Physical Activity Recognition based on Rotated Acceleration Data using Orientation Filter

Woohyuk Choi
Yonsei University
Youngeun Shin
Yonsei University
Jung-Min Lee
University of Nebraska at Omaha, jungminlee@unomaha.edu
Taemin Shin
Yonsei University

Follow this and additional works at: http://digitalcommons.unomaha.edu/pahppresentations
Part of the Health and Physical Education Commons

Recommended Citation

Choi, Woohyuk; Shin, Youngeun; Lee, Jung-Min; and Shin, Taemin, "Physical Activity Recognition based on Rotated Acceleration Data using Orientation Filter" (2015). Research Presentations. 21.
http://digitalcommons.unomaha.edu/pahppresentations/21
contact unodigitalcommons@unomaha.edu.

Introduction

The purpose of the study was to examine the accuracy of physical activity (PA) classification algorithms using a rotational analysis.

MIethod

- Quaternion \& Orientation filter
- A four-dimensional complex number that can be used to represent the orientation of coordinate frame in three-dimensional space as in equation (1).
An arbitrary orientation of frame B can be achieved through a rotation around an axis n with angle θ defined in frame A as represented in Figure 1.

- A three dimensional vector \boldsymbol{v}_{A} in frame A can be rotated by a quaternion to vector $\boldsymbol{v}_{\boldsymbol{B}}$ in frame B using the relationship described in equation (2).

$$
\begin{array}{r}
v_{B}=q \otimes v_{A} \otimes q^{*} \\
q^{*}: \text { conjugate of quaternion }
\end{array}
$$

- The quaternion is calculated and calibrated by accelerometer and gyroscope data as represented in Figure 2.(Madgwick's orientation filter)

Figure 2. Madgwick's orientation filter block diagram >

- Experimental process
- 17 healthy, untrained subjects (age: 25.8 ± 2.4, range 21-33yrs) participated. - Experimental protocol consisted of four stages: walking, running (horizontal movement: 75 meters), going up and down stairs (horizontal movement: 12 meters and vertical movement: 10 meters).
- A customized accelerometer and a gyroscope module were utilized to assess gait behaviors of participants.
- Acceleration (i.e., x, y, and z) and gyroscope (i.e., yaw, pitch, and roll) data were recorded at 100 Hz and transmitted to the customized android smartphone application (Galaxy Note II, Samsung).

Resultis

> Signal processing results of each activity

> PA classification

- 70% (5,686 steps) of the total data (8,099 steps) was applied to the machinelearning algorithm for training and 30% (2,413 steps) was applied to the test.
- The highest average accuracy of PA classification (100%) was observed using the Support Vector Machine (SVM) algorithm (Naïve Bayes: 95.4\%, J48: 99.8\% and RBF Network: 98.8\%)
- The confusion matrix showed over 97% accuracy about test data as represented in Table 1.
<Table 1. Confusion matrix >

<Table 1. Confusion matrix >	Classified as				
Activity (state)	Walk	Run	Going up stairs	Going down stairs	Accuracy $(\%)$
Walking	1,099	0	12	0	98.9
Runing	6	816	1	0	99.2
Going un stairs	0	0	236	2	99.2
Going down stairs	2	0	3	236	97.9

Activity (state)		Actualmovementdisance distance(m)	Data set (subjects \times trials)	Estimation distance(m)		Accuracy(\%)	
		Mean		SD			
Wal			75	68	71.36	± 2.02	95.15
Run	aing	75	68	70.69	± 3.11	94.25	
Going up	Horizontal	12	34	11.18	± 1.30	93.21	
stairs	Vertical	10	34	9.86	± 0.75	98.64	
Going down	Horizontal	12	34	12.57	± 0.99	104.71	
stairs	Vertical	10	34	4.61	± 1.04	46.10	

Conclusion

>PA classification utilizing a rotational analysis provides an accurate prediction of PA patterns, including the average distance, speed, and direction of activities

