

University of Nebraska at Omaha DigitalCommons@UNO

Research Presentations

Physical Activity in Health Promotion Lab

2015

Physical Activity Recognition based on Rotated Acceleration Data using Orientation Filter

Woohyuk Choi Yonsei University

Youngeun Shin Yonsei University

Jung-Min Lee University of Nebraska at Omaha, jungminlee@unomaha.edu

Taemin Shin Yonsei University

Follow this and additional works at: http://digitalcommons.unomaha.edu/pahppresentations Part of the <u>Health and Physical Education Commons</u>

Recommended Citation

Choi, Woohyuk; Shin, Youngeun; Lee, Jung-Min; and Shin, Taemin, "Physical Activity Recognition based on Rotated Acceleration Data using Orientation Filter" (2015). *Research Presentations*. 21. http://digitalcommons.unomaha.edu/pahppresentations/21

This Poster is brought to you for free and open access by the Physical Activity in Health Promotion Lab at DigitalCommons@UNO. It has been accepted for inclusion in Research Presentations by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.

Physical Activity Recognition based on Rotated Acceleration Data using Orientation Filter

The purpose of the study was to examine the accuracy of physical activity (PA) classification algorithms using a rotational analysis.

- > Quaternion & Orientation filter
- of coordinate frame in three-dimensional space as in equation (1).
- axis n with angle θ defined in frame A as represented in **Figure 1**.

$q = [q_1 q_2 q_3 q_4] = [s, \vec{v}]$	(1)	$z_B \overset{Z_A}{\blacktriangle}$
$= \left[\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \vec{n} \right]$		
$= \left[\cos \frac{\theta}{2} \sin \frac{\theta}{2} \vec{n}_x \sin \frac{\theta}{2} \vec{n}_y \sin \frac{\theta}{2} \vec{n}_z \right]$		θ
q_1 : scalar part of q_1	quaternion	$x_A $ x_E
q_2, q_3, q_4 : vector part of q_3	quaternion	< Figure 1. Graphical repres

 $\boldsymbol{v}_{\boldsymbol{B}}$ in frame B using the relationship described in equation (2).

 $v_{B} = q \otimes v_{A} \otimes q^{*}$ (2) q^* : conjugate of quaternion

represented in **Figure 2**.(Madgwick's orientation filter)

Woohyuk Choi¹, Youngeun Shin¹, Jung-Min Lee², Taemin Shin¹ School of Health Science, Yonsei University, Wonju, Korea, Republic of.¹ School of Health, Physical Education and Recreation, University of Nebraska-Omaha, Omaha, NE²

> Experimental process

- 17 healthy, untrained subjects (age: 25.8 ± 2.4 , range 21-33yrs) participated.
- Experimental protocol consisted of four stages: walking, running (horizontal meters and vertical movement: 10 meters).
- behaviors of participants.
- recorded at 100Hz and transmitted to the customized android smartphone application (Galaxy Note II, Samsung).

movement: 75 meters), going up and down stairs (horizontal movement: 12

• A customized accelerometer and a gyroscope module were utilized to assess gait

• Acceleration (i.e., x, y, and z) and gyroscope (i.e., yaw, pitch, and roll) data were

 \succ PA classification utilizing a rotational analysis provides an accurate prediction of PA patterns, including the average distance, speed, and direction of activities

Walk	Run	Going up stairs	Going down stairs (%)	(%)
1,099	0	12	0	98.9
6	816	1	0	99.2
0	0	236	2	99.2
2	0	3	236	97.9

	Actual	Data set (subjects ×trials)	Estimation distance(m)		
	distance(m)		Mean	SD	Accuracy(%)
	75	68	71.36	± 2.02	95.15
	75	68	70.69	± 3.11	94.25
al	12	34	11.18	± 1.30	93.21
_	10	34	9.86	± 0.75	98.64
al	12	34	12.57	± 0.99	104.71
-	10	34	4.61	± 1.04	46.10