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Abstract

The digital format of rémqté sensing dafé ‘facilitates the
measutement ow; spatial patterns. _The concept of measurability of
spatial pétterns has important geographicimplicati'ons and may open -
up an "altverhative». applicat.io,ns for satellite remote sensing of urban
'a;reas. Texture analysis, a set of techniques developed in pattern
“recognition, is found to be useful in measuring spatial pattern on
digita'l imagery. Two approac_he_s’ of texture 'analysis are selected.
One 'V‘A»-is _‘ Haralick's Spatial Dependence Matrix, the. o.t»her‘is
Jer’higanv"s,ve_t. al., Eﬁtropy-based texture measures. They perform in
s'pati‘al domain and frle_quency domain respectively. Ten subimage
areas in'Omaha' suburb are seleéted frOm a Landsat TM image. The
,sub‘i“rnage“‘areas includes ‘the major residential spatial patterns in the

area,  Through analysis, '_itv. is .fo'Und that residential areas with



d.ifferent" spaztial features do present distinguishable texture
measures, in both SPADEP and Entropy-based texture analysis. With. .
th'e intréduction Q_f tex’_ture anallysi-s, a new set of terminology can be
used to describe a spatial pattern and may greatly enhance our
concepts  of 'Ce'rtain. spatial phenomena. _.Potential application of
texture analysis in this context could be in urban Iénd use mapping,
- computer-assisted land use. monitoring and comparative study in

urban spatial patterns.



Acknowledgements

| would like to thank the members of my thesis committee:
Dr. Michazei ,Peter‘son and Dr. David Dimartino of the Geography
Department, and Dr. Peter Suzuki of the Urban Studies Debartment.
Tlhe’vir expertise and efforts were imperative - and sincerely
-appr.ec‘viated._ | |
.S_péCial thanks are given to Dr. Peterson, for his advise,
encou_rag‘emen_t, and for his patience in reading’,and correcting my
English writing. |
| | also appreciéte the helps of Mark -Laustfup, the manager of the
Remote Sénsing Appl_ication"-Labora'tory,. who_ provided the .imagery
‘data .and unlimited computing time. . |
Additionlly, 1 would fike to thank Dr. Joseph Wood, the former
“chair of the. gradu.été committee, who helped me to start the grad.uate
program here. | ‘
| Finally, | would like to thank the Intétnational - Studies
Program at UNO. Without their initial support, | would not be able to
‘come to this*countr'y and have such wonderful experiences and

excellent education at this university.



Contents

Chapter 1 Anallysi_s
1. Introduction

Il. Literature Review On Texture Analysis
A. The Definition of Texture '
-B. Major Methods for Texture Ana_lysis '

lll. Study Area, Data, Methodology, and Thesis Arrangement
Chapter 2 - Methodology
| Spatial Dependence Matrix Approach

A. The Principle
B. Texture Measure from SPADEP
1) Angular Second Moment -
2)-Contrast “
3) Correlation
4) Sum of Squares
5) Inverse Difference Moment
.6) Sum Average " -
- 7) Entropy
8) Sum Entropy
9) Difference Entropy
10) Sum Variance
11) Difference Variance
12)' Information Measures of Correlation

L2 B4

13

15

15.
18
19

20

21
22
22
23
23

24

25
27
28
28



13) Maximal Correlation Coefficient
C. The Computer Implementatioh of the. SPADEP Approach
1) Graﬁf Level Transformation
2) Compute SPADEP matrices
3) Compute the Statistical Texture Models

. The Entropy-based Texture Analysis

A. The Fourier Transform of an Image
B. Regional Entropy Measures in the Fourier Energy Spectrum
C. The Computer Implementation of the Fourier Transform, the FFT

Methods to Analyze the Texture Measures

“A. The Distance Measure

B. Cross. Correlation

Chapter 3 Analysis

Introduction

Texture Analysis in a Suburban Area

A. SPADEP Regional Measurement

B. SPADEP Local Measurement

C. Fourier Spectrum Pattern of Texture and the Entropy-based
Textural Analysis ‘ |

. Sum‘mary ‘

Chapter 4 Conclusion

‘Appendices

References

ii

30
32
32
33

34

35
35
37
41

43

43
43

46

50

50
59

- 61

66
74
82 .

121



List of Figures |

21: A 3X3 image and the general form of the SPADEP. . - 16
* 2.2: Neighboring relations and the SPADEP in the 0 degree d:rectlon 16
2.3: SPADEP in the 90, 45, and 135 degree directions. 16
-2.4: The normalized SPADEP. 17
2.5: lllustration of Py er(|) and PXfy(!)' 19
. 2.6: Maximum minimum case of ASM. 20
'2.7: Examples of contrast measurement. 21
2.8: Correlation measurement. - 21
~2.9: Inverse Difference Moment measurement. 23
2.10: Sum Average measurement. 23
2.11: Entropy measure, the maximum case 24
2.12: Sum Entropy measure, the maximum case. 25
2.13: Examples of DIFETP. 26
' 2.14: Sum Variance. 27
2.15: Comparison of DIFVAR with CON and DIFETP 28
2.16: Compare IMC with COR. 30
2.17: The Q matrix and its Hessenberg transform. v 32
2.18: lllustration of SPADEP matrix construction (horizontal). 34
2.19: An 8 X 8 matrix to be transformed to the Fourier series. 36
2.20: Fourier transform. ' 39.
2.21: EBT analysis. 40
2.22: Texture pattern and the Founer spectrum. 42
2.23: Local measurement of texture properties. 44
3.1: Guideline of texture analysis. 48
3.2: Study area (subumage) 47
3.3: Study area. 49
3.4:- ASM measures. 51
3.5: Correlation measures. 52
3.6: Entropy measures. 53
3.7: Sum Entropy measures. 54
3.8: Variance of the Entropy measures. 55
3.9: Variance of the Sum Entropy measures. 55
3.10: Difference entropy measures. 56
3.11: Information measures of correlation. 56

iii



3.12:
3.13:
3.14:

~3.16:
3.16 -

3.28:
3.29:
-3.30:
3.31:
'3.32:

3.33:

Maximal Correlation measures.

Distance measures using seven texture features
Correlation matrix of ASM measure. '

Distance measure of ASM {mean).

3.27: Fourier spectrum of the study areas.
Image of Fourier power. spectrum.

Regional Entropy measures in Band 3.

The spectrum regions used to measure the entropy.

Regional Entropy measures in Band 1.
Regional Entropy measures in Band 4.

‘Regional Entropy measures in Band 5.

iv

57
58
60
61
63-67
|nsnde of Back Cover
68
69
79
80
81



Chapter 1: Introduction

1. INTRODUCTION

Satellite imageryv has been used with great success in the study
of the :afmospherev, Iithovsph.e‘ré, water'bodies, ve-}getation a-nd soil.
'HOWever, ‘i‘tvs appl_iCatiQn to urban areas is limited larg_ely' to
broad-scale ‘land use mapping, and even these results are somewhat
disappointing. This is dué to .the low spati_al resolution of satellit'eA
imagery and an orientation in remote “ sensing toward spectral
analysis. The improvements of the sensor system and the processing
téchniqUes may ever.\vtually ‘ove_rcome the obstacle of spatial
resc;lution; meénwhiie,-. ex'tendi‘ng our concepts of remote sensing
beyond spectfa_l-analysis could alsc}‘ open up alternative applications
of_satelllite remote\»sénsin:g to the study of urban a.reas._'

Satellite data such as Landsat imagery is recorded in digital
r'form by a ser'ies of electromagnetic sensbrs. To most people, this is
simply a prerequisite for vdigital image processing aArA\d image
~enhancement. The geographic implications of . digital imagery,
,especially to the study o’f urban areas, aré'l'argely overlooked. |

A city may be composed of various land use types, such as



resident‘iaﬂl, comme_rci‘al, ihdustrial etc. Each of these areas contains
certain physical elements, i.e., streét, building, open space (paved or
ve‘ge,tétion covered) etc. .A. land use pattern is a cériain, combination
of these eiements, which is different from one to : another both
quantitatively and qual‘itatively. Even within the same type of land
use, the spatial combination can be different. A new and an old
residential area may have a similar composition of physical elevments,
ie.,. the'y both have houvses-, streets, lawns: and t_rees. An older
residential area, however, may 'hav‘e.,g'rid street layout and houses
mdre closely together while in the new residential area, streets are
curved, trees are small ahd"hous_es are further apart. When these
patterns are represented 'in a digital image of proper scale, the"y
become associated with reflectancé patterns which can be described
by the spatial relationship among reflectance levels (gray levels). In
another words, the speitial characteristics of a land use pattern
become measu‘rabl'é in a..d.igital image. Although the spatial
~ characteristics thus obtained are only the physical features o'fA
certain land use patterns at a certain scale, the notion of the
measurability - of spatial patterns ‘in -‘dig'ital imagery -i,s worthy of
consideration.

In urban geography, it is a tradition ,tb study the physical form

in a city as a device to reveal the social and economic processes. In



'fadt, major geographic_ models on urban growth and intra-urban-
structures are morphological with the’ concentric zone (Burgess),
“sector (Hoyt), and multi-nuclei models (Harris and Uliman) being
often cited. When a city is 'represented. in a ':L‘andsat i,mége, the
identity of most ihdividual morpholo‘gicavl elements, such as houses,
expfessed _bylv their shapes, ‘will be lost, but -the ~spectral
characteristics of these elements and the spatial relationships among
-them are generalized in'_ the reflectance patterns. Furthermore, such
relations_hi-ps become  measurable and may enhance some of our
c'oncep’iions of urban,geography.

Although measuring "characteristic_sA-_of spatial patterns in
digital -»imagery”_may bé a novel idea, a similar notion, texture
analysis, has long been recognized in the field of .pattern recognition.
Texture anal‘y'Sis,' though definit_ions and methods vary, is-
fundamentally a way to ‘measure the spatial relationships ambng gray
!e\)els. ’Num'efou5- mathema‘t‘ic’:al modeis h‘ave been developed to
implement texture ah_alysis; The prirhary objectiveof: such studies is
to find: di’stinguishable‘texture m}eas"ures for the sake of automated
pat;e’rn, recognition and classification.. Many of these models are
“de'svig'ned to simulaté pattern recognition by human bein'gs, and a"re. not
r’\_ecess-a.ril"y relevant to the spatial characteristics with which we are

concerned. Nevertheless, it is found that some texture measures,



suc;h as Haralick's (1976) ,S}p'atial Dependence Matrix approach and
‘ Jevrhigan"s',- et. al. (1983) Entropy-based texture measure in the
frequency domain, tend to reveal lthe, overall characteristics of a
- spatial patternzand cor.\'.tain certain geogra_phicalk implications.

The - the'ore‘tical‘ assumption of this thesis is that different
spatial patterns on the earth surface are measurable in digital
imagery. Further, texture analysis, a set of techniques developed in
pattern récogn_itidn, ‘may be used to aCduire such measurements. The
mé’asurabili‘ty. of spétial ‘pattern in a digital .image may greatly
enhénce our .:under‘standing of certain spatial organizations;‘ It is the
objec-tive of this thesis to measure' spatial - patterns on dfgital
."ima'gery and in particular, to seek possible applications to the
analysis‘ o'fv urban areas. " |

To evaluate the poté,ritial of the concept of measurability of
spatial pattern in digital .imagery and .techhiq_ues'of:texture analy'sis,'
urban . residential pe;tterns are chosen for study. R.esideritial areas
‘constructed at different times, :b_ased_ on différent Stre,et sy.stems’,
res'id'ed_"in by different grd’ups of people, situated in different
l'ovc‘ations will -exhibit diff'erent' spatial characteristics. ~ Would such
character'isticsrlbe revealed by certain texture measures from Landsat
digital imagery?  Would similar residential patterns have similar

" measures? What are the geographic i_m‘plications ~of these



measure m‘e'n,té? ’ |
Landsat Thematic Mapper (TM) imagery, is used |n this p'r.oject.
The higher spatial résolution of TM imagery (30 meters per pikel)f may
Dbetter ,r_epreseht Vthe' .spectral reflectance of basic physical elements
|n an .Urb_an scene. Texture analysis has been largely applied on _MSS}"
data .(79_"meters per pixel.)‘.» Selecting TM imagery in this study can be
viewed as anothe’r investigation of its pote-ntial application td urban
| ‘éreas..' | |
The following section provides a c"omprehensive ‘fevi‘ew of

'_t_ex_turé‘ analysis and spatial pattern recognition.
Il. TEXTURE ANALYSIS AND SPATIAL PATTERN RECOGNITION'

A.»T.he:.'D‘efi'nition' of Texture

In g_e-rieral,v texture in vari‘-image -refers to the spatial relationships
of reflec'tance: |eve|s.,' often expressed .as gray tones.»‘ Texturé' has
_,genéral!y been defingd through én enumeration of charact_eris'tics-suc‘h
as fine, coarse, regular, irregular, etc., in order to facilitate the
implementation of corresponding quantitative measures. Howev‘e.r, it
is found that a precise definition of texture does not exi.st.’ In his
reVié.w a_rt«ici'e on texture analysis, Haralick (1979) proposed the

tone-texture concept which is the further development of his early



concept . of discrete tonal feature  (1973). A'ccording to the
tone-texture concept, gray tdn-e énd texture are not’indepé‘hdent. “The
-relationship be_tweeh tone and texture is- inextricable. Tonal
primitive has. been defihed as a} maxima co_nnected set of pixels having
‘a given tonal ‘property (Haralick, 1979). In order to characterize
texture, one ‘must characterize the tonal p'rimifive properties as well
as the "spatial_i‘nferrelaﬁonships among thém due to the inextricable
"re,Iat_‘ionship_s.'b’etw‘e'éh ‘tone and texture; thus,  texture ahalysis, _‘
intdée,d_,y is two dimensi,on.a|.4 However, Haralick pointed 6,0t, the
_'éx'isti'ng approach‘es”tend to emph_asize one- or .t_he othe_r aspect and do

not treat each equally.

B. Major methods of textural analysis

Computer-aided texture analysis has been studied since~196_0
(W'eszka;, et. al. 1976). Majcr methods  have been developed in both
spatiél and fréqUen‘éy domains. To ‘give a general view of texture
analysis, H'arral:i‘(:k publi,Shed an article in: 1979_-reviewing typical
statistical and. structural approaches to textur_é analysis. S_inée then,
new vapp‘r.oaches have been emerging but it seems that they are still
.,lic'onfined to the classic "methods.- Therefore',‘ Haralick's olassifit;ation-
of t.ex'turé' approaches is still useful for purposes of review.

ACCOrdin'g’to Haralick, .approaChes to. texture analysis of



‘imagery can be divided ‘into two categories, statistical and
'stru»Ctural. There. _had'v been eig’ht statistical approaches to the
'meas.urerhvent' and characterization of ‘image texture: autocorrelation
functions, optical'»transform, digital tréns’forms, textural edgeness,j
structural elements, spatial gray ton‘eAcbocurrehce probabilities, gray
tone run lengths, and autoregressive models. As indicated before, each
of these techniques tends to. emphasize one or other 'aspects of the
texture feature. | |

The first‘three of these approaches . are performed in the
frequency d‘bmain.' It is well | known that ‘specific components - in ‘the
“,sp'étial frequendie.s domain representation of ah‘ ~image ‘contain |
explicit information abou’t’ the - spatial distribution. Autocorrelation
funCtions,» i.e., _thev Fourier transform of _the_ power speCtrum,.'is ‘a
measurepf the linear dependence between gray levels. It te‘ndé- to
.re_ve_ali the properties of tonal primit‘ives_ (especially théir sizes). The
V'faster the .a_u’t'ocorr’elat‘ion funct‘i'on drops off with distance, the .
smaller size of_fo_nal primitives is - indicated, the finer the texture.
'P'ioneer,wo‘r}k was'done'by Kaizer with seven aeArial. ph_otographs oAf an
Arctic region ,(1955). Since then, the éutocorrelation approach‘ has
Vbeen seldom used. Mdre recent texture analyses in frequency 'domaih
haS_focuséd-On the Fourier power spéCt_rum. Earvly experiments were

optical processing, measuring the light diStribution of the Fraunhofer



'd_.iffract'ion pattern'._(fhe optical .equivalence of the Fourier power:
spectrum). The experiments done by L'er'_l'daris a'n'd‘ Stanley (1969)
présent an example of fhe most popular texture measures ofith_isvkin-d.'
The pattem v'ec't'or'sthey used are'the average energy in an}nular'»rings
and in 9 d_egree wedges 'of‘ the diffraction patfern respectivve‘ly. Ae'riall
photographsi were used to test the poWer of such met_hods' in
distinguishing-man-mad_e from ho_n-man—made 'features‘ and the
"'subcl_asses_ of man-made 'features. Ninetyvpercent-of identification
'a;:CUracyf was reported. In general, summed e'.nergyv measures in the
Fourier 'p‘owe»r'sp.ectrum }is the majo»r»- method used in texture analy'sis.

Although ‘successful' texture 'extraction (_usﬂuaHy 'over 90_
percent*v accuracy of clasSification) has been fbxu_nd in many projec‘ts
with various remotely sensed data (Egbert, et. al., 'Gram_en-opb_ulos,
Horning and Smith, Kirvida and Jonhson, 'M'aurer-, Bajcsy and
‘Lieberman, etc.v)', texture analysis in thefr,eqUency'domain, has met
criticism in that this approach only reveals the global information
from across the cbmplete image and neglects important local
“d'isc,riminati.on information: about‘th-e texture. It is also found that
texture mea‘sures-ivn the frequency domaih are not invariant with size,
orientation and even with rriOnotonic gray level transformatibn
(Haralick, '1979)’. In a cor’np'arative study of texture méasures for

terrain -classificatioh, Weszka, et. al., concluded that measures in the



the ‘spatial domain (Weszka, et. al., 1976)§ In practice, Rosenfield,
et. al., _conS-istent’Iy found .that the frequency approach is less.
~ successful than the oth:er‘approaches (Rosenfield, et. aI‘;, flrckm‘ 1981
to. 1982). |

Neuertheless, ‘research on t'eXture ‘measures in the frequency
domain did not end. Recently, M. E. Jernig.an and F. D'astous developed
.:an' approach of entropy—baSed texture a’nalysis._ They used the regionali
entropy measures |n ‘_the spatial frequency do,maivn which would
provide . texture discriminating information independent ot
information contained in the usual summed energy within frequency
domain features The measure is sizeé invariant and comparable to that
Aof gray level coocurrence contrast feature
' Besndes vrewmg texture "as spatlal frequency distribution,
Rosenfield, et. al., .found that texture can be also measured in te_rrns‘
of edgeness per unit area (RcSenﬁeld and Troy, 1970, Rosenfield and
Thurston 1971). Coarse textures have: a small number of edges per
‘unit area whlle fine textures have a high number of edges per unit
- area Further experlments have been carried out by Sutton and Hall
,(1972) Hsu (1977).
| The structural eteme_nt approach is proposed by J. Serra(1974),
‘and G. Matheron (1-967). They use a-matching procedure to de_tect- the

spatial regularity. of shapes called structured elements in a .binary



image. This measure ‘em-phasizes the Shape aspects of the tonal
primitives but can ohly do so »fo‘r binary images.

Another major second order statistical measure of texture is
called the Gréy Level Spatial Dependenceappr’oach.'b It e“mphasizes the
" spatial distribution and spatiél dependence among"the gray tones in a
.Iocal}ar'e,a.. B. Julesz (1962) first used gray tone spa‘tia|-dependence‘
‘coocurrence statistibs in texture discrimination expériments. E. M.
’D'ar|iAng and R. D. Joseph (1968) first used this approach in identifying
cloud*typ_es: in satellité, imagery. Bartels et.  al.,, (1969) used one
dimensional c}oocufrence in a medical application. Rosenfield and Troy
(1970) ‘and Haralick (1971) suggested two dimensional spatial
~dependence of gray tones }.’-in a copcurfence matrix for -each fixed
distance and/or'angular"spa_tial- relationship; Haralick et. al., used
statistics of this matrix as measures of texture in sateHité imagery,
aerial, and microscopic imagery (1973, 1972). Chien and Fu (1974)
showed the apﬁli_cation of gray tone coocur'ren‘ce to
_ co’mpute-r—assisted_chest -X-ray.'analysis; "Pressman (1972) applied the
similar -technkiqUes: to cervical cell ,discrivmin-ation. Chen ahd Pavlidi.s
(1978). Used coocurrence in conjunction with split and merge
procedure to segment an image,on‘.'the basis of texture. 'Mdre récently,
Jensen (1979) and Jensenf and. Toll (1982) féported on the use of

Haralick's angular second moment ‘(ASM) as an additional feature in

10



the supérvised 'claésificﬁation of Landsat MSS imagery at .»the urban
’frin'ge and in urban land use change-detection .mapping';-All of these_
st_udies'aChieved reasonable results on different textures uéir'ig gray
tone CQdc'ur'r'e-nce.- In - their comparative studies of textural measures,
Weszka, et. al., (1976) found that the coocurrence approac.h' was
among the best 50' far. ;Th“e study by Conners and Harlow- (1976)
t-h,e-or'etically 'conclud'ed that Haralick's' gray-tone coocurrence
matfi'ceS' had the bést'innate discrim»inative ‘ability. The power of the
coocurrence ap_proach is that it characterizes the s,patial‘
inter~re-|ation$hip of- the gray tones in a textural pattern and is
.inVariant' under mondtonic gray level transformation. |

Further development of this idea by Sun and Wee (1983)
resulted in é new texture transformation called Neighborhood Gray -
Level Dependence Matrix (NGLDM) approach. It is said to vbe_essentiallly
“invariant even under spatial rotation.

The gray Ievél ruh‘length- approach’ represents a family of first
order statist»icvj,al' texture measurements in the spatial 'domain.» It
characterizes coarse texture as having many pixels in a constant gray.
run and fine texture aé having few pixels in a constant gray tone run.
The. study by Hsu (1978) found, among 17 proposed first-order texture
measures to cvlassifzy level I 'land cover from digital aerial

photo'grlvﬁaphy, gray Iev"el' run length statistics’were superior. Further

11



experiments were rep‘ortie'd_by Irons and Peterson (1981) and Shih and
Showengerdt (1983).

The aU'toregressive .models are a way of revealing'the linear
dependence one gray level has on another. It was introduced by
"’MCQOrmick and Jayaramamurthy (1974) and experimented by Deguchi
and Morishila (1976); Tou et. al., (1976), and Tou and Chang (1976).
Theoretically,: the ‘autoregressive approach is sufficient to capture
‘everything about a texture, howe‘yerr,' - the textures it can characterize
‘are likely to consist of microtextures. |
| Bésides the eight statistical approaches reviewed abovey, there

is a;ndther' set of texture fneasures‘ of structural ‘approaches. Pure_
| structural models of texture afé based on the view that texture are
made up. of primi’tiyes which appeér i‘n near regular repetitive spatial-
akrangerﬁents._ It |s a much.mor‘e?cdmp‘lex appréach and is not used
widely. | | | |

RéCently, the_‘idea' of'usi.ng fractal ‘?analysvi-s to extract spat'ial’
féati'ures in LandSét imagery has been reportéd (Goodchild and_Ma'rk,
1987). The applicétion of f-ractal geohﬁetry- would introduce a who‘le
‘set of texture measures in the fractional dimensions. Further
‘experiments .o'f fractal analysis are being conducted in the field of
pattern récognition.

'Fr'om the literature review, we see that no effort: has been

12



devoted to textural analyéis with TM imagery and that -most studies
are purely technical experiments for pattern Vrec’ognition or
classification. -Few applicétions of texture analysis have been found

in urban study and gedgraphib inquiry.
Ill. STUDY AREA, DATA, METHODOLOGY, AND THESIS ARRANGEMENT

The ‘cit'y ‘of O_rhaha is selected as the study area. The major
emphasis is placed on'the» urban _fringe;‘the'most active area in the
City in terms of change. Landsat Thematic Ma'pperv'DigitaI"data
~acquired on June 12, 1985 will constitute the primary data source.
‘Other data SO'Urces,use_d to assist in the study are: two Lan»dsa_t’ MSS
images of O'maha_take‘n in 1976 and 1978, 'aeriall photos, updated land
use maps, and the USGS"tbpographic sheets. |

lFo’r comparative purposes, two approaches of texture analysis
will be used. .One ié Hara}liék"s gray level spatial dependence matrix
~approach in the jspatial “domain, the other is Jernigan's, et. al.,
entropy-bavse'd t'e'xtUre analysis in the frequency domain. Since these
two -appro;'aches have not been implemented in the‘current image
procﬁes‘sin'g system at the Remote Sensing Application Laboratory,
co‘nSiderab'Ie amount of effort is needed to be devoted to computer

programming. The" Eye-com Spaltial Data system and PDP-11

13



‘mini-computer will serve as the -m-ajo»r-comp.ute~'r facilities uséd in

the p,foject. | | '
The thesis is divided into four chapters.. The following two

'Chapters_ w_ill,_discuys’s' the methodology and the process of analysis.

The conclusions from this study will be drawn in chapter four.
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Chapter2:  Methodology

In -this chapter, 4two approaches of' textUraI analysis, the
Spatial Dependence (SPADEP) and the Entropy-Based Texture (EBT)

approaches and their. computer implementation will be discussed.’
. Spatial Dependence Matrix Approach

A. The Principle

~ This approrach is based on the assumption that ‘textual
vinvfovrmation on an image is contained in the overall ‘spatiai
.relationships_ among gray I"e'vevls» and that such relationships can be
“expressed by the measurement of-the coocurrence of one gray level to
another in different directions and distance within a llimited'space,
suc.h_ as 3 X 3 éubimage., The mathematical expression of the
coocurrence frequency is the 'Spatial Depende'nce' Matrix (SPADE'P).

_Considér the foilqwing‘ examplé. ‘Suppose Fig. 2-1a is the image
to be meaSured._ If the range of the gray level is from 0 to 3, the
,vpos‘.sible’ coocurrence relationships of the four' gray levels can be

expressed as Fig. 2-1b. Notice that this matrix is symmetrical.
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(0,0) (0,1) (0,2) (0,3)

012 (1,0) (1,1) (1.2) (1.,3)
012 (2,0) (2,1) (2,2) (2.3)
033

3,0y (3,1) 3,2) (3,3)
a b |
Fig. 2-1 A 3 X 3 image and the general form of the SPADEP (N=4).

135 00 45 o 12 3
J S 0 0o 2 o 1
_,:_?g,?,,'o 1 2 0 2 0

2 ]lo0 2 o o
' ) 3 1 0 O 2
a b

Fig. 2-2 Neighboring.relatirons (a) and the SPADEP in the O degree direction (b).

0123
0 | 4000 0 0
1 0201 1 1.
2 10021 2 . 2
3 o110 3 3

Fig. 23 SPADEP in the 90, 45, and 135 degree directions.

| ‘Now, “l'et's'- compute the SPADEP matrices in four directions
with neighboring gray level and dis'tance.-all ‘equal to 1 (Fig. 2-2).
Fig2-2b dep'icts' the 0 degree coocurrencés for the 3 X 3 matrix in
Figure"*1. The O'entry at (0,0) indicate no 0-0 coocurrences while the

2 en’tryAat (0,1) indicates two 0-1 c_oocur_re-ncés at this. angle. Using
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the .same‘:'method, we can construct the SPADEP matrices in 90 , 45
and 135 degree ‘directions ‘_(Fig. '2-3). For the purposes of exlplanatvion,»_
we define SuCh matrices as P(i,j). |

To obtain the normalized frequency, i.e., the relative
probability of these matrices, each entry in P(i,j) is di\'/i’ded by’-.the_
'nur»nber'of nearest neighbqring pi*el pairs. For an image of N X M, the

‘normalizing factors R are:

‘Ri1 = 2N(M-1);
R2= 2M(N-1); -
‘R3 = 2(M-1)(N-1);
Re = 2(N-1)(M-1);

where Ry, R2, R3, R4 represent the R in the four directions: 0, 90, 45,
135. ;Fig,. 2-4 shows the normalizéd P(i,j). ‘Notice that the sum of

rows and the sum of columns are both equal to 1.

0.00- 0.17- 0.00 0.08 0.03 0.00 0.00 '0.00
0.17 0.00 0.17 0.00 0.00 0.17 0.00 0.08
0.00 0.17 0.00 0.00 0.00 0.17 0.17 0.08
0.08 0.00 0.00 0.17 ‘0.00 0.08 0.08 0.00
0 degreses 90 degrées
0.00-.0.25 0.00 0.00 0.00 0.12 0.00 0.12
0.25 0.00 0.12 0.00 0.12 0.00 0.12 0.12
" 0.00 0.12 0.00 0.12 0.00 0.12 0.00 0.00
0.00 0.00 0.12 0.00 0.12  0.12 0.00 0.00
~ 45 degrees 135 degrees

Fig. 2-4 The normalized SPADEP
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After cOns-trucvting the norma‘lized; P(i,j), we can now ‘app:ly
statistical m'odels' “to e’xt.ract te}(tural information - from these
matri«ces. Haralic,k', et. al., proposed fourteen statistical models for
.textu,_re_ éxtracﬁon from the SPADEP, Each of "th‘e‘se measures tends to
'emphasize cer‘tain aspects of textural properties in an image, e.g.,
"homogeneity, complexity, linear structure, contrast, number and
nature of boundaries present, etc. Among the 14 statistical
measures, some are relatively difficult to"i’nterprét. 'N_ddetailed
explanations on these models:_have been found. Since it is important
to know what te_x't'ural‘ informaﬁon each of these features expresses,

a pre-study of these -models is included in the following sections.

B. Texture vMeaSU'r»es from SPADEP

A th'eotrevtical explanation of the statistical texture models is
out of the scope of this thesis. Only a bri-éf discussion will be
p'res‘entedA with*example’s_. We give the. 'fdllowing_ notations that are
used for the texture models: |
N: "nurr.\ber of gray levels in the image;
P(@i,j): (i.j)th entry in a normalized‘ SPADEP;
Px(i), Py(j): -ith/or jth entry in thé marginal probability matrix obtained
" by summing the.‘rows/or colurhns of P(i,j); |

Px+y(K) = X P(i,j), fori+j=K =2, 3, 4, ..., 2N; (Fig. _2'-5a_);
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Px-y(K) = X P(ij), for i - j| =K = 0, 1, 2, s.. N-1..  (Fig. 2-5b).

Px+y Px-y.

(1 1), (1 ?‘\. “Q, 3\' (1 4 (T ~'2) S\\‘I 3) (1,4) '-
‘(21) e 213 @ 3.+’ (2 4) '(m’)» \,L, a.a) N24)
: (3'1) -3, 2),.* (3 3).o (3 4) @) R ) (3%)

0

141) -(42).(43)'(44) (1) (48 @) )
a b

Fig. 2-5 lllustration of Px+y(i)-and Px-y(i).

Px+y(K) is a matrix representing the sums along the right
d|agonal of P(i,j) (Fig. 2-5). Px-y(K) is a matrix obtained by. sumhing.
‘each group of element,s_ with subscripts i and j and ,|i.‘-j| = 0, 1,
2,.....N-1. For example, elements along the dark line in the matrix of
Figure 2-5b., [i-j| =
1) Angular Second Moment

ASM = 3. P(ij)2.
| ASM is one _of the most frequently used SPAD'EP measures. In
general it measures the homogeniéty of the image. Since P(i,j) ranges
from 0 to 1, the more widely distributed of P(i,j) the smaller the
'ASM_,"indiCatirng' less homogeneity in the image (Fig. 2-6a). ASM i‘tse.lf_‘

vra-nges from 0 to 1. 'In_ an image presenting only one ,grayvlevel, all but
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one element in P(i,j)'-equalvto 0; ASM reaches the maximum value 1
(Fig. 2-6b). ASM s inVariant; under monotonic gray' level
transformation.

0.00 0.00 0.00 0.00

333 . :

' 0.00 0.00 0.00 0.00 '
333 ~ = a) -
333 0.00 0.00 0.00 0.00 ASM1 - 1.0000  (2)

0.00 0.00 0.00 1.00

N=4 " The SPADEP in horizontal direction
012 M2 - 00833 a5

: = UV 888 b)
345 ASM3 = 0.1250 | ASM1 = 1.0000  (P)
678 , : 888
_, ASM4 = 0.1250 -
N=9  Measures in four directions N=9 Horizontal measure

Fig. 2-6 Maximum minimuh‘n case of ASM.

2) Contrast
CON = 5 [n2P(ij)] for [i - jl = n =0, 1,0, N-1.
This is essentially the moment of inertial of the P(i,j) around
its main diagonal. It is a natural measure of the degree of spread of
the matrix Value, i.e., the contrast or the amount 6f_ Jlocal variation
i present in an image.‘The' hig_her the value of CON, the higher the
contrast; OSCONS _(N-1)2_ Fig. 2-7 is an exam.pl‘e‘ of contrast

'measuremeht. 'Notice that CON is not independent of gray' level and

the measure of CON will be changed under monotonic gray level



transformation. "

N=4 The SPADEP at135degree.  Measures in four directions..
300 0.50 0.00 0.00 0.00 ‘CON1 = 6.0000 -
030 0.00 0.00 0.00 0.00 CON2 = 6.0000
003 0.00 0.00. 0.00 0.00 CON3 = 4.5000

0.00 0.00 0.00 -0.50 CON4 = 0.0000
N=s 0.50 '0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00  CON1=10.6667

400 . CON2 = 10.6667 -
040 0.00 0.00 0.00 0.00 0.00  J 08 =" 0
004 0.00 0.00 0.00 0.00 0.00 = © _

0.00 0.00 0.00 0.00 0.50  CON4=0:0000
Fig. 2-7 Examples of antrast' measurement..
3) Correlation
.COR = {X [ijP(i.j)] - UxUy}/ SxSy;

whe‘re Ux, Uy, Sx, Sy are the means and standard deviations of the

“marginal probability matrices Px, Py.

COR1 = 1.0000

000 |
. COR2 = -1.0000
g-g g (a) COR3 = -1.0000 (®)
"COR4 = -1.0000
N=4 ’

Correlation rhea_sure.s in four directions

Fig. 2-8 Correlation measurement.
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| .CORmeasu‘res'rthe gray level linear Adependencies in an ifnage.
V-A‘I'S'CO'RS‘I. The COR measures in Fig. 2-8 indicate peffect. linear.
‘correlation in the horizontal direction and the inverse correlated
'prgperty along vertical and the two diagonal directions. COR |s ‘also
not invariant under monotonic gray level transformation. |
‘4) Sum of Squares |
| | SOS = ¥ [(FU)2P(i.j).

'SOS s likely the moment about the mean of P(ij), U. This
feature is diffiéult to interpret. It is not invariant underygray level
tranéformaiion. | | o
5) Inverse Difference Moment

| IDM = % [P(Li)/(1-+(-))];

IDM measures the difference among g'ra'y levels; 0<IDM<1. When
all non zero P(i,j) are located along the diagonal ((i,j) = (j,i)), then
Sum [P(i,j)] = 1, i-j=0, IDM reaches its maximum val,u'.e 1. Fig. 2-9
gives an example of 'th'e" IDM__méasure and the '_normal-'i'ze_d‘ P(i,j) injhe
‘right diagovnalvcoowrrence measure. IDM .varies under gray Ievel

transformation.
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" N=4 SPADEP along left diagonal' ‘Measures in four directions

0.00 0.00. 0.00 0.00 IDM1 = 0.5167

g; : 0.00 025 0.00 0.00 IDM2 = 0.5167
) 0.00 0.00 050 0.00 IDM3 = 0.2750
03: 0.00 0.00 0.00 0.25 IDM4 = 1.0000

Fig. 2-9 Inverse Difference. Moment measurement.

6) Sum Average
SUMAVG = 3 [KPx+y(K)]; i+j= K=2,3,4, ..., 2N;
'2P(1,1)<SUMAVG<2P(N, N).

‘This measure is also difficult to interpret. It seems that the
high SUMAVG indicates the higher coocurrence among high gray levels.
(Fig. 2-10). SUMAVG is not an invariant under gray level

transformation.

N=4 N=4

SUMAVGH1 = 4.0000 boo SUMAVGH = 3.0000
000 SUMAVG2 = 5.0000 pop SUMAVG2 = 4.0000
g g-g SUMAVG3 = 5.0000 500 SUMAVGS = 4.0000

SUMAVG4 = 5.0000 SUMAVG4 = 4.0000

Fig.2-10 Sum average measurement.

7) Entropy
- ETP = - % {P(i,j)Log, [P(i.j]
This is the measurement of average joint information or joint

entropy.. From the properties of entropy, ETP< ETPi + ETPj, with the
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equality if and only if, the two gray-‘ levels i and j are statistically
independent. ETPmax = Log?_ﬁ (R is the number of resolution pairs).
For a 3X3 image, the R in horizontal and vertical directions is 12
(with neighbor‘in'g' diStance and gray leyel interval equal to 1), _ETPr‘hax;
=’Logz1-2}b - 3.58496. Along the left and right diagonals, R = 8, ETPmax
= Log,8 = 3.0. Fig. 2-11 shows the méximum’ case of ,ETP‘. Obviously,
ETP. measures the complexity of an image which can be defined as the
number of gray levels in a subimage. The higher the ETP, the more
co‘mplex it is. E_TP is. invariant under fnonotonib. gray level

ltransfo‘rmati_on. Theref_oré, it is very useful for the comparative _study

of texture.

5 ETP1 = - 3.5895

012

345 ETP2 = 3.5895

678 ETP3 = 3.0000
ETP4 = 3.0000

N=9

Fig. 2-11  Entropy measufe, the maximum case.

8) Sum Entropy -
| SUMETP =- X {Py, ()LogylPy, ()]}

Since P(i,j) is a symmetrical matrix, P(i,j) = P(j.i), Py (D)
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contains the sums for all (i+)) = (j+i) (Fig. 2-5a). SUMETP is simply
‘another way to measure the complexity of an image. SUMETPmax =
Log,HR, where HR = R/2. For the same image of Figure 2-11, HR in
‘hovriz‘o_ntal. 'ana »vertical’.dir'ection equals 12/2 = 6, along left and right
diagdnalv,‘ HR = 8/2 = 4. In this maximum case, SUMETP is equal to
2.5849 and 2.0 respectively (Fig. 2-12). SUMETP is also an invariant

under monotonic gray level transformation.

012 SUMETP1 = 2.5850
345 - SUMETP2 = 2.5850
678 SUMETP3 = 2.0000
Neg SUMETP4 = 2.0000

Fig. 2-12 Sum enfropy measure, the maximum case.

9) Difference Entropy |
DIFETP - -3 (Pyy()Logz [Py (]

P, () is the sum for each |i-il = 0,1,2,....N-1; in P(i) (Fig.
2-5b). The minimum value of DIFETP .o'ccu-rs'when there is only one
_'non zero value in Px y(|) non-zero values in P(i,j) clustejr in 6ne
',-group of |i-j] = v 2, s, N-1.' DlFETP measures the similarity of
spatial relationships among gray levels in an image. The high DIFETP

“indicates more different spatial relatidnships among gray vl'evels. In

25



the image 6f Figure. 2-11, the ‘heighboring relations are the same in
| each direction,.i.e.,._-one gray level difference along the horizonial
‘directi'on, three IeVeIs along the vertical, two levels and four ‘Ievgls
.'djiffe'rence‘along 45 degree and 135 degree angles respectively. As a
résult,'the DIFETP in all directions equals to 0. Fig. 2-13 are some
other examples of “the UlFETP measures. It seems that DIFETP would:
be useful to'm_easure the regularity of an ‘image. Compared with the
IDM me_4asure, DIFETP revé_a!sv spatiai relationships at rano.th_er Je.vel.
Moreover, D_IFETP is invariant under monotonic gray level
“transformation.

DIFETP1 = 0.0000 DIFETP1 = 0.0000

DIFETP2 = 0.0000 DIFETP2 = 0.0000

. DIFETP3 = 0.0000 DIFETP3 = 0.0000
DIFETP4 = 0.0000 DIFETP4 = 0.0000

oNno
oNnOo
oNO
-—r b -
MR
www

DIFETP1 = 0.6500 .
DIFETP2 = 0.6500
DIFETP3 = 0.0000
DIFETP4 = 0.8113

O N =
o N O
oNn o

N=4

Fig. 2-13 Examples of DIFETP measurement.
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10) Sum Variance
SUMVAR =3 [(-SUMETP)2P,, (i
Let's consider the maximum/minimum case. When there is only
~one gray level in an image, the sum entropy .equals‘ to 0; values in
P,.y() are focused on 'Px+y(i) = 1, SUMVARmax = i2. The' higher
voccurfen'»ce cjf neighbéri»ng high gray levels, the larger the SUMVAR;
SUM'\-/AR becomes smaller when SUMETP increases and P, (i) is

" widely distributed (Fig. 2-14).

N=9 SUMVAR1 = 324.0 N=9 SUMVAR1 = 79.9873
888  SUMVAR2 = 324.0 012 SUMVAR2 = 66.6495
8 88 SUMVAR3 = 324.0 345 ‘SUMVAR3 = 74.0000
888 SUMVAR4 = 324.0 678 SUMVAR4 = 74.0000
2 2 2 . SUMVAR1 = 36.0000 *q : :

22 WMRIENS S s e
505 SUMVAR3 = 36.0000 e

' SUMVAR4 = 36.0000

'Fig. 2-14 Sum variance measurement.

The textural propérty expressed byv'S_UMVAR‘ is not clear. Moreover,
since the measure likely varies with gray level, the ‘same"'spatial
r'evlationship' but different primitives would have"di_fferen't SUMVAR
values 'I(Fig. 2-14)'.. Therefore, SUMVAR is.not a very desirable

‘measure for texture analysis.
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'11) Difference Variance

DIFVAR = X [(i-DIFETP)2Px-y(i)].

DIFVAR measures the variation in the P(-.i,j) mai_rix. It is

similar_tb the contrast measure. In fact, when the DIFETP equals to

0, DIFVAR and CON have the same value (Fig. 2-15).

‘invariant under monotonic gray level transformation, therefore, it

more useful in a comparative study.

Z<
N
[{e]

, DIFVAR1 = 1.0000
012 DIFVAR2 = 9.0000
345 DIFVAR3 = 4.0000
678 DIFVAR4 =16.0000
N=4 |

0011 DIFETP1 = 0.9183
0011 " DIFETP2 = 0.9183
0022 DIFETP3 = 0.9911
52349 DIFETP4 - 1.4335

"CON1
CON2

- 1.0000
9.0000
CON3 = 4.0000

CON4 =16.0000

DIFVAR1 = 0.5644
DIFVAR2 = 0.2855
DIFVAR3 .= 0.4366
‘DIFVAR4 = 0.6341

Fig. 2-15 Comparison 6f DIFVAR with CON and DIFETP.

12) Information Measures of Correlation

Haralick proposed tho models of IMC:

IMCI = (HXY - HXY1)/Max(HX, HY);
IMCIl = SQRT {1 - exp [-2.0(HXY2 - HXY)]};

“where

'HXY = - 3 P(i,j)Loga[P(i)l;  the joint entropy of P(ij);
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HX = - ¥ Px(i)Log,[Px(i);  entropy of the marginal matrix Px(i);
HY =- % Py(i)Logo[Py(j)];  entropy of the marginal matrix Py(i);
HXY1

D> P(i,j)Log'z[Px(i)va(j)]: conditional entropy;

- X Px(i)Py(j)Loga [Px(i)Py(j)]-

HXY?2

The theoretical CO_nnotation of thesé'measures are complicated.
It is noticed by experiment that -1<IMCI<0, -1<IMCII<1. For"lM_CvI,I, let
A=HXY2 - HXY, we see exp(-2.0*A)<1. The higher the A, the smaller
the exp(-2.0°A), the larger the IMCIl. Since P(ij) is symmetrical,
.HXY'1'A = HXY2.. IMCII becomes large when P(i,j) is equally distr‘ibu‘ted.v
vT'h"e "m‘aximu‘_m va-lu'e occurs.» when any two pixels do,.not have the same
value in é‘ def.inedA'd’istance. within the image. It is smaller when the
image is dominated by only a few gray levels. There is more
vihformation contained in these correlation measUrés. They have some
desirable properties which are not brought out in the rectangUlar
correlation (COR) (Fig. 2-16). |
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0.9972 COR1 = 0.9231.

123 IMCIH = -0.8379 IMCIl1 = .

456 IMCI2 = -0.8379 IMCII2 = 0.9972° COR2 = 01290 (.,

789" IMCI3 = -0.9091 IMCII3 = 0.9966 COR3 = 0.4286
IMCI4 = -0.9091 IMCIl4 = 0.9966 COR4 =-2.3077

N=10

111 IMCIt = -1.0000 IMCH1 = 0.9168 COR1 = 1.0000

888 IMCI2 = -0.1500 IMCIHI2 = 0.4662 -COR2 =-0.3000 (p)

888 IMCI3 = -0.1500 IMCHI3 = 0.4662 COR3 =-0.3000
IMCI3 = -0.1500 IMCIl4 = 0.4662 COR4 =-0.3000"

N=9 :

Fig. 2-16 Compare IMC with COR.

13) Maximal Correlation Coefficient
' MAXCOR =(Second Largest Eigenvalue of Q)'/2;.
- Q(ij) = X [P(K)PGK) 7 Px()Py(K)]-

Fig. 2-17a is the Q matrix for the image in Fig. 2-15a
(horizontal A-direction). Since Q(i,j) is_ not symmetrical, the.
computation'bf the eigenvalué' is somewhat complicated. It is known
that most matrices can be transformed to a Hessenberg matrix and it
is easier to compute the eigenvalue from the Hessenberg matrix. Fig.
2-17b is the He'sseﬁberg transform of the Q(,j) in Fig. 2-17a. qu
detailed. procedures in computing eigenvalue’ of an asymmetrical
rhatrix,' refer to Fortran subroutine UPPERH and EIGEN in Ap‘pe'ndix 4.

The mathematical .connotation of the maxim'al correlation
coefficient is discussed by C. B. Bell (1962). MAXCOR is different
~from COh. For the same image of Fig. 2-15a, maximal correlations in

all four directions is eq.uai.‘to the maximum value 1.0. For the 3x3
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“image in Fig.2-1‘6b', ‘MAXCOR has the following measure‘-s:lii .0, 0.3, 0.3,
0.3. "

The above Sfatistical- texiure model provides a set of measures
for the spatial relétionships among gray levels in an'i'mage. However,
texture 'pro.pe_rties are indepe_ndent“of gray level and orientaAtibn. In
order to perform téxture ana.ly,sis,, we . wish the texture measures to
be invariant |n different orientations and undef monotonic gray level
transformation. Yet, the 14 »texture'feafures discussed above are all
an_gular" de'pen'dent and, only seven of therh are invariant under
monotonic gray level transformation: ASM, ETP, SUMETP, DIFETP, IMCI,
IMClI, and MAXCOR. Therefore, it is more desirable to use the mean
and the range of the measures in all four directions. Moreover, to
obtain generalized resullts',‘ equal probability - gray level
{rahsfbrmatison‘, i.e.; his'iogr'am 'equali—zation, must be performed.
Nevertheless, it i's_. still more prefer‘éble:t:o‘USe. the invariants for

textural analysis.
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The Q matrix

0.5000 0.0000 0.5000 0.0000 0.0000 :0.0000 0.0000 0.0000 0.0000
.0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000
0.0000 0.0000 0.0000 0.5000 0.0000 0.5000 0.0000 0.0000 0.0000 .('a)
"0.0000 0.0000° 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.5000 0.0000 0.5000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.5000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
.0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.5000

- The Hesssenberg matrix
0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
- 0.5000 0.5000 0.0000- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
:0.0000. 0.0000 1.0000 0.0000 0.0000 0.0000 0.,0000 0.0000 0.0000 -
0.0000 0.0000:0.0000 0.5000 0.5000 0.0000- 0.0000 0.0000 0.0000
~ 0.0000 0.0000 .0.0000-0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 {b)
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000

'0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
0.0000 0.000Q 0.0000-0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Fig. 2-17 The Q matrix and its Hessenberg transform.

C. The Computer Implementation of SPADEP Approach.'

Three steps are identified to perforrri SPADEP textural ah_alysi_s,

using PDP-11 and the Spatial Data Proc_essihg System.
1. Gray Level Transformation.

Since SPADEP is a coocurrence measurement, in order to obtain

‘generalized textural information, it is ne’éessar,y‘to change the gray
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level 'distributio‘n so ‘that each gray level in an image can obtain
approximately equal -p'robabilit'y.' Furthermore, although th»e
computation of SPADEP matrices are only related to the size of the
image, the size of the SPADEP matrices is proportional to the number
of gray levels in the image. For gray Ie\)els equal to N, the required
internal sto'rage will be N X N X 4. The range of gray levels in a T™M
image is 0-255. An array of 256X256X4 cannot be stored in the
“internal memory'of'the PDP-11 computer. For this reason, the. number
of gray Iev_els* must be reduced. An equal probability quantizing.
algorithm cén -solve the above problem._’For detéils on the procedure,

see program EGAL in Appendix |.

2. Compute SPADEP matrices.

The SP'ADEP matrix prdposed by Haralick contains adjacencies of
gféy levels |n both orier'\tations»énd four directions.. Therefore,
SPADEP is sy~mmétrical;,i.e., in SPADEP P(i,j)=P(j.i). In actual
compqtation, oniy one orientation needs ‘t'o be measured, thé' final
matrix is cohstrﬁcted by _add_ing_t'he matrix obtained previously ‘to its
tra'n_sp'dse- (Hord, 1986). 'Fig-ure» 2-18 illustrate_s}' the . construction of

SPADEP in the horizontal direction.
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1‘1:0' 101 211
002 110 121
221 011 112
original image right adjacencies - add to the transpose
(N=4) (distance = 1)

Fig. 2-18 lilustration of SPADEP matrix construction (horizontal).

The Fortran subroutine to compute the coocurrence  matrix,
SPADEP, is ‘included in Appendix 4. For the cdnvenién'ce of
YprograrAhming,"S-PADEP fs divided‘ into four, two dimens’ionlal a'rray's
instead of using one _thiree dimensional -array. Each- array stores ;ghe
SPADEP in one direction. When u_sinQ“the Extended Memory Monitor
‘(»_vir'tual ‘memory) on PDP-11., the input 'im-age. can havé. a size up to

128 by 128 and maximum number of gray levels of 128.

‘3. Computing the Statistical Texture Models -

| Most of the statistical models proposed by Haralick are easy" to
compute. The most difficult one s the "maximal correlatib,n
‘coefficient measure since its cd.rnputation inVo!yes finding the second
largest eigenvalue from an asym'metfi_cal matrix. An .exa‘-mple'of the
approach -is given in the former section "(Fig. 2-17).  All basic
corﬁputations of t‘h'e statistical textural measures are included ih the

subr‘cjutin‘e library _TX.LIB (see Appendix 4).

34



Il. The Entropy-Based Texture Analysis

An image can be defined in the spatial domain, i.e., the x, y
coord'i}nate' s'p,ace, or in the spatial frequenCy domain in whic_h an.
image is viewed as a peribdic function and represented by an infinite,
'w,eighted sum - of trigonometric  sine and' cosine functions with
différent amplitudes, frequencies and Aphas’e‘»s. This representation is
termed the Fourier series of an image. The SPADEP approach
~ discussed previously represents textural analysis in the spatial
domain. The secon_d'meth’od' to be used, the Entro'py-based TéxtUral
“analysis, is,perfdrmed in the ‘s.patiél frequency domain. It extracts
».textuire information- from another dimension. In this. section, .the two
dimensional discrete Fburier tfansform, the computer '.impieme'n'tation
of the fast Fourier transform, andA_the display of the Fourier spectrum
will ‘be discussed bri‘eﬂy; then the detailed procédurés to perform the

entropy-based textural analysis is presented.

A. The I—fou'r.ier Transform of an Image

Let f(m,n) b_e.n an N X N image and F(u,v) itsﬁ-t'wo dimensional
discrete Fourier transform, then

Fu,v) = X f(m,n) e@WNNmunv)  (inverse transform);

fmn) = X3 F(u;v) g iREN)(MU+0Y) (forward transform);

‘are the discrete Fourier transform pair. The Fourier spectrum,.phase,
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and ‘energy S’pectrum are givén by the following relations:
| | IF(u,v)| = SQRT(R(u,v)2 + (u,v)3);
Phase(u,v) = tan™(I(u,v)/R(u,v));
EuV) = [Fuv2 |

'R and | denote the real and the imaginery fp-art of F(u,v)., ‘The two
j'di’mensidnal- discrete Fourier trans_fbrm F;(u,v) is . obtained by
'perforr_ning a one divmen‘sional transform aldng ‘eachvrow of f(m,n),
‘then "along’_ each column of the intermediate matrix. Fig. 2-20a is ‘an
example of the Fourier transform of the image in Fig. 2-19. Since the
discrete Fourier is periodic with period N and is conjugate
.symmétrical, it is more desirable.to‘shift the . frequency origin to the
center (N/2+1, N/2+1) in order to observe and measure the function.
Fig. 2-20b is the origin centered Fourier transform. It is obtained by
multiplying each entry of the input image of Figure 2-19 by (-1){+),

77788866

77788866

777888686

66699999

66699990

666999909

00000000
00000000

Fig. 2-19 *An 8x8 matrix to be transformed to the Fourier series.
The Fourier spectrum can be shown in a three-dimensional plot or

as an intensity function in which brightness is. proportional to the
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ém_plitud_e of |F(u,v)|. Th-e _g‘raphic-display, of the Fourier speCtrum_ is
S)-ery ’helpfui to visueliie_ certein texrtural' properties of an image.
Ueually,v radial spikes in the spectrum image indicate presence of
Iinear"features and the breadth of the bright area eround the center

indicates the coarseness of the image.

B. Regional Entropy Mea’§ures in the Fourier Energy Spectrum

Preposed by Jerhigan and D'astous (1983) the regional entropy
measure is prlmanly designed to measure local and global texture
- properties of an lmage This approach can be described as follows
(see Fig. 2-21):
1). }Compute the origin centered ‘Fourier transform of the analyzed
."image; compute the energy spectrum E(u,v)=|F(u,v)|%;
_2)‘7 Spec’ifyr the number and size of concentric regions to be measured
in E(u,v). For e'a_ch region, perform the following eomputatiens;
. 3) Obtain the -regyiona‘l energy by summing fhe E(u,v) with‘in the
"’reglon SUME = ¥, [E(u,V)]; |
'4) Normalize E(u v) in the reglon by SUME obtain the probability
function P(u,v) = E(u,v)/SUME, 2 [P(uv)] = 1;

5) Compute the entropy.of the spec»tralv components within the region,
h' = - P(u,v)Log,[P(u,v)],

0<h < Log,K,
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“where k is the number of elements in the E(u,v) within the region;
6) Normai,ize h' by LogK, obtain the _rel_ative' entropy
h = h'/Log,K, 0<h <.
.Su’ppose'.n re'giomns are defined, as a reSult, ‘there is a n-dimensional
>ve¢tor representing the ‘textural properties of the image,
H = [h1, h2, h3, h4, ...... , hn].

T‘o.. compare texture fea{ures of différent images, H is ‘computed
for each of the images. Obviously, hn is the measure of the spread of
the spatial fréquency C:omponent within the region. The higher the hn,
the wider distrib‘uti_on of the frequency com‘ponents indicated. Images
~with di'fferent'vtexture features will have different chara.cteristics'of‘
_{he frequency component distribution; For example, Fig. 2f22¢ has
high f_reque'ncy' components concentrated along‘ the verti'cal"axis while

Fig. 2-22a is more spread out.
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Fig. 2-20 The Fourier transform of fig.19; (b) original centered. .
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Fig. 2-21 EBT analysis.
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-C. The Computer Implementation of the Fourier Transforniﬁ the FFT:

The discréte Fourier transform is'impleme»nte'd with the Fast
Fourier Transform algorithm proposed by Cooley-Tuk_ey; The FFT
ap,p‘roach ‘d‘ramatiéélly reduces the cofnputa_tio‘n times from N2 to
NLogN (N is thle number of inpUt' elements). Detailed discussion of thé
FFT algorithm can jbe found in variety of text books in digital remote
‘sensing (Rosenfield, et. al., 1982, GOnaléz and Wintz, 1977}. A
standard FFT Fortran subroutine FOUREA is included in Appendix 8.
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(a) The Fourier spectrum of fig. 2-19.
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(b) An 8X8 image.
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‘ (c) The Fourier spectrum df (b).

. Fig. 2-22 Texture pattern and the Fourior spectrum.
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. Methods to Analyze the Texture Measures

One of the major objectives of this thesis is to see ‘i'f similar
spatial patterns have similar texture measures. Methods are needed
therefore',' to compare the texture. meésures’. In this project, the

distance measure and cross-correlation analysis are used.

A. The Distance Measure

Suppos_é X,(n), X,(n), ......, X (n) are the texture vectors of m
images.»t'o be analyzed, tHe distance between two texture. vectors can
be co'm_puted- as:

D(Xm» Xm.1) = SQRT {Z Xm(n) - Xz (M),

- We ‘sayﬂ'that X .4 is more similar to X-j than to X_ if
- D(X-1: X)) < DXy 40 Xp)-

B. Cross Correlation',

‘The texture information of an image can also be represented by a
texture 'matri‘x constructed by a local operation (Fig. 2-23). Since the
texture property is contained in a series of local measurements,
Cfoss correlation can be used to measure the similarity béiween 'twov
'téx‘ture matrices.  Let T1 (x,y) and T2(x,y) be the two texture

functions, the cross correlation can be defined as.
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_ R(m,n) = ¥ [Tt1(x.,y)T2(x,y)] / SQRT(ST1ST2),

where, : |

ST1=% [T1(x.y)2l;

8T2 =3 [T2(x,y)2);
-1 < R(m,n) <1.

Fig. 2-23 Local measurement of textur_e‘properties.

When used to measure similarity between,‘two functions, only the
largest 'cor’r'el'yat_i.o-n function is usually of interest. Thus, a ~searching
process in R(m,n) is \needed; However, if the two functions are the
same size, i.e., the images to be analyzed have the same number of
.ro‘ws and columns’,_ cross-correlétion can be more conveniently

performed in the frequency domain:
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R(m,n) <-- T1(u,v)T2(u,v);
T1(u,v) andyT‘2(u.,v) are the forward Fourier‘ transform of 'T1 (x,y) and
T2(x,y). The-cvrossvcorrelation of two fuvnctions’ is equal to the inverse
Fohrier tran:sformvo'f' the prodijct between one Fourier series and the
covm'p.l,e,x 'conjuga‘t‘e of the oth.er.,A search fér'the largest correlation
_,functioh_.is not needed in ‘R(m,h) obtained in this way since it is
always located around R(0,0) (when the two functions are the same
size). For more details of the Computatio'n of cross correlation, refer
to the Fortran program FFTCOR su.bmitted .in Appendix 14.
In this chapter, major technical aspects of the thesis have been

-discussed. Since it is a relatively exploratory stu‘dy,’ a great deal of |
effort - has been ‘devoted to thér A'iAnvestiAgation of the mathematical

1mOdeIs to be used.
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CHAPTER 3: ANALYSIS

1. INTRODUCTION

In this chapter, methods -'o_f texture _analysis' presented in
chapter 2 afe to be applied in measuring and differentiating. urban
residential spatial patterns. The SPAD.EP,‘,bdth regional and local, and
the Fourier measures are applgied to a Landsat Thematic Mapper image
of western- Omaha. The'-general methodology ‘for analysis is presented
in Figure 3-1. |

A 512 by 512 pixel TM subimage centered at about 132nd and
Dodge St., Omaha, Nebraska, represehts the study area (Fig. 3-2). Band
3 (0..63um-‘0.-69um, red refiéctance) is the basic spectral band ‘used
for:'téXturaI analysis since it provides the better penetration of the
atmo»Sphe;ré_ among th“e viéible wavelengths and.provides a higher
contrast 'image. Ten subimage areas are selectéd, sized 32 (columns)
_Aby 32 ,_(roWs),‘ numbered 1 to 10 (Fig. 3-3). The selection of subimage
_areas was purposive. The study'afeas’ represent the major résidential
patterns in the image area. Am'ong these ten areas, area 1 is a low
density residential area, 7 is a partially developed urban area; 9.

‘includes cleared subdivisions; 10 is ag'ric‘u|tura_l land; the other areas
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(2, ‘3, 4, 5 6) represent other major residential patterns in this
region, such as thé traditional grid street Iayout'an_d the low density,
: iffég.ular new- residential area.

| There are basically three parts to the analysis: the SPADEP
régional measurement, the SPADEP local measurement, and Fourier
.anailysis'. In each of these parts, individual texture .measures will be
observed with regard to the spatial relationships. repr_e_s”ented.r' Then, a
Sim»ilarity measu_rvement' »(d'ista'h_Ce measure and cross-correlation

measure) is applied to the texture ‘measures of all spatial patterns.

Fig. 3-2 Study Areas.
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Select 10 subimages
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Gray Level Transformation

-Regional measures
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. Select texture features

compose texture vector
for each subimage.

‘Select texture features
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for each subimage.
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Fourier transform of
each subimage.

Regional entropy, -obtain
texture vector for each
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Distance measure
between texture vectors.

Cross correlation measure
between each matrix.

Distance measure
between texture vectors.

' Observation of the results.

Observation of the results

~Comparati'vé Study

Conclusion

- Fig. -1 Guideline of texturs analysis
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COORDINATES: (199,168), (191,208), (341,405), (457,201), (284,189)
' : (185,408), (130,307), (51, 416), (97, 83), (19296)

‘Fig. 3-3 Study areas.
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Il. Texture Analysis in a Suburban Area

A. SP‘ADEP. Regional Measurement

As tequired by the SPADEP approach, the image to be analyzed
is reduced to 32 gray levels with the historgram equalization program
EGAL.

Among the 14 statistical texture measures discussed in
‘chapter 2, seven of them are selected for comparative study due to
the, reasons discuséed in chapter 2. They are: An.gular Second Moment
(ASM), Correlation (COR), Sum Entropy (SUMETP), Entropy (ETP),
Difference Entropy (DIFETP), Information Measure of Correlation Il
(IMCII), and MaXimal Correlation (MAXCOR). All but one of these
:me'asurésx are invariant under monotonic gray level transformation.

- Since texture measures from SPADEP are angular dependent,
measures in specific direciions would not represent the overall
teXture features [df the area. Therefore, the range, 'méan'_ and variant
ihs'tead of measures in  the four directioné are used as”the'_textu-'rall
descripiors. Thus, there are 7 X 3 or 21 total vectors for each
subimage 'ar_e‘a. To éxperim'ent with the téxtu.ral 'simi‘larities. of the
ten areas, a Adis:tance measure is performed.

Fig."3‘-4 graphs the average ASM measures among the ten areas.

The no_n-built and partially built area 7, 9, 10 h'ave diSting}Uishable
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values from the residential areas while the variations for the areas
~that are ‘essentially residential are very small. As ihdicated in
chapter two, ASM measures the homogeneity of the area. From
Fig. 3-4, we see that the non-built areas have high ASM, indicating
that the cleared subdivision and the partially built areas (7, 9, 10)
have higher homogeneity than the residential areas. In this
-experiment, ASM does . not reflect the difference of homogeneity

‘among residential patterns.

18,
16
14
12,

A1

ASM

.08,
.08]

.04,
.02.

0. i o - — — r—
L X B ¥ L] 1 | L ]

SUBIMAGE AREAS

Fig. 3-4 ASM m.easures.

Of the average correlation measures (COR) among the ten areas,

area 7, 9, 10 have the higher values (Fig. 3-5),
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Fig. 3-5 Correlation' measures.

For these "areas, the high Iinear_ correlation 'is probably-
produced .by the long edges of the cleared subdivision and'agricuvltural
land. Fig. 3-5 élso shows a certain Aamou_nt of variation of correlation
measures among the res{identia'l areas. Although residential areas
would have typical linear patterns, the hig‘h linear cbrrelation would
be only in one or two directions. In the“,other direc‘tidns, the
~correlation value would be very low, thus, reducing the ‘average
’measure'.‘ Another _reasdn -for such é' distri'ib_ution of the correlation
measures is related to the distance used to compute the neighboring
coocurrence. A distance of'1 (neighbo.ring distance and gray level

interval) may be too small to reveal the linear features presented in
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the residential areas. Therefore, the high and low correlations do
mean s,ometh_ihg here, e.g., the coarseness of the image, but not

necessarily the visualized linear feature.

ENTROPY
N

6.5

6.

5.5 v [_l — !
0 7 9 10 11

SUBIMAGE AREAS

Fig. 3-6 Entropy measures.

AThe‘:. next three measures are entfopy'based. The Sum Entropy
(SUMETP) and Entropy (ETP) measure the relative complexity of ‘the
area. From Fig. 3-6 and Fig. 3-7, we see that all residential éréas'
have higher values of SUMETP and ETP, indicating a higher complexity
than that of the non-built areas. ‘However, how can the differences
among the residential areas be explained? :Fro'm Figure 3-8, we ‘fin'd

that area 3 has a very small measure in range, the similar phenomena
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~happened to area 4 aﬁnd 6 in Figure-3-9.' Area 346 are all older.
neighborhoods. it seemsAvthat less variationvin complexity with
'-direcﬁons indicate's. the h’igher degree of development among
res-idéntia_l areas. ‘As discussed beforé, DIFETP may',measure thé
'_irvregu'l.a\ri,ty of an area. |In Fig‘.;3'-10 areas 2, 4, 6 have higher'a_v:e_.rage-
DIFETP since they are the most irregular patterhs among the ten
areas. | |

5.‘6 '

5.4

4.84

SUMENTROPY

4.6-

4.4

4.2

5 6
SUBIMAGE AREAS

Fig. 3-7 Sum Entropy measures.
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" Fig. 3-8 .Variahce of the Entropy measures.
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Fig. 3-9 Variance of the SumEnt‘ropy_meaSures.

5" 6 7
SUBIMAGE AREAS

55

-

10

11



]

6

Ll

5

4

4.

3..8‘

m o o)

AJOHINT 3ONTH3HHIA

2.8.

2.6

SUBIMAGE AREAS

Fig. 3-10 Difference entropy measures.
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Fig. 3-11 Informatidn measures of correlation.
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Fig. 3-12 Maximal correlation measures.

The last two texture measures are the Informétion Measure of
Correlation (IMCIl) and the Max_‘i‘mal‘Correlation (MAXCOR). The
connotation of such 'measures._i's difficult to interpfet,‘ however, they
-seem to distinguish’ different- spatial patterns quite well. This is
'illuétrated by the wide variation of these measures graphed in Figure
3-11 and 3-12. The non-built areas have ‘highe'r measures of IMCIlI and
MAXCOR,; among the built-areas, the lower density residential pattern
and _partially built areas have higher values. Furthermore, residential
areas having higher density housinAg or more vegetation 'coveragé, have

‘higher yalues than those with less housing or"vegetation coverage.
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It seems that ea'cvh' measure tends to emphasize certain aspects
of the spatial characteristics in a s-ub'image. However,,'they are
related with each o'th‘e"r; When we group these measures fogether,_
they should represent the over-all texture features of the area. There
are many ways to id‘entify similar texture patferns. The simplest
‘way is by computing._ﬁthevdi.stahce among all the study areas and ‘thorse
having the least distance can then be -grouped together. Fig. 3-13 is
the matrix of distance measures fo_r the ten subimage areas. From the
distance matrix, we easily find the following most similar groups:
(‘1,3), (2, 6, 8), (4, 5), (9, 10, 7). This clearly indicates that similar

spatial patterns present similar texture measures.

1 2 3 4 5 6 7 8 9 10

0.000 0.645 [0.389] 0.703 0.719 0.541 1.410 0.481 2987 2.195
0.645 0.000 0.484 0.419 0.394 [0.314 | 1.543 0.457 3.107 2.339
0.389| 0.484 0.000 0.508 0.422 0.491 -1.223 0.518 2817 2.012
0.703 0.419 0.508 0.000 [0.326] 0.350 1.373 0.599 2.907 2.171
0.719 0.394 0.422 [0.326) 0.000 0.456 1.323 0.598 2.865 2.094
'0.541 0.314 0.491 0.350 0.456 0.000 1.596 3.168 2.406
1.410 -1.543 1223 1.373 1.323 1.596 0.000 1.687 1.601 [0.855
0.481 0.457 0.518 0.599 0.598 1.687 0.000 3.273 2.496
2.987 3.107 2817 2907 2.865 3.168 1.601 3.273 0.000 [0.926]
0[2.195 2.339 2012 2171 2.094 2406 [0.855] 2496 0926 0.000

—*coob\vlo)‘m-hcql\) -

Fig. 3-13 .Distance meaéupe using 7 texture v'features.
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B. SPADEP Local Measurement

Figure 3-13 demonstrated that the SPADEP texture measures
s'elected_' best 'd'iStinguish 'spatial characteristics of the built and
non-built areas. However,r the measures represent the. texture
characteristics of the whole sub-area. Thus, the selection of areas to
be analyzed is very_' important; they éhould hav‘e a consistent pat'tern.

In this experir.n.ent,' area 7 is half subdivision and half
developed area but the distance measures show that it is similar to
the non-built area. The measure is reasonable but may not be
Avdesirable. H'owever,‘ texture consistency is not easy to be selected;
therefore, in such case, it may be useful to ‘é-p'ply local operation for
texture analysis. In:-the'. .follbwing section, an experiment on local
operation of SPADEP is presented. The size of the local operator is 3
by 3 _and the texture matrices broduced from each 32 by 32 image is
30 by 30. ASM; is us.ed as an example to compare the re-g_ionél and
~local measures. To analyze the similarities, cross correlation is
'perfbrmed among ‘the texture mat’ricesf- The largest correlation
function is used as the entry in the correlation matrix. The higher the

correlation coefficient, the more similar the two areas.
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Subimage Areas

1 2 3 - 4 5 6 7 8 - 9 10
1 | 0.0000 08200 08192 .0.8204 08193 08209 0.5984  0.7953 0.5832 0.6279
-2 0.0000 .0.0604 00773 0.9806 0.9803 07310 09550 0.7580 0.7959
3 | 0.0000 0.9665 0.9737 00702 0.7245 0.9448 0.7674 0.7945
a 4 0.0000 09816 0.9801 07428 09572 0.7545 0.7914
0] ! .
< 5 0.0000 0.9830 0.7367 09568 0.7743 0.8122
o .
° _ :
= 6 0.0000 0.7401 09573 0.7733 ' 0.8012
@ 7
- 0.0000 07180 . 0.6750 0.6429
8 0.0000 0.7257 0.7706
9 0.0000 0.8050
10 :
0.0000

| Fig. 3514 _borrelation matrix of ASM measure.

In the corrélatibn matrix présented in Figure 3-14, built areas
‘_h-a've‘ high c':’o-r_re!atib'n values, clearly dividing thé two most obvious
spatial pattérns. The most sifnilar group is not éasy to put together
from this matrix. In fact, only area 6 and area 5 show great similarity
With éach other. VHo:weve‘r, the significance of the local operation is
to rep"resent local texture properties. As we see in the regional
a'nalyvsis"and single feature analysis of ASM.(Fig. 3-15), area 7 is

'gro:uped- with aréa_ 9 and 10. In the local analysis, however, area 7
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shows a low correlation with area 10 but relatively high cérrelation
with other residential areas. Individual texture measures can be
performed in this 'way, extracting texture'properties of the -subimage
on a local base. Although the local operation has this'advan'tages over -
regional analysis, it is not very applicable for quick ‘texture» analysis

'_beca_use it is cbmpu_tationally intensive.

1 2 3 4 5 8 7 8 9 10

1 0.000 0.002 0.000 0.001 0.001 0.002 0.028 0.002 .0.160 0.029
2| 0.002 0.000 0.002 0.000 0.001 0.000 0.029 0.000 0.161 0.031
3| 0.000 0.002 0.000 0.001 0.001 0.002 0.028 0.002. 0.160 0.029
4| 0001 0.000 0.001 0.000 0.000 0.001 0.029 0.000 0.161 0.030
5| 0.001 0.001 0.001. 0.000 0.000 0.001 0.029 0.001 0.161 0.030
61 0.002 0.000 0.002 0.001 0.001 0.000 0.029 0.000 0.161 0.031
71 0.028 0029 0.028 0.029 0029 0.029 0.000 0029 0.132- 0.001
81 0.002 0.000 0.002 0.000 0.001 0.000 0.029 0.000 0.161 0.031
91 0160 o0.161 0.160 0.161 0.161 0.161 0.132 0.161 0.000 0.131
10 0.029 0.031 0.029 0.030 0.030 0.031 0.001 0.031 0.131 0.000

Fig. 3-15 Distance measure of ASM (mean).

C. Fourier Spectrum Pattern of Texture and the Entropy-based Textural

Analysis
The texture information extracted by the SPADEP approach is

‘difficult to visualize. Sometimes it is useful to combine the

computer analysis with human. interpretation. One approach to
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visualize the texture properties of an image is the display'ofl the
'Fourier spectrum. Using the amplitude of the frequencies as an
.in-tensity function, we can produce either é gray-scale image or a 3D
plot of the Fourier spectrum. Figure 3-18 to 3-27 are the 3D plots of -
Fourier spectrUm for the ten study areas. Figu're’ 3-28 are the‘imagels
‘of the Fourier spectrum for the correspondihg areas. To analyze ,thesne
patterns, thé entropy-based an'alysis is accomp'avn'ied with these
vpat‘it'er'ns. | v' |

By visual interpretation, we can divide the - FOu.rier ‘'spectrum
‘ displaysintd two groups. On'evgroup,' including area 1, 7, 9, 10, has
"Ahigh' frequencies »cohcen.trated at the center. The other group,
~including areas 2, 3, 4, 5, 6, 8, has frequencies around the outer ‘edge.
 In fact, both areas 9 and 10 are'non-built, area 7 is partially.
- developed while area ;1 ié low density residential area. Thus, at first
glan'ce»,.we can easily diétinguish régular re_sidential areas from the
low density housing Iand the non-bdilt»areas-.

However, what do ‘these patterns tell us about the texture
properties of thé. areas? One way to understand these patterns is to
relate these patternsv with the frequency 'di'stributions' (regional
entropy measure). Figure 3-29 is the line chart of the regional
entropy for all the ten areas. The 32 X 3'2. _Fourier spectrum is divided

into 25X25, 17X17, 11X11, 5X5 (Fig. 3-30) subregions. The
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~ Fig. 3-18 Fourier Spectrum of area 1.

Fig. 3-19 Fourier Spectrum.of area 2.
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Fig. 3-20 Fourier Spectrum of area 3.

Fig. 3-21 Fourier Spectrum of area 4.
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Fig. 3-22 Fourier Spectrum of area 5.
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Fig. 3-23 Fourier Spectrum of afea 6.

65



Fig. 3-24 Fourier Spectrum of area 7.

Fig..3v25 Fourier Spectrum of area 8.
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' ;\//

_Fig. 3-26 Fourier Spectrum of area 9.

Fig. 3-27 Fourier Spectrum; of area 10.
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N REGIONAL ENTROPY (BAND 3)
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Fig. 3~29 Regional Entropy measures in bapd 3.
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‘characteristics of regional :-entropy'm'easure»s are'highly related to the
spectrum patterns we plot. Such measures can be evaluated on the
absolutebr'relative base. On one hand, teXt_ures with- more highly
structural spatial distributibnswyie.ld- a low entropy va_lu’,e, while
:t’exture_s with random distributions yiéld a high value
(D'Astous, et. al., 1983). On the _othér'hand, ‘the variations of entropy
from one région to another reflect: the characteristics of the specﬁtral
- frequency d‘iStribution_. Since it is the characteristics: of the
'-friequency distribution that influence- the spectral pattern, ‘the
absolute values of these measures are less significant; thus, our
focus is on the variations in the .entrop)} in different regions of the

power spectrum.

.25 X 25
17 X 17

11X 11
5X5

Fig. 30 The spectrum regions used to measure the entrdpy.
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Let's 6bserve the regional measures for areas in group one (Fig.
 3-}29). It is found that, for area 7 and 10 entropy in the four regions
varies slightly. Area 9 stands out with its overall high entropy and
the inverse distribution (low entropy in the larger region, high
»entro.py in'the"»center). The inverse and even distribution indicate that
fré_quency componen.ts are 'evenly distributed in the small region
around the ‘ori'gin; When spectral frequencies concentrate in a few
components away from 'origin,'- the entropy in,fhe wider areas become
larger. This us a trans‘ition from '10, 9, 7, t0'v1 then to the other group.
It is correspondent- to .a-tfr'ansition- from farm land to clear
sUbd’ivisio’n,j_partially built area, residential area with very low
density and the fully developed area.

Examining the residential group, comparing the slope of the
ehtro-py changes from one region to another, we may have better
understanding of the»'spectrum pat’terns.'»First, we compare area 1 and
area 3. '_I'he tv'vov r')att‘ernAs are’ similar"except there ’are tWo peayk's
_around ‘the origin of the pattern for area 3. ACcordingly, the two
entropy curves are parallel through the 1, 2 and 3 spectrum regions. .
'They then split away from each other through region 3 and 4. For a>rea
'3, .entropy drops dramétically, indicating conceritrationtof high-
frequency :components -- that |s the two peaks around the origin. High

frequency peaks away 'from' the origin seem to be related to the
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coarseness'and_ linearity of the image. T_he more frequency peaks that
occur within a spectrﬁm regioh, the lower the entropy value, the more
~edges in differeht directions indicated. Areas 6,2, 4, 8, 5 all present.
Asuch» characteristics. 'A

It becomes obvio,us that similar texture patterns will hav_e
sim'ilar characteristics of frequency distribution and similar
‘spectrum"patt'erns; ‘i.e., images with same texture paitefns' but
different gray levels and orientations srhould have péralleled regional
entropy_Curves. For examp.le, area 6 and 8 have similar regional
éntropy patterns exceptv that' the slope is greater for area 6 from
- region 2 to region 4. This causes the peripheral high frequency peaks
in 3D plot of area 6. Comparing the 3D plots of area 6, 2, 4, 8 and 5,
we find that n‘ew' housing area 6, 8 and 2, have similar patterns while
older areas 4 and 5 are alike.. When an'afea is gradually cove"red by
v‘vegetation, the coarseness will be reduced and high frequency
components will be,'g.rouped together.

If we use the results of the distance measures from the SPADEP
regional analysis, we find the Fourier spectrum patter_ns are nicely
matched with those groups: (1, 3), (4, 5), (2, 6, 8), (7, 9. 10).
Compared with the SPADEP approach, Fourier analysis is fast and can
be visualized. The amount of computation 'time_is a function only of

the size of the subimage area, whereas with SPADEP computation
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time is a function of both size and number of gray ievéls in the
'_su'_bimage._ Moreover, no  specific preprocessing of the image is
Vreduire_-id in ‘quri'er analysis. - We can extract texture information
described by the regional entropy measures and display this with a 3D
plot and .the diffraction pattern for each. of the interested 'subim.agQ
areas.

Since ground objects will have - different r‘ef‘lectanc_e
c‘haracte'ristics in different sp‘ectralA bahds, features of a._spat_ia-l
‘pattern may' have different textures in different bands. It takes only
10 seconds to ‘calculate the Fourier s‘pectrum for one 32 by 32
su,bimag"é area. This mva'kes it an easy -task to perform vmulbti-spectral
band Vtexture analySis. The following is a brief presentation of this
approach. Analyses are taken for the same s_ubima'ge areas in TM band
1, 4, and 5. The regional' entropy measures are illustrated in Figure
3-31 to 3-33.‘ The distributions of regional entropies in diff.erent‘
-spectral bands seem similar between band 1 and band 3, but
significant differences exist between band 4 and ba‘nd 3, and band 5
and band 3.  Further research is needed inv'-order to find the

rela_tionships of texture properties in different spectral bands.
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M. Summary

In this ch_apter,' two approaches of texture analysis have been
applied on a Landsat TM image of subu:rban Omaha. An emphasis i-s
placed upon éStainshing the similarities of texture properties among
. different residential patterns. It s found that “the differenceé
between th-e_'developed areas 'an‘d, partially developed / non-d’eveloped
"areas‘;‘are- '__éasily identifiéd. Subtle similarities among different
residen_ﬁal patterns _yar‘e also identified to a certain extent either by
the texture features from SPADEP approach or the regional entropy
-me_asﬁres from the Fourier analy'sis. Considering the e_ffectivéness' of
each fneasure, the regio_nal_entrdpy_-analysis i'n‘the spatial frequency

domain is simpler, faster and producés ‘a-méaningful graphic display.
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Chapter 4: Conclusion

 The fundamental assumption of this thesis is that different
spatial patterns on the earth surface are measurable in digital
imagery. Texture analysis is used to acquire such measurements. The
measurability of spatial" pattern in a digital image would greatly
enhance our understanding of certain spatial organizations.

A v'»gr'eat ‘deal of effort has been de_voted in this thesis to
.sele,ctin'gy'a_r'\d developing approaches to texture analysis- and the
~computer implementation of such techniques. Texture measures are
Vtreat’ed as being representative of the characteristics o.f a spatial
'pattern._, It has been 'shown that the properties of a spatial patterh in
an image can be described in many ways, either with statistical
measures  or with" graphic 'displays. Texture 'an:alysis. can be
performed in the spatial domain-aS’weI] as in the frequency domain;
each has its own adv'an-tages and shortcomings. It can also be .
'impl‘emvent.ed locally and_ régionally, with\the former more ”désirable
where h.omogeneo.us image areas are difficult to define.

It is found that different residential patterns do '_have different

'texlture measures, thus different spatial characteristics. More

74



specifically, the -dijffervence can be found'arriong built-up areas vs.
cleared ‘Subdivisiori_, built vs. partially built areas, high 'de_nsity VS.
low. density residential areas, regular grid patterh*vs. ‘irregular'
cul-de-sac type patterns, partiaily developed areas vs. fully
developéd ‘areas. The seven texture measures selected from the
SPADEP approach'clearly indicates that:

1)  Fully _develbped ‘residential areas have much less
homogeneity tha'n"the' partially deve'loped or under-developed areas
(cleared .,sx'Jbvdivisi'on)v while the differences of homogeneity among
fully develobed' residential areas are very small;

2) “Fully developed residential areas have much 'hi'gher
complexity than the partially 'de‘veloped.‘vs. under-developed areas;
A"Iow_ denéity’résidential areas present" lower complexity; for the same
area, incfease of . vegetation coverage will reduce the complexity
measures on the image;

3) Spatial re'lationships_ of new residential areas.are more.
irregular than that of the old'er‘_ areas due to the different street
layout.

Wifh t_exture analysis, spatial characteristics of a spatial
pattern thus can be described in a set of new features, such as
homogeneity, complexity, linearity, regularity, etc.

In tlhe. ffeq'uenéy_domain,- texture patterns are represented by

75



their characteristics of frequency distributions in the Fourier series.
The’Fourier spectrum pattern provides a generalized representation of
the ‘texture properties of‘ an imagje. Generally, uniform spatial
patterns, 'such~ as cleared subdiviéions, will have pyramidal‘ Fourier
spectrum patterns while the Spéctrum of neWIy built irregular
residential areas have frequency peaks away from the origin. From a
pi_ece‘of farm land to a fully developed residential afea, frequency
~distribution. changed accordingly as represented with the Fourier
spéctrum patterns presented.

It is found that texture analysis with the Fourier spectrum,
~although criticized by people in the'fiel_d of pattern recognition, is an
attractive a’ppfoach for the analysis of urban residential spatial
patterns. 'T_he Fourier spectrum is one of the few ways to graphically
display texture information. In the previous chapter, drifferent spatial
‘patterhs, were represented clearly by a series of 3 dimensional plots
of the Fourier spec.trum, along with the descriptive regional entropy
measures. |

Visualizing the texture properties of an image is very
important 'since humans are capable of synthesizing a great deal of
g‘r'aphic' infdrmation. Methods for texture analysis sh‘ouldv make use of
both human ability and the advantages of the computer. In faét, no

thorough inVesti_gations_ on the relationships between texture
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propertiesA,and-its Fourier spectrum have been done. However, it is
felt that the Fourier analysis will be more promising for a
man-machine texture analysis sys‘terﬁ.

It is believed that this thesis has provided an insight into the
poss’ibilitiies of applying texture analysis to the study of spatial
pa'tterns in an urban aréa, presenting . a possible direction for urban
remote sensing. M‘easu‘»ring feéidential_patterns with texture analysis
‘not only enhances our previous concepts of this spatial phenomena but
also indicates some possible applications of digital ’imag_e processing.
to urban planning. The fourteen statistical texture measures from.
.SPADEP “not only' extract different aspe'cts of the spatial
'r:elationsAhipsv among ground objects but also give a set of.criteria for
Aland' use _claséifi_cation. ‘The Fourier analysis presents graphic
displays o'f"diffe’r'en_t"residential patterns as well as the descriptive
‘entropy measures. These may allow us to describe characteristics of
residential 'patterns. with a new set of terminology for further
inquiries of the uhderlying social, political, and cultural processes.

"However, further experiments on the techniques and
wapplicationé of texture analysis to urban residential patterns and
other spatial patterns in urban areas need to be carried out. Firstly,
enhanéemenf of the concept of measurability of spatial pattern in.

di'g_ital imagery 'is needed. This concept could have an important "
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implication for geographic study. Secondly, texture analysis is only
one way to perform the measurement of s,pati.al ‘patterns iri_ a digital
image. Further ihvestigation_ and .develo_pm:ent o_f‘,r'elated analytical
techniques ‘are necessary. With better understanding of the existing
texture énaﬁlysis"techniques, such as 'fraétal analysis we should

explore more possible approaches.
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g. 3-3] Regional Entropy measures in band J.

79



REGIONAL ENTRQPYV (BAND 4)
Line Chart for calumns: XYy ... XyV1g
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Fig. 3-32 Regional Entropy measures in band 4.
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TPROGRAM EGAL ~ 179710.5

C HISTOGRAM EQUALIZATION ROUTINE. EP78213;
F77 EGAL

. LINK EGAL,SY:TSXLIB, SY TVLIB,SY:F77LIB

Cc
c

nan

: DIMENSION HIST(ZSG),FX(ZS?)

INTEGER*4 IH (256)

. BYTE IMAGE (512,16)

INTEGER*2 ION(39),IEXT(4),S5(4, 2),0(256) KH (512)
EQUIVALENCE (IH(1),KH (1)) )
DATA S(1,1)/°G'/ S(1,2)/'W'/ NOCOL/1%6/ NG/16/

DATA KH/512*0/ HIST/256*0.0/ 'HISTOGRAM ARRAYS
céll mplops ttsx addition

CALL SCREEN (IXMAX, IYMAX,IYVIS) !HARDWARE CONSTANTS.
NOW = 256 * NOCOL {BUFFER SIZE (WORDS)

VNG.IS NUMBER OF RESULTANT GRAY LEVELS (DEFAULT = 64):

REQUEST I/O FILE NAMES AT KEYBOARD, WITH SWITCHES.

5

20

25

30

40

CD

50
.60

DO 30 I

l CONTINUB,

IF {ICSI (ION, IEXT,,S,2).NE.0) GO TO 5

IF (S(2,1).EQ.2) NG = S(4,1) ‘

ICHANI = IGETC(I) : 'ALLOCATE I/0 CHANNELS.
ICHANO. = IGETC (I)

IF ({ICHANI.LT. 0) OR. (ICHANO LT.0)) STOP 'NO CHANNEL'

LOAD DEVICE HANDLER IF REQUIRED.

IF ((IFETCH (ION(1)).NE. 0) OR.IFETCH (ION(16)) .NE. 0) STOP 'NO FETCH'

“IF (LOOKUP (ICHANO, ION(l)) LT.0) STOP' 'OUTPUT FILE NOT FOUND.'

IF (LOOKUP(ICHANI ION(16)).LT.0) STOP 'INPUT FILE NOT FOUND'

DO 25°I = 1,IXMAX,NOCOL !ACQUIRE GRAY-SCALE FREQUENCIES  STEP=NOCOL
KBLK = I-1

IF (IREADW (NOW, IMAGE, KBLK, ICHANI) .LT.0) STOP 'READ FAULT'
DO 20 K = 1,NOCOL . C
CALL ALEPH. (IMAGE(1,K), IYVIS, IH)

. CONTINUE

DO 25 K = 1,256
HIST (K) = HIST(K} + FLOAT(IH(K))"
IH(K) = 0 .
CONTINUE
FX(1) = 0.0~
= 1,256 'FIND CUMULATIVE DISTRIBUTION.
X(1+1) FX(I) + HIST (1)

WRITE (7,*) "ENTER GRAY LEVEL: °*

READ(5, *). NG

‘N=NG

IGRAY = N/NG .

PART = FLOAT(IYVIS)*FLOAT (IXMAX) /FLOAT (NG) -

LEVEL = 0 ‘ ' .
K=0
"SPART = PART !SUM PARTS.

DO 60 I = 1,256 !COUNT THRU TRANéFORM TABLE.

IF l(ABS(FX(I)—SPART)).GE.(ABS(FX(I+1)—SPART))) GO TO 50

LEVEL = LEVEL + IGRAY
SPART = SPART + PART
WRITE (7,1001) SPART
GO TO 40
Q(l) =K

'K = LEVEL

C _ REPLACE INPUT PICTURE VIA LOOKUé TABLE.

80
90.

1000
1001

DO 90 I = 1,IXMAX,NOCOL
KBLK = I-1 ’

TF" (IREADW (NOW, IMAGE, KBLK, ICHANI) .LT.0) STOP 'READ FAULT 2'
DO 80 K = 1,NOCOL C
DO 80 J = 1,IYVIS

M = IMAGE (J,K)
M - (M.AND.255) + 1.
IMAGE (J,K) .= Q(M)

won

" IF (IWRITW (NOW, IMAGE, KBLK, ICHANO) . LT.0) STOP 'WRITE FAULT'

CONTINUE
CALL ‘EXIT

. FORMAT (2014)

FORMAT (8 (1XF9.1})
STOP :

END
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Nele

PROGRAM TXALL

CALCULATE ALL TEXTURE- MCASURES FOR SPECIFIED SUBIMAGE.

JULY, 24, 1987.

Aanaonaaa

[eXeXel

PARAMETER L=32,L2=64, IWSIZE=32

~ INTEGER DATA({IWSIZE,IWSIZE)

DIMENSION P1(L,L),P2(L,L),P3(L, L) P4(L L)
DIMENSION P1x (L),P2x(L),P3x (L), P4x (L),
Ply (L) ,P2y(L),P3y (L), P4y (L)
DIMENSION Plxy (L2),P2xy(L2),P3xy (L2),Paxy (L2),
Plyx (L),P2yx (L), P3yx (L) ,P4yx (L)

CHARACTER*lO FORM1, FORMZ, OUTFL

DATA FORM1/® (####14) ' /FORM2/" ("s"f'.A)'/

WRITE(7 FORM2) "'ENTER OUTPUT. FILE NAME : '
READ ,"(A)') OUTIFL

OPEN (UNIT=1, FILE= OUTFL STATUS="'NEW' )

IXY IWSIZE*IWSIZE .
WRITE(FORMI(Z 9),'(14) ") IWSIZE

WRITE(?,FORMZ) * STARTING POSITION (X0,YO0) ="
READ (5, *) . JO, IO : o
WRITE (7, FORM2) 'GRAY LEVEL (=<32) = '

READ (5, *) N .

WRITE (7,FORM2) ‘'QUTPUT UNIT = °*

‘READ(5,*) U ’

CALL OPEN(1,'P0',2)

T1=SECNDS (0.0)

CAT.L. INPUT (1, DATA, JO, IWSTZR, 10, TWSTZR)

CALL UNPACK (DATA,DATA, IXY)

WRITE (U,102) JO,1I0

WRITE (U,FORM1) ((DATA(I J), J-l IWSIZE), I=1, IWSIZE)

CALL SPADEP (DATA,N,IWSIZE,IWSIZE,P1,P2,P3,P4)
CALL RCOL1 (P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y, P3Y, PAY).
CALL RCOL2 (Pl1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX,

: P3YX,P4YX)

CALL F1(P1l,N,ASMl1)
CALL F1{P2,N,ASM2)
CALL F1(P3,N,ASM3)
CALL F1 (P4,N,ASM4)

CALL MAXMIN(ASMl ASM2, ASM3, ASM4, RANGE , AVERAG, DEVTI)

WRITE (U, 200) ASM1,ASM2,ASM3,ASM4, RANGE, AVERAG, DEVI

CALL F2 (P1YX,N,CTR1)

CALL F2(P2YX,N,CTR2)

.CALL F2(P3YX,N,CTR3)

CALL F2(P4YX, N, CTR4)
CALL MAXMIN (CTR1, CTR2, CTR3 CTR4, RANGE, AVERAG, DEVI)
WRITE (U, 200) CTR1,CTR2,CTR3, CTR4 RANGE, AVERAG, DEVI

CALL F3(P1,N,P1X,P1Y, CORRE])
. CALL F3(P2,N,P2X,P2Y,CORRE2)
CALL F3(P3,N,P3X,P3Y,CORRE3)
CALL F3(P4,N,P4X,P4Y, CORRE4) -
CALL MAXMIN (CORRE1, CORRE2, CORRE3, CORRE4, RANGE, AVERAG, DEVI)
WRITE (U, 200) CORRE1,CORRE2, CORRE3, CORRE4, RANGE, AVERAG, DRV

CALL F4(P1,N, SUMSQ1)
CALL FA4(P2,N,S3UMEQ2)
CALL F4(P3,N, SUMSQ3)
CALL F4 (P4, N, SUMSQA)
CALL MAXMIN (SUMSQ1, SUMSQ2, SUMSQ3, SUMSQ4, RANGE, AVERAG, DEVI)
WRITE (U,200) SUMSQ1/1000.,SUMSQ2/1000.,SUMSQ3/1000.,
o SUMSQ4/1000., RANGE/1000., AVERAG/1000.,DEVI/1000.

CALL F5(P1,N,FIDM1)
CALL F5(P2,N,FIDM2)
CALL F5(P3,N,FIDM3)
CALL FS(P4,N,FIDM4)
CALL MAXMIN(FIDM1,FIDM2,FIDM3,FIDM4, RANGE, AVERAG, DEVI)
WRITE (U, 200) FIDM1,FIDM2,FIDM3, FIDM4, RANGE, AVERAG, DEVI
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CALL F6(P1XY,N,SUMAV])

CALL F6(P2XY, N, SUMAV2)

CALL F6(P3XY, N, SUMAV3)

CALL F6(PAXY, N, SUMAVA)

‘CALL MAXMIN (SUMAV1, SUMAVZ2, SUMAV3, SUMAVA, RANGE, AVERAG, DEVT ),
WRITE (U, 200) SUMAV1, SUMAV2, SUMAV3, SUMAV4, RANGE, AVERAG, DEVI

CALL, F7 (P1XY, N, SUMET1)

- CALL F7(P2XY, N, SUMET2)

CALL’F7(P3XY N, SUMET3)

: CALL F7(P4XY, N, SUMET4)
" CALL MAXMIN (SUMETL1, SUMET2, SUMET3, SUMET4, RANGE, AVERAG, DEVI)
WRITE (U, 200) SUMET1, SUMET2, SUMET3, SUMET4, RANGE, AVERAG, DEVI

CALL F'8(P1XY,N,SUMET1, SUMV1)

. CALL F8(P2XY, N, SUMET2, SUMV2)

CALL F8(P3XY,N,SUMET3,-SUMV3)
. CALL F8 (P4XY; N, SUMET4, SUMV4)
CALL MAXMIN (SUMV1, SUMV2, SUMV3, SUMV4, RANGE, AVERAG, DEVT)
WRITE (U, 200) SUMV1, SUMV2, SUMV3,SUMV4, RANGE, AVERAG, DEV I

CALL F9(P1,N, ENTRP1)

CALL:F9(P2,N,ENTRP2)

CALL F9(P3,N, ENTRP3) _

CALL F9{P4,N,ENTRP4)
CALL MAXMIN (ENTRP1, ENTRP2, ENTRP3, ENTRP4, RANGE, AVERAG, DEVI)
WRITE (U, 200) ENTRP1,ENTRP2,ENTRP3,ENTRP4, RANGE, AVERAG, DEVI

CALL F10 (P1YX,N, DIFET1)
CALL F10 (P2YX,N,DIFET2)
CALL F10 (P3YX,N,DIFET3)
CALL F10 {P4YX,N,DIFET4)
GALL MAXMIN (DIFET1,DIFET2, DIFET3, DIFET4, RANGE, AVERAG, DEVI)
WRITE (U, 200) DIFET1,DIFET2,DIFET3,DIFET4, RANGE, AVERAG, DEVI
c ; . : :
CALL F11 (P1YX,N, DIFRT1,DTFV1)
CALL F11 {P2YX, N, DIFEL2,DIFV2)
CALL F11 (P3YX,N,DIFET3,DIFV3)
CALL F11 (P4YX,N,DIFET4,DIFV4)
CALL MAXMIN (DIFV1,DIFV2,DIFV3, DIFV4 RANGE, AVERAG, DEVI)
WRITE (U, 200) DIFV1,DIFV2,DIFV3,DIFV4,RANGE, AVERAG, DEVI
c : o .
. CALL F12 (P1,P1X,P1Y,N, ENTRP1,FIMC11,FIMC21)
CALL F12({P2,P2X,P2Y,N,ENTRP2,FIMC12,FIMC22)
CALL F12 (P3,P3X,P3Y,N,ENTRP3, FIMC13,FIMC23)
_CALL F12{(p4,P4X,P4Y,N,ENTRP4,FIMC14,FIMC24).
c 7 . ",
- CALL MAXMIN(FIMC11,FIMC12, FIMC13,FIMC14, RANGE, AVERAG, DEVI)
. WRITE (U, 200) FIMC11,FIMC12, FIMC13,FIMCI4, RANGE, AVERAG, DEVI
c ' _ ) :
CALL MAXMIN(FIMC21,FIMC22,FIMC23,FIMC24, RANGE, AVERAG, DEVI)
WRITE (U, 200) .FIMC21,FIMC22,FIMC23,FIMC24, RANGE, AVERAG, DEVI
¢ aaE o '
' CALL F13(P1l,P1X,PlY,N,FMCC1)
CALL F13(P2,P2X,P2Y,N, FMCC2)
CALL F13(P3,P3X,P3Y,N, FMCC3)
CALL F13(P4,P4X,P4Y,N,FMCC4).
CALL MAXMIN (FMCC1, FMCC2, FMCCJ FMCC4, RANGE, AVERAG, DEVT)
WRITE (U, 200) FMCC1,FMCC2,FMCC3, FMCC4 RANGE, AVERAG, DEVI
C N
¢ ) A .
200 FORMAT (1X, 7F10.4)
c ‘
TYPE*, *TIME USED = ', SECNDS (T1)
STOP
END
SUBROUTINE MAXMIN(A B, C, D, MIMA, AVG, DEVI)
C
c MIMA: RANGE OF (&,B,C,D): -
c AVG: MEAN QF (A,B,C,D):
c DEVI: VARIANCE OF (A,B,C,D).
c
C—- S S —
c o
REAL MIMA
MIMA=0.0
AVG=0.0" -
DEVI=0.0

SUM=0.0
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AVG= (A+B+C+D) /4
MIMA=AMAX1 (A, B, C, D) ~AMIN1 (A, B, C, D)

,SUM“(A—AVG)**2+(B—AVG)**2+(C—AVG)**2+(D—AVG)FﬁZ

DEVI=SUM/4

RETURN
END

86



PROGRAM TXLOCL

' LOCAL OPERATION OF SPADEP. -
CURRENT PROGRAM WORK WITH 32 BY 32 SUBIMAGE AND 3X3 WINDOW.

o : A

INTEGER DUMMY (32,32), XO,YO,WINSIZ,OPT
CHARACTER*10 FORM
DATA FORM/'(''S'',A)'/

WRITE (7, FORM) 'DEFINE THE IMAGE AREA (X,Y) = '
READ (5, *) ICOL, IROW
WRITE (7, FORM) 'STARTING POSITION (X0, YO) = !
READ (5, *} X0, YO
WRITE (7, FORM) 'WINDOW SIZE = '
READ (5, *) WINSIZ _

. WRITE (7,FORM) -'GRAY .LEVEL (=<32) = '
mmmSﬁ)N@mY
WRITE (7,*).
WRITE (7, *) 'TEXTURE FUNCTIONS CAN BE EXTRACTED: '
WRITE(7,*)' 1. ANGULAR SECOND MOMENT;'
WRITE(7,*)* 2. CONTRAST;"®
WRITE (7,*)* 3. CORRELATION;'®
WRITE(7,*)' 4. SUM OF SQUARES;'
WRITE(7,*)' 5. INVERSE DIFFERENCE MOMENT; '
WRITE(7,*)' 6. SUM AVERAGE;'
WRITE(7,*)' 7. SUM ENTROPY;'
WRITE(7,*)*' 8. SUM VARIANCE;'
WRITE (7,*)' 9. ENTROPY;'
WRITE(7,*)* 10. DIFFERENCE ENTROPY;'
WRITE(7,*)' 11. DIFFERENCE VARIANCE;'
WRITE (7,*)' 12. INFORMATION MEASURES OF CORRELATION; '
WRITE (7,*) ' 13. MAXIMAL CORRELATION COEFFICIENT;'
WRITE (7, *)
WRITE (7, FORM) .'ENTER YOUR CHOICE (0 TO QUIT): '
READ (5, *) OPT )
IF (OPT.EQ.0) STOP

CALL DOING  (TCOL, TROW, XO, YO, WINS T2, DUMMY , NGRAY , OP'T)

STOP
END

C- e - _—

PARAMETER 'L=32,L2=64
INTEGER DATA(IWSIZE, IWSIZE)
DIMENSION P1{L,L),P2(L,L),P3(L,L),P4(L,L)
DIMENSION Plx(L),P2x(L),P3x(L),P4x (L),
+ Ply (L),P2y (L), P3y{L) P4y (L)
© DIMENSION Plxy (L2),P2xy(L2),P3xy(L2),P4xy (L2),
+ Plyx (L), P2yx (L), P3yx (L), P4yx (L)
- DIMENSION TX1 (30),TX2 (30}
CHARACTER*10 FORM, OUTFL
.DATA FORM/' (§44414)"/

IXY=IWSIZE*IWSIZE
WRITE (FORM(2:5), ' (14) ') IWSIZE

WRITE (7, *) 'ENTER OUTPUT FILF NAME : v
READ (5, ' (M) ') OUTFL .
OPEN (UNIT=2,FILE=OUTFL,STATUS='NEW',FORM='UNFORﬂATTED')

CALL OPEN(1,'P0”,2)

T1=SECNDS (0.0)
. DO 10 IY=10,IR+I0-3
ICOUNT=0 .
DO 30 IX=JO, IC+JO-3
CALL INPUT (1,DATA,IX,IWSIZE, 1Y, IWSIZE)
_CALL .UNPACK (DATA, DATA, IXY)
WRITE (7,102) IX,IY .
WRITE (7,FORM) ((DATA(I J),J=1,1IWSIZE), I=1, INSIZE)

aan

CALL SPADEP (DATA,N,IWSIZE, IWSIZE ?1 P2,P3,P4)
IF (IOPT.EQ.1) THEN
© CALL F1(P1,N,AsSM1)
CALL F1(P2,N,ASM2)
CALL F1(P3,N,ASM3)
CALL F1(P4,N,ASM4)
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CALL MAXMIN (ASM1; ASM2, ASM3, ASMA, RANGE,, AVISRAG)
GOTO 20 -
ENDIF
IF (IOPT.EQ.2) THEN
CALL RCOL2 (P1,P2,P3,P4,N,P1XY, P2XY, P3XY, PAXY, P1YX, P2YX,

P3YX,P4YX)
CALL F2 (P1YX,N,CTR1)
CALL F2 (P2YX, N,CTR2)
CALL F2 (P3YX,N,CTR3)
9 CALL F2 (P4YX,N,CTR4)
CALL MAXMIN (CTR1,CTR2, CTR3, CTR4 RANGE, AVERAG)
GOTO 20
ENDIF A
IF (IOPT.EQ.3) THEN _
CALL .RCOL1 (P1,P2,P3,P4,N,P1X, P2X, P3X, P4X,P1Y,P2Y, P3Y, P4Y)
CALL F3(P1,N,P1X,P1Y, CORRE]) :
. CALL F3(P2,N,P2X,P2Y,CORRE2)
CALL F3(P3,N,P3X,P3Y, CORRE3)
CALL F3(P4,N, P4X,P4Y, CORRE4)

CALL MAXMIN (CORREL, CORREZ,CORRE3, CORRF.4, RANGF., AVERAR)
GOTO 20 . . R

- ENDIF
IF(IOPT EQ.4) THEN
: CALL F4(P1,N, SUMSQ1)
CALL F4(P2,N, SUMSQ2)
CALL F4(P3,N, SUMSQ3)
CALL F4 (P4, N, SUMSQ4) _
CALL MAXMIN (SUMSQ1, SUMSQ2Z, SUMSQ3, SUMSQ4, RANGE, AVERAG)
GOTO 20 ' .
ENDIF
IF (IOPT.EQ.5) THEN
CALL F5(P1,N,FIDM1)
CALL F5(P2,N,FIDM2)
CALL F5(P3,N,FIDM3).
CALL F5(P4,N,FIDMA4)

CALL - MAXMIN(FIDMI FIDM2,FIDM3,FIDM4, RANGE AVERAG)
GOTO. 20 -

ENDIF
IF (IOPT.EQ.6) TH[N
CALL RCOL2(P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX, szx
P3YX,P4YX)
CALL F6(P1XY,N,SUMAV1)
CALL ‘Fé{P2XY, N, SUMAV2)
CALL F6(P3XY,N,SUMAV3)
CALL F6 (P4XY, N, SUMAVY) ‘
CALL MAXMIN (SUMAV1, SUMAV2, SUMAV3, SUMAV4, RANGE, AVERAG)
.GOTO 20 : B
. ENDIF
-IF(IOPT.EQ.7) THEN
" CALL RCOL2 (P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY, P1YX,P2YX,
~ P3YX,P4YX) - .
CALL F7(P1XY,N, SUMETl)
CALL F7(P2XY,N,SUMET2)
CALL F7(P3XY,N,SUMET3)
CALL F7(P4XY,N,SUMET4)
. CALL MAXMIN (SUMET1, SUMET2, SUMET3, SUMET4, RANGE, AVERAG)
GOTO 20
ENDIF
. IF(IOPT.EQ.8) THEN'
. CALL RCOL2 (P1,P2,P3,P4,N, PlXY P2XY, P3XY P4XY,P1YX, PZYX
- P3YX, P4YX)»
CALL F7(P1XY,N,SUMET1)
CALL F7(P2XY,N,SUMET2)
CALL F7(P3XY,N, SUMRT3)
CALL F7(PAXY, N, SUMETA)
CALL F8(P1XY,N,SUMET1, SUMV1).
CALL F8(P2XY, N, SUMET2, SUMV2)
CALL F8 (P3XY,N, SUMET3, SUMV3)
CALL F8(P4XY,N, SUMET4, SUMV4)
CALL MAXMIN (SUMV1, SUMV2, SUMV3, SUMV4 ,RANGE, AVERAG)
GOTO 20 .
ENDIF .
IF (IOPT.EQ.9) THEN
: CALL F9(P1,N,ENIRPL)
CALL F9(P2,N,ENTRP2)
CALL F9(P3,N,ENTRP3)
CALL F9(P4,N;ENTRP4)
) CALL MAXMIN (ENTRP1, ENTRP2, ENTRP3;ENTRP4, RANGE AVERAG)
GOTO 20
ENDIF -
IF (IOPT.EQ.10) THEN
CALL 'RCOL2 (P1,P2,P3,P4,N,P1XY, P2XY, P3XY, P4XY, P1YX, P2YX,
P3YX,P4YX)
CALL F10 (P1YX, N,DIFETl)
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CALL MAXMIN (ASM1,ASM2,ASM3, ASM4, RANGE, AVERAG)
GOTO 20 :
ENDIF
IF (IOPT.EQ.2) THEN
CALL RCOL2(Pl,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX,

P3YX, P4YX)
'CALL F2(P1YX,N,CTR1)
CALL F2(P2YX,N,CTR2)
CALL F2(P3YX,N,CTR3)
CALL F2(P4YX,N,CTR4)
CALL MAXMIN (CTR1,CTR2,CTR3,CTR4, RANGE, AVERAG)
GOTO 20 .
ENDIF .
I[F (IOPT.EQ.3) THEN ,
CALL RCOL1 (Pl,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y,P4Y)
CALL F3(P1,N,P1X,PlY,CORREL)
CALL F3(P2,N,P2X,P2Y,CORRE2)
CALL F3(P3,N,P3X,P3Y,CORRE3)
CALL F3(P4,N,P4X,P4Y,CORRE4)
CALL MAXMIN (CORREL, CORRE2,CORRE3, CORRE4, RANGE, AVERAG)
GOTO 20 C.
ENDIF
IF (IOCPT.EQ.4) THEN
CALL F4 (P1,N, SUMSQ1)
CALL F4({P2,N, 5UMSQ2)
CALL F4 (P3,N, SUMSQ3)
CALL F4 (P4,N,SUMSQC4)
CALL MAXMIN (SUMSQL, SUMSQ2, SUMSQ3, SUMSQ4, RANGE, AVERAG}
GOTO 20 .
ENDIF
IF (IOPT.EQ.S) THEN
CALL F5(P1,N,FIDM1)
CALL F5(P2,N,FIDM2)
CALL F5(P3,N,FIDM3)
CALL F5(P4,N,FIDM4)
CALL MAXMIN{FIDM1,FIDM2,FIDM3,FIDM4,RANGE, AVERAG)
GOTO 20
ENDIF
IF (10PT.EQ.6) THEN
CALL RCOLZ2 (P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX,
P3YX,P4YX)
CALL F6(P1XY,N,SUMAVL)
CALL F6 (P2XY, N, SUMAV2)
CALL F6 (P3XY,N,SUMAV3)
CALL F6 (P4XY,N,SUMAVA)
CALL ‘MAXMIN (SUMAV1, SUMAV2, SUMAV3, SUMAV4, RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.7) THEN
CALL RCOL2 {P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4AXY,P1YX,P2YX,
P3YX,P4YX)
CALL F7(P1XY,N,SUMET1)
CALL F7(P2XY,N,SUMET2)
CALL F7(P3XY,N,SUMET3)
CALL F7(P4XY,N,SUMET4)
CALL MAXMIN{SUMET1, SUMET2,SUMET3, SUMET4, RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.8) THEN
CALL RCOL2 (P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX,
P3YX,P4YX)
CALL F7(P1XY,N,SUMET1)
CALL F7(P2XY,N,SUMET2)
CALL F7(P3XY,N,SUMET3)
CALL F7(PAXY, N, SUMETA)
CALL F8(P1XY,N,SUMET1, SUMV1)
CALL F8(P2XY,N,SUMET2, SUMV2)
CALL F8(P3XY,N,SUMET3, SUMV3)
CALL F8(P4XY,N,SUMET4, SUMV4)
CALL MAXMIN (SUMV1, SUMV2, SUMV3, SUMV4,RANGE, AVERAG)
GOTO 20 .
ENDIF .
IF {10PT.EQ.9) THEN
: CALL F9(P1,N,ENTRP1)
CALL F9(P2,N,ENTRP2)
CALL F9(P3,N,ENTRP3)
CALL F9(P4,N,ENTRP4)
CALL MAXMIN (ENTRP1,ENTRP2,ENTRP3, ENTRP4, RANGE, AVERAG)
GOTO 20 .
ENDIF
IF (IOPT.EQ.10) THEN
CALL RCQL2 (P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX,
P3YX,P4YX) :
CALL F10 (P1YX,N,DIFET1)
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CALL MAXMIN (ASM1,ASM2,ASM3, ASM4, RANGE, AVERAG)
GOTO 20 :
ENDIF
IF (IOPT.EQ.2) THEN
CALL RCOL2 (P1,P2,P3,P4,N,P1XY, szy psxy P4XY,P1YX,P2YX,

P3YX, P4YX)
'CALL F2(P1YX,N,CTR1)
CALL F2(P2YX,N,CTR2)
CALL F2(P3YX,N,CTR3)
CALL F2(P4YX,N,CTR4)
CALL MAXMIN (CTR1,CTR2,CTR3, CTR4, RANGE, AVERAG)
GOTO 20 .
ENDIF
IF (IOPT.EQ.3) THEN
CALL RCOL1 (P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y,P4Y)
CALL F3(P1,N,P1X,P1lY,CORREL)
CALL F3(P2,N,P2X,P2Y,CORRE2)
CALL F3(P3,N,P3X,P3Y, CORRE3)
CALL F3(P4,N,P4X,P4Y, CORRE4)
CALL MAXMIN (CORREL, CORRE2,CORRE3, CORRE4, RANGE, AVERAG)
GOTO 20 CL
ENDIF
IF (IOPT.EQ.4) THEN
CALL F4(P1,N,SUMSQl)
CALL F4(P2,N,SUMSQ2)
CALL F4(P3,N, SUMSQ3)
CALL F4(P4,N,SUMSQ4)
CALL MAXMIN (SUMSQ1, SUMSQ2, SUMSQ3, SUMSQ4, RANGE, AVERAG)
GOTO 20 :
ENDIF
IF (IOPT.EQ.S) THEN
CALL F5(P1,N,FIDML)
CALL FS5(P2,N,FIDM2)
CALL FS5(P3,N,FIDM3)
CALL F5(P4,N,FIDM4)
CALL MAXMIN (FIDM1,FIDM2,FIDM3, FIDM4, RANGE, AVERAG)

GOTO 20

ENDIF

IF (IOPT.EQ.6) THEN

CALL RCOL2(P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX,

P3YX, P4YX)
CALL F6(P1XY,N,SUMAV1)
CALL F6(P2XY,N,SUMAV2)
CALL F6(P3XY,N,SUMAV3)
CALL F6(P4XY,N,SUMAV4)
CALL MAXMIN (SUMAV1, SUMAV2, SUMAV3, SUMAV4, RANGE, AVERAG)
. GOTO 20

ENDIF

IF (IOPT.EQ.7) THEN
CALL RCOL2{P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY, P1YX, P2YX,

P3YX, P4YX)
CALL F7(P1XY,N,SUMET1)
CALL F7(P2XY,N,SUMET2)
CALL F7(P3XY,N,SUMET3)
CALL F7(P4XY,N,SUMET4)
CALL MAXMIN (SUMET1, SUMET2, SUMET3, SUMET4, RANGE, AVERAG)

GOTO 20

ENDIF

IF (IOPT.EQ.8) THEN

CALL RCOL2 (P1,P2,P3,P4,N,P1XY,P2XY, P3XY,P4XY,P1YX,P2YX,

P3YX, P4YX)

CALL F7(P1XY,N,SUMET1)

CALL F7(P2XY,N,SUMET2)

CALL F7(P3XY,N,SUMET3)

CALL F7(PAXY,N,SUMETA)

CALL F8(P1XY,N,SUMET1, SUMV1)

CALL F8(P2XY,N,SUMET2, SUMV2)

CALL F8(P3XY,N,SUMET3, SUMV3)

CALL F8(P4XY,N,SUMET4, SUMV4)

CALL MAXMIN (SUMV1, SUMV2, SUMV3, SUMV4,RANGE, AVERAG)

GOTO 20 :
ENDIF .

IF (IOPT.EQ.9) THEN
CALL F9(Pl,N,ENTRP1)
CALL F9(P2,N,ENTRP2)
CALL F9(P3,N,ENTRP3)
CALL F9(P4,N,ENTRP4)
CALL MAXMIN (ENTRP1, ENTRP2,ENTRP3, ENTRP4, RANGE, AVERAG)
GOTO 20 .
ENDIF
IF (IOPT.EQ.10) THEN
CALL RCOL2 (P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX,
P3YX,P4YX)
CALL F10(PlY¥YX, N,DIFETI)
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10

200
102

CALL F10(P2YX,N,DIFET2)
CALL F10(P3YX,N, DIFET3)
CALL F10(P4YX,N,DIFET4)
CALL MAXMIN(DIFET1,DIFETZ2,DIFET3, DIFET4, RANGE, AVERAG)
GOTO 20
ENDIF
IF(ICPT.EQ.11) THEN -
CALL RCOL2(P1,P2,P3,P4,N,P1XY,P2XY,P3XY, P4XY,P1Y¥X,P2YX,
P3YX, P4YX)
CALL F10(P1YX,N,DIFET1)
CALL F10(P2YX,N,DIFET2)
CALL F10(P3YX,N,DIFET3)
CALL F10(P4YX,N, DIFET4)
CALL F11(P1Y¥YX,N,DIFET1,DIFV])
CALL F11 (P2YX,N,DIFET2,DIFV2)
CALL F11(P3YX,N,DIFET3,DIFV3}
CALL F11 {P4Y¥X,N,DIFET4,DIFV4)
CALL MAXMIN{(DIFV1,DIFV2,DIFV3,DIFV4,RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.12) THEN
CALL RCOL1 (P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y,P4Y)
CALL F9(P1,N,ENTRP1)
CALL F9(P2,N,ENTRP2)
CALL F9(P3,N,ENTRP3)
CALL F9(P4,N,ENTRP4)
CALL F12(P1,P1X,PlY,N,ENTRP1,FIMC11,FIMC21)
CALL F12(P2,P2X,P2Y,N,ENTRP2,FIMC12,FIMC22)
CALL F12(P3,P3X,P3Y,N,ENTRP3,FIMC13,FIMC23)
CALL F12(P4,P4X,P4Y,N,ENTRP4,FIMC14,FIMC24)
CALL MAXMIN(FIMC1l1,FIMC12,FIMC13,FIMC14,RANGE]1,AVERAL)
CALL MAXMIN({FIMC21,FIMC22,FIMC23,FIMC24,RANGE2,AVERAZ)

GOTO 20
ENDIF
IF ({IOPT.EQ.13) THEN
CALL RCOL1(P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y,P4Y)
CALL F13(P1,P1X,P1lY,N,FMCC1)
CALL F13(P2,P2X,P2Y,N,FMCC2)
CALL PI3(P3, PAX, POY, N, FMCCR)
CALL F13(P1,04aX, P1Y, N, 'MCCA)
CALL MAXMIN (FMCC1, FMCC2, FMCC3, FMCC4, RANGE, AVERAG)
ENDIF

ICOUNT=ICOUNT+1

TX1 (ICOUNT) =RANGE

TX2 (ICOUNT) =AVERAG
CONTINUE

WRITE (2) (TX1(I),I=1,30)

WRITE({2) (TX2(I),I=1,30)
CONTINUE ‘

FORMAT (F20.5)
FORMAT (/' COLUMN',I4,°¢, ROW',I4)

TYPE*, SECNDS (T1)
RETURN
END

SUBROUTINE MAXMIN(A,B,C,D,MIMA, AVG)

REAL MIMA

AVG=(A+B+C+D) /4
MIMA=AMAX1 (A, B,C,D)-AMIN1 (A,B,C, D)

RETURN
END
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SUBROUTINE SPADEP (SDATA, NG, IR, IC, SP1,SP2,SP3,SP4)

CREATE SPATIAL GRAY TONE DEPENDENCE MATRICES FOR
EACH OF THE FOUR DIRECTIONS: 0, 45, 90, 135.

INPUT: SDATA --- IMAGE DATA
NG ---— GRAY LEVEL
IR ——— NUMBER OF ROW
IC —— NUMBER OF COLUMN .
SP* ——— NORMALIZED SGTDM (SP1-0,5P2:90,SP3*45,SP4—135)

naonaonNnQanoaan

PARAMETER LG=32
DIMENSION SDATA (LG, LG),SP1 (LG, LG),SP2 (LG, LG),SP3 (LG,LG),
+ $P4 (LG, LG), DI (4),DJ(4) :
INTEGER SDATA, CFNT, NAROR, DT, N.T
DATA DI/O, -1, -1, -1/ DJ/1, 0, 1, -1/
o]
‘C....INITIALIZE SP*(I,J)
c
DO 4 I=1,NG
DO 4 J=1,NG
SP1(I,J)=0.0
SP2(I1,J)=0.0
SP3(I,J)=0.0
SP4(I,J)=0.0
4 CONTINUE
c
C...CALCULATE SPADEP
c
DO 20 I=1, IR
DO 20 J=1, IC
CENT=SDATA (I, J)
DO 30 K=1,4
II=I+DI (K)
JI=J+DJ (K)
IF ((II.GE.1.AND.II.LE.IR).AND. (JJ.GE.1.AND.JJ.LE.IC)) THEN
NABOR=SDATA (II,JJ)
IF(K.EQ.1) SP1 (CENT+1,NABOR+1)=SP1 (CENT+1,NABOR+1)+1
IF(K.EQ.2) SP2(CENT+1,NABOR+1)=SP2 (CENT+1,NABOR+1)+1
IF (K.EQ.3) SP3(CENT+1,NABOR+1)=SP3(CENT+1,NABOR+1)+1
IF (K.EQ.4) SP4 (CENT+1,NABOR+1) =SP4 (CENT+1,NABOR+1)+1
ENDIF ‘ : .
30 CONTINUE
20 CONTINUE
c
C...TRANSPOSE OF THE SP
o]
DO 40 I=1,NG
" DO 40 J=1,NG
IF(J .GE. I) THEN :
SP1(I,J)=SP1(I,J)+SP1(J,I)
SP1(J,I}=SP1(I,J)
SP2(I,J)=SP2(I,J)+SP2(J, I)
SP2(J,1)=SP2(I,J)
SP3(1,J)=SP3(I,J)+SP3(J, 1)
SP3(J, 1) =SP3(1,J)
SP4 (I, J)=SP4(1,J)+SP4(J, 1)
SP4 (J, I)=5P4(I,J)
ENDIF
0 CONTINUE

.. .NOMALIZE SPADEP. R* RRE THE NUMBER OF NEIGNBORING RESOLUTION
...CELL PAIRS USED IN COMPUTING A PARTICULAR SPADEP.

QNS

R1=2*IR* (IC-1) ! 0 DEGREE ! ALL FOR DISTANCE=1.
R2=2*IC* (IR-1) ! 90 DEGREE

R3=2* (IR-1) * (IC~-1) ! 45 DEGREE

R4=2*(IC-1) * (IR~1) ! 135 DEGREE

DO 50 I=1,NG
DO 50 J=1,NG
SP1(I,J)=SP1(I,J)/R1
SP2(I,J)=SP2(I,J}/R2
SP3(I,J)=SP3(I,J)/R3
SP4 (I,J)=SP4{I,J}/R4
50 CONTINUE

RETURN
END
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[NeKe K

60

SUM4=0.0
DO 50 I=1,NG
DO 50 J=1,NG

IF ((I+J) .EQ. (K+1)) THEN

SUML=SUM1+SP1 (I, J)
SUM2=SUM2+SB2 (I, J)
SUM3=SUM3+5P3 (I, J)
SUM4=SUM4+SP4 (I, J)
ENDIF

CONTINUE
SP1xy (K} =SUM1
SP2xy (K) =SUM2
SP3xy {K) =SUM3
ED1xy (K) =50M4

CONTINUE

...2) SPx-y (K)=SP*yx (K)

DO 55 K=1,NG
SUM1=0.0
SUM2=0.0
SUM3=0.0
SUM4=0.0
DO 60 I=1,NG
DO 60 J=1,NG
IF (ABS (I-J) .EQ. K-1)
SUM1=SUM1+SP1 (I, J)
SUM2=5UM2+SP2 (I, J)
SUM3=SUM3+5P3 (I, J)
SUM4=SUM4+5P4 (I,J)
ENDIF
CONTINUE
SPlyx (K)=SUM1
SP2yx (K} =SUM2
SP3yx (K)=SUM3
SP4yx (K) =SUM4
CONTINUE

RETURN
FND

THEN
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SUBROUTINE RCOlesPl,SPZ,SPB,SP4,NG,SPlx,SP2x,SP3x,SP4x,SPly,
+ SP2y, SP3y, SP4y)

\CALCULATE SPx (1) =SUM{ (J-NG) } (SP (1, 3)), SPy (3)=SUM{ (L-NG)} (SP (1, }))
NOTE: WHEN 1=3=NG, SPx (1)=SPy(])

SPX (I} AND SPY(J) ARE THE MARGINAL PROBABILITY MATRIX.

aaooaaanaaaa

PARAMETER LG=32
DIMENSION SP1(LG,LG),SP2(LG,LG),SP3(LG,LG),SP4(LG,LG),.
+ SP1x (LG),SP2x (LG) , SP3x (LG) , SP4x (LG) , SP1ly (LG),
+ SP2y{(LG), SP3y (LG), SP4y (LG)
c ,
C...1) SPx (i)
< _
DO 15 I=1,NG
SUM1=0.0
SUM2=0.0
SUM3=0.0
SUM4=0.0
DO 20 J=1,NG
SUM1=SUM1+SP1 (I, J)
SUM2=SUM2+SP2 (I, J)
SUM3=SUM3+SP3 (I, J)
SUMA4=SUM4+SP4 (I, J)
20 CONTINUE
SP1x (I)=SUM1
SP2x (I)=SUM2
SP3x (I)=SUM3
SP4x (I)=5UM4
5 CONTINUE

..3) SPy(4)

[eNeKe N

DO 25 J=1,NG
SUM1=0.0
SUM2=0.0
SUM3=0.0
SUM4=0.0
DO 30 I=1,NG
SUM1=SUM1+SP1 (I, J)
SUM2=SUM2+SP2 (I, J)
SUM3=SUM3+SP3 (I, J)
SUMA=SUM4+SP4 (I, J)
30 CONTINUE
SPly (J) =SUM1
SP2y (J) =SUM2
SP3y (J) =SUM3
SP4y {J) =SUM4

25 CONTINUE
C
RETURN
END
C
SUBROUTINE RCOLZ (SP1,SP2,SP3, SP4,NG,SP1XY,SP2XY,
+ SP3XY, SPAXY,SP1YX, SP2YX, SPIYX, 5P4YX)
c .
C—— ——— —_— . —_—
Cc
C CALCULATE Px+y {K)=SUM{k}P (L,3) (k=(i+3); 2,3,4...2N. )
c Px~—y (K) =SUM{k}P{i,3) (k=abs{i-3): 0,1,2...N-1)
C
c SP*XY -- Px+y
C SP*YX —-- Px-y
c
C ——— -
[
PARAMETER L1=32,L2=64
DIMENSION SP1(L1,L1),SP2(L1,L1),SP3(L1,L1),SP4(L1,L1),
+ : SP1xy (L2),S8P2xy (L2),SP3xy(L2),SP4xy (L2),
_ + SPlyx (L1),SP2yx (L1),SP3yx (L1),SPdyx (L1)
C
C...1) SPx+y(K)=SP*xy (K)
C .
DO 45 K=1,2*NG-1
SUM1=0.0
SUM2=0.0
SUM3=0.0
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SUBROUTINE F1 (SP,NG,SASM)

c
[
C
c CALCULATE THE ANGULAR SECOND MOMENT.
c
o
c .

DIMENSION SP(32,32)

SASM=0.0

DO 10 I=1,NG

DO 10 J=1,NG
SASM=3ASM+SP (I, J) *SP (L, J)

10 CONTINUE :

RETURN

END
C

SUBROUTINE F2 (SPYX, NG, SCTR)
c
o -— - -
p .
C CALCULATE. THE CONTRAST.
C
C — S —
c .

DIMENSION SPYX (32)
c

SCTR=0.0

DO 10 I=1,NG

SCTR=SCTR+ (1I-1) * {I-1) *SPYX (I}

10 CONTINUE
C .

RETURN

END
c

SUBROUTINE F3(SP,NG,SPX,SPY,SCORRE)
c
[T = e e e et o v 8 o T B v o P e A o e
c
o CALCULATE THE CORRELATION
C
C THE VALUE OF CORRELATION INDICATES THE RELATIONSHIP BETWEEN
C COLUM AND ROCW.
C
c NOTE: SP(I) IS A NORMALIZED SPADEP FOR CERTAIN DIRECTION,
C SPX(I) AND SPY(I) ARE THE MARGINAL FREQUENCY OF SP.
C FOR GROUPED DATA SP(I), SUM(SPX(I))=1, SUM(SPY(I))=1;
c THUS N=1.
c .
c GENERAL ALGORITHEM IS IN TE2.FOR.
C .
C - ————
C .

DIMENSION SP(32,32),SPX(32),SPY(32)
C

C...DF1=SUM((SP(I,J)*(I-1)*(J-1)) [(I-1) AND (J-1) ARE THE CLASS MARK]
Cc

SUM=0.0
DO 10 I=1,NG
DO 10 J=1,NG ,
SUM=SUM+ (I-1) * (J-1) *SP (I, J)

10 CONTINUE
c
DF1=SUM
C
C...DF2=SUM(SPX(I)™* (I-1)*SUM(SPY(I)*(I-1))
C ' .
SUM1=0.0
SUM2=0.0

DO 20 I=1,NG
SUM1=SUM1+SPX (I) * (I-1)
SUM2=SUM2+SPY (I) * (I-1)

20 CONTINUE
© DF2=SUM1*SUM2
g...DF3=[SUM(SPX(I}*(I-l)**Z)]-[SUM(SPX(I)—(I—I)]**Z
c SUM1=0.0

sUM2=0.0

Do 30 I=1,NG
SUM1=SUM1+SPX (I) * (I-1) **2
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SUM2=SUM2+SPY (I} * (I-1)

nonaaaan

30 CONTINUE
C .
DF3=SUM1-SUM2**2
<
C...DF4
c
SUM1=0.0
SUM2=0.0
DO 40 I=1,NG
SUM1=SUM1+SPY (I)* (I-1)**2
SUM2=5UM2+SPY (1) * (I-1)
40 CONTINUE
C
DF4=SUM1-SUM2**2
c
C...SCORRE= (DF1-DF2) /SQRT (DF3*DF4)
c .
DFF=SQRT (DF3*DF4)
IF (DFF.EQ.0) THEN
" SCORRE=1
ELSE
SCORRE= ({DF1-DF2) /DFF
ENDIF '
c
RETURN
END
C
SUBROUTINE F4 (SP,NG,S0S)
THE SUM OF SQUARES: VARIANCE
S0S=SUM (SUM(I-U) **2*SP(I,J)):
DIMENSION SP (32, 32)
C
C...THE MEAN U=SUM(SP(I,J)* (I-1))/R; FOR NORMALIZED SPADEP R=1
c .
SUM=0.0
DO 10 I=1,NG
bo 10 J=1,NG
SUM=SUM+SP (I, J) *(I-1)* (J-1)
10 CONTINUE
U=sUM
Cc
C...s0s
C
SUM=0.0
DC 20 I=1,NG
DO 20 J=1,NG
SUM=SUM+ (I-1-U) **2*SP (I', J) ! (I-1) IS CLASS MARK WHEN THE
C ) ! PIRST GRAY LEVEL=0
20 CONTINUE
C
SOS=sUM
C
RETURN
END
C
SUBROUTINE FS (SP, NG, SIDM)
C
C _______________________________
c .
C THE INVERSE DIFFERENCE MOMENT.
C
C SIDM=SUM (SUM(SP (I, J)/ (1+ (I-J} **2))
C
o NOTE: THE CONNCTATION OF I AND J IS NOT CLEAR YET.
C THEY WERE TREATED AS CLASS MARK. THUS WHEN THE FIRST
< CRAY LEVEL IS 0, I=<I-1,J=J0-1. BUT, (I=1)=(J=1)=I=J
Cc
c -
C
DIMENSION SP(32,32)
Cc
SUM=0.0
DO 10 I=1,NG
DO 10 J=1,NG
SUM=SUM+SP (I1,J) / (1+(I=-J)**2)
10 CONTINUE
Cc
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SIDM=SUM

RETURN
END

SUBROUTINE F6 (SPXY, NG, SUMAVE)

THE SUM AVERAGE.

SUMAVE=SUM(I*SPXY(I); THE FIRST I EQUALS TO (I+J) IN THE
‘ CALCULATION OF SPXY(I}.

»Ohtr»n»»'nn

DIMENSION SPXY (64)

SUM=0.0

DO 10 I=1,2*NG-1
SUM=SUM+ (I+1) *SPXY (I}

CONTINUE

SUMAVE=SUM

RETURN
END

. SUBROUTINE F7 (SPXY, NG, SUMETP)

SUM ENTROPY.
SUMETP= - SUM (SPXY (I} * LOG(SPXY(I)); RANGE: I=1....2*NG-1.

SINCE LOG(0) IS UNDEFINED AND SPXY(I)=0 IS POSSTBLE;
THE FORMULA CIIANGE TO:

SUMETP= - SUM(SPXY (I) * LOG(SPXY (I)+CONST)
IF SPXY(I) = 0, CONST=1
THE BASE OF LOG IS 2. SINCE LOG HAS BASE OF (E), THUS:

SUMETP= - SUM(SPXY (I) * LOG (SPXY (I)+CONST)/LOG(2)

VO * = x % % % % % » » » & # % & 00

*

»*

DIMENSION SPXY (64)

A=2.0
B=ALOG (A)

SUM=0.0 .
DO 10 I=1,2*NG-1
IF(SPXY(I).EQ.0.0) THEN
CONST=1.0
ELSE
CONST=0.0
ENDIF
SUM=SUM+SPXY (I) * (ALOG (SPXY (I)+CONST) /B})
CONTINUE

SUMETP=-SUM

RETURN

END

SUBROUTINE F8 (SPXY,NG, SUMF'7, SUMV)

O » % % % % % * % % (2N

THE SUM VARIANCE.

SUMV = SUM (I-SUME'7)*#*2*SPXY(I): I IS THE CLASS MARK,

2

WHEN FIRST GRAY LEVEL=0, I=I+l. NOTE: TRUE FOR ALL SITUATION ?

SUMF7 IS THE SUM ENTROPY.




DIMENSION SPXY (64)

SUM=0.0 .
DO 10 I=1, .2*NG-1

SUM=SUM+ (I+1-SUMF'7) **2*SPXY (I)
CONTINUE

SUMV=5UM

RETURN
END
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SUBROUTINE F9 (SP,NG,ENTRO)

QO * * % % % * * QO

' CALCULATE THE ENTROPY.
ENTRO = - SUM [SP(I,J) * LOG{SP(I,J)+CONSTANT)/LOG(2)].
IF SP(I,J)=0, CONSTANT=1.0; ELSE, CONSTANT=0.0.
DIMENSION SP(32,32)
c
A=2.0
B=ALOG (A)
SUM=0.0
DO 10 I=1,NG
DO 10 J=1,NG
c
IF(SP{(I,J).EQ.0.0) THEN
CONST=1.0
ELSE
CONST=0.0
ENDIF
C N
SUM=SUM+SP (I, J) * (ALOG{SP (I, J} +CONST) /B)
c - ' .
10 CONTINUE
c
ENTRO= - SUM
o
RETURN
END
c
SUBROUTINE F10 (SPYX,NG,DIFETP)
c
o e e
*
* DIFFERENCE VARIANCE.
* .
* DIFETP = — SUM(SPYX (I)* (ALOG([SPYX (I)+CONSTANT/ALOG (2)]:
* N
* ARRAY SUBSCRIPT: 1, 2, 3, ... NG.
E3
C____ — i 2t 2t e o 2 D e e S D A O P R D S A =i e D . S e i T A o S b P P D D S S W - -
o
DIMENSION SPYX (32)
c
A=2.0
B=ALOG (A)
SUM=0.0
DO 10 I=1,NG
c
IF (SPYX(I).EQ.0.0) THEN
CONST=1.0
ELSE
CONST=0.0
ENDIF
c
SUM=SUM+SPYX (I) * (ALOG (SPYX (I) +CONST) /B)
c
10 CONTINUE
c v
DIFETP= - SUM
c
RETURN
A END
c
SUBROUTINE F11 (SPYX,NG.DETP.DIFV)
c
c
® . .
* DIFFERENCE VARIANCE.
*
* F10=DETP (THE DIFFERENCE ENTROPY)
R
* DIFV= SUM { (I~F10)**2+SPYX(I)}. NOTE: THE ALGORITHEM IS
* NOT SURE.
*
* WHEN THE FIRST GRAY LEVEL = 0, I=I-1.
*
*
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C .
DIMENSION SPYX(32)
c .
SUM=0.0
DO 10 I=1,NG
SUM=SUM+ (I-1~DETP) **2*SPYX (I}
10 CONTINUE
c
DIFV=SUM
c
. RETURN
END
o
SUBROUTINE F12 (SP, SPX, SPY, NG, HXY, SIMC1, SIMC2)
c : i
C -
C .
* INFORMATION MEASURES OF CORRELATION.
®
* SIMCl = (HXY - HXY1) / MAX(HX,HY):
* F
* SIMC2 = SQRT( {l1-exp[-2.0 (HXY2 - HXY])}.
*
* HXY: THE ENTROPY, CACULATED IN F9; _
* HX = - SUM [SPX(I)*(LOG (SPX (I)+CONSTANT)/LOG{2))];ENTRCPY OF SPX (I)
* HY = - SUM [SPY(I)*(LOG(SPY (I) +CONSTANT) /LOG(2) )} ;ENTROPY OF SPY (I)
* HXYl = - SUM ( SP(I,J) * (LOG[SPX(I)*SPY (I)+CONSTANT]/LOG(2}] }:
* HXY2 = - SUM { SPX(I)*SPY(I) * (LOG[SPX(I)*SPY (I)+CONSTANT]/LOGI(2))}.
*
c - —
‘C :
DIMENSION SP(32,32),SPX(64),SPY(64)
c
A=2.0
B=ALOG (A)
c
C...HX, HY
c
HX=0.0
1Y =0.0
c
DO 10 I=1,NG
c
IF (SPX(I) .EQ. 0.0) THEN
CONST1=1.0
ELSE
CONST1=0.0
ENDIF :
IF (SPY(I) .EQ. 0.0) THEN
CONST2=1.0
ELSE
CONST2=0.0
ENDIF
c
HX=HX+SPX (I) * (ALOG (SPX (I) +CONST1) /B)
HY=HY+SPY (I) * (ALOG (SPY (I)+CONST2) /B)
C .
10 CONTINUE
c
HX = - HX
, HY = - WY
c
C...HXY1, HXY2
c
HXY1=0.0
HXY2=0.0
c
DO 20 I=1,NG
DO 20 J=1,NG
c
IF (SPX(I).EQ.0.0 .OR. SPY(J).EQ.0.0) THEN
CONST=1.0
ELSE
CONST=0.0
ENDIF
C .
HXY1=HXY1 + SP(I,J) * (ALOG (SPX(I)*SPY(J) + CONST)/B)
HXY2=HXY2 + SPX(I) * SPY (J)* (ALOG (SPX (I) *SPY (J) +CONST) /B)
c
20 CONTINUE
c
HXY1l = - HXY1
HXY2 = - HXY2
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Cc

C...SIMCL
C .
IF (AMAX1 (HX,HY) .EQ.0) THEN
SIMC1=0
ELSE .
SIMC1 = (HXY - HXY1l) / AMAX1 (HX,HY)
ENDIF
c .
C...SIMC2
C
A= EXP ((-2.0)* (HXY2-HXY))
c

SIMC2 = SQRT(1-A)
c

RETURN

END
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SUBROUTINE F13(SP, SPX, SPY, NG, SUBMCC)

. MAXIMAL CORRELATION COEFFICIENT.

SUBMCC

= SQRT (SECOND LARGEST EIGENVALUE‘OF Q)
(I, J) = SUM(SP(I,K)*SPkJ,K)/SPX(I)*SPY(K))
k=1, 2, 3, ... NG.
PROCEDURE:

1) CREATE Q(I,J):

2) CONVERT Q(I,J) TO HESSENBERG MATRIX:

"3) CALCULATE EIGENVALUES OF Q({(I,J); (IT IS POSSIBLE TO.
BUILD THE EIGENVECTOR MATRIX WITH THESE EIGENVALUES)

4) FIND THE SECOND LARGEST EIGENVALUE OF Q(I,J).

THE CRITICAL ALGORITHEMS OF THIS PORTION IS BASED ON THE BASIC
LANGUAGE PRCGRAM DESIGNED BY ZHANG et. al. IN QINGHUA U. CHINA..

NOTE: THE ACCURACY OF COMPUTATION IS INFLUENCED BY THE SIZE
OF THE ORIGINAL MATRIX, i.e. THE NUMBER OF GRAY LEVEL WE
DEAL WITH. THE MEANING OF THIS MAXIMAL CORRELATION COEFFICIENT

STILL NEEDS TO FIND OUT, SO IS THE GRAPHIC DISPLAY OF THIS
MEASUREMENT .

IO % % % % % % % % % % % % % % % . % % % * * % ¥ x * ¥ 00

DIMENSION SP{32,32),SPX(64),5PY(64),Q0(36,36),EIGR(32)

c
DO 10 I=1,NG
DO 10 J=1,NG
SUM=0.0
DO 20 K=1,NG :
IF (SPX(T) .EQ. 0 .OR. SPY(K) .EQ. 0) GOTO 20
SUM=SUM+ (SP (I,K) *SP (J, K) ) /(SPX (I) *SPY (K) )
20 CONTINUE
‘ Q{I,J)=SUM
10 CONTINUE
c
C...CONVERT Q(I,J) TO HESSENBERG MATRIX
c
CALL HESSEN (Q, NG)
c

C...CALCULATE EIGENVALUE FCR Q(I;J) CONVERTED TO HESSENBER MATRIX.
c .

CALL EIGEN (Q, NG,EIGR)

C .
C...FIND THE SECOND LARGEST EIGENVALUE OF Q(I,J)
e
DO 60 J=1,NG-1
DO 50 I=1,NG-1
IF(EIGR(I).GT.EIGR(I+1)) THEN
TEMP=EIGR (I)
EIGR (I)=EIGR(I+1)
EIGR (I+1) =TEMP
ENDIF
50 CONTINUE
60 CONTINUE
o
SMAX=EIGR (NG-1)
o
SUBMCC= SQRT (ABS (SMAX) )
c
RETURN
END
c
" SUBROUTINE HESSEN (HA, SNG)
o
C-
* PROGRAM TO TRANSFOR GENMERAL MATRIX TO THE HESSENBERG MATRIX.
N :
* THE ALGORITHEM IS DESIGNED BY ZHANG et. al IN QINGHUA U. CHINA.
*
* THE HESSENBERG MATRIX IS TO USED FOR EIGENVALUE CALCULATION WITH
* THE QR METHOD.
*
* A(SN,SN+4): B(SN) ! CURRENTLY A (SN, SN),B(SN):
. ! SN=<86. :
C—-
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DIMENSION HA(36,36),B(32)
INTEGER SNG, SN

C
SN=SNG
c
C...INITIALIZE B(I) WITH 1, 2, 3,....SN
C
DO 10 I=1,SN
B(I)=I
10 CONTINUE
C .
C...CORE OF THE PROGRAM
[of
L=SN-1
DO 20 M=2,L
I=M
"X=0.0
DO 30 J=M, SN
IF( ABS (HA(J,M~1)) .LE. ABS(X)) GOTO 30
X=HA (J,M-1)
E . I=J . ’
30 CONTINUE
C
IF( I .EQ. M) GOTO 9999
c !
Y=B (M)
B(M)=B(I)
. B(I)=Y
c :
DO 40 J=M-1, SN.
Y=HA (I, J}
HA (I, J)=HA (M, J)
HA (M, J) =Y
40 CONTINUE
c
DO 50 J=1,SN
Y=HA(J, T}
HA(J, 1) =HA (J, M)
HA (J, M) =Y
S0 CONTINUE
o
9999 IF( X .EQ. 0.0) GOTOC 20
c
DO 60 I=M+1,SN
Y=HA (I,M-1)
IF( Y .EQ. 0.0) GOTO 60
Y=Y/X
HA(I,M~-1)=Y
DO 70 J=M, SN
HA(I,J)=HA(I,J)~-Y*HA (M, J)
70 CONTINUE
DO 80 J=1,SN
HA (J, M) =HA (J, M) +Y*HA (J, I)
80 CONTINUE
60 CONTINUE
C
20 CONTINUE
C
DO 90 I=1,SN
DO 90 J=1,SN :
IF( I .LE. 2 .OCR. J .GT. I-2) GOTO 90
HA(L,J)=0.0
90 CONTINUE
C
RETURN
END
C
SUBROUTINE EIGEN (A, SNG, DR)
o
C——-= o e o e e e e
*
* QR METHOD TO CALCULATE THE EIGENVALUE OF MATRIX.
% ;
* INPUT MATRIX MUST BE A HESSENGER MATRIX. GENERAL MATRIX CAN
* BE CONVERTED TO A HESSENGER MATRIX BY THE PROGRAM 'UPPERH.FOR'.
*
* . THE ALGORITHEM IS DESIGNED BY ZHANG et. al AT QINGHUA U. CHINA.
*
* ARRAY .
* A(N+4,N+4) .. INPUT HESSENGER MATRIX:'
* B(N+4) ...... RECORD OF SEARCHING TIMES: .
* R(N)eevennnn THE REAL PARTS OF THE EIGENVALUE;
* I(NYeeuunnn . THE IMAGERARY PARTS OF THE EIGENVALUE:
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Neeoevonennn SIZE OF THE MATRIX:
Eievevene ... ERROR INDEX, SPECIFIED TO 0.1,

QO » * %
[l
|
i

DIMENSION A(36,36),B(36),DR(32),DI(32)
INTEGER SNG

o
N=3SNG
C
E=0.1
T=0.0
T2=N
7160 IF('N .EQ. 0) GOTO 7410
T1=0
N1=N-1

C .
7166 DO 10 L=N,2,-1

IF(ABS(A(L,L-1)) .LE.E* (ABS (A(L-1,L-1))+ABS(A(L,L})))GOTO 7174
10 CONTINUE )

L=1 .
7174 X=A (N, N)

IF( L .EQ. N) THEN
DR (N) =X+T
DI(N)=0.0
B(N)=T1
N=N1
GOTO 7160
ENDIF
Y=A (N1,N1)
W=A(N,N1)*A(N1,6N)
IF( L .EQ. Nl1) THEN
P=(Y-X)/2
Q=P *P+W
Y=SQRT (ABS (Q) )
B(N)=-T1
B(N1)=T1
X=X+T
IF(¢Q LR, ) THEN
DRANT) =X
DR (N) =X+P
DI (N1)=Y
DI (N)=-Y
ELSEIF( P .GE. 0) THEN
Y=P+Y
DR (N1) =X+Y
DR (N) =X-W/Y
DI(N1)=0.0
. DI(N)=0.0
ELSE
Y=-Y
Y=P+Y
DR (N1) =X+Y
DR (N) =X-W/Y
DI(N1)=0.0
DI{N)=0.0
ENDIF

N=N-2

GOTQ 7160 ! STARTING AGAIN.
ENDIF

IF( Tl .EQ. 10 .OR. Tl .EQ. 20) THEN
T=T+X
DO 20 I=1,N
A(L,I)=A(I,I)-X
20 CONTINUE
S=ABS (A(N,N1))+ABS (A (N1,N-2))
X=0.75*S
¥Y=0.75*S
W=(-0.4375) *s*S
ELSEIF( Tl .EQ. 60) THEN
WRITE(7,*) ‘*EIGENVALUE NOT FOUND *
RETURN
ENDIF

DO 30 M=N-2,L,-1
2=A (M, M)
R=X-Z
S=Y-2
P=(R*S-W) /A (M+1, M) +A (M, M+1)
Q=A (M+1,M+1)-Z-R-S '
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30

7240

7320

7344

80
60

7410
7416

R=A {M+2, M+1)

S=ABS (P) +ABS (Q) +ABS (R}

P=P/S
Q=Q/s
R=R/S

IF( M .EQ. L) GOTO 7240
U=E*ABS {P) * (ABS (A {M~1,M-1) ) +ABS (Z) +ABS (A (M+1,M+1)))
IF ( ABS (A{(M,M-1))* (ABS(Q}+ABS(R)) .LE. U) GOTO 7240

CONTINUE

DO 40 I=M+2,N
A(I,I-2)=0.0
CONTINUE

DO 50 I=M+3,N
A(I,I-3)=0.0
CONTINUE

DO 60 K=M, N1

IF( K .NE. N1) N2=1

IF( K .NE. M) THEN

1) R=A(K+2,K-1)

X=ABS (P) +ABS (Q) +ABS (R)

0) GOTQ 60

P=A(K,K-1)
Q=A (K+1,K-1)
R=0.0

IF (N2 .EQ.
IF{ X .EQ.
P=P/X

Q=Q/X

R=R/X

ENDIF

S=SQRT(P*P+Q*Q+R*R)

IF{ P .LT. 0) S=-S

IF( K .NE. M) THEN

A(K,K-1})=(~S)*X

ELSEIF( L .NE.

M)

THEN

A(K,K-1)= -A(K,K-1)

ENDIF

P=P+S
X=P/S
Y=Q/S
Z=R/S
0=Q/P
R=R/P

DO 70 J=K,N

P=A (K, J) +Q*A (K+1,J)
GOTO 7320

IF( N2 .EQ. 0)
P=P+R*A (K+2,J)

.

CA(K+2,J)=A(K+2,J)-P*Z
A(K+1,J)=A(K+1,J)-P*Y

A(K,J)=A(K,J)-P*X

CONTINUE
IF( XK+3 .GE. N) THEN
J=N
ELSE
J=K+3
ENDIF

Do 80 1=L,J

P=X*A(I,K)+Y*A(I,K+1)
IF( N2 .EQ. 0) GOTO 7344

P=P+Z*A({I,K+2)

A(I,K+2)=A(I, K+2)-P*R
A(I,K+1)=A(I,K+1)-P*Q

A(I,K)=A(I,K)-P
CONTINUE
CONTINUE

T1=T1l+1
GOTO 7166
CONTINUE

RETURN
END

1

LOOP 10.

!NEXT K.
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PROGRAM TXGG3

PROGRAM TO PLOT INDIVIDUAL TEXTURAL MEASURES.

AUG. 9, 1987.

aaannan

DIMENSION X({12),Y(12),A(7,7)

CHARACTER*10 INFIL(10),FCRM

DATA FORM/' (*'S$'',A)'/

DATA X. /1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,0.,0./
DATA Y /.1,.2,.3,.4,.5,.6,.7,.8,.9,1.,0.,0./

CALL MPIOPS

WRITE (7, FORM) 'HOW MANY FILES TO COMPARE : '
READ(S, *) N
N=10
WRITE(7,*) 'ENTER 10 FILE NAMES : .
DO S5 I=1,N :
READ(S, ' (A) ') INFIL(I)
5 CONTINUE :

aan

CALL SCALE (X,7.0,10,1)
CALL SCALE (Y,6.0,10,1)

WRITE (7, FORM) *FEATURE YOU WANT TO PLOT : '
READ (5, *) TX . : ,
WRITE (7, FORM) *0(1),90(2),45(3),135 (4),RANGE (5),AVERAG (6),
+VARIANT (7) : °
READ (5, *) IF

CALL PLOTS (0,0,0)
CALL PLOT (1.0,1.0,-3)

M=0
888 M=M+1
QPEN(ONTT=1, FTLR=INPTL (M), STATUS='0LDY)

READ(1,*) ((A(I,J),J=1,7),I=1,7)

TEMP=A(TX, IF) ) )
IF(TX.GE.3.AND.TX.LE.5.AND.IF.NE.5.AND.IF.NE.7) THEN
TEMP=TEMP/10
ELSE
TEMP=SQRT (TEMP)
ENDIF
Y (M) =TEMP

CLOSE (1}
IF (M.EQ.N} GOTO 777
GOTO 888

777 CALL AXIS (0.0¢,0.0, 'TEXTURE MEASURES',-16,7.0,0.0,X(11),X(12))
CALL AXIs (0.0,0.0,'VALUE',5,6.0,90.0,Y(11),Y(12))
CALL LINE (X,Y,10,1,1,11)

STOP
END
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PROGRAM FTXTUR

PERFORMS TWO DIMENSIONAL FFT, THEN CALCULATE. THE REGIONAL ENTROPY.
THE CURRENT PROGRAM WORK FOR 32X32 SUBIMAGE. USING THE VIRTUAL
MEMORY, ANALYSIS CAN BE PERFORMED CN UP TO 128X128 SUBIMAGE.

INPUT DATA IS READ FROM THE PICTURE PLANE *'0', SUBIMAGE AREA IS
SELECTED BY POINTING THE CURSCR TO THE LEFT CORNOR OF THE AREA.

OUTPUT UNIT 2 CONTAINS THE OUTPUT FILE OF THE GRAY-LEVEL-SCALED

FOURIER SPECTRUM TO BE PLOT BY 'PLOTFF.FOR' AS AN IMAGE OR 'FFT3D.FOR'
AS A 3-D PLOT. )

THE SIZES OF ENTROPY RECIONS ARE 25 X 25, 17 X 17, 11 X 11, 5 X 5.
THIS ALGORITHM OF REGIONAL ENTROPY ANALYSIS IS PROPOSED BY

M.E. JERNIGAN AND F. D'ASTOUS. IN 'ENTROPY-BASED TEXTURE ANALYSIS IN
THE SPPATIAL FREQUENCY DOMAIN', I[EEE, TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLEGENCE, VOL.- PAMI-6, NO. 2, MARCH 1984.

LI BIN, JULY 22, 1987.

nanNaaonaanaonaanonOaananaa

DIMENSION H{32,32),B(32),QB(32,32)
COMPLEX B,QB ‘

REAL K
CHARACTER*10 OUTFL1,CUTFL2, FORM
DATA FORM/* ("*S'',A)'/
o}
CALL MPIOPS
CALL ERASER
NN=32
C .
WRITE (7,FORM) 'ENTER FILE NAME FOR THE TXTURE MEASURES : '
READ (5, * (A)’) OUTFL2
c
OPEN (UNIT=1,FILE=0OUTFL2,STATUS='NEW')
c
C INPUT SECTION
C .
9899 WRITE (7, FORM) 'ENTER FILE NAME FOR THE FOURIER SPECTRUM : °*

READ (3, ' (A) ') OUTFL1 :
OPEN (UNIT=2,FILE=QUTFL1, STATUS='NEW',6 FORM='UNFORMATTED")

C
1 WRITE (7,FORM) 'JOYSTIC (0) OR KEYBORAD (1) COORDINATES 2 '
READ (5, *) ISEL
o}
IF (ISEL .EQ. 0) THEN
WRITE (7,FORM) 'Hit <BS>*
CALL CURSOR (IX,IY) . '
WRITE (7, *) 'WRITE DOWN THE POSITION : ', IX,IY
ELSE :
WRITE (7,FORM) ‘ENTER X, Y COORDINATES : ‘'
READ (5,*) IX,IY
ENDIF
o
IXSIZE=NN
IYSTZE=NN
c .
CALL BOXON (IX,IY,IXSIZE,IYSIZE)
C
WRITE(7,FORM) 'IS THIS AREA ACCEPTABLE (1/0) ? °
READ (5, *) RESPONSE
IF( RESPONSE .EQ. 0) THEN
CALL BOXOFF (IX,IY,IXSIZE,IYSIZE)
GO TO 1
ENDIF :
¢
CALL PEER(0)
DO 22 IROW=1,IYSIZE
DO 33 ICOL=1,IXSIZE
CALL GRAFIN (IX+ICOL-1, IY+IROW-1,1I21)
H(IRCOW, ICOL) =121
33 CONTINUE
22 CONTINUE
c
C FFT SECTION
Cc
c WRITE (7, *) 'ORIGIN CENTERED FFT ? 1/0°'
Cc READ (5, *) OPTION
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OPTION = 1

WRITE (7, *) "LOG SCALE? (1=Y, 0=N)’

READ (5, *) SCALOG

IF (SCALOG.EQ.1) THEN .
WRITE (7, *) 'ENTER SCALE FACTOR K'
READ (5, *) K

ENDIF

WRITE (7, *) 'ENTER GRAY LEVEL'

READ (5, *) G

[s N Ke!

G=255

TRANSFORM THE ROWS OF H(I,J), STORE IN Q(I,L)

[eNeNe!

" T1=SECNDS (0.0)
DO 10 I=1,NN
ICOUNT=0
DO 20 J=1,NN
ICOUNT=ICOUNT ! 1
IF (OPTION.EQ.1) IC=(-1)**(I+J)
IF (OPTION.EQ.0) IC=1
. B{ICOUNT)=H(I,J)*IC
20 - CONTINUE
- CALL FOUREA (B, NN, -1)
M=0 :
DO 30 L=1,NN
M=M+1
, OB (I,L)=B(M)
30 CONTINUE
10 CONTINUE
c
C TRANSFORM THE COLUMNS OF QB (I, J)
c .
DO 50 J=1,NN
ICOUNT=0
DO 60 I=1,NN
ICOUNT=1COUNT+1
B (ICOUNT)=QB (1, J) /NN { DIVIDED BY 1/N.
60 CONTINUE
CALL FOUREA (B, NN,-1)
M=0 >
DO 70 L=1,NN
M=M+1
OB (L, J) =B (M)
70 CONTINUE
50 CONTINUE
TYPE*, 'TIME IN TRANSFORM = ',SECNDS (T1),' SECONDS.'

U=7 -

VMIN=1.0E9%

VMAX=-1.0E9

DO 80 I=1,NN

DO 80 J=1,NN '
PSD=QB (I, J) *CONJG (OB (I, J))
QB(I,J)=PSD
H (I, J)=SQRT (PSD)
VMAX=AMAX1 (H (I, J), VMAX)
VMIN=AMIN1 (H (I, J),VMIN)
IF (SCALOG.NE.1) GOTO 80
H(I,J)=LOG(1+K*H(I,J))
0 CONTINUE

[oReEON: ]

SUMS OF 4 REGIONS: 25X25, 17X17, 11X11, 5X5

IWl=NN/2+1-12
IW11=NN/2+1+12
SUM1=0.0
DO 81 I=IW1l,IWll
DO 81 J=1IWl, IwWll
SUM1=SUM1+QB(I,J)
81 CONTINUE
IWN2=NN/2+1-8
IW22=NN/211¢0
SUM2=0.0
DO 82 I=1IW2,IW22
DO 82 J=IW2, IW22
SUM2=SUM2+QB(I, J)
82 CONTINUE
IW3=NN/2+1-5
IW33=NN/2+1+5
SUM3=0.0
DO 83 I=IW3,IW33
DO 83 J=1IW3,IW33
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, SUM3=SUM3+QB (I, J)
83 CONTINUE .
IW4=NN/2+1-2
IWA4=NN/2+1+2
SUM4=0.0
DO 84 I=IW4,IwW44
DO 84 J=IW4,IW44
: SUM4=SUM4+QB (I, J)

84 CONTINUE
c
C ENTROPY
c
AR=2.0

BASE=ALOG (AR)

ETP1=0.0
DO 85 I=IWl,IWil
DO 85 J=1IW1, IW1l
TEMP1=QB (I, J)/SUM1
TEMP2=ALOG (TEMP1)
ETP1=ETP1+TEMP1*TEMP2
85 CONTINUE . .
ETP1=-ETP1/ (ALOG(25.0*25.0) /BASE)

ETP2=0.0
DO 86 I=IW2,IW22
DO 86 J=IW2,IW22
TEMP1=QB (I, J)/SUM2
TEMP2=ALOG (TEMP1)
ETP2=ETP2+TEMP1*TEMP2
86 CONTINUE
ETP2=-ETP2/ (ALOG(17.0*17.0) /BASE)

C
ETP3=0.0
DO 87 I=IW3,IW33
DO 87 J=IW3,IW33
TEMP1=QN (T, J) /SUM3
TEMP2=ALOG ('TiEMP1)
ETP3=ETP3+TEMP1*TEMP2
87 CONTINUE :
ETP3=-ETP3/ (ALOG (11.0*11.0) /BASE)
C

ETP4=0.0
DO 88 I=IW4,IWd4
DO 88 J=IW4,IWA4
TEMP1=0B (I, J)/sUM1
TEMP2=ALOG (TEMP1)
ETP4=ETP4+TEMP1*TEMP2
88 CCNTINUE
ETP4=-ETP4/ (ALOG (5.0*5. 0)/BASE)

e

C

C PRINT THE TXTURE MEASURES
WRITE(7,7777) 'ETPl = ',ETPY,' ETP2 = ',ETP2
WRITE(7,7777) 'ETP3 = ',ETP3,' ETP4 = ',ETP4

77177 FORMAT (1X,2 (A, F10.5))
WRITE (1, ' (4F15.4)') ETP1,ETPZ2,ETP3,ETP4

o)
VMAX=-1.0E9
VMIN=1.0E9
DO 90 I=1,NN
DO 90 J=1,NN
IF(I.EQ.NN/2+1.AND.J.EQ.NN/2+1) GOTO 90
VMAX=AMAX1 (H (I, J), VMAX)
VMIN=AMIN1 (H (I, J), VMIN)
‘90 CONTINUE
C
. RANG=VMAX-VMIN
C

BO 95 I=1,NN
DO 95 J=1,NN
H(I,J)=((H(I,J)~VMIN)/RANG)*G
IF(I.EQ.NN/2+1.AND.J.EQ.NN/2+1) H(I,J)=255
95 CONTINUE

c
DO 100 I=1,NN
WRITE(2) " (H(I,J},J=1,NN)
100 CONTINUE i
o}

- CLOSE (2)
WRITE (7, FORM) °*NEXT FILE 2 (1/0) *
READ (5, *) NEXT
IF (NEXT.EQ.0) GOTO 9090
GOTO 9899
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c
9090 CALL OFF('G')
STOP
. END
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c_._ R, -
C

C SUBROUTINE: FOUREA .

C PERFORMS COOLEY-TUKEY FAST FOURIER TRANSFORM

acanononaa

C
C-=
c .
SUBROUTINE FOUREA (DATA,N,ISI)
THE COOLEY~TUKEY FAST FOURIER TRANSFORM IN ANSI FORTRN
DATA IS A ONE-DIMENSIONAL COMPLEX ARRAY WHOSE LENGTH, N IS A
POWER OF TWO. ISI IS +1 FOR AN INVERSE TRANSFERM AND -1 FOR A
FORWARD TRANSFORM. TRANSFORM VALUES ARE RETURNED IN THE INPUT
ARRAY, REPLACING THE INPUT.
AFTER PROGRAM BY BRENNER, JUNE 1967.
VIRTUAL DATA(1)
COMPLEX DATA
COMPLEX TEMP,W
PI=4.*ATAN (1.}
FN=N
C
C PUT DATA IN BIT-REVERSED ORDER
o}
J=1
DO. 80 I=1,N
C
C AT THIS POINT, I AND J ARE A BIT REVERSED PAIR (EXCEPT FOR THE
C DISPLACEMENT OF +1
c
IF (I-J) 30,40, 40
c
C EXCHANGE DATA(I) WITH DATA(J) IF I.LT.J
c .
30 TEMP~=DATA (J)
DATA (J) =DATA(I)
DATA (1) =TEMP
c
C IMPLEMENT J=J+1, BIT-REVERSED COUNTER
c
40 M=N/2
50 IF (J-M) 70,70, 60
60 J=J-M
M= (M+1}/2
GOTO S0
70 J=J+M
80 CONTINUE
c
C COMPUTE THE BUTTERFLIES
c )
MMAX=1
90 IF (MMAX-N) 100,130,130
100 ISTEP=2*MMAX
DO 120 M=1,MMAX o
THETA=PI*FLOAT (ISI* (M-1)) /FLOAT (MMAX)
W=CMPLX (COS (THETA) , SIN (THETA) )
DO 110 I=M,N, ISTEP
J=I+MMAX
TEMP=W*DATA {J)
DATA (J)=DATA (I) ~TEMP
DATA (I)=DATA (I)+TEMP
110 CONTINUE
120 CONTINUE
: MMAX=ISTEP
GOTO 90
130 IF (ISI) 160,140,140
c .

C FOR INVERSE TRANSFORM -- ISI=1 -- MULTIPLY OUTPUT BY 1/N
c

140 DO 150 I=1,N
DATA(I)=DATA(I)/FN
150 CONTINUE
160 RETURN
END
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$ TY FFT2.FOR

MAIN PROGRAM: FFT2.FOR

PERFORMS. TWO DIMENSIONAL FFT, THE OUTPUT FILE IS THE UNSCALED FOURIER
SPECTRUM WHICH CAN BE DIRECTLY PLOTTED AS 3D SURFACE BY 'FFT3D.FOR'.
THE CURRENT PROGRAM WORK FOR 32X32 SUBIMAGE. WITH SLIGHT MODIFICATION,
ANALYSIS CAN BE PERFORMED ON UP TO 128X128 SUBIMAGE.

IF THE VIRTUAL MEMEORY IS TO BE USED, CHANGE ALL REGULAR ARRAYS TO
VIRTUAL ARRAYS {(INCLUDING ARRAY IN THE SUBROUTINE °'FOUREA.FOR'), THEN
LINK THE PROGRAM AS FOLLOWING:

F77 FFTXR
LINK FEFTXR/XM,FOUREA/XM, SY:VIRTXM, SY:F77LIB

NOTE: SUBROUTINE 'BOXON' AND 'BOXOFF' ARE NOT INCLUDED HERE, THEY CAN
BE FOUND IN 'FTXTUR.FOR'.

LI BIN, JULY 22, 1987.

nanaacaQcaonanNaNnoanNnNaaanan

DIMENSION H(32,32),B(32),QB(32,32)
COMPLEX B,QCB

REAL K

CHARACTER*10 OUTFL1,FORM

DATA FORM/' (''$'',A)'/

C
CALL MPIOPS
CALL ERASER
NN=32
C
C
C INPUT SECTION
c
9199 WRTTE (7, FORM) *ENTER FTLE NAME FOR THEY FOURTER SPECTROM 30
READ (5, * (A) ') OUTELL
OPEN (UNIT=2,FILE=OUTFL1,STATUS="'NEW', FORM="'UNFORMATTED")
c
1 WRITE (7, FORM) 'JOYSTIC {0) OR KEYBORAD (1) COORDINATES ? '
READ (5, *) ISEL
o
IF (ISEL .EQ. 0) THEN
WRITE (7,FORM) 'Hit <BS>'
CALL CURSOR (IX, IY)
WRITE(7,*) 'WRITE DOWN THE POSITION : ',IX,IY
ELSE
WRITE (7,FORM) 'ENTER X, Y COORDINATES : '
READ (5,*) IX,IY
ENDIF
IXSIZE=NN
IYSIZE=NN
C
CALL BOXON (IX, IY,IXSIZE, IYSIZE)
c
WRITE (7,FORM) 'IS THIS AREA AGCEPTABLE (1/0) ? °
READ {5, *) RESPONSE
IF ( RESPONSE .EQ. 0) THEN
CALL BOXOFF (IX,1Y,IXSIZE,IYSIZE)
Go TO 1
ENDIF
[of
CALL PEER (0)
DO 22 IROW=1, [YSIZE
DO 33 ICOL=1, IXSIZE
CALL GRAFIN (IX+ICOL~1, IY+IROW-1,121)
H (IROW, ICOL) =121
33 CONTINUE
22 CONTINUE
c
C FFT SECTION
C
c WRITE (7, *) 'ORIGIN CENTERED FFT 2 1/0°
c READ (5, *) OPTION T
C
OPTION = 1
C
C TRANSFORM THE ROWS OF H(I,J), STORE IN Q(I,L)
c
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T1=SECNDS (0.0)

-DO 10 I=1,NN
ICOUNT=0

DO 20 J=1,NN

TCOUNT=ICOUNT+1
IF (OPTION.EQ.1l) IC=({(~1)**(I+J)
IF (OPTION.EQ.0) IC=l
B (ICOUNT)=H(I,J) *IC

20 CONTINUE
CALL FOUREA (B, NN,-1)
M=0
DO 30 L=1,NN
M=M+1
QB (I,L)=B (M)
30 . CONTINUE
10 CONTINUE
C
C TRANSFORM THE COLUMNS OF QB (I,J)
C .

DU 50 J=1,NN
ICOUNT=0
DO 60 I=1,NN
ICOUNT=ICOUNT+1

B(ICOUNT)=QB(I,J)/NN ! DIVIDED BY 1/N.
60 CONTINUE
CALL FOUREA (B,NN,-1)
M=0
DO 70 L=1,NN
M=M+1
QB (L, J) =B (M)
70 - CONTINUE
50 CONTINUE .
TYPE*, *TIME IN TRANSFORM = ',SECNDS(T1l),' SECONDS.'
~
U=7
VMIN=1.0E9

VMAX=—1.0E9
DO 80 I=1,NN
DO 80 J=1,NN
PSD=QB {1, J) *CONJG (QB (I, J)) .

QB(I,J)=PSD ! QB(TI,J) STORES THE POWFR SPECTRUM.
H(I,J)=SQRT(PSD) ! H(I,J) STORES THE FOURIER SPECTRUM.
IF(I.EQ.NN/2+1.AND.J.EQ.NN/2+1) GOTO 890 'SKIP D.C.VALUE.

VMAX=AMAX1 (K (I, J), VMAX)
VMIN=AMIN1 (H (I, J), VMIN)

80 CONTINUE
p )
H(NN/2+1,NN/2+1)=VMAX
c
DO 100 I=I,NN )
WRITE (2) (H(I,J),J=1,NN)
100 CONTINUE
C
CLOSE (2) ‘
WRITE (7,FORM) 'NEXT FILE ? {1/0) °'
READ (5, *) NEXT
IF (NEXT.EQ.0) GOTO 9090
GOTO 9899
C
9090 CALL OFF{'G")
STOP
END
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c

PROGRAM COMFTX

CALCULATE THE DISTANCE AMCNG THE ENTROPY VECTORS
FOR 10 SUBIMAGES. INPUT FILE SHOULD BE A 10 X 4
MATRIX (OUTPUT FROM FTXTUR.FOR)

DIMENSION A(10,4), DIF(10,10,4),DIS(10,10)
CHARACTER*10 FORM1,FORM2, INFL,OUTFL
DATA FORM1/'(''S$'',A)'/FORM2/'(A)"'/

WRITE (7,FORM1) 'ENTER INPUT FILE NAME : '

READ (5, FORM2) INFL

WRITE (7,FORM1l) ‘'ENTER OUTPUT FILE NAME : '

READ (5, FORM2) OUTFL

WRITE (7,FORM1) ‘'SELECTION QCF OUTPUT DEVICE (2 FOR DISK OQUTPUT)

READ(5,*) U

OPEN (UNIT=1,FILE=INFL,STATUS='OLD")

IF (U.EQ.2) THEN
OPEN (UNIT=2
ENDIF

, FILE=OUTFL, STATUS="NEW"')

READ (1, *) ((A(I,J),J=1,4),1I=1,10)

WRITE (7, f (4F12.5)")

((A(I,J),J=1,4),1I=1,10)

C DISTANCES CALCULATED FROM INDIVIDUAL ENTROPY REGIONS.

of

10
C

DO 10 K=1,4
DO 10 I=1,10
DO 10 J=1,10
DI¥(I,J,K)=ABS
CONTINUE

C DISTANCES AMONG SUBIMAGES

C

"CONTINUE

DO 500 I=1,10
DO 500 J=1,10
SUM=0.0
DO 600 K=1,4

(A(I,K)-A(J,K))

SUM=SUM+DIF (I, J,K) **2

CONTINUE

DO 100 K=1,4

WRITE (U, 200)
WRITE (U, *)
WRITE (U, 200)

FORMAT (10F8.3)
STOP
END

DIS (I, J)=SQRT (SUM)

((DIF(I,J,K),J=1,10),I=1,10)

((DIS(I,JN,J=1,10),1I=1,10)
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MAIN PROGRAM: FFT.FOR

PERFORMS TWO DIMENSIONAL FFT.

THIS PROGRAM IS DESIGNED FCOR TESTING PURPOSE. THE SUBROUTINE
IT SHOULD LINK WITH IS FOUREA.FOR WHICK ALSQO USES VIRTUAL
MEMORY. THE TESTING DATA SET CAN BE MADE UP BY THE USER.

H(128,128) IS THE INPUT MATRIX.

B(128) STORE ONE ROW (COLUMN) CF H THEN PERFORM FFT ON THIS ARRAY.
QB (128,128) THE RESULTANT FORWARD FFT MATRIXE, COMPLEX VARIABLE.
HB(128,128) THE RESULTANT INVERSE FFT MATRIXE, COMPLEX VARIABLE.

SINCE H(128,128) IS REAL, THE REAL PART OF HB(128,128) SHOULD
EQUAL TO H(128,128).

annaananoaacaaaanaaaa

VIRTUAL H(128,128),B(128),QB(128,128),HB(128,128),P(128,128)
COMPLEX B,QB, HB

CHARACTER*10 INFILE,FORM1, FCRM2*12

FORML="(''$'",A)"
FORM2=" (1X, #44F7.3) "

999 WRITE (7,FORM1) 'INPUT DATA FILE: °'
READ(S, ' (A) ') INFILE :

OPEN (UNIT=1,FILE=INFILE,STATUS='OLD',6ERR=999)

WRITE (7, FORML) 'ENTER SIZE OF MATRIXE (4,8,16,32,64,128): '
READ (5, *) NN

WRITE (FORM2 (5:7),* (I3} ') NN

WRITE (7, FORM1) 'ORIGIN CENTERED FFT (1/0) 2 '

READ (S, *) OPTION

C
C READ IN DATA
C
READ(1,*) ((H(I,J),J=1,NN),I=1,NN)
C .
C TRANSFORM THE ROWS OF H(I,J), STORE IN Q(I,L)
Cc
DO 10 I=1,NN
ICOUNT=0
DO 20 J=1,NN
- ICOUNT=ICOUNT+1 :
IF (OPTICON.EQ.1) IC=(-1)**(I+J)
IF (OPTION.EQ.0) IC=1
B (ICOUNT)=H (I, J)*IC
20 CONTINUE
CALL FOUREA (B, NN, -1)
M=0 -
DO 30 L=1,NN
M=M+1
QB(I,L)=B(M)
30 CONTINUE
10 CONTINUE
c .
C TRANSFORM THE COLUMNS OF QB (I, J)
C
DO 50 J=1,NN
. ICQUNT=0
DO 60 I=1,NN
ICOUNT=ICOUNT+1
B(ICOUNT)=QB(I,J) /NN ! DIVIDED BY 1/N.
60 CONTINUE
CALL FOUREA(B,NN,-1)
M=0
DO 70 L=1,NN
’ M=M+1
.. QB(L,J)=B(M)
70 CONTINUE
50 CONTINUE
DO 80 I=1,NN
WRITE (7, FORM2) (REAL(QB(I,J)),J=1,NN)
WRITE (7, FORM2) (AIMAG(QB(I,J)),J=1,NN)
WRITE (7, *)
80 CONTINUE

C THE FOURIER SPECTRUM
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WRITE (7, *) ‘THE FOURIER SPECTRUM'
DO 85 I=1,NN
DO 85 J=1,NN
TEMP=QB (I, J) *CONJG (QB (I,J})
P (I,J)=SQRT (TEMP)

85 CONTINUE
Cc
WRITE (7,FORM2) ((P(I,J),J=1,NN),I=1,NN)
c
C
C == - *
C INVERSE TRANSFORM
C- *
C
C TRANSFORM THE ROWS OF QB(I,J), STORE IN HB(I,L)
¢ .

DO 100 I=1,NN
‘ ICOUNT=0
DO 200 J=1,NN
ICOUNT=ICOUNT+1
B (ICOUNT) =QB (I, J)

200 CONTINUE
CALL FCQUREA (B, NN, 1)
M=0
DO 300 L=1,NN
M=M+1
HB (I, L)=B (M)
300 CONTINUE
100 CONTINUE
C
C TRANSFORM THE COLUMNS OF HB(I,J)
C

DO 500 J=1,NN
ICOUNT=0
DO 600 I=1,NN
ICOUNT=ICOUNT+1
B (ICOUNT) =HB (T, J} ! NOT DIVIDED BY 1/N.
600 CON'T'TNUFR, .
CALL FOUREA (B, NN, 1)
M=0
DO 700 L=1,NN
M=M+1
IF (OPTION.EQ.1) IC=(-1)** (L+J)
IF (OPTION.EQ.0)} IC=1
HB(L,J) =B (M) *IC*NN  !TIMES N
700 CONTINUE
500 CONTINUE

WRITE (7, *) 'THE INVERSE FFT:'
DO 800 I=1,NN

WRITE (7, FORM2) (REAL(HB(I,J)),J=1,NN)
WRITE (7, FORM2) (AIMAG(HB(I,J)),J=1,NN)
WRITE (7, *) :
800 CONTINUE
sTOP
END
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PROGRAM TO PLOT THE FOURIER SPECTRUM.

R FORTRA
*FFT3D=FFT3D/W/S c

R LINK
*FFT3D=FFT3D, SDCAL (GGCAL) , TVLIB/F

PROGRAM FFT3D
RFAT. H(3?)

INTEGER IZ(32,32)"
DATA IZ/1024*0/

CALL PLOTS (0,0,0)
CALL NEWPEN (256) .
CALL SYMBOL({1.5,.5, .20, 'FOURIER SPECTRUM’,0,16)

OPEN(UNIT=2,NAME="FOR002.DAT', TYPE="'OLD', FORM="UNFORMATTED")

DO S0 I=1,32
READ(2) (H(K),K=1,32)
DO 50 J=1,32
IZ{(I,J)=INT(H(J))
50 CONTINUE

WRITE (5, *) " INPUT ANGLE OF ROTATION' (MULTIPLE OF 90)°
READ(5,*) IROT
ITRANS=IROT/90

WRITE (5, *) " INPUT AZIMUTH ANGLE '
READ(S, *) ANG
CALL ROTATE (I1Z, ITRANS)

S5 YMAX=32.
PI=3.141592654
RANG-=ANG/180.*PI
SCALE=.10 IEEEEREEE L RSN
COsY=COS (RANG) *SCALE
SINY=SIN (RANG) *SCALE
ZSCALE::.OI IEAREERE SR LN

DO 150 IX=1,32
DO 175 IY=1,32
Y= (FLOAT (IY~1) *SINY+FLOAT (IZ{IX, IY})*ZSCALE+1)
X= (FLOAT (IX-1) *SCALE+FLOAT (IY~1) *COSY+1)
IF (IY.NE.1l) GOTO 75
WRITE (5, *) X,Y
CALL PLOT (X, Y, 3}
GOTO 175
WRITE (5,*) X,Y
75 CALL PLOT(X,Y,2)
175 CONTINUE
150 CONTINUE

DO 250 IY=1,32
DO 275 IX=1,32
Y= (FLOAT (IY-1) *SINY+FLOAT(I2(IX,IY))*ZSCALE+1)
X= (FLOAT (IX-1) *SCALE+FLOAT (IY-1)*COSY+1)
IF (IX.NE.1l) GOTO 230
CALL PLOT(X,Y, 3)
GOTO 275
230 CALL PLOT (X,Y,2)
275 CONTINUE
250 CONTINUE

Y=1.0
X=(31.*SCALE+1)
CALL PLOT (X,Y,3)

Y= (FLOAT (IZ (32,1)) *ZSCALE+1)
CALL PLOT (X,Y,2)

'Y= (FLOAT (I2(1,1))*ZSCALE+1)
X=1
CALL PLOT (X, Y, 3)

CALL PLOT(1.0,1.0,2)
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Y=1.0
X=(31.*SCALE+1)
CALL PLOT(X,Y,2)

Y=(31.*SINY+1) ,
X=(31.*SCALE+31.*C0OSY+1}
CALL PLOT(X,Y, 2)

Y=(31.*SINY+FLOAT(IZ(32,32)*ZSCALE+1)}
CALL PLOT(X,Y,2)

STOP

END

..... SUBROUTINE THAT CALCULATES THE IMAGE ROTATION

SUBROUTINE ROTATE (IA, ITIME)

INTEGER IA(32,32),IB(32;32)
IF (ITIME.EQ.0) RETURN

DO 200 IANGL=1,ITIME
DO 50 IX=1, 32
DO 50 IY=1,32
IB(IY, 32-(IX~1))=IA(IX, 1Y)
50 CONTINUE

DO 100 IX=1,32
DO 100 1IY=1,32
IA(IX, IY)=IB(IX, 1Y)

100 CONTINUE
200 CONTINUE
RETURN
END
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PRGRAM GRPAT.FOR

c
C PLOT THE GRAY SCALED FOURIER POWER SPECTRUM.
pt . : A
c
c

REAL F(128) A

CHARACTER*10 FILE

CALL MPIOPS

$5% WRITE(7, *} '"ENTER FFT FILE WAME®
. READ(5,'(A)') FILE

OPEN(UNIT=2,FILE=FILE, STATUS='OLD', FORM="'UNFORMATTED', ERR=555)

WRITE (7,*) 'ENTER SIZE OF THE IMAGE (N)'
READ(S,*) N .
WRITE (7, *) 'SELECTION OF PICTURE PLANE {0,1,2)"
READ (5, *) IP
WRITE (7, *) 'ENTER ORIGIN (IX,IY) FOR DISPLAY <BAS> '
READ (5, *) IX,IY
c CALL CURSOR(IX,IY)
CALL OFF ('G")
CALL ON('P')
CALL PEER(IP)

DO 10 I=1,N
READ (2) (F (J), J=1,N)
DO 20 K=1,N
IZ=NINT(F (K))
CALL GRAFOT (IX+K-1,IY+I-1,12)

20 CONTINCE
10 CONTINUE
STOP
END
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MAIN PROGRAM: FFTCOR.FOR

PERFORMS TWO DIMENSIONAL FFT, AND CROSS CORRELATIONS
BETWEEN TWO FUNCTIONS (MUST BE THE SAME SIZE) .

naaaoannaaan

VIRTUAL H1 (64,64),B1(64),0B1(64,64),HB(64,64)
VIRTUAL H2(64,64),B2(64),0B2(64, 64)

COMPLEX B1,QBl,B2,QB2,HB

CHARACTER*10 INFIL1,INFIL2,FORMI1, FORMZ*lZ FORM3*12

c
FORMl=" ("'§'* A)"
FORM2=" (1X, §#4F5.1) "
FORM3=' (1X, ##4F5.1) "
Cc .
WRITE (7,FORML) 'OUTPUT DEVICE: °
READ (S, *) U
c .
999 WRITE (7, FORM1) 'INPUT DATA FILE #1 : '
READ(S, ' (A) ') INFILL
c
OPEN (UNIT=1,FILE=INFILL,STATUS='0LD', ERR=999)
- .
888 WRITE (7,FORM1) 'INPUT DATA FILE #2 : '
READ (S, ' (A) ') INFIL2
c . ) .
OPEN (UNIT=2,FILE=INFIL2,STATUS='OLD',ERR=888)
C
WRITE (7,FORM1) 'SIZE OF THE MATRIX (4,8,16,32,64,128) : '
READ (5, *) NN
NNT=2*NN
WRITE (FORM2 (5:7), ' (I3) ') NNT
WRITE (FORM3 (5:7), ' (I3) ') NN
o .

C INITIALIZE H1,H2, SO THAT THE INPUT ARRAY HAS LENGTH OF 2N.
C N .

DO 5 I=1,NNT
DO 5 J=1, NNT
H1(I,J)
H2(I,J)
CONTINUE

READ IN DATA

aaaw

READ(1, *) ((H1(I,J),J=1,NN),I=1,NN)
READ (2, *) ({H2(I,J),J=1,NN),I=1,NN)

aaa

TRANSFORM THE ROWS OF H(I,J), STORE IN Q(I,L)

DO 10 I=1,NNT
ICOUNT=0
DO 20 J=1,NNT
ICOUNT=ICOUNT+1
B1 (ICOUNT) =1 (I, J)
B2 (ICOUNT) =H2 (I, J)
20 CONTINUE
CALL FOUREA (B1,NNT,-1)
CALL FOUREA (B2,NNT, -1)
M=0
DO 30 L=1,NNT
M=M+1
QB1{I,L)=B1 (M)
QB2 (I,L)=B2 (M)

30 CONTINUE

10 CONTINUE

C .

C TRANSFORM THE COLUMNS OF QB (I, J)
C

DO SO J=1, NNT
"ICOUNT=0
DO 60 I=1,NNT
ICOUNT=TCOUNT+1
Bl (ICOUNT) =QB1 (I, J) /NNT { DIVIDED BY 1/N.
B2 (ICOUNT) =QB2 {I,J) /NNT
60 CONTINUE
CALL FOUREA (B1,NNT,-1)
‘CALL FOUREA (B2, NNT, -1)
M=0
DO 70 L=1,NNT
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M=M+1
QB1 (L, J) =Bl (M)
QB2 (L,J)=B2 (M)

[

70 CONTINUE
50 CONTINUE
c
c *
c INVERSE TRANSFORM
C~ *
o]
C CALCULATE THE NORMALIZING FACTOR SUM
SUM1=0.0
SUM2=0.0

BG 750 1=1,NNT
DO 750 J=1,NNT
SUM1=SUM1+H1 (I,J)*H1(I,J)
SUM2=SUM2+H2 (I,J)*H2(I,J)
750 CONTINUE

SUM1=SQRT (SUM1)
SUM2=SQRT (SUM2)
SUM=SUM1 *sUM2
Cc
C TRANSFCORM THE ROWS OF QB(I,J)*CONJG((QB2(I,J)), STORE IN HB(I,L)
C
C EACH ENTRY IS DIVIDED BY THE NORMALIZING FACTOR.
c
DO 100 I=1,NNT
ICOUNT=0
DO 200 J=1,NNT
ICOUNT=ICOUNT+1
. B1 (ICCUNT) = (OBl (I,J) *CONJG(QB2 (1I,J))) /SUM
200 CONTINUE
CALL FOUREA (B1,NNT, 1)

M=0
DO 300 L=1,NNT
M=M+1
HB (T, L)=B1 (M)
300 CON'TINUR
100 CONTINUE
C
C TRANSFORM THE COLUMNS QF HB(I,J)
C
DO 500 J=1,NNT
) ICOUNT=0
DO 600 I=1,NNT
ICOUNT=ICOUNT+1
. Bl (ICOUNT)=HB (I, J) *NNT ! TIMES N 2
600 CONTINUE
CALL FOUREA (B1,NNT,1)
M=0
DO 700 L=1,NNT
M=M+1 '
IF (OPTION.EQ.1) IC=(-=1}**(L+J)
IF (OPTION.EQ.Q) IC=1
HB (L, J) =Bl (M) *IC*NNT !TIMES N
700 CONTINUE
500 CONTINUE
WRITE (U, '(A,F10.5)") ' THE LARGEST CORRELATION FUNCTICN = ',
+ REAL{(HB (1, 1))
WRITE (U, *) ‘THE CORRELATION FUNCTION: '
DO 800 I=1,NNT
WRITE (U, FORM2) (REAL(HB(I,J)),J=1,NNT)
WRITE (U, FORM2) (AIMAG (HB(I,J)),J=1,NNT)
WRITE (U, *)
800 CONTINUE
STOP
END
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PROGRAM CROCOR

PERFORMS CROSS CORRELATION BETWEEN TWO FUNCTIONS.
ONLY ONE FUNCTION IS COMPUTED IN THIS PROGRAM, IT
IS (N/2,N/2). THE INPUT MATRICES MUST BE THE SAME
SIZE.

JuLy, 20, 1987.
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[eNeXKe!
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100

DIMENSION A1l1(30,30),A2(30,30),B1(30,30),B2(30,30)
CHARACTER*10 FILEl,FILE2,FORM1,FORM2
DATA FORM1/' (''$'',A)'/

WRITE (7,FORM1) 'ENTER FILE #1 : °
READ(5,'(A)') FILE1
WRITE (7, FORM1) ‘ENTER FILE #2 : °*
READ(S5, ' (A) "'} FILE2

09EN(UNIT=1,FILE=FILE1,STATUS='OLD';FORM='UNFORMATTED')
OPEN(UNIT=2,FILE=FILE2,STATUS='OLD"', FORM="'UNFORMATTED"')

INPUT DATA

SUM

" CONTINUE

DO S5 I=1,30
READ (1) (Al(I,J),J=1,30)
READ (1) (A2(I.,J),J=1,30)
READ(2) (Bl (I1,J),J=1,30)
READ(2) (B2(I,J),J=1,30)
CONTINUE

SUM1=0.0

SUM2=0.0

SUM3=0.0

SUM4=0.0

DO 10 I=1, 30

DO 10 J=1,30

SUMI-SUMLIAL (1, ) AAL (L, )
SUM2=SUM2+A2 (I,J)*A2(I,J)
SUM3=sUM3+B1 (I,J)*B1l(I,J)
SUM4=SUM4+B2 (I,J)*B2(I,J).

CONTINUE :

SUM5=0.0
SUM6=0.0
DO 100 I=1,30
DO 100 J=1,30
. SUMS=SUM5+Al1(I,J) *B1(1,J)
SUM6=SUM6+A2 (I,J) *B2(I,J)

COR1=SUMS/SQRT (SUM1 *SUM3)
COR2=SUM6/SQRT (SUM2*SUM4)
TYPE*,COR1,COR2

STOP
END
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