the property of interest is considered 

homogeneous. The complete specification of the support includes the geometrical 

shape, size, and orientation of the volume. The support can be as small as a point or 

as large as the entire field. A change in any characteristic of the support defines a new 

regionalized variable. Changes in the regionalized variable resulting from alterations 

in the support can sometimes be related analytically.

• Support unit - refers to the sub-area or sub-volume with the same area or volume as 

the support.

•  Coverage - the ratio of the sum of areas or volumes for which the average values are 

known.

• Sample - a subset of n support units taken from the population of N  support units that 

make up an area whose properties have been observed. This implies that Targe scale’ 

refers to large areas; ’small scale’ refers to small areas, which is the inverse of what is 

meant by ’geographic scale’ and ’cartographic scale’.

Hierarchy Theory

The components of hierarchy theory are:

•  Hierarchy spatial reasoning - leads to a theory of hierarchical spatial reasoning (HSR) 

which is a method of spatial problem solving that uses hierarchy to infer spatial infor

mation and to draw conclusions (Car, 1997).
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• Nested hierarchy - larger spatial scales and smaller temporal scales characterize lower 

levels; higher-level hierarchies are characterized by smaller spatial scales and low fre

quency behavior (Urban et al., 1987).

• Elemental terrain form object (ETFO) - represent a topographic entity that serves as 

the basic object from which other objects are defined. An elemental terrain form object 

is delimited on the basis of geomorphometric parameters such as slope, slope aspect, 

profile curvature, planimetric and tangential curvature. ETFO are homogeneous in 

one or several morphometric properties. These objects exist at a variety of scales, 

depending upon the complexity of the topography.

• Terrain feature - represents an aggregation of ETFO

• Landform feature - represents an entire landform, which has been defined based upon 

aggregation of terrain features and ETFO.

Other components of hierarchy theory are:

• Part-whole - an element on a higher level consists of one or more elements of the lower 

level. In the view of a part-whole relationship, a higher-level element is a whole and 

a lower level element is its part (Palmer, 1977). The role of whole and part changes 

from one level to another: an element being a part of another element at the higher 

level is a whole for elements of the lower level, and has properties assigned to both 

arts and wholes.

• Janus-ejfect - an element at a hierarchical level has two different faces, one looking 

toward wholes in a higher level and the other looking toward parts in a lower level. 

Koestler (1967) identified this property as a fundamental property of all types of hier

archy and called it the Janus-effect (after the Roman God Janus who had two faces). 

Further he defined the term holon to reinforce this two-faced characteristic of hierar

chical systems. Holons generate emergent properties, which are not apparent from an
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analysis of the individual components, that is, the whole is greater than the sum of the 

parts.

• Near de comp os ability - is related to the nesting of systems within larger subsystems, 

and is based on the fact that interactions between various kinds of systems decrease 

in strength with distance (Simon, 1973). Such a system is likely to behave either as 

a single, nearly uniform system consisting of components that hang together rather 

strongly, or as a set of localized subsystems. A system of the latter kind is hierarchical 

in nature.

Other Terms

• Georelief - is considered as a solid but dynamic division line between atmosphere and 

hydrosphere as well as between lithosphere and pedosphere, and mostly biosphere. Its 

position presents the central part of a geographical sphere, where maximal exchange 

of energy, information and matter is located (Dzurovcin, 2000).

• Geomorphologic agent - refers to a material object, in which part of its total energy is 

used during geomorphologic process (e.g. air, water, in various states and forms with 

its kinetic, thermal, and chemical energy; rocks with their potential and kinetic energy; 

magma with its thermal and kinetic energy) (Minar, 1995).

• Geomorphologic process - is a process that directly induces changes in the continuance 

of the georelief. Process covers particular fluxes of matter, changes of matter-energetic 

interactions of georelief and the continuance of the relief as well (Minar, 1995).

• Geomorphometry or Morphometry - is numerical characterization of topographic forms 

(Schmidt and Dikau, 1999). Using the words of Rasemann et al. (2004), geomor

phometry can be defined as the science of quantitative description and analysis of 

the geometric-topologic characteristics of the landscape. Within the framework of
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process-form relationships, geomorphometry deals with the recognition and quantifi

cation of landforms.

• Morphometric parameters - refers to first and second order derivatives (zx. z y , z x x , z x y , zyy)  

of the elevation field, such as slope angle, slope aspect, profile, tangential and plani- 

metric curvature (Krcho, 2001).

• DEM - Digital elevation model or DTM - Digital terrain model - represents an altitude 

surface derived from altitude data using an interpolation algorithm (Rasemann et al.,

2004).

• GIS - Geographic Information Systems - represent a computer-based tool to capture, 

manipulate, process, and display spatial or geo-referenced data. They contain both 

geometry data (coordinates and topological information) and attribute data, that is, 

information describing the properties of geometrical objects such as points, lines and 

areas (Fedra, 1993).

Glaciers

• Valley glaciers - glaciers that flow between confining rock walls (Sharp, 1988)

• Ice sheets - glaciers that bury the rocky landscape and flow unconfined by virtue of 

their great thickness (Sharp, 1988).

• Terminus or Downglacier extremity - is the line where losses by all causes equal the 

rate at which ice can be supplied by accumulation and forward motion.

• Zone o f accumulation - is the zone where vectors of particle motion are downward into 

the ice mass as each year’s snowfall adds a new surface layer to the glacier.

• Zone o f ablation - represents the zone where vectors of particle motions point toward 

the ice surface, because a surface layer is annually removed, exposing progressively
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deeper ice (figure A. 1).

Equilibrium Lire

Glacier Gain (Accumulalien) 

^  Glacier Loss (Ablation] 

Flowof Ice in Glacier

Figure A.i: Mass balance of valley glaciers.
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