

Brain Networks Related to Loneliness in Adolescents

Abi M. Heller¹, David E. Warren², Tony W. Wilson², Vince D. Calhoun³, Julia M. Stephen³, Yu-Ping Wang⁴, & Janelle N. Beadle¹

¹University of Nebraska at Omaha ²University of Nebraska Medical Center ³University of New Mexico-Mind Research Network ⁴Tulane University

"If you want to go fast, go alone. If you want to go far, go together."

-African Proverb

• According to the General Social Survey, Millennials are the loneliest generation yet

Today's Presentation

- Introduction
- Loneliness in Adolescence/Brain
- The Current Study
- Methods/Measures
- Results
- Discussion/Future Directions

Introduction: Defining Loneliness

• Webster Dictionary:

sadness because one has no friends or company.

- "Perceived Isolation"
- Being alone is not the same as being lonely
- Loneliness can become a chronic issue

Lonely Adolescents...

- Psychological Health
- Personality Disorders
- Depression (neuroticism)
- Suicide
- Physiological Health
- Obesity
- Sleep Disturbances
- Immune Function
- Cardiovascular Health

Loneliness in the Brain

- Loneliness activates:
- Amygdala: experiencing emotions

(Bickart et al, 2012; Bolling et al, 2011; Eisneberger et al 2003; Von Der Heide et al, 2014)

Loneliness in the Brain

- Loneliness activates:
- Cingulate Cortex: emotion formation and processing

(Bickart et al, 2012; Bolling et al, 2011; Eisneberger et al 2003; Von Der Heide et al, 2014)

Loneliness in the Brain

- Loneliness activates:
- Prefrontal Cortex (PFC): Regulating emotions and emotional responses

(Bickart et al, 2012; Bolling et al, 2011; Eisneberger et al 2003; Von Der Heide et al, 2014)

The Current Study: Brain Networks Related to Loneliness in Adolescents

 DevCoG- Developmental Chronnecto-Genomics (56 children from NM and NE)

N=56	M (SD)		
Age (yrs.)	11.6 (1.9)		
Education (yrs.)	8.6 (1.8)		
Handedness	51R, 5L		
Gender	30 M, 26 F		
Race (% Caucasian)	80.7		

Measure of Loneliness

- NIH Emotion Toolbox Measures (ages 8-14)
- Loneliness: "I feel that I have nobody to talk to" "I feel that I don't have any friends"
- Friendship: "I have friends to sit with at lunch"
 "I can find a friend when I need one"
- Perceived Rejection: "People in my life put me down" "I don't feel like I fit in"

Resting State Functional Connectivity

- Functional Magnetic Resonance Imaging (fMRI)
- Blood Flow → Neuronal
 Brain Activity
- Measure of brain activity at rest!
- Advanced Functional Neuroimaging Analysis (AFNI)

Hypothesis

- In more lonely an individuals, greater connectivity between amygdala and socioemotional brain regions is seen
- In more lonely an individuals, less connectivity between cingulate cortex and socio-emotional brain regions is seen

Results

Regression Model on Loneliness

Predictor	В	β	SE	P	95% CI	F
Rejection	.6	.5	.1	< .01	.4, .8	6.6
Friendship	6	5	.1	< .01	7,4	-6.5

M=mean; SD= standard deviation. R=.876; R^2 =.767, (p<.01); Adjusted R²=.758; SE= Standard Error; CI= Confidence Interval

Results R Amygdala Seed

+1

L Cingulate Gyrus L Superior Temporal Gyrus

Results R Posterior Cingulate Seed

+1

R Inferior Frontal Gyrus

Discussion

- Increased amygdala rs-FC to the cingulate gyrus and superior temporal is consistent with depression and anxiety literature.
- Lonely individuals are at a greater risk for depression, anxiety and neuroticism.
- Decreased rs-FC between posterior cingulate and the inferior frontal gyrus reflecting social rejection, difficulty focusing on others' emotions.

Implications

 Connectivity patterns used as a biomarker to predict future loneliness, depression and anxiety.

Future Directions

- Independent Component Analysis
- Year 2 Measures
- Personality, Empathy, Loneliness

Questions?

Funding:

 National Science Foundation: Supported by grant #1539067 to VC, YW, TW and JS

Thank you!

- Aging Brain and Emotion Lab- Dr. Janelle Beadle
- Department of Neurology- Dr. David Warren, Dr. Tony Wilson and other lab members who contributed along the way!

The University of Nebraska does not discriminate based on race, color, ethnicity, national origin, sex, pregnancy, sexual orientation, gender identity, religion, disability, age, genetic information, veteran status, marital status, and/or political affiliation in its programs, activities, or employment.

References

1.Bickart, K. C., Hollenbeck, M. C., Barrett, L. F., & Dickerson, B. C. (2012). Intrinsic amygdala–cortical functional connectivity predicts social network size in humans. *The Journal of Neuroscience*, *32*(42), 14729-14741.

2.Bolling, D. Z., Pitskel, N. B., Deen, B., Crowley, M. J., Mayes, L. C., & Pelphrey, K. A. (2011). Development of neural systems for processing social exclusion from childhood to adolescence. *Developmental science*, 14(6), 1431-1444

3.Cacioppo, J. T., Norris, C. J., Decety, J., Monteleone, G., & Nusbaum, H. (2009). In the eye of the beholder: individual differences in perceived social isolation predict regional brain activation to social stimuli. *Journal of cognitive neuroscience*, *21*(1), 83-92.

4.. Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? An fMRI study of social exclusion. *Science*, *302*(5643), 290-292.

5. Hawkley, L. C., & Cacioppo, J. T. (2010). Loneliness matters: a theoretical and empirical review of consequences and mechanisms. *Annals of Behavioral Medicine*, 40(2), 218-227.

6. Heinrich, L. M., & Gullone, E. (2006). The clinical significance of loneliness: A literature review. *Clinical psychology review*, *26*(6), 695-718..

7. Kanai, R., Bahrami, B., Duchaine, B., Janik, A., Banissy, M. J., & Rees, G. (2012). Brain structure links loneliness to social perception. *Current Biology, 22*(20), 1975-1979

8. Roy, A. K., Fudge, J. L., Kelly, C., Perry, J. S., Daniele, T., Carlisi, C., & Ernst, M. (2013). Intrinsic functional connectivity of amygdala-based networks in adolescent generalized anxiety disorder. *Journal of the American Academy of Child & Adolescent Psychiatry*, *52*(3), 290-299.

9. Von Der Heide, R., Vyas, G., & Olson, I. R. (2014). The social network-network: size is predicted by brain structure and function in the amygdala and paralimbic regions. *Social cognitive and affective neuroscience*, 9(12), 1962-1972.

10. Weiss, R. S. (1973). Loneliness: The experience of emotional and social isolation.

Means and Correlations Among Variables

Variable	M (SD)	1	2
1. Loneliness	12.7 (5.6)		
2. Friendship	19.2 (5.0)	8*	
3. Rejection	9.6 (4.5)	.8*	5*

p < 0.01