Texture Measures ofSpatial Patterns on Thematic Mapper Imagery: An Experiment.

Li Bin
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Recommended Citation

Bin, Li, "Texture Measures ofSpatial Patterns on Thematic Mapper Imagery: An Experiment." (1987). Student Work. 585.
https://digitalcommons.unomaha.edu/studentwork/585

Texture Measures of Spatial Patterns on Thematic Mapper
 Imagery: An Experiment.

A Thesis
Presented to the
Department of Geography/Geology and the
Faculty of the Graduate College University of Nebraska
In Partial Fulfillment of the Requirements for the Degree
Master of Arts
University of Nebraska at Omaha
\section*{By}
Li Bin
December, 1987

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP73223
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Thesis Acceptance

Accepted for the faculty of the Graduate College, University of Nebraska, in partial fulfillment of the requirements for the degree Master of Arts, University of Nebraska at Omaha.

Committee

Chairman

Date

Abstract

The digital format of remote sensing data facilitates the measurement of spatial patterns. The concept of measurability of spatial patterns has important geographic implications and may open up an alternative applications for satellite remote sensing of urban areas. Texture analysis, a set of techniques developed in pattern recognition, is found to be useful in measuring spatial pattern on digital imagery. Two approaches of texture analysis are selected. One is Haralick's Spatial Dependence Matrix, the other is Jernigan's, et. al., Entropy-based texture measures. They perform in spatial domain and frequency domain respectively. Ten subimage areas in Omaha suburb are selected from a Landsat TM image. The subimage areas includes the major residential spatial patterns in the area. Through analysis, it is found that residential areas with

different spatial features do present distinguishable texture measures, in both SPADEP and Entropy-based texture analysis. With the introduction of texture analysis, a new set of terminology can be used to describe a spatial pattern and may greatly enhance our concepts of certain spatial phenomena. Potential application of texture analysis in this context could be in urban land use mapping, computer-assisted land use monitoring and comparative study in urban spatial patterns.

Acknowledgements

I would like to thank the members of my thesis committee: Dr. Michael Peterson and Dr. David Dimartino of the Geography Department, and Dr. Peter Suzuki of the Urban Studies Department. Their expertise and efforts were imperative and sincerely appreciated.

Special thanks are given to Dr. Peterson, for his advise, encouragement, and for his patience in reading and correcting my English writing.

I also appreciate the helps of Mark Laustrup, the manager of the Remote Sensing Application Laboratory, who provided the imagery data and unlimited computing time.

Additionlly, I would like to thank Dr. Joseph Wood, the former chair of the graduate committee, who helped me to start the graduate program here.

Finally, I would like to thank the International Studies Program at UNO. Without their initial support, I would not be able to come to this country and have such wonderful experiences and excellent education at this university.

Contents

Chapter 1 Analysis

I. Introduction 1.
II. Literature Review On Texture Analysis 5
A. The Definition of Texture 5
B. Major Methods for Texture Analysis 6
III. Study Area, Data, Methodology, and Thesis Arrangement 13
Chapter 2 Methodology
I. Spatial Dependence Matrix Approach 15
A. The Principle 15
B. Texture Measure from SPADEP 18

1) Angular Second Moment 19
2) Contrast 20
3) Correlation 21
4) Sum of Squares 22
5) Inverse Difference Moment 22
6) Sum Average 23
7) Entropy 23
8) Sum Entropy 24
9) Difference Entropy 25
10) Sum Variance 27
11) Difference Variance 28
12) Information Measures of Correlation 28
13) Maximal Correlation Coefficient 30
C. The Computer Implementation of the SPADEP Approach 32
14) Gray Level Transformation 3.2
15) Compute SPADEP matrices 33
16) Compute the Statistical Texture Models 34
II. The Entropy-based Texture Analysis 35
A. The Fourier Transform of an Image 35
B. Regional Entropy Measures in the Fourier Energy Spectrum 37
C. The Computer Implementation of the Fourier Transform, the FFT 41
III. Methods to Analyze the Texture Measures 43
A. The Distance Measure 43
B. Cross Correlation 43
Chapter 3 Analysis
I. Introduction 46
II. Texture Analysis in a Suburban Area 50
A. SPADEP Regional Measurement 50
B. SPADEP Local Measurement 59
C. Fourier Spectrum Pattern of Texture and the Entropy-based Textural Analysis 61
III. Summary 66
Chapter 4 Conclusion 74
Appendices 82
References 121

List of Figures

2.1: A 3×3 image and the general form of the SPADEP. 16
2.2: Neighboring relations and the SPADEP in the 0 degree direction. 16
2.3: SPADEP in the 90,45 , and 135 degree directions. 16
2.4: The normalized SPADEP. 17.
2.5: Illustration of $P_{x+y}(i)$ and $P_{x-y}(j)$. 19
2.6: Maximum minimum case of ASM. 20
2.7: Examples of contrast measurement. 21
2.8: Correlation measurement. 21
2.9: Inverse Difference Moment measurement. 23
2.10: Sum Average measurement. 23
2.11: Entropy measure, the maximum case. 24
2.12: Sum Entropy measure, the maximum case. 25
2.13: Examples of DIFETP. 26
2.14: Sum Variance. 27
2.15: Comparison of DIFVAR with CON and DIFETP. 28
2.16: Compare IMC with COR. 30
2.17: The Q matrix and its Hessenberg transform. 32
2.18: Illustration of SPADEP matrix construction (horizontal). 34
2.19: An 8×8 matrix to be transformed to the Fourier series. 36
2.20: Fourier transform. 39
2.21: EBT analysis. 40
2.22: Texture pattern and the Fourier spectrum. 42
2.23: Local measurement of texture properties. 44
3.1: Guideline of texture analysis. 48
3.2: Study area (subimage). 47
3.3: Study area. 49
3.4: ASM measures. 51
3.5: Correlation measures. 52
3.6: Entropy measures. 53
3.7: Sum Entropy measures. 54
3.8: Variance of the Entropy measures. 55
3.9: Variance of the Sum Entropy measures. 55
3.10: Difference entropy measures. 56
3.11: Information measures of correlation. 56
3.12: Maximal Correlation measures. 57
3.13: Distance measures using seven texture features. 58
3.14: Correlation matrix of ASM measure. 60
3.15: Distance measure of ASM (mean). 61
3.16-3.27: Fourier spectrum of the study areas. 63-67
3.28: Image of Fourier power, spectrum.3.29: Regional Entropy measures in Band 3.68
3.30: The spectrum regions used to measure the entropy. 69
3.31: Regional Entropy measures in Band 1. 79
3.32: Regional Entropy measures in Band 4. 80
3.33: Regional Entropy measures in Band 5. 81

Chapter 1: Introduction

I. INTRODUCTION

Satellite imagery has been used with great success in the study of the atmosphere, lithosphere, water bodies, vegetation and soil. However, its application to urban areas is limited largely to broad-scale land use mapping, and even these results are somewhat disappointing. This is due to the low spatial resolution of satellite imagery and an orientation in remote sensing toward spectral analysis. The improvements of the sensor system and the processing techniques may eventually overcome the obstacle of spatial resolution; meanwhile, extending our concepts of remote sensing beyond spectral analysis could also open up alternative applications of satellite remote sensing to the study of urban areas.

Satellite data such as Landsat imagery is recorded in digital form by a series of electromagnetic sensors. To most people, this is simply a prerequisite for digital image processing and image enhancement. The geographic implications of digital imagery, especially to the study of urban areas, are largely overlooked.

A city may be composed of various land use types, such as
residential, commercial, industrial etc. Each of these areas contains certain physical elements, i.e., street, building, open space (paved or vegetation covered) etc. A land use pattern is a certain combination of these elements, which is different from one to another both quantitatively and qualitatively. Even within the same type of land use, the spatial combination can be different. A new and an old residential area may have a similar composition of physical elements, i.e., they both have houses, streets, lawns and trees. An older residential area, however, may have grid street layout and houses more closely together while in the new residential area, streets are curved, trees are small and houses are further apart. When these patterns are represented in a digital image of proper scale, they become associated with reflectance patterns which can be described by the spatial relationship among reflectance levels (gray levels). In another words, the spatial characteristics of a land use pattern become measurable in a digital image. Although the spatial characteristics thus obtained are only the physical features of certain land use patterns at a certain scale, the notion of the measurability of spatial patterns in digital imagery is worthy of consideration.

In urban geography, it is a tradition to study the physical form in a city as a device to reveal the social and economic processes. In
fact, major geographic models on urban growth and intra-urban structures are morphological with the concentric zone (Burgess), sector (Hoyt), and multi-nuclei models (Harris and Ullman) being often cited. When a city is represented in a Landsat image, the identity of most individual morphological elements, such as houses, expressed by their shapes, will be lost, but the spectral characteristics of these elements and the spatial relationships among them are generalized in the reflectance patterns. Furthermore, such relationships become measurable and may enhance some of our conceptions of urban geography.

Although measuring characteristics of spatial patterns in digital imagery may be a novel idea, a similar notion, texture analysis, has long been recognized in the field of pattern recognition. Texture analysis, though definitions and methods vary, is fundamentally a way to measure the spatial relationships among gray levels. Numerous mathematical models have been developed to implement texture analysis. The primary objective of such studies is to find distinguishable texture measures for the sake of automated pattern recognition and classification. Many of these models are designed to simulate pattern recognition by human beings, and are not necessarily relevant to the spatial characteristics with which we are concerned. Nevertheless, it is found that some texture measures,
such as Haralick's (1976) Spatial Dependence Matrix approach and Jernigan's, et. al. (1983) Entropy-based texture measure in the frequency domain, tend to reveal the overall characteristics of a spatial pattern and contain certain geographical implications.

The theoretical assumption of this thesis is that different spatial patterns on the earth surface are measurable in digital imagery. Further, texture analysis, a set of techniques developed in pattern recognition, may be used to acquire such measurements. The measurability of spatial pattern in a digital image may greatly enhance our understanding of certain spatial organizations. It is the objective of this thesis to measure spatial patterns on digital imagery and in particular, to seek possible applications to the analysis of urban areas.

To evaluate the potential of the concept of measurability of spatial pattern in digital imagery and techniques of texture analysis, urban residential patterns are chosen for study. Residential areas constructed at different times, based on different street systems, resided in by different groups of people, situated in different locations will exhibit different spatial characteristics. Would such characteristics be revealed by certain texture measures from Landsat digital imagery? Would similar residential patterns have similar measures? What are the geographic implications of these
measurements?
Landsat Thematic Mapper (TM) imagery, is used in this project. The higher spatial resolution of TM imagery (30 meters per pixel) may better represent the spectral reflectance of basic physical elements in an urban scene. Texture analysis has been largely applied on MSS data (79 meters per pixel). Selecting TM imagery in this study can be viewed as another investigation of its potential application to urban areas.

The following section provides a comprehensive review of texture analysis and spatial pattern recognition.

II. TEXTURE ANALYSIS AND SPATIAL PATTERN RECOGNITION

A. The Definition of Texture

In general, texture in an image refers to the spatial relationships of reflectance levels, often expressed as gray tones. Texture has generally been defined through an enumeration of characteristics such as fine, coarse, regular, irregular, etc., in order to facilitate the implementation of corresponding quantitative measures. However, it is found that a precise definition of texture does not exist. In his review articie on texture analysis, Haralick (1979) proposed the tone-texture concept which is the further development of his early
concept of discrete tonal feature (1973). According to the tone-texture concept, gray tone and texture are not independent. The relationship between tone and texture is inextricable. Tonal primitive has been defined as a maxima connected set of pixels having a given tonal property (Haralick, 1979). In order to characterize texture, one must characterize the tonal primitive properties as well as the spatial interrelationships among them due to the inextricable relationships between tone and texture; thus, texture analysis, indeed, is two dimensional. However, Haralick pointed out, the existing approaches tend to emphasize one or the other aspect and do not treat each equally.

B. Major methods of textural analysis

Computer-aided texture analysis has been studied since 1960 (Weszka, et. al. 1976). Major methods have been developed in both spatial and frequency domains. To give a general view of texture analysis, Haralick published an article in 1979 reviewing typical statistical and structural approaches to texture analysis. Since then, new approaches have been emerging but it seems that they are still confined to the classic methods. Therefore, Haralick's classification of texture approaches is still useful for purposes of review.

According to Haralick, approaches to texture analysis of
imagery can be divided into two categories, statistical and structural. There had been eight statistical approaches to the measurement and characterization of image texture: autocorrelation functions, optical transform, digital transforms, textural edgeness, structural elements, spatial gray tone coocurrence probabilities, gray tone run lengths, and autoregressive models. As indicated before, each of these techniques tends to emphasize one or other aspects of the texture feature.

The first three of these approaches are performed in the frequency domain. It is well known that specific components in the spatial frequencies domain representation of an image contain explicit information about the spatial distribution. Autocorrelation functions, i.e., the Fourier transform of the power spectrum, is a measure of the linear dependence between gray levels. It tends to reveal the properties of tonal primitives (especially their sizes). The faster the autocorrelation function drops off with distance, the smaller size of tonal primitives is indicated, the finer the texture. Pioneer work was done by Kaizer with seven aerial photographs of an Arctic region (1955). Since then, the autocorrelation approach has been seldom used. More recent texture analyses in frequency domain has focused on the Fourier power spectrum. Early experiments were optical processing, measuring the light distribution of the Fraunhofer
diffraction pattern (the optical equivalence of the Fourier power spectrum). The experiments done by Lendaris and Stanley (1969) present an example of the most popular texture measures of this kind. The pattern vectors they used are the average energy in annular rings and in 9 degree wedges of the diffraction pattern respectively. Aerial photographs were used to test the power of such methods in distinguishing man-made from non-man-made features and the subclasses of man-made features. Ninety percent of identification accuracy was reported. In general, summed energy measures in the Fourier power spectrum is the major method used in texture analysis.

Although successful texture extraction (usually over 90 percent accuracy of classification) has been found in many projects with various remotely sensed data (Egbert, et. al., Gramenopoulos, Horning and Smith, Kirvida and Jonhson, Maurer, Bajcsy and Lieberman, etc.), texture analysis in the frequency domain has met criticism in that this approach only reveals the global information from across the complete image and neglects important local discrimination information about the texture. It is also found that texture measures in the frequency domain are not invariant with size, orientation and even with monotonic gray level transformation (Haralick, 1979). In a comparative study of texture measures for terrain classification, Weszka, et. al., concluded that measures in the
the spatial domain (Weszka, et. al., 1976). In practice, Rosenfield, et. al., consistently found that the frequency approach is less successful than the other approaches (Rosenfield, et. al., from 1981 to 1982).

Nevertheless, research on texture measures in the frequency domain did not end. Recently, M. E. Jernigan and F. D'astous developed an approach of entropy-based texture analysis. They used the regional entropy measures in the spatial frequency domain which would provide texture discriminating information independent of information contained in the usual summed energy within frequency domain features. The measure is size invariant and comparable to that of gray level coocurrence contrast feature.

Besides viewing texture as spatial frequency distribution, Rosenfield, et. al., found that texture can be also measured in terms of edgeness per unit area (Rosenfield and Troy, 1970, Rosenfield and Thurston, 1971). Coarse textures have a small number of edges per unit area while fine textures have a high number of edges per unit area. Further experiments have been carried out by Sutton and Hall (1972), Hsu (1977).

The structural element approach is proposed by J. Serra(1974), and G. Matheron (1967). They use a matching procedure to detect the spatial regularity of shapes called structured elements in a binary
image. This measure emphasizes the shape aspects of the tonal primitives but can only do so for binary images.

Another major second order statistical measure of texture is called the Gray Level Spatial Dependence approach. It emphasizes the spatial distribution and spatial dependence among the gray tones in a local area. B. Julesz (1962) first used gray tone spatial dependence coocurrence statistics in texture discrimination experiments. E. M. Darling and R. D. Joseph (1968) first used this approach in identifying cloud types in satellite imagery. Bartels et. al., (1969) used one dimensional coocurrence in a medical application. Rosenfield and Troy (1970) and Haralick (1971) suggested two dimensional spatial dependence of gray tones in a coocurrence matrix for each fixed distance and/or angular spatial relationship; Haralick et. al., used statistics of this matrix as measures of texture in satellite imagery, aerial, and microscopic imagery (1973, 1972). Chien and Fu (1974) showed the application of gray tone coocurrence to computer-assisted chest X-ray analysis. Pressman (1972) applied the similar techniques to cervical cell discrimination. Chen and Pavlidis (1978) used coocurrence in conjunction with split and merge procedure to segment an image on the basis of texture. More recently, Jensen (1979) and Jensen and Toll (1982) reported on the use of Haralick's angular second moment (ASM) as an additional feature in
the supervised classification of Landsat MSS imagery at the urban fringe and in urban land use change-detection mapping. All of these studies achieved reasonable results on different textures using gray tone coocurrence. In their comparative studies of textural measures, Weszka, et. al., (1976) found that the coocurrence approach was among the best so far. The study by Conners and Harlow (1976) theoretically concluded that Haralick's gray-tone coocurrence matrices had the best innate discriminative ability. The power of the coocurrence approach is that it characterizes the spatial interrelationship of the gray tones in a textural pattern and is invariant under monotonic gray level transformation.

Further development of this idea by Sun and Wee (1983) resulted in a new texture transformation called Neighborhood Gray Level Dependence Matrix (NGLDM) approach. It is said to be essentially invariant even under spatial rotation.

The gray level run length approach represents a family of first order statistical texture measurements in the spatial domain. It characterizes coarse texture as having many pixels in a constant gray run and fine texture as having few pixels in a constant gray tone run. The study by Hsu (1978) found, among 17 proposed first-order texture measures to classify level I land cover from digital aerial photography, gray level run length statistics were superior. Further
experiments were reported by Irons and Peterson (1981) and Shih and Showengerdt (1983).

The autoregressive models are a way of revealing the linear dependence one gray level has on another. It was introduced by McCormick and Jayaramamurthy (1974) and experimented by Deguchi and Morishila (1976), Tou et. al., (1976), and Tou and Chang (1976). Theoretically, the autoregressive approach is sufficient to capture everything about a texture, however, the textures it can characterize are likely to consist of microtextures.

Besides the eight statistical approaches reviewed above, there is another set of texture measures of structural approaches. Pure structural models of texture are based on the view that texture are made up of primitives which appear in near regular repetitive spatial arrangements. It is a much more complex approach and is not used widely.

Recently, the idea of using fractal analysis to extract spatial features in Landsat imagery has been reported (Goodchild and Mark, 1987). The application of fractal geometry would introduce a whole set of texture measures in the fractional dimensions. Further experiments of fractal analysis are being conducted in the field of pattern recognition.

From the literature review, we see that no effort has been
devoted to textural analysis with TM imagery and that most studies are purely technical experiments for pattern recognition or classification. Few applications of texture analysis have been found in urban study and geographic inquiry.

III. STUDY AREA, DATA, METHODOLOGY, AND THESIS ARRANGEMENT

The city of Omaha is selected as the study area. The major emphasis is placed on the urban fringe; the most active area in the city in terms of change. Landsat Thematic Mapper Digital data acquired on June 12, 1985 will constitute the primary data source. Other data sources used to assist in the study are: two Landsat MSS images of Omaha taken in 1976 and 1978, aerial photos, updated land use maps, and the USGS topographic sheets.

For comparative purposes, two approaches of texture analysis will be used. One is Haralick's gray level spatial dependence matrix approach in the spatial domain, the other is Jernigan's, et. al., entropy-based texture analysis in the frequency domain. Since these two approaches have not been implemented in the current image processing system at the Remote Sensing Application Laboratory, considerable amount of effort is needed to be devoted to computer programming. The Eye-com Spatial Data system and PDP-11
mini-computer will serve as the major computer facilities used in the project.

The thesis is divided into four chapters. The following two chapters will discuss the methodology and the process of analysis. The conclusions from this study will be drawn in chapter four.

Chapter 2: Methodology

In this chapter, two approaches of textural analysis, the Spatial Dependence (SPADEP) and the Entropy-Based Texture (EBT) approaches and their computer implementation will be discussed.
I. Spatial Dependence Matrix Approach

A. The Principle

This approach is based on the assumption that textual information on an image is contained in the overall spatial relationships among gray levels and that such relationships can be expressed by the measurement of the coocurrence of one gray level to another in different directions and distance within a limited space, such as 3×3 subimage. The mathematical expression of the coocurrence frequency is the Spatial Dependence Matrix (SPADEP).

Consider the following example. Suppose Fig. 2-1a is the image to be measured. If the range of the gray level is from 0 to 3 , the possible coocurrence relationships of the four gray levels can be expressed as Fig. 2-1b. Notice that this matrix is symmetrical.

Fig. 2-1 A 3×3 image and the general form of the SPAUEP $(\mathbb{N}=4)$.

Fig. 2-2 Neighboring relations (a) and the SPADEP in the 0 degree direction (b).

0123		0123		0123	
0	4000	0	0200	0	0101
1	0201	1	2010	1	1011
2	0021	2	0101	2	0100
3	0110	3	0010	3	1100

Fig. 2-3 SPADEP in the 90,45 , and 135 degree directions.

Now, let's compute the SPADEP matrices in four directions with neighboring gray level and distance all equal to 1 (Fig. 2-2). Fig2-2b depicts the 0 degree coocurrences for the 3×3 matrix in Figure 1. The 0 entry at $(0,0)$ indicate no $0-0$ coocurrences while the 2 entry at $(0,1)$ indicates two $0-1$ coocurrences at this angle. Using
the same method, we can construct the SPADEP matrices in 90,45 and 135 degree directions (Fig. 2-3). For the purposes of explanation, we define such matrices as $P(i, j)$.

To obtain the normalized frequency, i.e., the relative probability of these matrices, each entry in $P(i, j)$ is divided by the number of nearest neighboring pixel pairs. For an image of $N X M$, the normalizing factors R are:

$$
\begin{aligned}
& R_{1}=2 N(M-1) ; \\
& R_{2}=2 M(N-1) ; \\
& R_{3}=2(M-1)(N-1) ; \\
& R_{4}=2(N-1)(M-1) ;
\end{aligned}
$$

where $R_{1}, R_{2}, R_{3}, R_{4}$ represent the R in the four directions: $0,90,45$, 135. Fig. 2-4 shows the normalized $\mathrm{P}(\mathrm{i}, \mathrm{j})$. Notice that the sum of rows and the sum of columns are both equal to 1.

0.00	0.17	0.00	0.08	0.03	0.00	0.00	0.00
0.17	0.00	0.17	0.00	0.00	0.17	0.00	0.08
0.00	0.17	0.00	0.00	0.00	0.17	0.17	0.08
0.08	0.00	0.00	0.17	0.00	0.08	0.08	0.00
0 degrees				90 degrees			
0.00	. 0.25	0.00	0.00	0.00	0.12	0.00	0.12
0.25	0.00	0.12	0.00	0.12	0.00	0.12	0.12
0.00	0.12	0.00	0.12	0.00	0.12	0.00	0.00
0.00	0.00	0.12	0.00	0.12	0.12	0.00	0.00
45 degrees				135 degrees			

Fig. 2-4 The normalized SPADEP

After constructing the normalized $P(i, j)$, we can now apply statistical models to extract textural information from these matrices. Haralick, et. al., proposed fourteen statistical models for texture extraction from the SPADEP. Each of these measures tends to emphasize certain aspects of textural properties in an image, e.g., homogeneity, complexity, linear structure, contrast, number and nature of boundaries present, etc. Among the 14 statistical measures, some are relatively difficult to interpret. No detailed explanations on these models have been found. Since it is important to know what textural information each of these features expresses, a pre-study of these models is included in the following sections.

B. Texture Measures from SPADEP

A theoretical explanation of the statistical texture models is out of the scope of this thesis. Only a brief discussion will be presented with examples. We give the following notations that are used for the texture models:

N : number of gray levels in the image;
$P(i, j):$ ($i, j)$ th entry in a normalized SPADEP;
$\mathrm{Px}(\mathrm{i}), \mathrm{Py}(\mathrm{j})$: ith/or jth entry in the marginal probability matrix obtained by summing the rows/or columns of $\mathrm{P}(\mathrm{i}, \mathrm{j})$;
$P_{x+y}(K)=\Sigma P(i, j)$, for $i+j=K=2,3,4, \ldots \ldots ., 2 N ; \quad$ (Fig. 2-5a);
$P_{x-y}(K)=\Sigma P(i, j)$, for $|i-j|=K=0,1,2, \ldots \ldots, N-1 . \quad$ (Fig. 2-5b).

Fig. 2-5 Illustration of $P_{x+y}(i)$ and $P x-y(i)$.
$P x+y(K)$ is a matrix representing the sums along the right diagonal of $P(i, j)$ (Fig. 2-5). $\quad P x-y(K)$ is a matrix obtained by summing each group of elements with subscripts i and j and $|i-j|=0,1$, $2, \ldots \ldots . \mathrm{N}-1$. For example, elements along the dark line in the matrix of Figure 2-5b., $|i-j|=0$.

1) Angular Second Moment

$$
A S M=\Sigma P(i, j)^{2} .
$$

ASM is one of the most frequently used SPADEP measures. In general it measures the homogeniety of the image. Since $P(i, j)$ ranges from 0 to 1 , the more widely distributed of $P(i, j)$ the smaller the ASM, indicating less homogeneity in the image (Fig. 2-6a). ASM itself ranges from 0 to 1 . In an image presenting only one gray level, all but
one element in $P(i, j)$ equal to 0 , ASM reaches the maximum value 1 (Fig. 2-6b). ASM is invariant under monotonic gray level transformation.

3	3	3	0.00	0.00	0.00
0.00					
3	3	0.00	0.00	0.00	0.00
3	3	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	1.00	ASM1 $=1.0000$

$\mathrm{N}=4 \quad$ The SPADEP in horizontal direction

0	12	ASM1 $=0.0833$	888
345	ASM2 $=0.0833$	888	
678	ASM3 $=0.1250$	888	
	ASM4 $=0.1250$		
$N=9$	Measures in four directions	$N=9$	Horizontal measure

Fig. 2-6 Maximum minimum case of ASM.

2) Contrast

$$
C O N=\Sigma\left[n^{2} P(i, j)\right] \quad \text { for }|i-j|=n=0,1, \ldots \ldots ., N-1 .
$$

This is essentially the moment of inertial of the $P(i, j)$ around its main diagonal. It is a natural measure of the degree of spread of the matrix value, i.e., the contrast or the amount of local variation present in an image. The higher the value of CON, the higher the contrast; $0 \leq \mathrm{CON} \leq(\mathrm{N}-1)^{2}$. Fig. 2-7 is an example of contrast measurement. Notice that CON is not independent of gray level and the measure of CON will be changed under monotonic gray level

transformation.

$\mathrm{N}=4$	The SPADEP at 135 degree.					Measures in four directions:	
300	0.50	0.00	0.00	0.00		CON1	6.0000
030	0.00	0.00	0.00	0.00		CON2	6.0000
003	0.00	0.00	0.00	0.00		CON3	4.5000
	0.00	0.00	0.00	0.50		CON4	0.0000
$N=5$							
	0.50	0.00	0.00	0.00	0.00		
	0.00	0.00	0.00	0.00	0.00	CON1	10.6667
	0.00	0.00	0.00	0.00	0.00	CON2	10.6667
040	0.00	0.00	0.00	0.00	0.00	CON3	8.0000
004	0.00	0.00	0.00	0.00	0.50	CON4	0.0000

Fig. 2-7 Examples of Contrast measurement,

3) Correlation

$$
C O R=\{\Sigma[i j P(i, j)]-U x U y\} / S x S y ;
$$

where Ux, Uy, Sx, Sy are the means and standard deviations of the marginal probability matrices Px, Py.

$$
\begin{array}{lll}
0 & 0 & 0 \\
3 & 3 & 3 \tag{b}\\
0 & 0 & 0 \\
N & \\
N
\end{array}
$$

$$
333 \text { (a) }
$$

$$
\begin{aligned}
& \text { COR1 }=1.0000 \\
& \text { COR2 }=-1.0000 \\
& \text { COR3 }=-1.0000 \\
& \text { COR4 }=-1.0000
\end{aligned}
$$

Correlation measures in four directions
Fig. 2-8 Correlation measurement.

COR measures the gray level linear dependencies in an image. $-1 \leq C O R \leq 1$. The COR measures in Fig. 2-8 indicate perfect linear correlation in the horizontal direction and the inverse correlated property along vertical and the two diagonal directions. COR is also not invariant under monotonic gray level transformation.
4) Sum of Squares

$$
\mathrm{SOS}=\Sigma\left[(i-U)^{2} P(i, j)\right] .
$$

SOS is likely the moment about the mean of $\mathrm{P}(\mathrm{i}, \mathrm{j}), \mathrm{U}$. This feature is difficult to interpret. It is not invariant under gray level transformation.
5) Inverse Difference Moment

$$
\left.\mathrm{IDM}=\Sigma\left[\mathrm{P}(\mathrm{i}, \mathrm{j}) /\left(1+(\mathrm{i}-\mathrm{j})^{2}\right)\right)\right] ;
$$

IDM measures the difference among gray levels; $0 \leq I D M \leq 1$. When all non zero $P(i, j)$ are located along the diagonal $((i, j)=(j, i))$, then Sum $[P(i, j)]=1, i-j=0$, IDM reaches its maximum value 1 . Fig. 2-9 gives an example of the IDM measure and the normalized $P(i, j)$ in the right diagonal coocurrence measure. IDM varies under gray level transformation.

$\mathrm{N}=4$	SPADEP along left diagonal	Measures in four directions			
2	1	1	0.00	0.00	0.00
0.00	0.05	0.00	0.00	IDM1 $=0.5167$	
3	2	1	0.00	0.00	0.50
0	0.00	IDM2 $=0.5167$			
0	2	0.00	0.00	0.00	0.25

Fig. 2-9 Inverse Difference Moment measurement.
6) Sum Average

$$
\begin{aligned}
\text { SUMAVG }= & \Sigma\left[K P_{x+y(}(K)\right] ; i+j=K=2,3,4, \ldots \ldots, 2 N ; \\
& 2 P(1,1) \leq S U M A V G \leq 2 P(N, N) .
\end{aligned}
$$

This measure is also difficult to interpret. It seems that the high SUMAVG indicates the higher coocurrence among high gray levels (Fig. 2-10). SUMAVG is not an invariant under gray level transformation.

$\mathrm{N}=4$		$\mathrm{~N}=4$	
000	SUMAVG1 $=4.0000$	000	SUMAVG1 $=3.0000$
33.3	SUMAVG2 $=5.0000$	222	SUMAVG2 $=4.0000$
000	SUMAVG3 $=5.0000$	0.00	SUMAVG3 $=4.0000$
SUMAVG4 $=5.0000$		SUMAVG4 $=4.0000$	

Fig.2-10 Sum average measurement.

7). Entropy

$$
E T P=-\Sigma\left\{P(i, j) \log _{2}[P(i, j)] .\right.
$$

This is the measurement of average joint information or joint entropy, From the properties of entropy, ETP \leq ETPi + ETPj, with the
equality if and only if, the two gray levels i and j are statistically independent. ETPmax $=\log _{2} R(R$ is the number of resolution pairs). For a 3×3 image, the R in horizontal and vertical directions is 12 (with neighboring distance and gray level interval equal to 1), ETPmax $=\log _{2} 12=3.58496$. Along the left and right diagonals, $R=8$, ETPmax $=\log _{2} 8=3.0$. Fig. $2-11$ shows the maximum case of ETP. Obviously, ETP measures the complexity of an image which can be defined as the number of gray levels in a subimage. The higher the ETP, the more complex it is. ETP is invariant under monotonic gray level transformation. Therefore, it is very useful for the comparative study of texture.

```
012
345
678
N=9
ETP1 = 3.5895
ETP2 = 3.5895
ETP3 = 3.0000
ETP4 = 3.0000
```

Fig. 2-11 Entropy measure, the maximum case.

8) Sum Entropy

$$
\text { SUMETP }=-\Sigma\left\{P_{x+y}(i) \log _{2}\left[P_{x+y}(i)\right]\right\}
$$

Since $P(i, j)$ is a symmetrical matrix, $P(i, j)=P(j, i), P_{x+y}(i)$
contains the sums for all $(i+j)=(j+i)$ (Fig. 2-5a). SUMETP is simply another way to measure the complexity of an image. SUMETPmax $=$ $\log _{2} H R$, where $H R=R / 2$. For the same image of Figure 2-11, $H R$ in horizontal and vertical direction equals $12 / 2=6$, along left and right diagonal, $H R=8 / 2=4$. In this maximum case, SUMETP is equal to 2.5849 and 2.0 respectively (Fig. 2-12). SUMETP is also an invariant under monotonic gray level transformation.

```
012
345
678
N=9
```

```
SUMETP1 = 2.5850
```

SUMETP1 = 2.5850

```
SUMETP2 = 2.5850
```

SUMETP2 = 2.5850
SUMETP3 = 2.0000
SUMETP3 = 2.0000
SUMETP4 = 2.0000

```
SUMETP4 = 2.0000
```

Fig. 2-12 Sum entropy measure, the maximum case.

9) Difference Entropy

DIFETP $=-\Sigma\left\{P_{x-y}(i) \log _{2}\left[P_{x-y}(i)\right]\right\}$.
$P_{x-y}(i)$ is the sum for each $|i-j|=0,1,2, \ldots \ldots, N-1$; in $P(i, j)$ (Fig.
2-5b). The minimum value of DIFETP occurs when there is only one non-zero value in $P_{x-y}(i)$, i.e., non-zero values in $P(i, j)$ cluster in one group of $|i-j|=0,1,2, \ldots \ldots, N-1$. DIFETP measures the similarity of spatial relationships among gray levels in an image. The high DIFETP indicates more different spatial relationships among gray levels. In
the image of Figure 2-11, the neighboring relations are the same in each direction, i.e., one gray level difference along the horizontal direction, three levels along the vertical, two levels and four levels difference along 45 degree and 135 degree angles respectively. As a result, the DIFETP in all directions equals to 0 . Fig. 2-13 are some other examples of the DIFETP measures. It seems that DIFETP would be useful to measure the regularity of an image. Compared with the IDM measure, DIFETP reveals spatial relationships at another level. Moreover, DIFETP is invariant under monotonic gray level transformation.

	DIFETP1 $=0.0000$		DIFETP1 $=0.0000$
00	DIFETP2 $=0.0000$	123	DIFETP2 $=0.0000$
222	DIFETP3 $=0.0000$	123	DIFETP3 $=0.0000$
000	DIFETP4 $=0.0000$	123	DIFETP4 $=0.0000$

100	DIFETP1 $=0.6500$	
222	DIFETP2 $=0.6500$	
000	DIFETP3 $=0.0000$	
		DIFETP4 $=0.8113$

$$
N=4
$$

Fig. 2-13 Examples of DIFETP measurement.
10) Sum Variance

$$
\text { SUMVAR }=\Sigma\left[(i-S U M E T P)^{2} P_{x+y^{(i)}}\right] .
$$

Let's consider the maximum/minimum case. When there is only one gray level in an image, the sum entropy equals to 0 ; values in $P_{x+y}(i)$ are focused on $P_{x+y}(i)=1$, SUMVARmax $=i^{2}$. The higher occurrence of neighboring high gray levels, the larger the SUMVAR; SUMVAR becomes smaller when SUMETP increases and $P_{x+y}(i)$ is widely distributed (Fig. 2-14).

$\mathrm{N}=9$		$\mathrm{N}=9$	UMVAR1 $=79.98$
888	SUMVAR1 $=324.0$	0.12	SUMVAR2 $=66.6495$
888	SUMVAR3 $=324.0$	345	SUMVAR3 $=74.0000$
888	SUMVAR4 $=324.0$	678	SUMVAR4 $=74.0000$
222	SUMVAR1 $=36.0000$	*SUMVAR is not independent of gray levels in an image.	
222	SUMVAR2 $=36.0000$		
222	SUMVAR3 $=36.0000$		

Fig. 2-14 Sum variance measurement.

The textural property expressed by SUMVAR is not clear. Moreover, since the measure likely varies with gray level, the same spatial relationship but different primitives would have different SUMVAR values (Fig. 2-14). Therefore, SUMVAR is not a very desirable measure for texture analysis.
11) Difference Variance

DIFVAR $=\Sigma\left[(i-\text { DIFETP })^{2} P_{x-y}(i)\right]$.
DIFVAR measures the variation in the $P(i, j)$ matrix. It is similar to the contrast measure. In fact, when the DIFETP equals to 0 , DIFVAR and CON have the same value (Fig. 2-15). DIFVAR is invariant under monotonic gray level transformation, therefore, it is more useful in a comparative study.

N = 9		
012	DIFVAR1 $=1.0000$	CON1 $=1.0000$
345	DIFVAR2 $=9.0000$	CON2 $=9.0000$
678	DIFVAR3 $=4.0000$	CON3 $=4.0000$
	DIFVAR4 $=16.0000$	CON4 $=16.0000$
$\mathrm{~N}=4$		
0011	DIFETP1 $=0.9183$	DIFVAR1 $=0.5644$
0	011	DIFETP2 $=0.9183$

Fig. 2-15 Comparison of DIFVAR with CON and DIFETP.
12) Information Measures of Correlation

Haralick proposed two models of IMC:

$$
\begin{aligned}
& \text { IMCI }=(H X Y-H X Y 1) / M a x(H X, H Y) ; \\
& \text { IMCII }=\text { SQRT }\{1-\exp [-2.0(H X Y 2-H X Y)] ;
\end{aligned}
$$

where
$H X Y=-\Sigma P(i, j) \log _{2}[P(i, j)] ;$ the joint entropy of $P(i, j) ;$
$H X=-\Sigma P x(i) \log _{2}[P \times(i)] ; \quad$ entropy of the marginal matrix $P \times(i) ;$
$H Y=-\Sigma P y(j) \log _{2}[P y(j)] ; \quad$ entropy of the marginal matrix $P y(i) ;$
$H X Y 1=-\Sigma P(i, j) \log _{2}[P x(i) P y(j)] ; \quad$ conditional entropy;
$H X Y 2=-\Sigma \quad P x(i) P y(j) \log _{2}[P x(i) P y(j)]$.
The theoretical connotation of these measures are complicated. It is noticed by experiment that $-1 \leq I M C I \leq 0,-1 \leq|M C| I \leq 1$. For $\mid M C I I$, let $A=H X Y 2-H X Y$, we see $\exp \left(-2.0^{*} A\right) \leq 1$. The higher the A, the smaller the $\exp \left(-2.0^{*} A\right)$, the larger the IMCII. Since $P(i, j)$ is symmetrical, HXY1 = HXY2. IMCII becomes large when $P(i, j)$ is equally distributed. The maximum value occurs when any two pixels do not have the same value in a defined distance within the image. It is smaller when the image is dominated by only a few gray levels. There is more information contained in these correlation measures. They have some desirable properties which are not brought out in the rectangular correlation (COR) (Fig. 2-16).

123	$\mid \mathrm{MCl\mid}=-0.8379$	IMCII1 $=0.9972$	COR1 $=0.9231$	(a)	
456	$1 \mathrm{MCl2}=-0.8379$	$1 \mathrm{MCII2}=0.9972$	COP2 $=0.1290$		
789	$1 \mathrm{MCl} 3=-0.9091$	IMCIL3 $=0.9966$	COR3 $=0.4286$		
789	$1 \mathrm{MCl4}=-0.9091$	$\mathrm{IMC} \mathrm{\\|} / 4=0.9966$	COR4 $=-2.3077$		
$\mathrm{N}=10$					
111	$1 \mathrm{MCl\mid}=-1.0000$	$\mathrm{IMCH1}=0.9168$	COR1 $=1.0000$	(b)	
888	$1 \mathrm{MCl2}=-0.1500$	$1 \mathrm{MCl\mid 2}=0.4662$	COR2 $=-0.3000$		
888	$1 \mathrm{MCl} 3=-0.1500$	$1 \mathrm{MCH3}=0.4662$	COR3 $=-0.3000$		
	$1 \mathrm{MCI3}=-0.1500$	$I M C / 14=0.4662$	COR4 $=-0.3000$		
$N=9$					

Fig. 2-16 Compare IMC with COR.

13) Maximal Correlation Coefficient

MAXCOR $=(\text { Second Largest Eigenvalue of } Q)^{1 / 2}$;

$$
Q(i, j)=\Sigma[P(i, k) P(j, k) / P x(i) P y(k)] .
$$

Fig. 2-17a is the Q matrix for the image in Fig. 2-15a (horizontal direction). Since $Q(i, j)$ is not symmetrical, the computation of the eigenvalue is somewhat complicated. It is known that most matrices can be transformed to a Hessenberg matrix and it is easier to compute the eigenvalue from the Hessenberg matrix. Fig. 2-17b is the Hessenberg transform of the $Q(i, j)$ in Fig. 2-17a. For detailed procedures in computing eigenvalue of an asymmetrical matrix, refer to Fortran subroutine UPPERH and EIGEN in Appendix 4.

The mathematical connotation of the maximal correlation coefficient is discussed by C. B. Bell (1962). MAXCOR is different from COR. For the same image of Fig. 2-15a, maximal correlations in all four directions is equal to the maximum value 1.0 . For the 3×3
image in Fig.2-16b, MAXCOR has the following measures: $1.0,0.3,0.3$, 0.3 .

The above statistical texture model provides a set of measures for the spatial relationships among gray levels in an image. However, texture properties are independent of gray level and orientation. In order to perform texture analysis, we wish the texture measures to be invariant in different orientations and under monotonic gray level transformation. Yet, the 14 texture features discussed above are all angular dependent and, only seven of them are invariant under monotonic gray level transformation: ASM, ETP, SUMETP, DIFETP, IMCI, IMCII, and MAXCOR. Therefore, it is more desirable to use the mean and the range of the measures in all four directions. Moreover, to obtain generalized results, equal probability gray level transformation, i.e., histogram equalization, must be performed. Nevertheless, it is still more preferable to use the invariants for textural analysis.

| The Q matrix | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.5000 | 0.0000 | 0.5000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.5000 | 0.0000 | 0.5000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.5000 | 0.0000 | 0.5000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.5000 | 0.0000 | 0.5000 | 0.0000 | 0.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5000 | 0.0000 | 0.5000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0000 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5000 | 0.0000 | 0.5000 |

(a)
(b)

Fig. 2-17 The Q matrix and its Hessenberg transform.

C. The Computer Implementation of SPADEP Approach

Three steps are identified to perform SPADEP textural analysis, using PDP-11 and the Spatial Data Processing System.

1. Gray Level Transformation.

Since SPADEP is a coocurrence measurement, in order to obtain generalized textural information, it is necessary to change the gray
level distribution so that each gray level in an image can obtain approximately equal probability. Furthermore, although the computation of SPADEP matrices are only related to the size of the image, the size of the SPADEP matrices is proportional to the number of gray levels in the image. For gray levels equal to N, the required internal storage will be $N \times N \times 4$. The range of gray levels in a TM image is $0-255$. An array of 256X256X4 cannot be stored in the internal memory of the PDP-11 computer. For this reason, the number of gray levels must be reduced. An equal probability quantizing algorithm can solve the above problem. For details on the procedure, see program EGAL in Appendix 1 .
2. Compute SPADEP matrices.

The SPADEP matrix proposed by Haralick contains adjacencies of gray levels in both orientations and four directions. Therefore, SPADEP is symmetrical, i.e., in SPADEP $P(i, j)=P(j, i)$. In actual computation, only one orientation needs to be measured, the final matrix is constructed by adding the matrix obtained previously to its transpose (Hord, 1986). Figure 2-18 illustrates the construction of SPADEP in the horizontal direction.

Fig: 2-18 Illustration of SPADEP matrix construction (horizontal).

The Fortran subroutine to compute the coocurrence matrix, SPADEP, is included in Appendix 4. For the convenience of programming, SPADEP is divided into four, two dimensional arrays instead of using one three dimensional array. Each array stores the SPADEP in one direction. When using the Extended Memory Monitor (virtual memory) on PDP-11, the input image can have a size up to 128 by 128 and maximum number of gray levels of 128.

3. Computing the Statistical Texture Models

Most of the statistical models proposed by Haralick are easy to compute. The most difficult one is the maximal correlation coefficient measure since its computation involves finding the second largest eigenvalue from an asymmetrical matrix. An example of the approach is given in the former section (Fig. 2-17). All basic computations of the statistical textural measures are included in the subroutine library TXLIB (see Appendix 4).

II. The Entropy-Based Texture Analysis

An image can be defined in the spatial domain, i.e., the x, y coordinate space, or in the spatial frequency domain in which an image is viewed as a periodic function and represented by an infinite, weighted sum of trigonometric sine and cosine functions with different amplitudes, frequencies and phases. This representation is termed the Fourier series of an image. The SPADEP approach discussed previously represents textural analysis in the spatial domain. The second method to be used, the Entropy-based Textural analysis, is performed in the spatial frequency domain. It extracts texture information from another dimension. In this section, the two dimensional discrete Fourier transform, the computer implementation of the fast Fourier transform, and the display of the Fourier spectrum will be discussed briefly; then the detailed procedures to perform the entropy-based textural analysis is presented.

A. The Fourier Transform of an Image

Let $f(m, n)$ be an $N \times N$ image and $F(u, v)$ its two dimensional discrete Fourier transform, then

$$
\begin{aligned}
& F(u, v)=\sum \sum f(m, n) e^{-j(2 \pi / N)(m u+n v)} \quad \text { (inverse transform); } \\
& f(m, n)=\sum \sum F(u, v) e^{j(2 \pi / N)(m u+n v)} \text { (forward transform); }
\end{aligned}
$$

are the discrete Fourier transform pair. The Fourier spectrum, phase,
and energy spectrum are given by the following relations:

$$
\begin{aligned}
& |F(u, v)|=\operatorname{SQRT}\left(R(u, v)^{2}+1(u, v)^{2}\right) \\
& \text { Phase }(u, v)=\tan ^{-1}(I(u, v) / R(u, v)) ; \\
& E(u, v)=|F(u, v)|^{2} .
\end{aligned}
$$

R and I denote the real and the imaginery part of $F(u, v)$. The two dimensional discrete Fourier transform $F(u, v)$ is obtained by performing a one dimensional transform along each row of $f(m, n)$, then along each column of the intermediate matrix. Fig. 2-20a is an example of the Fourier transform of the image in Fig. 2-19. Since the discrete Fourier is periodic with period N and is conjugate symmetrical, it is more desirable to shift the frequency origin to the center ($\mathrm{N} / 2+1, \mathrm{~N} / 2+1$) in order to observe and measure the function. Fig. 2-20b is the origin centered Fourier transform. It is obtained by multiplying each entry of the input image of Figure $2-19$ by $(-1)^{(i+j)}$.

$$
\begin{array}{llllllll}
7 & 7 & 8 & 8 & 8 & 6 & 6 \\
7 & 7 & 7 & 8 & 8 & 8 & 6 & 6 \\
7 & 7 & 7 & 8 & 8 & 8 & 6 & 6 \\
6 & 6 & 6 & 9 & 9 & 9 & 9 & 9 \\
6 & 6 & 6 & 9 & 9 & 9 & 9 & 9 \\
6 & 6 & 6 & 9 & 9 & 9 & 9 & 9 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Fig. 2-19 An 8×8 matrix to be transformed to the Fourier series.
The Fourier spectrum can be shown in a three-dimensional plot or as an intensity function in which brightness is proportional to the
amplitude of $|F(u, v)|$. The graphic display of the Fourier spectrum is very helpful to visualize certain textural properties of an image. Usually, radial spikes in the spectrum image indicate presence of linear features and the breadth of the bright area around the center indicates the coarseness of the image.

B. Regional Entropy Measures in the Fourier Energy Spectrum

Proposed by Jernigan and D'astous (1983) the regional entropy measure is primarily designed to measure local and global texture properties of an image. This approach can be described as follows (see Fig. 2-21):
1). Compute the origin centered Fourier transform of the analyzed image; compute the energy spectrum $E(u, v)=|F(u, v)|^{2}$;
2) Specify the number and size of concentric regions to be measured in $E(u, v)$. For each region, perform the following computations:
3) Obtain the regional energy by summing the $E(u, v)$ within the region, $\operatorname{SUME}=\Sigma[E(u, v)] ;$
4) Normalize $E(u, v)$ in the region by SUME, obtain the probability function $P(u, v)=E(u, v) /$ SUME; $\Sigma[P(u, v)]=1$;
5) Compute the entropy of the spectral components within the region,

$$
\begin{aligned}
\mathrm{h}^{\prime} & =-\sum \mathrm{P}(\mathrm{u}, \mathrm{v}) \log _{2}[\mathrm{P}(\mathrm{u}, \mathrm{v})], \\
0 & \leq \mathrm{h}^{\prime} \leq \log _{2} \mathrm{~K},
\end{aligned}
$$

where k is the number of elements in the $E(u, v)$ within the region;
6) Normalize h^{\prime} by LogK, obtain the relative entropy

$$
\mathrm{h}=\mathrm{h}^{\prime} / \log _{2} \mathrm{~K}, \quad 0 \leq \mathrm{h} \leq 1
$$

Suppose n regions are defined, as a result, there is a n-dimensional vector representing the textural properties of the image,

$$
H=[h 1, h 2, h 3, h 4, \ldots . . ., h n] .
$$

To compare texture features of different images, H is computed for each of the images. Obviously, hn is the measure of the spread of the spatial frequency component within the region. The higher the hn, the wider distribution of the frequency components indicated. Images with different texture features will have different characteristics of the frequency component distribution. For example, Fig. 2-22c has high frequency components concentrated along the vertical axis while Fig. 2-22a is more spread out.

(b)

Fig. 2-20 The Fourier transform of fig.19; (b) original centered.

Fig. 2-21 EBT analysis.
C. The Computer Implementation of the Fourier Transform: the FFT

The discrete Fourier transform is implemented with the Fast Fourier Transform algorithm proposed by Cooley-Tukey. The FFT approach dramatically reduces the computation times from N^{2} to $N \log N$ (N is the number of input elements). Detailed discussion of the FFT algorithm can be found in variety of text books in digital remote sensing (Rosenfield, et. al., 1982, Gonalez and Wintz, 1977). A standard FFT Fortran subroutine FOUREA is included in Appendix 8.

0.250	0.290	0.559	0.889	0.750	0.889	0.559	0.290
0.195	0.016	0.221	0.329	$\mathbf{p . 7 4 1}$	0.544	0.058	0.076
0.395	0.261	0.177	1.338	1.0 .620	0.495	0.637	0.150
0.724	0.574	1.560	1.346	1.3 .959	2.860	0.943	0.719
1.500	0.238	1.061	3.346	4.000	3.346	1.061	0.238
0.724	0.719	0.943	2.860	13.959	1.346	1.560	0.574
0.395	0.150	0.637	0.495	10.620	1.338	0.177	0.261
0.195	0.076	0.058	0.544	5.741	0.329	0.221	0.016

(a) The Fourier spectrum of fig. 2-19.

$$
\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

(b) An 8×8 image.

0.000	0.000	0.000	0.000	q.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	$\$.828$	0.000	0.000	0.000
0.000	0.000	0.000	0.000	$\{.000$	0.000	0.000	0.000
0.000	0.000	0.000	0.000	$\{.828$	0.000	0.000	0.000
0.000	0.000	0.000	0.000	$\$.000$	0.000	0.000	0.000
0.000	0.000	0.000	0.000	$\{.828$	0.000	0.000	0.000
0.000	0.000	0.000	0.000	$\$.000$	0.000	0.000	0.000
0.000	0.000	0.000	0.000	$\$.828$	0.000	0.000	0.000

(c) The Fourier spectrum of (b).

Fig. 2-22 Texture pattern and the Fourior epectrum.

III. Methods to Analyze the Texture Measures

One of the major objectives of this thesis is to see if similar spatial patterns have similar texture measures. Methods are needed therefore, to compare the texture measures. In this project, the distance measure and cross-correlation analysis are used.

A. The Distance Measure

Suppose $X_{1}(n), X_{2}(n), \ldots \ldots, X_{m}(n)$ are the texture vectors of m images to be analyzed, the distance between two texture vectors can be computed as:

$$
\left.D\left(X_{m}, X_{m-1}\right)=\operatorname{SQRT}\left\{\Sigma\left[X_{m}(n)-X_{m-1}(n)\right]^{2}\right]\right\} .
$$

We say that X_{m-1} is more similar to X_{j} than to X_{m} if

$$
D\left(x_{m-1}, x_{j}\right)<D\left(x_{m-1}, x_{m}\right) .
$$

B. Cross Correlation

The texture information of an image can also be represented by a texture matrix constructed by a local operation (Fig. 2-23). Since the texture property is contained in a series of local measurements, cross correlation can be used to measure the similarity between two texture matrices. Let $T_{1}(x, y)$ and $T_{2}(x, y)$ be the two texture functions, the cross correlation can be defined as

$$
R(m, n)=\Sigma[T 1(x, y) T 2(x, y)] / \operatorname{SQRT}(S T 1 S T 2),
$$

where,

$$
\begin{aligned}
& S T_{1}=\sum\left[T_{1}(x, y)^{2}\right] \\
& S T_{2}=\sum\left[T_{2}(x, y)^{2}\right] ; \\
& -1 \leq R(m, n) \leq 1 .
\end{aligned}
$$

Fig. 2-23 Local measurement of texture properties.

When used to measure similarity between two functions, only the largest correlation function is usually of interest. Thus, a searching process in $R(m, n)$ is needed. However, if the two functions are the same size, i.e., the images to be analyzed have the same number of rows and columns, cross-correlation can be more conveniently performed in the frequency domain:

$$
R(m, n)<--T_{1}(u, v) T_{2}(u, v) ;
$$

$\mathrm{T} 1(u, v)$ and $\mathrm{T} 2(u, v)$ are the forward Fourier transform of $\mathrm{T} 1(x, y)$ and T2 (x, y). The cross correlation of two functions is equal to the inverse Fourier transform of the product between one Fourier series and the complex conjugate of the other. A search for the largest correlation function is not needed in $R(m, n)$ obtained in this way since it is always located around $R(0,0)$ (when the two functions are the same size). For more details of the computation of cross correlation, refer to the Fortran program FFTCOR submitted in Appendix 14.

In this chapter, major technical aspects of the thesis have been discussed. Since it is a relatively exploratory study, a great deal of effort has been devoted to the investigation of the mathematical models to be used.

CHAPTER 3: ANALYSIS

I. INTRODUCTION

In this chapter, methods of texture analysis presented in chapter 2 are to be applied in measuring and differentiating urban residential spatial patterns. The SPADEP, both regional and local, and the Fourier measures are applied to a Landsat Thematic Mapper image of western Omaha. The general methodology for analysis is presented in Figure 3-1.

A 512 by 512 pixel TM subimage centered at about 132 nd and Dodge St., Omaha, Nebraska, represents the study area (Fig. 3-2). Band 3 ($0.63 \mu \mathrm{~m}-0.69 \mu \mathrm{~m}$, red reflectance) is the basic spectral band used for textural analysis since it provides the better penetration of the atmosphere among the visible wavelengths and provides a higher contrast image. Ten subimage areas are selected, sized 32 (columns) by 32 (rows), numbered 1 to 10 (Fig. 3-3). The selection of subimage areas was purposive. The study areas represent the major residential patterns in the image area. Among these ten areas, area 1 is a low density residential area, 7 is a partially developed urban area; 9 includes cleared subdivisions; 10 is agricultural land; the other areas
$(2,3,4,5,6)$ represent other major residential patterns in this region, such as the traditional grid street layout and the low density, irregular new residential area.

There are basically three parts to the analysis: the SPADEP regional measurement, the SPADEP local measurement, and Fourier analysis. In each of these parts, individual texture measures will be observed with regard to the spatial relationships represented. Then, a similarity measurement (distance measure and cross-correlation measure) is applied to the texture measures of all spatial patterns.

Fig. 3-2 Study Areas.

「ig. 0-1 Guideline of texture analysis

II. Texture Analysis in a Suburban Area

A. SPADEP Regional Measurement

As required by the SPADEP approach, the image to be analyzed is reduced to 32 gray levels with the historgram equalization program EGAL.

Among the 14 statistical texture measures discussed in chapter 2, seven of them are selected for comparative study due to the reasons discussed in chapter 2. They are: Angular Second Moment (ASM), Correlation (COR), Sum Entropy (SUMETP), Entropy (ETP), Difference Entropy (DIFETP), Information Measure of Correlation II (IMCII), and Maximal Correlation (MAXCOR). All but one of these measures are invariant under monotonic gray level transformation.

Since texture measures from SPADEP are angular dependent, measures in specific directions would not represent the overall texture features of the area. Therefore, the range, mean and variant instead of measures in the four directions are used as the textural descriptors. Thus, there are 7×3 or 21 total vectors for each subimage area. To experiment with the textural similarities of the ten areas, a distance measure is performed.

Fig. 3-4 graphs the average ASM measures among the ten areas. The non-built and partially built area $7,9,10$ have distinguishable
values from the residential areas while the variations for the areas that are essentially residential are very small. As indicated in chapter two, ASM measures the homogeneity of the area. From Fig. 3-4, we see that the non-built areas have high ASM, indicating that the cleared subdivision and the partially built areas (7, 9,10) have higher homogeneity than the residential areas. In this experiment, ASM does not reflect the difference of homogeneity among residential patterns.

Fig. 3-4 ASM measures.

Of the average correlation measures (COR) among the ten areas, area 7, 9, 10 have the higher values (Fig. 3-5).

Fig. 3-5 Correlation measures.

For these areas, the high linear correlation is probably produced by the long edges of the cleared subdivision and agricultural land. Fig. 3-5 also shows a certain amount of variation of correlation measures among the residential areas. Although residential areas would have typical linear patterns, the high linear correlation would be only in one or two directions. In the other directions, the correlation value would be very low, thus, reducing the average measure. Another reason for such a distribution of the correlation measures is related to the distance used to compute the neighboring coocurrence. A distance of 1 (neighboring distance and gray level interval) may be too small to reveal the linear features presented in
the residential areas. Therefore, the high and low correlations do mean something here, e.g., the coarseness of the image, but not necessarily the visualized linear feature.

Fig. 3-6 Entropy measures.

The next three measures are entropy based. The Sum Entropy (SUMETP) and Entropy (ETP) measure the relative complexity of the area. From Fig. 3-6 and Fig. 3-7, we see that all residential areas have higher values of SUMETP and ETP, indicating a higher complexity than that of the non-built areas. However, how can the differences among the residential areas be explained? From Figure 3-8, we find that area 3 has a very small measure in range, the similar phenomena
happened to area 4 and 6 in Figure 3-9. Area 3, 4, 6 are all older neighborhoods. It seems that less variation in complexity with directions indicates the higher degree of development among residential areas. As discussed before, DIFETP may measure the irregularity of an area. In Fig. 3-10 areas 2, 4, 6 have higher average DIFETP since they are the most irregular patterns among the ten areas.

Fig. 3-7 Sum Entropy measures.

Fig. 3-8 Variance of the Entropy measures.

Fig. 3-9 Variance of the Sum Entropy measures.

Fig. 3-10 Difference entropy measures.

Fig. 3-11 Information measures of correlation.

Fig. 3-12 Maximal correlation measures.

The last two texture measures are the Information Measure of Correlation (IMCII) and the Maximal Correlation (MAXCOR). The connotation of such measures is difficult to interpret, however, they seem to distinguish different spatial patterns quite well. This is illustrated by the wide variation of these measures graphed in Figure 3-11 and 3-12. The non-built areas have higher measures of IMCII and MAXCOR; among the built-areas, the lower density residential pattern and partially built areas have higher values. Furthermore, residential areas having higher density housing or more vegetation coverage, have higher values than those with less housing or vegetation coverage.

It seems that each measure tends to emphasize certain aspects of the spatial characteristics in a subimage. However, they are related with each other. When we group these measures together, they should represent the over-all texture features of the area. There are many ways to identify similar texture patterns. The simplest way is by computing the distance among all the study areas and those having the least distance can then be grouped together. Fig. 3-13 is the matrix of distance measures for the ten subimage areas. From the distance matrix, we easily find the following most similar groups: $(1,3),(2,6,8),(4,5),(9,10,7)$. This clearly indicates that similar spatial patterns present similar texture measures.

	1	2	3	4	5	6	7	8	9	10
1	0.000	0.645	0.389	0.703	0.719	0.541	1.410	0.481	2.987	2.195
2	0.645	0.000	0.484	0.419	0.394	0.314	1.543	0.457	3.107	2.339
3	0.389	0.484	0.000	0.508	0.422	0.491	1.223	0.518	2.817	2.012
4	0.703	0.419	0.508	0.000	0.326	0.350	1.373	0.599	2.907	2.171
5	0.719	0.394	0.422	0.326	0.000	0.456	1.323	0.598	2.865	2.094
6	0.541	0.314	0.491	0.350	0.456	0.000	1.596	0.300	3.168	2.406
7	1.410	1.543	1.223	1.373	1.323	1.596	0.000	1.687	1.601	0.855
8	0.481	0.457	0.518	0.599	0.598	0.300	1.687	0.000	3.273	2.496
9	2.987	3.107	2.817	2.907	2.865	3.168	1.601	3.273	0.000	0.926
10	2.195	2.339	2.012	2.171	2.094	2.406	0.855	2.496	0.926	0.000

Fig. 3-13 Distance measure using 7 texture features.

B. SPADEP Local Measurement

Figure 3-13 demonstrated that the SPADEP texture measures selected best distinguish spatial characteristics of the built and non-built areas. However, the measures represent the texture characteristics of the whole sub-area. Thus, the selection of areas to be analyzed is very important; they should have a consistent pattern.

In this experiment, area 7 is half subdivision and half developed area but the distance measures show that it is similar to the non-built area. The measure is reasonable but may not be desirable. However, texture consistency is not easy to be selected; therefore, in such case, it may be useful to apply local operation for texture analysis. In the following section, an experiment on local operation of SPADEP is presented. The size of the local operator is 3 by 3 and the texture matrices produced from each 32 by 32 image is 30 by 30 . ASM is used as an example to compare the regional and local measures. To analyze the similarities, cross correlation is performed among the texture matrices. The largest correlation function is used as the entry in the correlation matrix. The higher the correlation coefficient, the more similar the two areas.

Fig. 3-14 Correlation matrix of ASM measure.
In the correlation matrix presented in Figure 3-14, built areas have high correlation values, clearly dividing the two most obvious spatial patterns. The most similar group is not easy to put together from this matrix. In fact, only area 6 and area 5 show great similarity with each other. However, the significance of the local operation is to represent local texture properties. As we see in the regional analysis and single feature analysis of ASM (Fig. 3-15), area 7 is grouped with area 9 and 10. In the local analysis, however, area 7
shows a low correlation with area 10 but relatively high correlation with other residential areas. Individual texture measures can be performed in this way, extracting texture properties of the subimage on a local base. Although the local operation has this advantages over regional analysis, it is not very applicable for quick texture analysis because it is computationally intensive.

	1	2	3	4	5	6	7	8	9	10
1	0.000	0.002	0.000	0.001	0.001	0.002	0.028	0.002	0.160	0.029
2	0.002	0.000	0.002	0.000	0.001	0.000	0.029	0.000	0.161	0.031
3	0.000	0.002	0.000	0.001	0.001	0.002	0.028	0.002	0.160	0.029
4	0.001	0.000	0.001	0.000	0.000	0.001	0.029	0.000	0.161	0.030
5	0.001	0.001	0.001	0.000	0.000	0.001	0.029	0.001	0.161	0.030
6	0.002	0.000	0.002	0.001	0.001	0.000	0.029	0.000	0.161	0.031
7	0.028	0.029	0.028	0.029	0.029	0.029	0.000	0.029	0.132	0.001
9	0.002	0.000	0.002	0.000	0.001	0.000	0.029	0.000	0.161	0.031
10	0.160	0.161	0.160	0.161	0.161	0.161	0.132	0.161	0.000	0.131
	0.029	0.031	0.029	0.030	0.030	0.031	0.001	0.031	0.131	0.000

Fig. 3-15 Distance measure of ASM (mean).

C. Fourier Spectrum Pattern of Texture and the Entropy-based Textural Analysis

The texture information extracted by the SPADEP approach is difficult to visualize. Sometimes it is useful to combine the computer analysis with human interpretation. One approach to
visualize the texture properties of an image is the display of the Fourier spectrum. Using the amplitude of the frequencies as an intensity function, we can produce either a gray-scale image or a 3D plot of the Fourier spectrum. Figure 3-18 to 3-27 are the 3D plots of Fourier spectrum for the ten study areas. Figure 3-28 are the images of the Fourier spectrum for the corresponding areas. To analyze these patterns, the entropy-based analysis is accompanied with these patterns.

By visual interpretation, we can divide the Fourier spectrum displays into two groups. One group, including area 1, 7, 9, 10, has high frequencies concentrated at the center. The other group, including areas $2,3,4,5,6,8$, has frequencies around the outer edge. In fact, both areas 9 and 10 are non-built, area 7 is partially developed while area 1 is low density residential area. Thus, at first glance, we can easily distinguish regular residential areas from the low density housing and the non-built areas.

However, what do these patterns tell us about the texture properties of the areas? One way to understand these patterns is to relate these patterns with the frequency distributions (regional entropy measure). Figure $3-29$ is the line chart of the regional entropy for all the ten areas. The 32×32 Fourier spectrum is divided into $25 \times 25,17 \times 17,11 \times 11,5 \times 5$ (Fig. 3-30) subregions. The

Fig. 3-18 Fourier Spectrum of area 1.

Fig. 3-19 Fourier Spectrum of area 2.

Fig. 3-20 Fourier Spectrum of area 3.

Fig. 3-21 Fourier Spectrum of area 4.

Fig. 3-22 Fourier Spectrum of area 5.

Fig. 3-23 Fourier Spectrum of area 6.

Fig. 3-24 Fourier Spectrum of area 7.

Fig. 3-25 Fourier Spectrum of area 8.

Fig. 3-26 Fourier Spectrum of area 9.

Fig. 3-27 Fourier Spectrum of area 10.

Fig. 3-29 Regional Entropy measures in band 3.
characteristics of regional entropy measures are highly related to the spectrum patterns we plot. Such measures can be evaluated on the absolute or relative base. On one hand, textures with more highly structural spatial distributions yield a low entropy value, while textures with random distributions yield a high value (D'Astous, et. al., 1983). On the other hand, the variations of entropy from one region to another reflect the characteristics of the spectral frequency distribution. Since it is the characteristics of the frequency distribution that influence the spectral pattern, the absolute values of these measures are less significant; thus, our focus is on the variations in the entropy in different regions of the power spectrum.

Fig. 30 The spectrum regions used to measure the entropy.

Let's observe the regional measures for areas in group one (Fig. $3-29$). It is found that, for area 7 and 10, entropy in the four regions varies slightly. Area 9 stands out with its overall high entropy and the inverse distribution (low entropy in the larger region, high entropy in the center). The inverse and even distribution indicate that frequency components are evenly distributed in the small region around the origin. When spectral frequencies concentrate in a few components away from origin, the entropy in the wider areas become larger. This is a transition from $10,9,7$, to 1 then to the other group. It is correspondent to a transition from farm land to clear subdivision, partially built area, residential area with very low density and the fully developed area.

Examining the residential group, comparing the slope of the entropy changes from one region to another, we may have better understanding of the spectrum patterns. First, we compare area 1 and area 3. The two patterns are similar except there are two peaks around the origin of the pattern for area 3. Accordingly, the two entropy curves are parallel through the 1,2 and 3 spectrum regions. They then split away from each other through region 3 and 4. For area 3, entropy drops dramatically, indicating concentration of high frequency components -- that is the two peaks around the origin. High frequency peaks away from the origin seem to be related to the
coarseness and linearity of the image. The more frequency peaks that occur within a spectrum region, the lower the entropy value, the more edges in different directions indicated. Areas 6, 2, 4, 8, 5 all present such characteristics.

It becomes obvious that similar texture patterns will have similar characteristics of frequency distribution and similar spectrum patterns; i.e., images with same texture patterns but different gray levels and orientations should have paralleled regional entropy curves. For example, area 6 and 8 have similar regional entropy patterns except that the slope is greater for area 6 from region 2 to region 4. This causes the peripheral high frequency peaks in 3D plot of area 6. Comparing the 3D plots of area 6, 2, 4, 8 and 5, we find that new housing area 6, 8 and 2, have similar patterns while older areas 4 and 5 are alike. When an area is gradually covered by vegetation, the coarseness will be reduced and high frequency components will be grouped together.

If we use the results of the distance measures from the SPADEP regional analysis, we find the Fourier spectrum patterns are nicely matched with those groups: $(1,3),(4,5),(2,6,8),(7,9.10)$. Compared with the SPADEP approach, Fourier analysis is fast and can be visualized. The amount of computation time is a function only of the size of the subimage area, whereas with SPADEP computation
time is a function of both size and number of gray levels in the subimage. Moreover, no specific preprocessing of the image is required in Fourier analysis. We can extract texture information described by the regional entropy measures and display this with a 3D plot and the diffraction pattern for each of the interested subimage areas.

Since ground objects will have different reflectance characteristics in different spectral bands, features of a spatial pattern may have different textures in different bands. It takes only 10 seconds to calculate the Fourier spectrum for one 32 by 32 subimage area. This makes it an easy task to perform multi-spectral band texture analysis. The following is a brief presentation of this approach. Analyses are taken for the same subimage areas in TM band 1, 4, and 5. The regional entropy measures are illustrated in Figure 3-31 to 3-33. The distributions of regional entropies in different spectral bands seem similar between band 1 and band 3 , but significant differences exist between band 4 and band 3 , and band 5 and band 3. Further research is needed in order to find the relationships of texture properties in different spectral bands.

III. Summary

In this chapter, two approaches of texture analysis have been applied on a Landsat TM image of suburban Omaha. An emphasis is placed upon establishing the similarities of texture properties among different residential patterns. It is found that the differences between the developed areas and partially developed / non-developed areas are easily identified. Subtle similarities among different residential patterns are also identified to a certain extent either by the texture features from SPADEP approach or the regional entropy measures from the Fourier analysis. Considering the effectiveness of each measure, the regional entropy analysis in the spatial frequency domain is simpler, faster and produces a meaningful graphic display.

Chapter 4: Conclusion

The fundamental assumption of this thesis is that different spatial patterns on the earth surface are measurable in digital imagery. Texture analysis is used to acquire such measurements. The measurability of spatial pattern in a digital image would greatly enhance our understanding of certain spatial organizations.

A great deal of effort has been devoted in this thesis to selecting and developing approaches to texture analysis and the computer implementation of such techniques. Texture measures are treated as being representative of the characteristics of a spatial pattern. It has been shown that the properties of a spatial pattern in an image can be described in many ways, either with statistical measures or with graphic displays. Texture analysis can be performed in the spatial domain as well as in the frequency domain; each has its own advantages and shortcomings. It can also be implemented locally and regionally, with the former more desirable where homogeneous image areas are difficult to define.

It is found that different residential patterns do have different texture measures, thus different spatial characteristics. More
specifically, the difference can be found among built-up areas vs. cleared subdivision, built vs. partially built areas, high density vs. low density residential areas, regular grid pattern vs. irregular cul-de-sac type patterns, partially developed areas vs. fully developed areas. The seven texture measures selected from the SPADEP approach clearly indicates that:

1) Fully developed residential areas have much less homogeneity than the partially developed or under-developed areas (cleared subdivision) while the differences of homogeneity among fully developed residential areas are very small;
2) Fully developed residential areas have much higher complexity than the partially developed vs. under-developed areas; low density residential areas present lower complexity; for the same area, increase of vegetation coverage will reduce the complexity measures on the image;
3) Spatial relationships of new residential areas are more irregular than that of the older areas due to the different street layout.

With texture analysis, spatial characteristics of a spatial pattern thus can be described in a set of new features, such as homogeneity, complexity, linearity, regularity, etc.

In the frequency domain, texture patterns are represented by
their characteristics of frequency distributions in the Fourier series. The Fourier spectrum pattern provides a generalized representation of the texture properties of an image. Generally, uniform spatial patterns, such as cleared subdivisions, will have pyramidal Fourier spectrum patterns while the spectrum of newly built irregular residential areas have frequency peaks away from the origin. From a piece of farm land to a fully developed residential area, frequency distribution changed accordingly as represented with the Fourier spectrum patterns presented.

It is found that texture analysis with the Fourier spectrum, although criticized by people in the field of pattern recognition, is an attractive approach for the analysis of urban residential spatial patterns. The Fourier spectrum is one of the few ways to graphically display texture information. In the previous chapter, different spatial patterns were represented clearly by a series of 3 dimensional plots of the Fourier spectrum, along with the descriptive regional entropy measures.

Visualizing the texture properties of an image is very important since humans are capable of synthesizing a great deal of graphic information. Methods for texture analysis should make use of both human ability and the advantages of the computer. In fact, no thorough investigations on the relationships between texture
properties and its Fourier spectrum have been done. However, it is felt that the Fourier analysis will be more promising for a man-machine texture analysis system.

It is believed that this thesis has provided an insight into the possibilities of applying texture analysis to the study of spatial patterns in an urban area, presenting a possible direction for urban remote sensing. Measuring residential patterns with texture analysis not only enhances our previous concepts of this spatial phenomena but also indicates some possible applications of digital image processing to urban planning. The fourteen statistical texture measures from SPADEP not only extract different aspects of the spatial relationships among ground objects but also give a set of criteria for land use classification. The Fourier analysis presents graphic displays of different residential patterns as well as the descriptive entropy measures. These may allow us to describe characteristics of residential patterns with a new set of terminology for further inquiries of the underlying social, political, and cultural processes.

However, further experiments on the techniques and applications of texture analysis to urban residential patterns and other spatial patterns in urban areas need to be carried out. Firstly, enhancement of the concept of measurability of spatial pattern in digital imagery is needed. This concept could have an important
implication for geographic study. Secondly, texture analysis is only one way to perform the measurement of spatial patterns in a digital image. Further investigation and development of related analytical techniques are necessary. With better understanding of the existing texture analysis techniques, such as fractal analysis we should explore more possible approaches.

Fig. 3-3] Regional Entropy measures in band].

Fig. 3-32 Regional Entropy measures in band 4.

Fig. 3-33 Regional Entropy measures in band 5.

Appendices

1. EGAL 83
2. TXALL 84
3. TXLOCL 87
4. TXLIB (SPADEP-F12) 92
5. F13 (MAXCOR, HESSEN, EIGEN) 100
6. TXGG3 104
7. FTXTUR 105
8. FOUREA (FFT SUBROUTINE) 109
9. FFT2 110
10. COMFTX 112
11. FFT (TESTING PROGRAM) 113
12. FFT3D 115
13. GRPAT 117
14. FFTCOR (FFT CORRELATION) 118
15. CROCOR (CROSS CORRELATION) 120

RROCIRAM EGAL !19710.'
C HISTOGIRAM EOUALIZATION ROUTINE. EP78213.
C E77 EGAL
C LINK EGAL,'SY:TSXLIB,SY:TVLIB,SY:F77LIB
DIMENSION HIST (256), FX(257)
INTEGER* 4 IH (256)
BYTE IMAGE $(512,16)$
INTEGER*2 ION (39), IEXT (4), S (4, 2), Q (256), KH (512)
EQUIVALENCE (IH(1), KH (1))
DATA S(1,1)/'G'/ S(1,2)/'W'/ NOCOL/16/ NG/16/
DATA KH/512*0/ HIST/256*0.0/ !HISTOGRAM ARRAYS
\dot{C}
call mpiops !tsx addition
CALL SCREEN (IXMAX, IYMAX, IYVIS) ! HARDWARE CONSTANTS.
NOW $=256$ * NOCOL !BUFFER SIZE (WORDS)
C NG IS NUMBER OF RESULTANT GRAY LEVELS (DEFAULT $=64$):
REQUEST I/O FILE NAMES AT KEYBOARD, WITH SWITCHES.

IF (ICSI (ION, IEXT, , S, 2).NE.0) GO TO 5
$\operatorname{IF}(S(2,1) . E Q .2) \quad N G=S(4,1)$
ICHANI = IGETC (I) !ALLOCATE I/O CHANNELS.
ICHANO $=$ IGETC (I)
IF ((ICHANI.LT.0).OR. (ICHANO.LT.0)) STOP 'NO CHANNEL'

DO $60 . I=1,256$!COUNT THRU TRANSFORM TABLE.
IF ($\operatorname{ABS}(F X(I)-S P A R T)) . G E .(A B S(F X(I+1)-S P A R T)))$ GO TO 50 L.EVEL = LEVEL + IGRAY

SPART $=$ SPART + PART
CD WRITE (7,1001) SPART
GO TO 40
$50 \quad Q(I)=K$
60 K = LEVEI
C REPLACE INPUT PICTURE VIA LOOKUP TABLE.

```
DO 90 I = 1, IXMAX,NOCOL
        KBLK = I-1
    IF (IREADW(NOW, IMAGE, KBLK, ICHANI).LT.O) STOP 'READ FAULT 2'
        DO }80\textrm{K}=1,NOCO
        DO 80 J = 1,IYVIS
            M=IMAGE (J,K)
            M - (M.AND.255) + 1
        IMAGE (J,K) = Q(M)
    IF (IWRITW(NOW, IMAGE, KBLK, ICHANO).LT.0) STOP 'WRITE FAULT'
    CONTINUE
    CALL EXIT
    FORMAT (20IA)
    FORMAT (8(1XF9.1))
    STOP
    END
```

FROGRAM TXAI.I.
CALCULATE ALL TEXTURE MEASURES FOR SPECIFIED SUBIMAGE.
JULY, 24, 1987.

PARAMETER $\mathrm{L}=32, \mathrm{~L} 2=64$, IWS IZE $=32$
INTEGER DATA(IWSIZE,IWSIZE)
DIMENSION P1 (L, L) , P2 (L, L) , P3 (L, L) , P4 (L, L)
DIMENSION P1x(L), P $2 \times(L), \mathrm{P} 3 \mathrm{x}(\mathrm{L}), \mathrm{P} 4 \times(\mathrm{L})$,
P1y (L), P2y (L), P3y (L), P4y (L)
DIMENSION P1xy(L2), P2xy(L2), P3xy(L2), P4xy(L2),
$+$
CHARACTER* 10 FORM1, FORM2,OUTFL
DATA FORM1/' (\#\#\#\#I4)'/FORM2/'('י's',A)'/
WRITE (7, FORM2) 'ENTER OUTPUT.FILE NAME : '
READ (5,'(A)') OUTFL
OPEN (UNIT=1,FILE=OUTFL,STATUS = 'NEW')
$I X Y=I W S I Z E * I W S I Z E$
WRITE (FORM1 (2:5), (I4)') IWSIZE
WRITE (7,FORM2) 'STARTING POSITION $(X O, Y O)=1$
$\operatorname{READ}(5, *)$ JO, IO
WRITE (7, FORM2) 'GRAY LEVEL $(=<32)=$ '
$\operatorname{READ}(5, *) N$
WRITE (7,FORM2) 'OUTPUT UNIT $=$ '
READ (5,*) U
CALL OPEN(1,'PO',2)
$\mathrm{T} 1=\operatorname{SECNDS}(0.0)$

CALL UNPACK (DATA, DATA, IXY)
WRITE $(\mathrm{U}, 102) \mathrm{JO}, 10$
WRITE (U,FORM1) ((DATA (I,J), J=1,IWSIZE), I=1,IWSIZE)
CALL SPADEP (DATA, N, IWSIZE, IWSIZE, P1, P2, P3, P4)
CALL RCOL1 (P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y,P4Y).
CALL RCOL2 (P1, P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX, P3YX, P4YX)

CALL Fl ($\mathrm{P} 1, \mathrm{~N}, \mathrm{ASM1})$
CALL F1(P2,N,ASM2)
CALL F1 (P3, N, ASM3)
CALL Fl (P4, N, ASM4)
CALL MAXMIN (ASM1, ASM2, ASM3, ASM4, RANGE, AVERAG, DEVI)
WRITE (U, 200) ASM1, ASM2, ASM3, ASM4, RANGE, AVERAG, DEVI
CALL F2 (P1YX,N, CTRI)
CALL F2 (P2YX,N,CTR2)
CALL E2 (P3YX,N, CTR3)
CNLL F2 (P4YX, N, CTR4)
CALL MAXMIN (CTR1, CTR2, CTR3, CTR4, RANGE, AVERAG, DEVI)
WRITE (U, 200) CTR1, CTR2,CTR3,CTR4, RANGE, AVERAG,DEVI
CALL F3 (P1,N, P1X,PIY, CORRE1)
CALL F3 (P2,N, P2X,P2Y, CORRE2)
CALL F3 (P3, N, P3X, P3Y, CORRE3)
CALL F3 (P4, N, P4X, P4Y, CORRE4)
CALL MAXMIN (CORRE1, CORRE2, CORRE3, CORRE4, RANGE, AVERAG, DEVI)
WRITE (U, 200) CORRE1, COIRRE2, CORRE 3, CORRE1, RANGE, AVERAG, DFVI
CALL F4 (PI, N, SUMSQ1.)
CALL F4 (E2, N, SUMSO2)
CALL F4 (P3,N,SUMSQ3)
CALL FA (P4, N, SIMMSQ4)
CALL MAXMIN (SUMSQ1, SUMSQ2, SUMSQ3, SUMSQ4, RANGE, AVERAG, DEVI)
WRITE (U, 200) SUMSQ1/1000.,SUMSQ2/1000.,SUMSQ3/1000.,
SUMSQ4/1000.,RANGE/1000.,AVERAG/1000., DEVI/1000.
CALL F5 (P1, N, FIDM1)
CALL F5 (P2,N,FIDM2)
CALL F5 (P3, N, FIDM3)
CALL FS (P4, N, FIDM4)
CALL MAXMIN (FIDM1,FIDM2; FIDM3,FIDM4,RANGE, AVERAG, DEVI)
WRITE (U, 200) FIDM1, FIDM2,FIDM3,FIDM4, RANGE, AVERAG, DEVI

CNLL F'6 (P1XY, N, SUMAV1)
CAI.1, $F 6(\mathrm{P} 2 \times Y, N, S U M A V 2)$
CAI,I, F6(P3XY, N,SUMAV3)
CALL F6(P4XY, N, SUMAVA)
CALL MAXMIN (SUMAV1, SUMAV2, SUMAV3, SUMAV4, RANGE, AVERAG, DEVI)
WRITE (U, 200) SUMAV1, SUMAV2, SUMAV3, SUMAV4, RANGE, AVERAG, DEVI

CALL F7 (PIXY, N, SUMET1)
CALL F7 (P2XY, N, SUMET2)
CALL F7 (P3XY, N, SUMET3)
CALL F7 (PAXY, N, SUMETA)
CALL MAXMIN (SUMET1, SUMET2, SUMET3, SUMET4, RANGE, AVERAG, DEVI)
WRITE (U, 200) SUMET1, SUMET2, SUMET3, SUMET4, RANGE, AVERAG, DEVI
CALL F'8 (P1XY,N, SUMET1, SUMV1)
CALL F8 (P2XY, N, SUMET2, SUMV2)
CALL F8 (P3XY, N, SUMET3,SUMV3)
CALL F8 (P4XY, N, SUMET4, SUMV4)
CALL MAXMIN (SUMV1, SUMV2, SUMV3, SUMV4, RANGE, AVERAG, DEVI)
WRITE (U, 200) SUMV1, SUMV2, SUMV3, SUMV4, RANGE, AVERAG, DEVI
CALL $\operatorname{F} 9(\mathrm{P} 1, \mathrm{~N}, \mathrm{ENTRP} 1)$
CALL ; F 9 (P2, N, ENTRP 2)
CALL F9 (P3, N, ENTRP3)
CALL F9 (P4, N, ENTRP4)
CALL MAXMIN (ENTRP1, ENTRP 2, ENTRP3, ENTRP4, RANGE, AVERAG, DEVI) WRITE (U, 200) ENTRP1,ENTRP2, ENTRP 3,ENTRP4, RANGE, AVERAG, DEVI

CALL MAXMIN (DIFV1, DIFV2,DIFV3, DIFV4, RANGE, AVERAG, DEVI) WRITE (U, 200) DIFV1, DIFV2,DIFV3,DIFV4, RANGE, AVERAG, DEVI
CALL MAXMIN (DIFET1, DIFET2,DIFET3, DIFET4, RANGE, AVERAG, DEVI) WRITE (U,200) DIFET1, DIFET2,DIFET3, DIFET4, RANGE, AVERAG, DEVI

CALL F10 (P1YX,N, DIFET1)
CALL F10 (P2YX, N, DIFET2)
CALL F10 (P3YX, N, DIFET3)
CALL F10 (P4YX, N, DIFET4)

CAIT, E11 (P1YX,N, DIFFTT1, DTFV1)
CALL F11(P2YX,N, DIFELZ, DIFV2)
CALL F11 (P3YX, N, DIFET3, DIFV3)
CALL F11 (P4YX, N, DIFET4,DIFV4)

CALL F12 (P1, P1X, P1Y,N, ENTRP1,FIMC11,FIMC21)
CALL F12 (P2, P2X, P2Y,N, ENTRP2,FIMC12,FIMC22)
CALL F12 (P3, P3X, P3Y, N, ENTRP3,FIMC13,FIMC23)
CALL F12 (P4, P4X,P4Y,N, ENTRP4,FIMC14,FIMC24)
CALL MAXMIN(FIMC11,FIMC12,FIMC13,FIMC14, RANGE,AVERAG, DEVI) WRITE (U, 200) FIMC1 1, FIMC12, FIMC13,FIMC11, RANGE, AVFRNG, DEVI

CALL MAXMIN(FIMC21, FIMC22,FIMC23, FIMC24, RANGE, AVERAG, DEVI) WRITE (U, 200) FIMC21,FIMC22,FIMC23,FIMC24, RANGE,AVERAGG, DEVI

CALL F13 (P1, P1X, P1Y, N, FMCC1)
CALL F13 (P2, P2X, P2Y,N, FMCC2)
CALL F13 (P3, P 3X, P3Y, N, FMCC3)
CALL F13 (P4, P4X, P4Y, N, FMCC4)
CALI, MAXMIN (E'MCC1, F'MCC2, FMCC3, FMCC4, RANGE, AVERAG, DFVI) WRITE (U, 200) FMCC1,FMCC2, EMCC3,FMCC4, RANGE, AVERAG, DEV I

C
FORMAT (1X, 7F10.4)
TYPE:*'TIME, USED * ', SECNDS (T1)
STOP
END
C
SUBROUTTINE MAXMIN(A, B, C, D, MIMA, AVG, DEVI)
C
MIMA: RANGE OF (A, B,C,D);
AVG: MF.AN OF ($A, B, C, D)$;
DEVI: VARIANCE OF (A, B,C,D).
C
C
renl mima
C
MIMA $=0.0$
AVG $=0.0$.
DEVI $=0.0$
SUM $=0.0$
$\lambda V G=(n+B+C+D) / 4$
MIMA $=A M A X 1(A, B, C, D)-\operatorname{MIN1}(\Lambda, B, C, D)$
SUM $=(A-\Lambda V G) * * 2+(B-A V G) * * 2+(C-A V G) * * 2+(D-A V G) * * 2$
$\mathrm{DEVI}=\mathrm{SUM} / 4$

RETURN
END
$1=$

```
C
C----------------
C LOCAL ORERATION OF SPADEP
C CURRENT PROGRAM WORK WITH 32 BY 32 SUBIMAGE AND 3X3 WINDOW
C--------------------------------------------------------------------------
    INTEGER DUMMY (32,32), XO,YO,WINSIZ,OPT
    CHARACTER*10 FORM
    DATA FORM/'(''$'',A)'/
    WRITE (7,FORM) 'DEFINE THE IMAGE AREA (X,Y) = '
    READ (5,*) ICOL, IROW
    WRITE (7,FORM) 'STARTING POSITION (XO,YO) = '
    READ (5,*) XO,YO
    WRITE (7,FORM) 'WINDOW SIZE = '
    READ(5,*) WINSIZ
    WRITE (7,FORM) 'GRAY LEVEL (=< 32) = '
    READ (5,*) NGRAY
    WRITE (7,*)
    WRITE(7,*) 'TEXTURE FUNCTIONS CAN BE EXTRACTED: '
    WRITE (7,*); 1. ANGULAR SECOND MOMENT;'
    WRITE (7,.*)' 2. CONTRAST;'
    WRITE (7,*)" 3. CORRELATION;'
    WRITE (7., *)' 4. SUM OF SQUARES;'
    WRITE(7,*)' 5. INVERSE DIFFERENCE MOMENT:'
    WRITE (7,*)'. 6. SUM AVERAGE;'
    WRITE(7,*)' 7. SUM ENTROPY;'
    WRITE(7,*)' 8. SUM VARIANCE;''
    WRITE (7,*)' 9. ENTROPY;'
    WRITE(7,*)' 10. DIFFERENCE ENTROPY;'
    WRITE (7,*)' 11. DIFFERENCE VARIANCE;'
    WRITE (7,*)' 12. INFORMATION MEASURES OF CORRELATION;'
    WRITE (7,*)' 13. MAXIMAL CORRELATION COEFFICIENT;'
    WRITE (7,*)
    WRITE (7,FORM) : ENTER YOUR CHOICE (0 TO QUIT): '
    READ(5,*) OPT
    IF (OPT.EQ.0) STOP
C
c
    STOP
    END
C
C----------------------------------------------------------------
    SUBROUTINE DOING(IC,IR, JO, IO, IWSIZE,DATA,N, IOPT)
C
    PARAMETER L=32, L2=64
    INTEGER DATA(IWSIZE,IWSIZE)
    DIMENSION P1 (L,L), P2 (L,L),P3(L,L),P4(L,L)
    DIMENSION P1x(L),P2x(L),P3x(L),P4x(L),
    P1y(L),P2y(L),P3y(L),P4y(L)
    DIMENSION P1xy(L2),P2xy(L2),P3xy(L2),P4xy(L2),
                P1yx(L),P2yx(L),P3yx (L), P4yx (L)
    DIMENSION TX1(30),TX2(30)
    CHARACTER*10 FORM,OUTFL
    DATA FORM/'(####I4)'/
C
C
C
C
    DO }10\mathrm{ IY =IO,IR+IO-3
        ICOUNT=0
        DO 30 IX=JO,IC+JO-3
                    CALL INPUT (1,DATA,IX,IWSIZE,IY,IWSIZE)
                    CALL UNPACK (DATA, DATA,IXY)
                    WRITE (7,102) IX, IY
                    WRITE (7,FORM) ((DATA (I,J), J=1,IWSIZE),I=1,IWSIZE)
C
C
    IXY=IWSIZE*IWSIZE
    WRITE (FORM(2:5),'(I4)') IWSIZE
    WRITE (7,*) 'ENTER OUTPUT FILF, NAME : '
    RFAD(5,'(N)') OUTPFL
    OPEN (UNIT=2,FILE=OUTFL,STATUS='NEW',FORM='UNFORMATTED')
    CALL OPEN(1,'PO',2)
Tl=SECNDS (0.0)
    CALL SPADEP (DATA,N,IWSIZE,IWSIZE,P1,P2,P3,P4)
    IF(IOPT.EQ.1) THEN
                    CALL F1 (P1,N,ASM1)
                    CALL F1 (P2,N,ASM2)
                    CALL F1 (P3,N,ASM3)
                    CALL F1(P4,N,ASM4)
```

CAIL MAXMIN (ASM1, ASM2, ASM3, ASM1, RANGLי, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.2) THEN
CALL RCOL,2 (P1, P2,P3,P4,N,P1XY,P2XY,P3XY, P4XY,P1YX,P2YX,
P3YX, P4YX)
CALL F2 (P1YX,N,CTR1)
CALL F2 (R2YX, N, CTR2)
CALL F2 (P3YX,N, CTR3)

- CALL F2 (P4YX,N, CTR4)

CALL MAXMIN (CTR1, CTR2, CTR3, CTR4, RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ. 3) THEN
CALL RCOL1 (P1, P2, P3, P4, N, P1X, P2X, P3X, P4X, P1Y, P2Y, P3Y, P4Y)
CALL F3 (P1, N, P1X, P1Y, CORRE1)
CALL F3 (P2, N, P2X, P2Y, CORRE2)
CALL F3 (P3,N, P3X,P3Y, CORRE3)
CALL F3 (P4, N, P4X,P4Y, CORRE4)
CALL MAXMIN (CORRE1: CORRE 2, CORRE 3, CORRF,4, RANSF., AVF.RAS)
GOTO 20
ENDIF
IF (IOPT.EQ.4) THEN
CALL F4 (P1, N, SUMSQ1)
CALL F4 (R2, N, SUMSQ2.)
CALL F4•(P3,N,SUMSQ3)
CALL F4 (P4, N, SUMSQ4)
CALL MAXMIN (SUMSQ1, SUMSQ2, SUMSQ3, SUMSQ4, RANGE, AVERAG)
GOTO 20
ENDITF
IF (IOPT.EQ.5) THEN
CALL F5 (R1, N,FIDM1)
CALL F5 (P2, N, FIDM2)
CALL F5 (P3, N, FIDM3)
CALL ES(P4,N,FIDM4)
CALL MAXMIN (FIDM1, FIDM2,FIDM3,FIDM4,RANGE,AVERAG)
GOTO. 20
ENDIF
IF (IOPT. EQ.6) THEN
CALL RCOL2 (P1,P2,P3,P4,N,P1XY,P2XY,P3XY, PAXY,P1YX,P2YX, P3YX, P4YX)
CALL F6(P1XY,N,SUMAV1)
CALL F6(P2XY,N, SUMAV2)
CALL F6 (P3XY, N, SUMAV3)
CALL F6(P4XY,N,SUMAV4)
CALL MAXMIN (SUMAV1, SUMAV2, SUMAV3, SUMAV4, RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.7) THEN
CALL RCOL2 (P1;P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX, P3YX, P4YX)
CALL F7 (P1XY, N, SUMET1)
CALL F7 (P2XY, N, SUMET2.)
CALL F7 (P3XY,N, SUMET3)
CALL F7 (P4XY,N,SUMET4)
CALL MAXMIN (SUMET1, SUMET2, SUMET3, SUMET4, RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT. FQ. 8) TIEN
CALL RCOL2 (P1, P2, P3,P4,N,P1XY,P2XY, P3XY,P4XY,P1YX,P2YX, P3YX, P4YX)
CALL F7(P1XY, N, SUMET1)
CALL F7 (P2XY,N,SUMET2)
CALh, F7 (R3XY, N, SUMFTB)
CALI, FT(PAXY,N, SUME'TA)
CALL F8 (P1XY,N, SUMET1, SUMV1)
CALL F8 (P2XY, N, SUMET2, SUMV2)
CALL F8 (P3XY, N, SUMET3, SUMV3)
CALL FB (P4XY, N, SUMET4, SUMV1)
CALL MAXMIN (SUMV1, SUMV2, SUMV3, SUMV4,RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.9) THEN
CALL F9 (P1, N, ENTKY1)
CALL F9 (P2, N, ENTRP2)
CALL F9 (R3, N, ENTRP3)
CALL F9 (P4, N; ENTRP4)
CALL MAXMIN (ENTRP1,ENTRP2,ENTRP3;ENTRP4,RANGE, AVERAG)
GOTO 20
ENDIF.
IF (IOPT.EQ.10) THEN
CALL RCOL2 (P1, P2, P3, P4, N, P1XY, P2XY, P3XY, P4XY, P1YX, P2YX, P3YX, P4YX)
CALL F10 (P1YX,N, DIFET1)

GOTO 20
ENDIF
IF (IOPT.EQ.2) THEN
CALL RCOL2 (R1, P2, P3, P4, N, P1XY, P2XY, P3XY, P4XY, P1YX, P2YX, P3YX, P4YX)
CALL F2 (P1YX,N,CTR1)
CALL F2 (R2YX,N, CTR2)
CALL F2 (P3YX,N,CTR3)
CALL F2 (P4YX,N,CTRA)
CALL MAXMIN (CTR1, CTR2, CTR3, CTR4, RANGE, AVERAG)
GOTO 20
ENDIF
IF (IORT.EQ.3) THEN
CALL RCOL1 (P1, P2, P3, P4, N, P1X, P2X, P3X, P4X, P1Y, P2Y, P3Y, P4Y)
CALL F3(P1,N, P1X,P1Y, CORRE1)
CALL F3 (P2,N,P2X,P2Y, CORRE2)
CALL F3 (P3, N, P3X, P3Y, CORRE3)
CALL F3 (P4, N, P4X, P4Y, CORRE4)
CALL MAXMIN (CORRE1, CORRE2,CORRE3,CORRE4,RANGE,AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.4) THEN
CALE F4 (P1, N, SUMSQ1)
CALL F4(P2,N,SUMSQ2)
CALL F4(P3,N,SUMSQ3)
CALL F4 (P4, N, SUMSQ4)
CALL MAXMIN (SUMSQQ, SUMSQ2,SUMSQ3,SUMSQ4, RANGE, AVERAG)
GOTO 20
ENDIF
IF (IORT.EQ.5) THEN
CALL F5 (R1, N, EIDM1)
CALL F5 (P2,N, EIDM2)
CALL F5 (P3, N, FIDM3)
CALL F5 (P4, N, FIDM4)
CALL MAXMIN (FIDM1,FIDM2,FIDM3,FIDM4,RANGE,AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.6) TUEN
CALL RCOL2 (P1, P2, P3,P4,N, P1XY,P2XY,P3XY, P4XY, P1YX, P2YX, P3YX, P4YX)
CALL F6(P1XY, N,SUMAV1)
CALL F6(P2XY,N, SUMAV2)
CALL F6(P3XY, N, SUMAV3)
CALL E6(P4XY,N,SUMAV4)
CALL MAXMIN (SUMAV1, SUMAV2, SUMAV3, SUMAV4, RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.7) THEN
CALL RCOL2 (P1, P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX; P3YX, P4YX)
CALL F7 (PIXY,N, SUMET1)
CALL E7 (P2XY,N,SUMET2)
CALL F7 (P3XY, N, SUMET3)
CALL F7 (P4XY, N, SUMET4)
CALL MAXMIN (SUMET1, SUMET2, SUMET3, SUMET4, RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.8) THEN
CALL RCOL2 (P1, P2, P3, P4, N, P1XY, P2XY, P3XY, P4XY, P1YX, P2YX, P3YX, P4YX)
CALL F7 (PIXY, N, SUMET1)
CALL $\operatorname{F7}(\mathrm{P} 2 \mathrm{XY}, \mathrm{N}$, SUMET2)
CALL F7 (P3XY, N, SUMET3)
CATL, FT (PAXY, N, SUMENTA)
CALL F8(P1XY,N, SUMET1, SUMV1)
CALL F8(P2XY, N, SUMET2, SUMV2)
CALL F8 (P3XY, N, SUMET3, SUMV3)
CALL F8 (P4XY, N, SUMET4, SUMV4)
CALL MAXMIN(SUMV1, SUMV2, SUMV3, SUMV4,RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.9) THEN
CALL F9 (P1, N, ENTRP1)
CALL F9(R2,N, ENTRP2)
CALL F9 (P3, N, ENTRP3)
CALL F9 (P4, N, ENTRP4)
CALL MAXMIN (ENTRP1, ENTRP2,ENTRP3,ENTRP4,RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.10) THEN
CALL RCOL2 (P1,P2,P3,P4,N,P1XY, P2XY, P3XY,P4XY,P1YX,P2YX, P3YX, P4YX)
CALL FIO (PIYX,N, DIFET1)

CALL MAXMIN(ASM1,ASM2,ASM3,ASM4,RANGE,AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.2) THEN
CALL RCOL2 (P1,P2,P3,P4,N,P1XY, P2XY, P3XY,P4XY,P1YX,P2YX, P3YX, P4YX)
CALL F2 (P1YX, N, CTR1)
CALL F2 (P2YX,N, CTR2)
CALL F2(P3YX,N,CTR3)
CALL F2 (P4YX,N,CTR4)
CALL MAXMIN(CTR1,CTR2,CTR3, CTR4,RANGE,AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.3) THEN
CALL RCOL1 (P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y,P4Y)
CALL E3(P1,N,P1X,P1Y, CORRE1)
CALL F3(P2,N,P2X,P2Y, CORRE2)
CALL F3(P3,N, P3X, P3Y, CORRE3)
CALL F3(P4,N,P4X,P4Y, CORRE4)
CALL MAXMIN (CORRE1, CORRE2,CORRE3,CORRE4,RANGE,AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.4) THEN
CALL F4 (P1,N, SUMSQ1)
CALL F4 (P2,N,SUMSQ2)
CALL E4 (P3, N, SUMSQ3)
CALL F4 (P4, N, SUMSQ4)
CALL MAXMIN(SUMSQQ1,SUMSQ2,SUMSQ3,SUMSQ4, RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.5) THEN
CALL F5(P1,N,FIDMI)
CALL F5 (P2, N, FIDM2)
CALL FS(P3,N,FIDM3)
CALL F5 (P4, N,FIDM4)
CALL MAXMIN(FIDM1,FIDM2,FIDM3,FIDM4,RANGE,AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.6) THFN
CALL RCOL2 (P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX, P3YX, P4YX)
CALL F6(P1XY,N, SUMAV1)
CALL F6(P2XY,N,SUMAV2)
CALL F6(P3XY, N, SUMAV3)
CALL F6(P4XY,N, SUMAV4)
CALL MAXMIN(SUMAV1, SUMAV2,SUMAV3,SUMAV4,RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.7) THEN
CAL, R RCOL2 (P1;P2,P3,P4,N,P1XY, P2XY, P3XY, P4XY, P1YX, P2YX, P3YX, P4YX
CALL F7(PIXY,N, SUMETI)
CALL F7(P2XY,N,SUMET2)
CALL F7(P3XY,N,SUMET3)
CALL F7(P4XY, N, SUMET4)
CALL MAXMIN (SUMET1,SUMET2,SUMET3, SUMET4,RANGE,AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.8) THEN
CALL RCOL2 (P1,P2,P3,P4,N,P1XY, P2XY,P3XY,P4XY,P1YX,P2YX, P3YX, P4YX)
CALL E7(P1XY, N, SUMET1)
CALL F7(P2XY, N, SUMET2)
CALL F7 (R3XY, N, SUMET3)
CALL F? (DAXY, N, SUMETM)
CALL F8 (P1XY, N, SUMET1, SUMV1)
CALL F8 (P2XY,N,SUMET2,SUMV2)
CALL F8 (P3XY, N, SUMET3, SUMV3)
CALL F8(PGXY,N, SUMET4, SUMV4)
CALL MAXMIN(SUMV1,SUMV2,SUMV3,SUMV4,RANGE,AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.9) THEN
CALL F9(P1, N, ENTRP1)
CALL F9(P2,N,ENTRP2)
CALL F9 (P3,N, ENTRP3)
CALL F9(P4,N, ENTRP4)
CALL MAXMIN (ENTRP1,ENTRP2,ENTRP3,ENTRP4,RANGE, AVERAG)
GOTO 20
ENDIF
IF (IOPT.EQ.10) THEN
CALL RCOL2 (P1,P2,P3,P4,N, P1XY, P2XY, P3XY, P4XY, P1YX, P2YX, P3YX, P4YX)
CALL FIO (P1YX,N, DIFET1)

```
    CALL F10 (P2YX,N,DIFET2)
    CALL F10(P3YX,N,DIFET3)
    CALL F10(P4YX,N,DIFET4)
    CALL MAXMIN(DIFET1,DIFET2,DIFET3,DIFET4,RANGE,AVERAG)
    GOTO 20
    ENDIF
    IF(IOPT.EQ.11) THEN
    CALL RCOL2(P1,P2,P3,P4,N,P1XY,P2XY,P3XY,P4XY,P1YX,P2YX,
        P3YX,P4YX)
    CALL F10(PIYX,N,DIFET1)
    CALL F1O (P2YX,N,DIFET2)
    CALL FIO (P3YX,N,DIFET3)
    CALL F10(P4YX,N,DIFET4)
    CALL F11(P1YX,N,DIFET1,DIFV1)
    CALL F11(P2YX,N,DIFET2,DIFV2)
    CALL F11 (P3YX,N,DIFET3,DIFV3)
    CALL F11 {P4YX,N,DIFET4,DIFV4}
    CALL MAXMIN(DIFV1,DIFV2,DIFV3,DIFV4,RANGE,AVERAG)
    GOTO 20
    ENDIF
    IF(IOPT.EQ.12) THEN
    CALL RCOL1(P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y,P4Y)
        CALL F9(Pl,N,ENTRP1)
        CALL F9(P2,N,ENTRP2)
        CALL F9(P3,N,ENTRP3)
        CALL F9(P4,N,ENTRP4)
        CALL F12(P1,P1X,P1Y,N,ENTRP1,FIMCI1,FIMC21)
    CALL F12(P2,P2X,P2Y,N,ENTRP2,FIMC12,FIMC22)
    CALL F12(P3,P3X,P3Y,N,ENTRP3,FIMC13,FIMC23)
    CALL F12(P4,P4X,P4Y,N,ENTRP4,FIMC14,FIMC24)
    CALL MAXMIN(FIMC11,FIMC12,FIMC13,FIMC14,RANGE1,AVERA1)
    CALL MAXMIN(EIMC21,FIMC22,FIMC23,FIMC24,RANGE2,AVERA2)
C
    GOTO 20
    ENDIF
    IF (IOPT.EQ.13) THEN
    CALL RCOL1(P1,P2,P3,P4,N,P1X,P2X,P3X,P4X,P1Y,P2Y,P3Y,P4Y)
                CALL F13(P1,P1X,P1Y,N,FMCC1)
        CALL F13(P2,P2X,P2Y,N,FMCC2)
        CNh.f.F13(P3, P3X,P3Y,N, FMCC3)
        CALL F13(19, ['4X,EMY,N,IMCCO)
        CALL MAXMIN(FMCC1,FMCC2,FMCC3,FMCC4,RANGE,AVERAG)
    ENDIF
C
30
    ICOUNT=ICOUNT+1
    TX1 (ICOUNT) =RANGE
    TX2 (ICOUNT)=AVERAG
    continue
        WRITE(2) (TX1(I),I=1,30)
        WRITE(2) (TX2(I), I=1,30)
    CONTINUE
    FORMAT (F20.5)
    FORMAT (/' COLUMN',I4,', ROW',I4)
    TYPE*,SECNDS (T1)
    RETURN
    END
C
C----------------------------------------------------
    SUBROUTINE MAXMIN(A,B,C,D,MIMA,AVG)
C
    REAL MIMA
    AVG= (A+B+C+D)/4
    MIMA=AMAX1 (A,B,C,D)-AMIN1 (A,B,C,D)
    RETURN
    END
```

SUBROUTINE SPADEP (SDATA,NG,IR,IC,SP1,SP2,SP3,SP4)

```
C
```



```
    DIMENSION SDATA(LG,LG),SP1(LG,LG),SP2(LG,LG),SP3(LG,LG),
    + SP4(LG,LG),DI(4),DJ(4)
INTEGER SDATA, CFNT, NAROR, DT, N.T
DATA DI/0, -1, -1, -1/ DJ/1, 0, 1, -1/
C
C....INITIALIZE SP*(I;J)
C
    4 I=1,NG
    DO 4 J=1,NG
                SP1(I,J)=0.0
                SP2(I,J)=0.0
        SP3 (I,J) =0.0
        SP4(I,J)=0.0
4 CONTINUE
C
C... CALCULATE SPADEP
C
DO 20 I=1, IR
            DO 20 J=1, IC
                            CENT=SDATA (I,J)
                    DO 30 K=1,4
                        II=I+DI (K)
                            JJ=J+DJ (K)
IF((II.GE.1.AND.II.LE.IR).AND.(JJ.GE.1.AND.JJ.LE.IC))THEN
                    NABOR=SDATA (II,JJ)
                        IF (K.EQ.1) SP1 (CENT+1,NABOR+1) =SP1(CENT+1,NABOR+1)+1
                IF (K.EQ.2) SP2 (CENT +1,NABOR +1) =SP2 (CENT + 1,NABOR +1) +1
                IF (K.EQ. 3) SP3 (CENT +1,NABOR+1) =SP3(CENT+1,NABOR+1) +1
                        IF (K.EQ.4) SP4 (CENT+1,NABOR+1)=SP4(CENT+1,NABOR+1)+1
ENDIF
CONTINUE
20 CONTINUE
C
C
```

```
DO 40 I=1,NG
```

DO 40 I=1,NG
DO 40 J=1,NG
IF(J .GE. I) THEN
SP1(I,J)=SP1(I,J)+SP1(J,I)
SP1(J,I)=SP1(I,J)
SP2(I,J)=SP2(I,J)+SP2(J,I)
SP2 (J,I) =SP2(I,J)
SP3(I,N)=SP3(I,J)+SP3(J,I)
SP3(J,I)=SP3(I,J)
SP4 (I,J) =SP4(I,J)+SP4(J,I)
SPA(J,I) =SP4(I,J)
ENDIF
CONTINUE
4 0
C...NOMALIZE SPADER. R* ARE THE NUMBER OF NEIGNBORING RESOLUTION
C...CELL PAIRS USED IN COMPUTING A PARTICULAR SPADEP.
C

```

```

C
DO 50 I= 1,NG
SP1 (I,J)=SP1(I,J)/R1
SP2 (I,J)=SP2(I,J)/R2
SP3 (I,J) =SP3(I,J)/R3
SP4 (I,J) =SP4{I,J)/R4
CONTINUE
RETURN
END
C

```

SUM4 \(=0.0\)
DO \(50 \quad \mathrm{I}=1\), NG DO \(50 \mathrm{~J}=1\), NG IF \(((I+J)\).EQ. \((K+1))\) THEN SUM1 \(=\) SUM1 + SPI \((I, J)\) SUM2 \(=\) SUM2 + SP2 \((I, J)\) SUM3 \(=\) SUM \(3+\) SP 3 (I, J) SUM4 \(=\) SUM4 + SP4 (I, J) ENDIF
CONTINUE
SP \(1 \times Y(K)=\) SUM1
SP2xy (K) =SUM2
SP \(3 \times Y(K)=\) SUM 3 E「1 \(\mathrm{KY}(\mathrm{K})=\) = UMM
C. . .2) \(\mathrm{SPx}-\mathrm{y}(\mathrm{K})=\mathrm{SP}\) * \(\mathrm{Yx}(\mathrm{K})\)

DO \(55 \mathrm{~K}=1\), NG
SUM1 \(=0.0\)
SUM2 \(=0.0\)
SUM3 \(=0.0\) SUM4 \(=0.0\)
DO \(60 I=1\), NG DO \(60 \mathrm{~J}=1\),NG IF (ABS (I-J) .EQ. K-1) THEN SUM1 = SUM1 +SP1 (I, J) SUM2 \(=\operatorname{SUM} 2+\operatorname{SP2} 2(I, J)\) SUM3 \(=\) SUM \(3+\) SP \(3(I, J)\) SUM4 \(=\) SUM4 + SP4 (I, J) ENDIF
CONTINUE
SP1Yx \((\mathrm{K})=\) SUM1
SP2yx (K) = SUM2
SP3Yx \((K)=\) SUM 3
SP4Yx \((K)=\) SUM 4
CONTINUE
RETURN
F.ND


```

 SUM2=SUM2+SPY (I) * (I-1)
 30
CONTINUE
DF3=SUM1-SUM2 * *2
C
C...DF4
C

	SUM1 $=0.0$
	SUM2 $=0.0$
	DO $40 \mathrm{I}=1$, NG
	SUM1 $=$ SUM1 + SPY (I) * (I-1) **2
	SUM2 = SUM2 + SPY (I) * (I-1)
40	CONTINUE
c	
	DF4 $=$ SUM1-SUM2**2
C	
C. .	RRE $=(D F 1-D F 2) / S Q R T(D F 3 * D F 4)$

 DFF=SQRT (DF3*DF\)
 IF (DFF.EQ.0) THEN
 SCORRE=1
 ELSE
SCORRE=(DF1-DF2)/DFF
ENDIF
C
RETURN
END
C
C
C---
C
SOS=SUM(SUM(I-U)**2*SP(I,J));
DIMENSION SP (32,32)
C
C
SUM=0.0
DO 10 I=1,NG
DO }10\textrm{J}=1,N
SUM=SUM+SP(I,J)* (I-1)* (J-1)
10 CONTINUE
U=SUM
C
c...sos
C
SUM=0.0
DO 20 I=1,NG
DO. 20 J=1,NG
SUM=SUM+(I-1-U)**2*SP(I',J) ! (I-1) IS. CLASS MARK WHEN THE
C
20 CONTINUE
C
SOS=SUM
c
RETURN
END
C
C
C--
C THE INVERSE DIFFERENCE MOMENT.
C C SIDM=SUM(SUM(SP(I,J)/(1+(I-J)**2).)
C
C
C
C
C
C
DIMENSION SP(32,32)
SUM=0.0
DO 10 I=1,NG
DO 10 J=1,NG
SUM=SUM+SP (I,J) / (I+(I-J)**2)
10 CONTINUE
c

```
    SUMAVE=SUM (I*SPXY (I) ; THE FIRST I EQUALS TO (I+J) IN THE
                CALCULATION OF SPXY(I).
    DIMENSION SPXY(64)
    SUM=0.0
    DO \(10 \mathrm{I}=1,2^{*} \mathrm{NG}-1\)
        SUM \(=\operatorname{SUM}+(\mathrm{I}+1) * \operatorname{SPXY}(\mathrm{I})\)
    CONTINUE
    SUMAVE=SUM
    RETURN
    END
: SUBROUTINE F7 (SPXY, NG, SUMETP)
C
SUM ENTROPY.
\(\quad \operatorname{SUMETP}=-\operatorname{SUM}(\operatorname{SPXY}(I) * \operatorname{LOG}(\operatorname{SPXY}(I)) ;\) RANGE: I=1....2*NG-1.
    SINCE LOG (0) IS UNDEEINED AND SPXY(I)=0 IS POSSTBLE;
    THE FORMULA CIHANGE TO:
    SUMETP \(=-\operatorname{SUM}(\operatorname{SPXY}(I) * \operatorname{LOG}(S P X Y(I)+C O N S T)\)
    IF \(\operatorname{SPXY}(I)=0, \quad \operatorname{CONST}=1\)
    THE BASE OF LOG IS 2. SINCE LOG HAS BASE OF (E), THUS:
    SUMETP \(=-\operatorname{SUM}(\operatorname{SPXY}(I) \star \operatorname{LOG}(\operatorname{SPXY}(I)+C O N S T) / L O G(2)\)

\(c\)
    DIMENSION SPXY(64)
    \(A=2.0\)
    \(B=A L O G(A)\)
    SUM \(=0.0\)
    DO \(10 \mathrm{I}=1,2\) *NG-1
        IF (SDXY(I).EQ.0.0) THEN
            CONST=1.0
        ELSE
                CONST \(=0.0\)
        ENDIF
        \(\operatorname{SUM}=\operatorname{SUM}+\operatorname{SPXY}(\mathrm{I}) *(\operatorname{ALOG}(\operatorname{SPXY}(I)+\operatorname{CONST}) / B)\)
    CONTINUE
    SUMETP \(=-\) SUM
    RETURN
    END
*
    SUBROUTINE E8 (SPXY, NG, SUMF7, SUMV)
C

        SUM \(=0.0\)
        DO \(10 \quad \mathrm{I}=1,2 * \mathrm{NG}-1\)
        SUM \(=\) SUM \(+(I+1-\operatorname{SUMF} 7) * * 2 * S P X Y(I)\)
        CONTINUE
        SUMV=SUM
        RETURN
    END
\begin{tabular}{|c|c|}
\hline & SUBROUTINE F9 (SP, NG, ENTRO) \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{C} \\
& \mathrm{C}
\end{aligned}
\]} \\
\hline \[
\underset{*}{\mathrm{C}}
\] & \\
\hline * & CALCULATE THE ENTROPY. \\
\hline * & ENTRO \(=\) - SLM [SP(I J) * LOG(SP(L, J)+CONSTANT)/[OG (2)] \\
\hline * &  \\
\hline * & IF \(\operatorname{SP}(\mathrm{I}, \mathrm{J})=0\), CONSTANT \(=1.0\); ELSE, CONSTANT \(=0.0\). \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{C}^{C-}\)}} \\
\hline & \\
\hline & DIMENSION SP (32,32) \\
\hline \multirow[t]{5}{*}{c} & \\
\hline & \[
A=2.0
\] \\
\hline & \[
\begin{aligned}
& B=A L O G(A) \\
& S U M=0.0
\end{aligned}
\] \\
\hline & DO \(10 \mathrm{I}=1\), NG \\
\hline & DO \(10 \mathrm{~J}=1, \mathrm{NG}\) \\
\hline \multirow[t]{5}{*}{c} & \\
\hline & IF (SP (I,J).EQ.0.0) THEN
CONST \(=1.0\) \\
\hline & ELSE \\
\hline & CONST \(=0.0\) \\
\hline & ENDIF \\
\hline \multirow[t]{2}{*}{c} & \\
\hline & SUM \(=\) SUM + SP (I, J) * (ALOG \(\langle\) SP \(\langle\mathrm{I}, \mathrm{J}\) ) +CONST) /B) \\
\hline C & \\
\hline 10 & CONTINUE \\
\hline \multirow[t]{2}{*}{c} & \\
\hline & ENTRO = - SUM \\
\hline \multirow[t]{3}{*}{C} & \\
\hline & Return \\
\hline & END \\
\hline \multirow[t]{2}{*}{c} & \\
\hline & SUBROUTINE F10 (SPYX, NG, DIFETP) \\
\hline c & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{c}} \\
\hline * & \\
\hline * & DIFFERENCE VARIANCE. \\
\hline * & DIFETP \(=-\operatorname{SUM}(\operatorname{SPY}(\mathrm{I}) *\) (ALOG \([\operatorname{SPYX}(\mathrm{I})+\mathrm{CONSTANT} / \mathrm{ALOG}(2)] ;\) \\
\hline * & ARRAY SUBSCRIPT: 1, 2, 3, ... NG. \\
\hline * & \\
\hline \multicolumn{2}{|l|}{c} \\
\hline & DIMENSION SPYX(32) \\
\hline \multirow[t]{5}{*}{c} & \\
\hline & \(\mathrm{A}=2.0\) \\
\hline & \(\mathrm{B}=\mathrm{ALOG}(\mathrm{A})\) \\
\hline & SUM \(=0.0\) \\
\hline & DO \(10 \mathrm{I}=1\), NG \\
\hline \multirow[t]{5}{*}{c} & \\
\hline &  \\
\hline & ELSE \\
\hline & CONST \(=0.0\) \\
\hline & ENDIF \\
\hline \multirow[t]{2}{*}{c} & \\
\hline & SUM \(=\) SUM \(+\operatorname{SPYX}(\mathrm{I}) *(\operatorname{ALOG}(\mathrm{SPYX}(\mathrm{I})+\mathrm{CONST}) / \mathrm{B})\) \\
\hline c & \\
\hline 10 & continue \\
\hline \multirow[t]{2}{*}{c} & \\
\hline & DIFETP \(=-\mathrm{SUM}\) \\
\hline \multirow[t]{3}{*}{c} & \\
\hline & RETURN \\
\hline & END \\
\hline \multirow[t]{2}{*}{c} & \\
\hline & SUBROUTINE F11 (SPYX, NG. DETP. DIFV) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{c}} \\
\hline & \\
\hline * & DIfFERENCE VARIANCE. \\
\hline * & \\
\hline * & F10=DETP (THE DIFFERENCE ENTROPY) \\
\hline * & DIFV \(=\operatorname{SUM}\{(\mathrm{I}-\mathrm{Fl} 10) * * 2 * \operatorname{SPYX}(\mathrm{I})\}\). NOTE: THE ALGORITHEM IS \\
\hline * & NOT SURE. \\
\hline * & WHEN THE FIRST GRAY LEVEL \(=0, \mathrm{I}=\mathrm{I}-1\). \\
\hline
\end{tabular}
```

C
C
SUM=0.0
DO 10 I=1,NG
SUM=SUM+(I-1-DETP)**2*SPYX(I)
CONTINUE
lo
c
RETURN
END
SUBROUTINE F12(SP,SPX,SPY,NG,HXY,SIMC1,SIMC2)
C
C

* INFORMATION MEASURES OF CORRELATION.
* SIMC1 = (HXY - HXY1) / MAX(HX,HY);
SIMC2 = SQRT((1-exp[-2.0(HXY2 - HXY])}.
HXY: THE ENTROPY, CACULATED IN F9;
HX = - SUM [SPX(I)* (LOG(SPX(I)+CONSTANT)/LOG(2))];ENTRCPY OF SPX(I)
HY = - SUM {SPY(I)* (LOG(SPY(I)+CONSTANT)/LOG(2))];ENTROPY OF SPY(I)
HXY1 = - SUM (SPP(I,J) * (LOG[SPX(I)*SPY(I) +CONSTANT]/LOG (2)]);
HXY2 = - SUM { SPX(I)*SPY(I) * (LOG[SPX(I)*SPY(I)+CONSTANT]/LOG(2))},
C
c
DIMENSION SP(32,32),SPX(64),SPY(64)
c
A=2.0
B=ALOG (A)
c
c...HX, HY
c
HX=0.0
1IY-0.0
C
C
IF (SPX(I) .EQ. O.0) THEN
CONST1=1.0
ELSE
CONST1=0.0
ENDIF
IF (SPY(I) .EQ. 0.0) THEN
CONST2=1.0
ELSE
CONST2=0.0
ENDIF
c
HX=HX+SPX(I)* (ALOG (SPX (I) +CONSTI)/B)
HY=HY+SPY(I)* (ALOG(SPY (I) +CONST2)/B)
c
10 CONTINUE
C
HX = - HX
HY = - HY
c
C...HXY1, HXY2
C
HXY1=0.0
HXY2=0.0
C
DO 20 I=1,NG
DO 20 J=1,NG
C
IF (SPX(I).EQ.0.0 .OR. SPY(J).EQ.0.0) THEN
CONST=1.0
ELSE
CONST=0.0
ENDIF
C
HXY1=HXY1 + SP(I,J) * (ALOG (SPX(I)*SPY(J) + CONST)/B)
HXY2=HXY2 + SPX(I) * SPY(J)*(ALOG(SPX(I)*SPY(J) +CONST)/B)
C
20 CONTINUE
HXY1 = - HXYI
HXY2 = - HXY2

```
```

C
c...sIMCI
C IF (AMAXI (HX,HY).EQ.0) THEN
SIMCl=0
ELSE SIMC1 $=($ HXY - HXY1) $/$ AMAX1 (HX,HY)
ENDIF
C. .. SIMC2
c
c

- SIMC2 $=\operatorname{SQRT}(1-\mathrm{A})$
RETURN
END

```
    SUBROUTINE F13(SP,SPX,SPY,NG, SUBMCC)
C

THE CRITICAL ALGORITHEMS OF THIS PORTION IS BASED ON THE BASIC
    LANGUAGE PROGRAM DESIGNED BY ZHANG et. al. IN QINGHUA U. CHINA.
    NOTE: THE ACCURACY OF COMPUTATION IS INFLUENCED BY THE SIZE
    OF THE ORIGINAL MATRIX; i.e. THE NUMBER OF GRAY LEVEL WE
    deal with. the meaning of this maximal correlation coefficient
    STILL NEEDS TO FIND OUT, SO IS THE GRAPHIC DISPLAY OF THIS
    MEASUREMENT.
    DIMENSION SP \((32,32), \operatorname{SPX}(64), \operatorname{SPY}(64), Q(36,36), \operatorname{EIGR}(32)\)
C
    DO \(10 \quad \mathrm{I}=1\), NG
        DO \(1.0 \mathrm{~J}=1\), NG
            SUM \(=0.0\)
            DO \(20 \mathrm{~K}=1\), NG
                IF (SPX.(I) .EQ. 0 .OR. SPY (K) .EQ. O) GOTO. 20
                \(\operatorname{SUM}=\operatorname{SUM}+(\operatorname{SP}(I, K) * \operatorname{SP}(J, K)) /(\operatorname{SPX}(I) * \operatorname{SPY}(K))\)
    CONTINUE
        \(Q(I, J)=S U M\)
    CONTINUE
C
C...CONVERT \(Q(I, J)\) TO HESSENBERG MATRIX
C
    CALL \(\operatorname{HESSEN}(Q, N G)\)
C...CALCULATE EIGENVALUE FCR \(Q(I, J)\) CONVERTED TO HESSENBER MATRIX.
    CALL EIGEN (Q,NG,EIGR)
C
C...EIND THE SECOND LARGEST EIGENVALUE OE \(Q(I, J)\)
C
    DO \(60 \mathrm{~J}=1, \mathrm{NG}-1\)
    DO \(50 \quad \mathrm{I}=1, \mathrm{NG}-1\)
        IF(EIGR(I).GT.EIGR(I+1)) THEN
                TEMP =EIGR (I)
                \(\operatorname{EIGR}(I)=E \operatorname{IGR}(I+1)\)
                \(\operatorname{EIGR}(\mathrm{I}+1)=\mathrm{TEMP}\)
            ENDIF
            CONTINUE.
50
\(60 \quad\) CON'TINUE
C
    \(\operatorname{SMAX}=\operatorname{EIGR}(N G-1)\)
C
SUBMCC= \(\operatorname{SQRT}(\operatorname{ABS}(S M A X))\)
C
    RETURN
    END
C
SUBROUTINE HESSEN(HA,SNG)
C
    PROGRAM TO TRANSFOR GENERAL MATRIX TO THE HESSENBERG MATRIX.
*
*
*
*
*
*
*
* \(\quad \mathrm{A}(\mathrm{SN}, \mathrm{SN}+4)\); \(\mathrm{B}(\mathrm{SN}) \quad\) ! CURRENTLY \(\mathrm{A}(\mathrm{SN}, \mathrm{SN}), \mathrm{B}(\mathrm{SN})\);
\(\star \quad!\quad \mathrm{SN}=<86\).
```

C

```

```

 DO 10 I=1,SN
 B(I)=I
 10 CONTINUE
C...CORE OF THE PROGRAM
C
L=SN-1
DO 20 M=2,L
I=M
X=0.0
DO }30\textrm{J}=\textrm{M},\textrm{SN
IF(ABS (HA (J,M-1)) .LE. ABS (X)) GOTO 30
X=HA(J,M-1)
I=J
30
C
C
C
4 0
C
CONTINUE
IF(I .EQ. M) GOTO 9999
Y=B(M)
B(M)=B(I)
B(I)=Y
DO 40 J=M-1, SN
Y=HA(I,J)
HA (I,J) =HA (M,J)
HA (M,J)=Y
CONTINUE
DO 50 J=1,SN
Y=HA(J,I)
HA (J,I) =HA (J,M)
HA (J,M)=Y
CONTINUE
C
9999 IF(X .EQ. O.0) GOTO 20
c
DO 60 I=M+1,SN
Y=HA(I,M-1)
IF(Y .EQ. 0.0) GOTO 60
Y=Y/X
HA (I,M-1) =Y
DO }70\textrm{J}=\textrm{M},\textrm{SN
HA (I,J) =HA (I,J) -Y*HA (M,J)
CONTINUE
DO 80 J=1,SN
HA (J,M) =HA (J,M) +Y*HA (J; I)
CONTINUE
CONTINUE
CONTINUE
DO 90 I=1,SN
DO }90\textrm{J}=1,\textrm{SN
IF(I .LE. 2 .OR. J .GT. I-2) GOTO 90
HA (I,J) =0.0
CONTINUE
RETURN
END
SUBROUTINE EIGEN (A, SNG,DR)
C

```

```

 QR METHOD TO CALCULATE THE EIGENVALUE OF MATRIX,
 * INPUT MATRIX MUST BE A HESSENGER MATRIX. GENERAL MATRIX CAN
* BE CONVERTED TO A HESSENGER MATRIX BY THE PROGRAM 'UPPERH.FOR'.
* THE ALGORITHEM IS DESIGNED BY ZHANG et. al AT QINGHUA U. CHINA.
ARRAY
A (N+4,N+4).. INPUT HESSENGER MATRIX;
B (N+4)...... RECORD OF SEARCHING TIMES;
R(N)........ THE REAL PARTS OF THE EIGENVALUE;
I (N)........ THE IMAGERARY PARTS OF THE EIGENVALUE;

```
```

* N.......... SIZE OF the matrix;
* E........... ERROR INDEX, SPECIFIED TO 0.1.
* DIMENSION A (36,36),B(36),DR(32),DI (32)
INTEGER SNG
C
c
c
7 1 6
10
c
7174
C
IF(L .EQ. N) THEN
DR(N)}=\textrm{X}+\textrm{T
DI (N)=0.0
B (N) =T1
N=N1
GOTO }716
ENDIF
Y=A (N1,N1)
W=A (N,N1)*A (N1,N)
IF(L .EQ. N1) THEN
P}=(\textrm{Y}-\textrm{X})/
Q=P*P+W
Y=SQRT (ABS (Q))
B(N)=-Tl
B(N1)=T1
X=X+T
IF(Q ,TF. O) THEN
MR(N|)-XIL
DR(N)=X+P
DI (N1) =Y
DI (N) =-Y
ELSEIF(P .GE. 0) THEN
Y=P+Y
DR (N1) =X + Y
DR (N)=X-W/Y
DI (N1) =0.0
DI (N)=0.0
ELSE
Y=-Y
Y=P+Y
DR(N1) =X +Y
DR (N)=X-W/Y
DI (N1) =0.0
DI (N)=0.0
ENDIF
N=N-2
GOTO 7160 ! STARTING AGAIN.
ENDIF
IF(T1 .EQ. 10 .OR. T1 .EQ. 20) THEN
T=T+X
DO 20 I=1,N
A(I,I)=A (I,I) -X
CONTINUE
S=ABS (A (N,N1))+ABS (A (N1,N-2))
X=0.75*S
Y=0.75*S
W=(-0.4375)*S*S
ELSEIF(T1 .EQ. 60) THEN
WRITE(7,*) 'EIGENVALUE NOT FOUND '
RETURN
ENDIF
DO 30 M=N-2,L,-1
Z=A (M,M)
R=X-Z
S=Y-Z
P=(R*S-W)/A (M+1,M)+A(M,M+1)
Q=A (M+1,M+1)-Z-R-S

```
```

R=A (M+2,M+1)
S=ABS (P) +ABS (O) +ABS (R)
P=P/S
Q=Q/S
R=R/S
IF(M .EQ. L) GOTO 7240
U=E*ABS (D)* (ABS {A (M-1,M-1)) +ABS (Z) +ABS (A (M+1,M+1)))
IF (ABS (A (M,M-1))* (ABS (Q) +ABS (R)) .LE. U) GOTO }724
CONTINUE
DO 40 I=M+2,N
A(I,I-2)=0.0
CONTINUE
DO 50 I =M+3,N
A(I,I-3)=0.0
CONTINUE
DO 60 K=M,N1
IF(K .NE. N1) N2=1
IF(K .NE. M) THEN
P=A (K,K-1)
Q=A (K+1,K-1)
R=0.0
IF(N2 .EQ. 1) R=A (K+2,K-1)
X=ABS (P) +ABS (Q)+ABS (R)
IE(X .EQ. O) GOTO 60 !NEXT K
P=P/X
Q=Q/X
R=R/X
ENDIF
S=SQRT (P*P+Q*Q +R*R)
IF(P .LT. 0) S=-S
IF(K .NE. M) THEN
A (K,K-1) = (-S)* X
ELSEIF(L. .NE. M) THEN
A(K,K-1) = -A (K,K-1)
ENDIF
P=P+S
X=P/S
Y=Q/S
Z=R/S
Q=Q/P
R=R/P
C
DO $70 \mathrm{~J}=\mathrm{K}, \mathrm{N}$
$P=A(K, J)+Q * A(K+1, J)$
IF (N2 .EQ. O) GOTO 7320
$\mathrm{P}=\mathrm{P}+\mathrm{R} \star \mathrm{A}(\mathrm{K}+2, \mathrm{~J})$
$A(K+2, J)=A(K+2, J)-P * Z$
$A(K+1, J)=A(K+1, J)-P * Y$
$A(K, J)=A(K, J)-P * X$
CONTINUE
IF ($\mathrm{K}+3 \underset{\substack{\mathrm{~J}=\mathrm{N}}}{\mathrm{GE} . \mathrm{N}) \text { THEN }}$
ELSE
$J=K+3$
ENDIF
DO $80 \mathrm{I}=\mathrm{L}, \mathrm{J}$
$P=X \star A(I, K)+Y^{*} A(I, K+1)$
IF (N2 .EQ. 0) GOTO 7344
$\mathrm{P}=\mathrm{P}+\mathrm{Z}$ * $\mathrm{A}(\mathrm{I}, \mathrm{K}+2)$
$A(I, K+2)=A(I, K+2)-P * R$
$A(I, K+1)=A(I, K+1)-P * Q$
$A(I, K)=A(I, K)-P$
CONTINUE
CONTINUE
$\mathrm{Tl}=\mathrm{T} 1+1$
GOTO 7166 ! LOOP 10.
CONTINUE
RETURN
END

```
c.

    PROGRAM TXGG3
C PROGRAM TO PLOT INDIVIDUAL TEXTURAL MEASURES.
    AUG. 9, 1987.
c
C
c
C
c
5
\(c\)
C
    CALL SCALE ( \(Y, 6.0,10,1\) )
    WRITE (7, FORM) 'FEATURE YOU WANT TO PLOT : '
    \(\operatorname{READ}(5, *)\) TX
    WRITE (7,FORM) \(\cdot \sigma(1), 90(2), 45(3), 135\) (4), RANGE (5),AVERAG (6),
    +VARIANT (7) : '
    READ \((5, *)\) IF
c
    CALL PLOTS \((0,0,0)\)
    CALE PLOT (1.0.1.0.,-3)
c
888
c
c
    \(M=0\)
    \(M=M+1\)

-
    \(\operatorname{READ}(1, *) \quad((A(I, J), J=1,7), I=1,7)\)
    TEMP \(=A(T X, I F)\)
    IF (TX.GE.3.AND.TX.LE.5.AND.IF.NE.5.AND.IF.NE.7) THEN
                    TEMP=TEMP/10
    ELSE
    ENDIF
    \(Y(M)=\) TEMP
c
    CLOSE (1)
    IF (M.EQ.N) GOTO 777
    GOTO 888
C
777
    CALL AXIS ( \(0.0,0.0\), 'TEXTURE MEASURES', \(-16,7.0,0.0, \mathrm{X}(11), \mathrm{x}(12)\) )
        CALL AXIS (0.0.0.0, 'VALUE!. 5, 6.0.90.0,Y(11), Y(12))
        CALL LINE ( \(\mathrm{X}, \mathrm{Y}, 10,1,1,11\) )
c
    stop
    END
```

C
PROGRAM FTXTUR
PERFORMS TWO DIMENSIONAL FFT, THEN CALCULATE. THE REGIONAL ENTROPY.
C THE CURRENT PROGRAM WORK FOR 32X32 SUBIMAGE. USING THE VIRTUAL
MEMORY, ANALYSIS CAN BE PERFORMED ON UR TO 128X128 SUBIMAGE.
INPUT DATA IS READ FROM THE PICTURE PLANE '0', SUBIMAGE AREA IS
SELECTED BY POINTING THE CURSOR TO THE LEET CORNOR OF THE AREA.
OUTPUT UNIT 2 CONTAINS THE OUTPUT FILE OF THE GRAY-LEVEL-SCALED
FOURIER SPECTRUM TO BE PLOT BY 'PLOTFE.FOR' AS AN IMAGE OR 'FFT3D.FOR'
AS A 3-D PLOT.
THE SIZES OF ENTROPY REGIONS ARE 25 X 25, 17 X 17, 11 X 11, 5 X 5.
THIS ALGORITHM OF REGIONAL ENTROPY ANALYSIS IS PROPOSED BY
M.E. JERNIGAN AND F. D'ASTOUS. IN 'ENTROPY-BASED TEXTURE ANALYSIS IN
THE SPPATIAL FREQUENCY DOMAIN', IEEE, TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLEGENCE, VOL.' PAMI-6, NO. 2, MARCH }1984
LI BIN, JULY 22, 1987.
DIMENSION H(32,32),B(32),QB(32,32)
COMPLEX B,QB
REAL K
CHARACTER*10 OUTFLI,OUTFL2,FORM
DATA FORM/'(''S'',A)'/
C
C
C
C
C INPUT SECTION
9899 WRITE(7,FORM) 'ENTER FILE NAME FOR THE FOURIER SPECTRUM : '
READ(5,'(A)') OUTEL1
OPEN (UNIT=2,FILE=OUTFL1,STATUS='NEW',FORM='UNFORMATTED')
C
C
C
C
C
C
WRITE (7,FORM) 'JOYSTIC (0) OR KEYBORAD (1) COORDINATES ? '
READ (5,*) ISEL
IF (ISEL .EQ. 0) THEN
WRITE (7,FORM) 'Hit <BS>'
CALL CURSOR(IX,IY)
WRITE(7,*) "WRITE DOWN THE POSITION : ',IX,IY
ElSE
WRITE (7,FORM) 'ENTER X, Y COORDINATES : '
READ (5,*) IX, IY
ENDIF
IXSIZE=NN
IYSIZE=NN
CALL BOXON(IX,IY,IXSIZE,IYSIZE)
WRITE (7, FORM) 'IS THIS AREA ACCEPTABLE (1/0) ? '
READ (5,*) RESPONSE
IF(RESPONSE .EQ. 0) THEN
CALL BOXOFE (IX,IY,IXSIZE,IYSIZE)
GO TO 1
ENDIF
FFT SECTION
WRITE (7,*)'ORIGIN CENTERED FFT ? 1/0'
READ(5,*) OPTION

```

\section*{OPTION \(=1\)}

WRITE (7,*) 'LOG SCALE? ( \(1=\mathrm{Y}, \mathrm{O}=\mathrm{N}\) )'
\(\operatorname{READ}(5, *)\) SCALOG
IF (SCALOG.EQ.1) THEN
WRITE (7,*) 'ENTER SCALE FACTOR K'
\(\operatorname{READ}(5, *) \mathrm{K}\)
ENDIF
C \(\quad\) WRITE \((7, *)\) 'ENTER GRAY LEVEL'
\(C \quad \operatorname{READ}(5, \star) G\)
- \(\mathrm{G}=255\)
c
C TRANSFORM THE ROWS OF \(\mathrm{H}(\mathrm{I}, \mathrm{J})\), STORE IN \(\mathrm{Q}(\mathrm{I}, \mathrm{L})\)
```

 Tl=SECNDS (0.0)
    ```
    DO \(10 \quad \mathrm{I}=1\), NN
                ICOUNT \(=0\)

DO \(20 \mathrm{~J}=1\),NN ICOUNT-ICOUNT: 1 IF (OPTION.EQ.I) IC=(-1)** (I+J) IF (OPTION.EQ.0) IC=1 \(B(I C O U N T)=H(I, J) * I C\)
CONTINUE CALL FOUREA (B,NN,-1) \(M=0\) DO \(30 \mathrm{~L}=1\), NN \(M=M+1\) \(Q B(I, L)=B(M)\) CONTINUE

C TRANSFORM THE COLUMNS OE \(\mathrm{QB}(\mathrm{I}, \mathrm{J})\)
DO \(50 \mathrm{~J}=1\), NN ICOUNT=0
DO \(60 \mathrm{I}=1\), NN
ICOUNT \(=I\) COUNT +1
\(B(I C O U N T)=Q B(I, J) / N N \quad\) DIVIDED BY \(1 / N\).
60
CONTINU:
CALL FOUREA (B,NN,-1)
DO \(70 \mathrm{~L}=1\), NN
\(M=M+1\)
\(Q B(L, J)=B(M)\)
CONTINUE
CONTINUE
TYPE*,'TIME IN TRANSEORM = ', SECNDS (T1),' SECONDS.'
C
\(\mathrm{U}=7\)
VMIN \(=1.0 E 9\)
VMAX \(=-1.0 \mathrm{E} 9\)
DO \(80 \mathrm{I}=1\), NN
DO \(80 \mathrm{~J}=1\), NN
\(\mathrm{PSD}=\mathrm{QB}(\mathrm{I}, \mathrm{J}) * \operatorname{CONJG}(\mathrm{QB}(I, J))\)
\(Q B(I, J)=P S D\)
H (I, J) = SQRT (PSD)
VMAX =AMAX1 (H (I, J) , VMAX)
VMIN=AMIN1 ( \(\mathrm{H}(\mathrm{I}, \mathrm{J}\) ), VMIN)
IF (SCALOG.NE.1) GOTO 80
\(H(I, J)=\operatorname{LOG}\left(1+K^{\star} H(I, J)\right)\)
80 CONTINUE
C. SUMS OF 4 REGIONS: \(25 \times 25,17 \times 17,11 \times 11,5 \times 5\)

C
IWI \(=\mathrm{NN} / 2+1-12\)
IW1 \(1=\mathrm{NN} / 2+1+12\)
SUM1 \(=0.0\)
DO \(81 I=I W 1\), IW11
DO \(81 \mathrm{~J}=\) IW1, IW11 SUM1 \(=\) SUM1 \(+Q B(I, J)\)
81
CONTINUE
IW2 \(=\) NN \(/ 2+1-8\)
IW22-NN/211ト0
SUM2 \(=0.0\)
DO 82 I=IW2.IW22
DO \(82 \mathrm{~J}=\mathrm{IW} 2\), IW 22 SUM2 \(=\) SUM2 \(+Q B(I, J)\)
82
CONTINUE
IW \(3=\mathrm{NN} / 2+1-5\)
IW \(33=\mathrm{NN} / 2+1+5\)
SUM3 \(=0.0\)
DO \(83 \mathrm{I}=\) IW 3 , IW 33
DO \(83 \mathrm{~J}=I W 3\), IW33
```

83 CONTINUE
IW4 =NN/2+1-2
IW44=NN/2+1+2
SUM4=0.0
DO }84\textrm{I}=IW4,IW4
DO }84\textrm{J}=IW4,IW4
SUM4 = SUM4 +QB (I,J)
84 CONTINUE
C E ENTROPY
C
AA=2.0
BASE=ALOG (AA)
C
ETP1=0.0
DO }85I=IW1,IW1
DO 85 J=IW1, IW11
TEMP1 =QB (I, J) / SUM1
TEMP2=ALOG (TEMP1)
ETPl=ETP1+TEMP1 *TEMP2
CONTINUE
ETP1=-ETP1/ (ALOG(25.0*25.0)/BASE)
ETP2=0.0
DO 86 I=IW2,IW22
DO 86 J=IN2,IW22
TEMP1=QB (I,J)/SUM2
TEMP2=ALOG (TEMP1)
ETP2=ETP 2+TEMP1 *TEMP2
CONTINUE
ETP 2=-ETP2/(ALOG (17.0*17.0)/BASE)
ETP 3=0.0
DO }87\mathrm{ I=IW3,IW33
DO 87 J=IW3,IW33
TF.MP1 =ON ([, J) /SUM3
I'EMP2= NLOG (TEML'1)
ETP 3=ETP 3+TEMP1*TEMP2
CONTINUE
ETP 3=-ETP3/(ALOG (11.0*11.0)/BASE)
C
ETP4=0.0
DO 88 I=IW4,IW44
DO }88\textrm{J}=IW4,IW4
TEMP1=OB (I,J) / SUM4
TEMP 2 =ALOG (TEMP1)
ETP4=ETP4 +TEMP 1 * TEMP2
CONTINUE
ETP4=-ETP4/(ALOG (5.0*5.0)/BASE)
C
C PRINT THE TXTURE MEASURES
WRITE (7,7777) 'ETP1 = ',ETP1',' ETP2 = ',ETP2
WRITE (7,7777) 'ETP3 = ',ETP3,' ETP4 = ',ETP4
7777
C
VMAX=-1.0E9
VMIN=1.OE9
DO 90 I=1,NN
DO 90 J=I,NN
IF(I.EQ.NN/2+1.AND.J.EQ.NN/2+1) GOTO 90
VMAX=AMAX1 (H (I,J),VMAX)
VMIN=AMIN1 (H(I,J),VMIN)
CONTINUE
C
RANG=VMAX-VMIN
C
DO 95 I=1,NN
DO. }95\textrm{J}=1,N
H(I,J)=((H(I,J)-VMIN)/RANG)*G
IF(I.EQ.NN/2+1.AND.J.EQ.NN/2+1) H(I,J)=255
CONTINUE
9b
DO 100 I=1,NN
WRITE(2) (H(I,J),J=1,NN)
100
CONTINUE
C
CLOSE (2)
WRITE (7,FORM) 'NEXT FILE ? (1/0) '
READ (5,*) NEXT
IF(NEXT.EQ.O) GOTO 9090
GOTO 9899

```

CALL OFF('G') STOP
END
```

C
C
C
SUBROUTINE FOUREA(DATA,N,ISI)
C THE COOLEY-TUKEY FAST FOURIER TRANSFORM IN ANSI FORTRN
C
C DATA IS A ONE-DIMENSIONAL COMPLEX ARRAY WHOSE LENGTH; N IS A
C POWER OF TWO. ISI IS +1 FOR AN INVERSE TRANSFERM AND -1 FOR A
C FORWARD TRANSFORM. TRANSFORM VALUES ARE RETURNED IN THE INPUT
C ARRAY, REPLACING THE INPUT.
C AFTER PROGRAM BY BRENNER, JUNE 1967.
C
VIRTUAL DATA(1)
COMPLEX DATA
COMPLEX TEMP,W
PI=4.*ATAN(1.)
EN=N
C
C PUT DATA IN BIT-REVERSED ORDER
C
J=1
DO. }80\quadI=1,
C \T THIS POINT, I AND J ARE A BIT REVERSED PAIR (EXCEPT FOR THE
C DISPLACEMENT OF +1
C
IF(I-J) 30,40,40
C EXCHANGE DATA(I) WITH DATA(J) IF I.LT.J
30 TEMP=DATA(J)
DATA(J)=DATA(I)
DATA(I) =TEMP
c
C IMPLEMENT J=J+1, BIT-REVERSED COUNTER
C
40 M=N/2
50 IF(J-M) 70,70,60
60 J=J-M
M=(M+1)/2
GOTO 50
J=J+M
70}80 CONTINUE
80
C COMPUTE THE BUTTERFLIES
90 MMAX=1
100 ISTEP = 2*MMAX
DO 120 M=1,MMAX
THETA=PI*FLOAT (ISI* (M-1))/FLOAT (MMAX)
W=CMPLX(COS (THETA), SIN (THETA))
DO 110 I=M,N, ISTEP
J=I +MMAX
TEMP=W*DATA(J)
DATA(J)=DATA (I)-TEMP
DATA(I)=DATA (I) +TEMP
CONTINUE
110
120 CONTINUE
MMAX=ISTEP
GOTO 90
130 IE (ISI) 160,140,140
C
C FOR INVERSE TRANSFORM -- ISI=1 -- MULTIPLY OUTPUT BY 1/N
C
140 DO 150 I=1,N
DATA(I)=DATA(I)/EN
150 CONTINUE
160 RETURN
END

```
```

C
C MAIN PROGRAM: FFT2.FOR
PERFORMS TWO DIMENSIONAL FFT, THE OUTPUT FILE IS THE UNSCALED FOURIER
SPECTRUM WHICH CAN BE DIRECTLY RLOTTED AS 3D SURFACE BY 'FFT3D.FOR'.
THE CURRENT PROGRAM WORK FOR 32X32 SUBIMAGE. WITH SLIGHT MODIFICATION,
ANALYSIS CAN BE PERFORMED ON UP TO 128XI28 SUBIMAGE.
IF THE VIRTUAL MEMEORY IS TO BE USED, CHANGE ALL REGULAR ARRAYS TO
VIRTUAL ARRAYS (INCLUDING ARRAY IN THE SUBROUTINE 'FOUREA.FOR'), THEN
LINK THE PROGRAM AS FOLLOWING:
F77 EFTXR
LINK FFTXR/XM,FOUREA/XM,SY:VIRTXM,SY:F77LIB
NÓT\overline{E}: SUBROUTINE 'BOXON' AND 'BOXOFE' ARE NOT INCLUDED HERE, THEY CAN
BE EOUND IN 'FTXTUR.FOR'.
LI BIN, JULY 22, 1987.
DIMENSION H (32, 32), B(32),QB(32, 32)
COMPLEX B,OB
REAL K
CHARACTER*10 OUTFL1,FORM
DATA FORM/'(''\$'',A)'/
CALL MPIOPS
CALL ERASER
NN=32
C
C
C INPUT SECTION
C

```

```

 READ(!,'(N)') OUTHLL
 OPEN (UNIT=2,FILE=OUTFL1,STATUS='NEW',FORM='UNFORMATTED')
 C
1 WRITE (7,FORM) 'JOYSTIC (0) OR KEYBORAD (1) COORDINATES ?'
C
C
C
c
WRITE (7, FORM) 'IS THIS AREA ACCEPTABLE (1/0) ? '
READ(5,*) RESPONSE
IF (RESPONSE .EQ. 0) THEN
CALIL BOXOFE (IX,IY,IXSIZE,IYSIZE.)
GO TO 1
ENDIE
C
CALL PEER(0)
DO 22 IROW=1, IYSIZE
DO 33 ICOL=1,IXSIZE
CALL GRAFIN(IX+ICOL-1,IY+IROW-1,IZ1)
H(IROW,ICOL) = IZ1
CONTINUE
CONTINUE
FFT SECTION
WRITE (7,*)'ORIGIN CENTERED FFT ? 1/0'
READ (5,*) OPTION
OPTION = 1
C
C TRANSFORM THE ROWS OF H(I,J), STORE IN Q(I,L)

```
```

 Tl=SECNDS (0.0)
 DO 10 I=1,NN
 ICOUNT=0
 DO 20 J=1,NN
 ICOUNT=ICOUNT+1
 IF (OPTION.EQ.1) IC=(-1)** (I+J)
 IF (OPTION.EQ.0) IC=1.
 B (ICOUNT) =H(I,J)*IC
 CONTINUE
 CALL FOUREA (B,NN,-1)
 M=0
 DO 30 L=1,NN
 M=M+1
 QB}(I,L)=B(M
 CONTINUE
 CONTINUE
 C
C TRANSEORM THE COLUMNS OF QB (I,J)
C
0O 50 J=1,NN
ICOUNT=0
DO 60 I=1,NN
ICOUNT=ICOUNT+1
B(ICOUNT)=QB(I,J)/NN ! DIVIDED BY 1/N.
TYPE*,'TIME IN TRANSFORM = ',SECNDS (T1),' SECONDS.'
U=7
VMIN=1.0E9
VMAX=-1.OE
DO 80 I=1,NN
DO }80\textrm{J}=1\mathrm{ ,NN
PSD=QB(I,J)*CONJG (QB (I,J))
QB(I,J)=PSD ! QB(I,J) S'TORES THE POWFR SPECTRUM
H(I,J)=SQRI (PSD) ! H(I,J) STORES THE FOURIER SPECTRUM
IF(I.EQ.NN/2+1.AND.J.EQ.NN/2+1) GOTO 80 !SKIP D.C.VALUE.
VMAX=AMAX1 (H (I,J) , VMAX)
VMIN=AMIN1 (H (I,J),VMIN)
CONTINUE
C
C
100
C
CLOSE (2)
WRITE (7,FORM) 'NEXT FILE ? (1/0)
READ (5,*) NEXT
IF(NEXT.EQ.O) GOTO 9090
GOTO 9899
C
9090 CALL OFF('G')
STOP
END

```
```

C---------------------
C CALCULATE THE DISTANCE AMONG THE ENTROPY VECTORS
C FOR 10 SUBIMAGES. INPUT FILE SHOULD BE A 10 X 4
C MATRIX (OUTPUT FROM FTXTUR.FOR)
C---
C
DIMENSION A(10,4), DIF (10,10,4),DIS(10,10)
CHARACTER*10 FORM1,FORM2, INFL,OUTEL
DATA FORM1/'(''\$'',A)'/FORM2/'(A)'/
C
WRITE (7,FORM1) 'ENTER INPUT FILE NAME : '
REAE(5,FORIM2) INFL
WRITE (7,FORM1) 'ENTER OUTPUT FILE NAME : '
READ(5,FORM2) OUTFL
WRITE (7,FORM1) 'SELECTION OF OUTPUT DEVICE (2 EOR DISK OUTPUT) : '
READ (5,*) U
\&
OREN (UNIT=1,FILE=INFL,STATUS='OLD')
IF (U.EQ.2) THEN
OPEN (UNIT=2,FILE=OUTFL,STATUS='NEW')
ENDIE
c
READ (1,*) ((A (I, J), J=1,4), I=1,10)
WRITE (7,'(4F12.5)') ((A (I,J),J=1,4),I=1,10)
C
C DISTANCES CALCULATED FROM INDIVIDUAL ENTROPY REGIONS.
C
DO 10 K=1,4
DO 10 I=1,10
DO }10\quad\textrm{J}=1,1
DIF (I,J,K)=ABS (A(I,K)-A (J,K))
CONTINUE
C
C DISTANCES AMONG SUBIMAGES
C
DO 500 I=1,10
DO 500 J=1,10
SUM=0.0
DO 600 K=1,4
SUM=SUM+DIF (I,J,K)**2
CONTINUE
DIS (I,J)=SQRT (SUM)
CONTINUE
DO 100 K=1,4
WRITE (U, 200) ((DIF (I,J,K), J=1,10), I=1,10)
WRITE (U, *)
WRITE (U, 200) ((DIS (I,J),J=1,10),I=1,10)
C
200 EORMAT (10F8.3)
STOP
END

```
```

C
C MAIN PROGRAM: FFT.FOR
C PERFORMS TWO DIMENSIONAL FFT.
C THIS PROGRAM IS DESIGNED FOR TESTING PURPOSE. THE SUBROUTINE
C IT SHOULD LINK WITH IS FOUREA.FOR WHICK ALSO USES VIRTUAL
C MEMORY. THE TESTING DATA SET CAN BE MADE UP BY THE USER.
C H(128,128) IS THE INPUT MATRIX.
C B(128) STORE ONE ROW (COLUMN) OF H THEN PERFORM FFT ON THIS ARRAY.
C QB(128,128) THE RESULTANT FORWARD FFT MATRIXE, COMPLEX VARIABLE.
C HB (128,128) THE RESULTANT INVERSE FFT MATRIXE, COMPLEX VARIABLE.
C SINCE H(128,128) IS REAL, THE REAL PART OF HB (128,128) SHOULD
C EQUAL TO H(128,128).
c
C
WRITE{7,FORM1) 'INPUT DATA FILE: '
READ(5,'(A)') INFILE
OPEN (UNIT=1,FILE=INFILE,STATUS='OLD',ERR=999)
WRITE (7,FORM1) 'ENTER SIZE OF MATRIXE (4,8,16,32,64,128): '
READ (5,*) NN
WRITE (FORM2 (5:7),'(I3)') NN
WRITE (7, FORM1) 'ORIGIN CENTERED FFT (1/0) ?'
READ(5,*) ORTION
C
C
rfad in dmta
READ (1,*) ((H (I,J), J=1,NN), I=1,NN)
C
C TRANSFORM THE ROWS OF H(I,J), STORE IN Q(I,L)
C
20
CONTINUE
CALL FOUREA (B,NN,-1) .
M=0
DO 30 L=1,NN
M=M+1
QB}(I,L)=B(M
CONTINUE
CONTINUE
10
C
C TRANSFORM THE COLUMNS OF QB (I,J)
DO 50 J=1,NN
ICOUNT=0
DO 60 I=1,NN
ICOUNT=ICOUNT+1
B(ICOUNT)=QB(I,J)/NN : DIVIDED BY 1/N.
CONTINUE
CALL FOUREA (B,NN,-1)
M=0
DO }70\textrm{L}=1,N
M=M+1
QB}(L,J)=B(M
CONTINUE
CONTINUE
DO }80\quadI=1,N
WRITE (7, FORM2) (REAL(QB (I,J)),J=1,NN)
WRITE (7,FORM2) (AIMAG (QB (I,J)),J=1,NN)
WRITE (7,*)
CONTINUE
80
C
C THE FOURIER SPECTRUM

```
```

C
WRITE(7,*) 'THE FOURIER SPECTRUM'
DO }85I=1,N
DO }85\textrm{J}=1,\textrm{NN
TEMP=QB (I,J)*CONJG (QB (I,J))
P(I,J)=SQRT (TEMP)
85
CONTINUE
WRITE (7,FORM2) ((P (I,J),J=1,NN),I=1,NN)
C
C--*
C INVERSE TRANSFORM ।
C
C TRANSFORM THE ROWS OF QB (I,J), STORE IN HB(I,L)
C
DO 100 I=1,NN
ICOUNT=0
DO 200 J=1,NN
ICOUNT=ICOUNT+1
B (ICOUNT) =QB (I,J)
200
CONTINUE
CALL FOUREA (B,NN, 1)
M=0
DO 300 L=1,NN
M=M+1
HB}(I,L)=B(M
300
100
CONTINUE
C
C TRANSFORM THE COLUMNS OF HB (I,J)
C
DO 500 J=1,NN
ICOUNT=0
DO 600 I=1,NN
ICOUNT=ICOUNT+1
B(ICOUNT) =HB(I,J) ! NOT DIVIDED BY 1/N.
6 0 0
CON'TINUF
CALL FOOUREA (B,NN,1)
M=0
DO }700\textrm{L}=1,\textrm{NN
M=M+1
IF (OPTION.EQ.1) IC=(-1)** (L+J)
IF (OPTION.EQ.O) IC=1
HB (L,J) =B (M)*IC*NN !TIMES N
7 0 0
CONTINUE
CONTINUE
WRITE(7,*) 'THE INVERSE FFT:'
DO 800 I=1,NN
WRITE (7,FORM2) (REAL(HB (I,J)),J=1,NN)
WRITE (7,FORM2) (AIMAG (HB (I,J)),J=1,NN)
WRITE(7,*)
800
CONTINUE
STOP
END

```
```

C.

```
\(\qquad\)
```

 PROGRAM TO PLOT THE FOURIER SPECTRUM.
 R FORTRA -
 *FFT3D=FFT3D/W/S C
 R LINK C
 *FFT3D=FFT3D, SDCAL (GGCAL),TVLIB/F
 FROGRAM FFT3D
 RFAI. H(32)
 INTEGER IZ (32,32)
 DATA IZ/1024*0/
 Y=(FLOAT (IY-1)*SINY+FLOAT (IZ (IX,IY))*ZSCALE+1)
 X=(FLOAT (IX-1)*SCALE+FLOAT (IY-1)*COSY +1)
 IF (IX.NE.l) GOTO 230
 CALL PLOT (X,Y,3)
 GOTO 275
 230
 275
 250 CONTINUE
 C
Y=1.0
X=(31.*SCALE+1)
CALL PLOT (X,Y,3)
C
C
Y=(FLOAT (IZ (1, 1))*ZSCALE+1)
X=1
CALL PLOT (X,Y,3)
C
CALL PLOT(1.0,1.0.2)

```
```

C
Y=1.0
X=(31.*SCALE+1)
CALL PLOT (X,Y,2)
Y=(31.*SINY+1)
X=(31.*SCALE+31.*\operatorname{cos}Y+1)
CALL PLOT (X,Y,2)
C
C
Y=(31.*SINY+ELOAT(IZ (32,32)*ZSCALE+1))
CALL PLOT (X,Y,2)
STOP
END
C
C.....SUBROUTINE THAT CALCULATES THE IMAGE ROTATION
c
SUBROUTINE ROTATE (IA,ITIME)
C
C
C
C
5 0
C
DO 100 IX=1,32
DO 100.IY=1,32
IA (IX,IY) =IB(IX,IY)
CONTINUE
CONTINUE
RF:TURN
END

```
```

c
C--
C PLOT THE GRAY SCALED FOURIER FOWER SPECTRUM.
C
C

```
REAL F(128)
CHARACTER*10 FILE
CALL MPIOPS
WRITE (7,*)'ENTER FFT FILE NAPE'
\(\operatorname{READ}\left(5,{ }^{\prime}(A)^{\prime}\right) \operatorname{FILE}\)
OREN (UNIT=2,FILE=FILE, STATUS='OLD', FORM='UNFORMATTED', ERR=555)
WRITE (7,*) 'ENTER SIZE OF THE IMAGE (N)'
READ (5,*) N
WRITE ( \(7,{ }^{\star}\) ) 'SELECTION OF PICTURE PLANE \((0,1,2)\) '
\(\operatorname{READ}(5, *) \operatorname{IP}\)
WRITE (7, *)'ENTER ORIGIN (IX, IY) FOR DISPLAY <BAS> '
\(\operatorname{READ}(5, *)\) IX,IY
CALL CURSOR (IX,IY)
CALL OFE('G')
CALL ON('P')
CALL PEER(IP)
DO \(10 \mathrm{I}=1, \mathrm{~N}\)
READ (2) ( \(F(J), J=1, N)\)
DO \(20 \mathrm{~K}=1, \mathrm{~N}\)
\(\mathrm{IZ}=\mathrm{NINT}(\mathrm{F}(\mathrm{K}))\)
```CALL GRAFOT (IX+K-1,IY+I-1,IZ)
```

CONTINUE
CONTINUE
STOP
END


```
 M=M+1
 QB1 (L,J) = B1 (M)
 QB2 (L,J) = B2 (M)
 CONTINUE
 CONTINUE
C
```



```
C
C CALCULATE THE NORMALIZING FACTOR SUM
C
 SUM1=0.0
 SUM2=0.0
 DŌ }750\textrm{I}=1\mathrm{ ,NNT
 DO }750\textrm{J}=1,\mathrm{ NNT
 SUM1=SUM1+H1(I,J)*H1(I,J)
 SUM2=SUM2+H2(I,J)*H2(I,J)
750 CONTINUE
C
 SUM1=SQRT (SUM1)
 SUM2=SQRT (SUM2)
 SUM=SUM1 *SUM2
C
C. TRANSFORM THE ROWS OF QB(I,J)*CONJG((QB2(I,J)), STORE IN HB (I,L)
C
C EACH ENTRY IS DIVIDED BY THE NORMALIZING FACTOR.
 DO 100 I=1,NNT
 ICOUNT=0
 DO 200 J=1,NNT
 ICOUNT=I COUNT+1
 B1 (ICOUNT) = (QB1 (I,J) *CONJG (QB2 (I,J)))/SUM
200
 CONTINUE
 FOUREA (B1,NNT, I)
 M=0
 DO 300 L=1,NNT
 M=M+1
 HB}(I,L)=B1 (M
300 CONCLNUE
100 CONTINUE
C
C TRANSEORM THE COLUMNS OF HB (I,J)
C
 DO 500 J=1,NNT
 ICOUNT=0
 DO 600 I=1,NNT
 ICOUNT=ICOUNT+1
 B1 (ICOUNT) = HB (I,J)*NNT ! TIMES N ? .
 CONTINUE
 CALL FOUREA (B1,NNT, 1)
 M=0
 DO 700 L=1,NNT
 M=M+1
 IF (OPTION.EQ.1) IC=(-1)** (L+J)
 IF (OPTION.EQ.0) IC=1
 HB (L,J)=B1 (M)*IC*NNT !TIMES N
 CONTINUE
 CONTINUE
 WRITE(U,'(A,F10.5)') ' THE LARGEST CORRELATION FUNCTION = ''
 +
 REAL (HB (1,1))
 WRITE (U, *) 'THE CORRELATION FUNCTION: '
 DO 800 I=1,NNT
 WRITE (U,FORM2) (REAL(HB(I,J)),J=1,NNT)
 WRITE (U,FORM2) (AIMAG (HB (I,J)),J=1,NNT)
 WRITE (U, *)
800
CONTINUE
STOP
END
```

```
C
C--
 PROGRAM CROCOR
C PERFORMS GROSS CORRELATION BETWEEN TWO EUNCTIONS.
C ONLY ONE EUNCTION IS COMPUTED IN THIS PROGRAM, IT
C IS (N/2,N/2). THE INPUT MATRICES MUST BE THE SAME
C SIZE.
C
C JULY, 20, 1987.
C---
C
 DIMENSION A1 (30,30),A2 (30,30), B1 (30,30), B2 (30, 30)
 CHARACTER*10 FILE1,FILE2,FORM1,FORM2
 DATA FORM1/'(''$''.A)'/
 WRITE(7,FORMI) 'ENTER FILE #l : '
 READ(5,'(A)') FILEI
 WRITE{7,FORM1) 'ENTER FILE #2 : '
 READ(5,'(A)') FILE2
 OPEN(UNIT=1,FILE=FILE1,STATUS='OLD',FORM='UNFORMATTED')
 OPEN(UNIT=2,FILE=FILE2,STATUS='OLD';FORM='UNFORMATTED')
C
c INPUT DATA
C
 DO 5 I=1,30
 READ (1) (Al (I,J),J=1, 30)
 READ(1) (A2 (I, J),J=1, 30)
 READ (2) (B1 (I,J),J=1,30)
 READ (2) (B2(I,J),J=1,30)
5 CONTINUE
C SUM
C
 SUMI=0.0
 SUM2=0.0
 SUM3=0.0
 SUM4=0.0
 DO 10 I=1,30
 DO 10 J=1,30
 BUMI-SUMI+NI(1,J)^M1(1,.J)
 SUM2=SUM2+A2 (I,J)*A2 (I,J)
 SUM3=SUM3+B1(I,J)*BI (I,J)
 SUM4 =SUM4 +B2 (I,J)*B2 (I,J)
 CONTINUE
C
 SUM5=0.0
 SUM6=0.0
 DO 100 I=1,30
 DO 100 J=1,30
 SUM5=SUM5+A1 (I,J) *B1 (I,J)
 SUM6=SUM6+A2 (I,J) *B2 (I,J)
100
C
 CONTINUE
 COR1=SUM5/SQRT (SUM1 *SUM3)
 COR2=SUM6/SQRT (SUM2 *SUM4)
C
C
 TYPE*,COR1,COR2
 STOP
 END
```


## References

Ahuja, N. and Rosenfield, A. 1981 "Mosaic models for textures," IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan., pp. 1-111.

Bartels, P., et. al. 1969 "Cell recognition from line scan transition probability profiles," Acta Cytol., vol. 13, pp. 210-217.

Bell, C. B. 1962 "Mutual information and maximal correlation." Ann. Math. Statist., vol. 43, pp. 587-595.

Chetverikov, D. 1984 "Measuring the degree of texture regularity," Proceedings, Seventh International Conference on Pattern Recognition, vol. 1, pp. 80-82.

Carlotto, M. J. 1984 "Texture classification based on hypothesis testing approach, " Proceedings, Seventh International Conference on Pattern Recognition, vol. 1, pp. 93-96.

Chen, C. H. 1973, Statistical Pattern Recognition, Hayden Book Company, Inc., Rochelle Park, N.J.

Chien, Y. P. and Fu, K. S. 1974 "Recognition of X-ray picture patterns," IEEE Trans. Syst., Man, Cybern., vol. SMC-4, pp. 145-156.

D'Astous, F. and Jernigan, M.E. 1984 "Texture discrimination based on detailed measures of the power spectrum," Proceedings, Seventh International Conference on Pattern Recognition, vol. 1, pp. 83-86.

Darling, E. M. and Joseph, R. D. 1968 "Pattern recognition from satellite altitudes," IEEE Trans. Syst. Man, Cybern., vol. SMC-4, pp. 38-47.

Deguchi, K. and Morishita, I. 1976 "Texture characterization and texture-based image partitioning using two-dimensional linear estimation techniques," presented at U.S. Japan Cooperative Science Program Seminar on Image Processing in Remote Sensing (Washington, D.C.), 1-5.

Egbert, D., McCauley J., and McNaughton, J. 1973 "Ground pattern analysis in the Great Plains," Semi-Annual ERTS A Investigation Rep., Remote Sensing Laboratory, University of Kansas.

Gagalowicz, A. and Ma, S. D. 1984 "Synthesis of natural textures on 3-D surfaces," Proceedings, Seventh International Conference on Pattern Recognition, vol. pp. 1209-1212.

Gonzalez, R. C. and Wintz, P. 1977 Digital image processing. Addison-Wesley Publishing Company, Inc.

Goodchild, M. F. and Mark, D. M. 1987 "The fractal nature of geographic phenomena," Annals of the A. A. G., vol. 77, pp. 265-278.

Gramenopoulas, N. 1973 "Terrain type recognition using ERTS-1 MSS images," Rec. Symp. Significant Results Obtained from the Earth Resources Technology Satellite, NASA SP-327, pp. 1229-1241.

Gross, G. R. and Jain, A. K. 1983 "Markov random field texture models," IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan., pp. 25-39.

Hall, E. L. 1979, Computer Image Processing and Recognition, Academic Press.
Haralick, R. M. 1971 "A texture-context feature extraction algorithm for remotely sensed imagery," Proc. 1971 IEEE Decision and Control Conf., pp. 650-657.

Haralick, R. M., Shanmugam K., and Dinstein I. 1973 "Textural features for image classification," IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 610-621.

Haralick, R. M., K. Shanmugam 1974 "Combined Spectral and Spatial Processing of ERTS," Remote Sensing of Environment, vol. 3, pp. 3-13.

Haralick, R. M. 1979 "Statistical and Structural Approaches to Texture," Proceedings of the IEEE, vol. 67, pp. 786-804.

Hord, R. M. 1982, Digital Image Processing of Remote Sensed Data, Academic Press.
Hord, R. M. 1986, Remote Sensing, Methods and Applications, John Wiley \& Sons.
Horning, R. J. and Smith, J. A. 1973 "Application of Fourier analysis to multispectral/spatial recognition," presented at Management and Utilization of Remote Sensing Data ASP Symposium, Sioux Falls.

Hsu, S. Y. 1978 "Texture-tone analysis for automated land-use mapping," Photogrammetric Engineering \& Remote Sensing, vol. 44, No. 11, pp. 1393-1404.

Ikonomopoulos, et. al. 1984 "A directional filtering approach to texture discrimination," Proceedings, Seventh International Conference on Pattern Recognition, vol. 1, pp.87-89.

Jau, Y. C. et. al. 1984 "Time series modeling for texture analysis and synthesis with applications to cloud field morphology study," Proceedings, Seventh International Conference on Pattern Recognition, vol. 1, pp. 1219-1221.

Jensen, J. R. 1979 "Spectral and textural features to classify elusive land cover at the urban fringe," The Professional Geographer, vol. 31, pp. 400-409.

Jensen, J. R. 1986 Introductory digital processing, a remote sensing perspective. Englewood Cliffs, N. J.: Prentice-Hall, Inc.

Jensen, J. R. and Toll, D. J. 1982 "Detecting residential land-use development at the urban fringe," Photogrammetric Engineering and Remote Sensing, vol. 48, pp. 629-643.

Jernigan, M. E. and D'Astous, F. 1984 "Entropy-based texture analysis in the spatial frequency domain," Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-6, NO. 2, pp. 237-243.

Kaizer, H. 1955 "A quantification of textures on aerial photographs," Boston University Research Laboratories, Boston University, Boston, MA, Tech. Note 121, AD 69484.

Kashyap, R. L. and Khotanzad, A. 1984 "A stochastic model based techniques for texture segmentation," Proceedings, Seventh International Conference on Pattern Recognition, vol. 1, pp.1202-1205.

Kirvida, L. 1976 "Texture Measurements for the automatic classification of imagery," IEEE Trans. Electromagnet. Computer, vol. 18, pp. 38-42.

Kirvida, L. and Johnson, G. 1973 "Automatic interpretation of ERTS data for forest management," Symp. on Significant Results Obtained from the Earth Resources Technology Satellite, NASA SP-327.

Kotz, S. 1966, Recent Result in Information Theory, Methuen's Review Series in Applied Probability, vol. 5.

Lendaris, G. and Stanley, G. 1969 "Diffraction Pattern sampling for automatic pattern recognition," SPIE Pattern Recognition Studies Seminar Proc. June 9-10, pp. 127-154.

Lillesand, T. M. and Keifer, R. W. 1979, Remote Sensing and Image Interpretation. John Wiley \& Sons.

Ma, S. and Gagalowics, A. 1984 "A parallel method for natural texture synthesis," Proceedings, Seventh International Conference on Pattem Recognition, vol. 1, pp. 90-92.

Matheron, G. 1967. Elements Pour Une Theorie Des Milieus Poreux. Paris, France: Masson.

McCormick, B. H. and Jayaramamurthy, S. N. 1974 "Time series model for texture synthesis," International Journal of Computer Information Science, vol. 3, no. 4, pp. 329-343.

Pressman, N. J. 1976 "Markovian analysis of cervical cell images," J. Histochem. Cytochem., vol. 24, no. 1, pp. 128-144.

Ramapriyan, H. K. 1972 "Spatial frequency analysis of multispectral data," Remote Sensing of Earth Resources, vol. 1, pp. 621-644.

Rosenfield, A. and Kak, A. C. 1982, Digital Image Processing, 2nd ed., vol. 1 and vol. 2, Academic Press.

Rosenfield, A. and Thurston, M. 1971 "Edge and curve detection for visual scene analysis," IEEE Trans. Comput., vol. C-20, pp. 562-569.

Rugg, D. S. 1979, Spatial Foundations of Urbanism, second edition. Wm. C. Brown Company Publishers, Dubuque, lowa.

Sato, M. and Ogata, M. 1984 "Texture analysis by the self-organization method," Proceedings, Seventh International Conference on Pattern Recognition, vol. 1, pp. 1213-1215.

Schacter, B. J., Rosenfield, A. and Davis, L.S. 1978 "Random Mosaic Models for textures," IEEE Tran. on Sys., Man, and Cyn., Sept., pp. 694-702.

Schowengerdt, R. A. 1983, Techniques for Image Processing and Classification in Remote Sensing. Academic Press.

Serra, J. 1974 "Theoretical bases of the Leitz texture analyses system," Leitz Sci. Tech. Inform., Supplement 1, 4, pp. 125-136.

Sun, C. and Wee, W. G. 1983 "Neighboring gray level dependence matrix for texture classification," Computer Vision, Graphics and Image Processing, vol. 23, pp. 341-352.

Sutton, R. and Hall, E. 1972 "Texture measure for automatic classification of pulmonary disease," IEEE Trans. Comput., vol. C-20, no. 1, pp. 667-676.

Tamura, H., Mori, S. and Yamawaki, T. 1978 "Texture features corresponding to visual perception," IEEE Transactions on Systems, Man, and Cybernetics, SMC-8, No. 6, pp. 461-472.

Toriwaki, J. I. et. al. "Adjacency graphs on a digitized figure set and their application to texture analysis," Proceedings, Seventh International Conference on Pattern Recognition, vol. 1, pp. 1216-1218.

Tou, J. T. and Chang, Y. S. 1976 "An approach to texture pattern analysis and recognition," Proc. 1976 IEEE Conf. on Decision and Control.

Unser, M. 1984 "Local linear transform texture analysis," Proceedings, Seventh International Conference on Pattern Recognition, vol. 1, pp. 1206-1208.

Werman, M. and Peleg, S. 1984 "Multiresolution texture signature using min-max operators," Proceedings, Seventh International Conference on Pattern Recognition, vol.1, pp. 97-101.

Weszka, C. Dyer, and A. Rosenfield 1976 "A comparative study of texture measures for terrain classification," IEEE Trans. Syst., Man, and Cybern., vol. SMC-6, no. 4, pp. 269-285.

Yeates, M. and Garner, B. 1980, The North American City, third edition, Harper \& Row, Publishers.

