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Hyperinvariant subspaces of the 
harmonic Dirichlet space 

By Stefan Richter*) at Knoxville, William T. Ross at Richmond 
and Carl Sundberg at Knoxville 

1. Introduction 

The !zarmonic Dirichlet space ~ is the space of functions f on the unit circle 7r for which 

(1.1) D(f) = J J lf(C) -J<e) 1
2 

ldel Ide I < 00 • 

T T ' - e 2n 2n 

It is clear that ~ c L 2 ( 7r ). Furthermore, as J. Douglas [8] pointed out, !!} consists of 
precisely those functions fin L 2 

( 7r) whose harmonic extension to the open unit disk f[) 

has finite Dirichlet integral, in fact 

D(f) = ! J IVfl 2dA: 
1t D 

(Here dA represents two-dimensional Lebesgue measure.) If we defip.e a norm on ~ by 

(1.2) 11/11; = J l/(0! 2 l
2
del + D(f), 

T 1t 

then a short computation shows that 

. (1.3) llJll;= L (lnl+1)1](n)l2
, 

neZ 

where {](n)} denotes the sequence of Fourier coefficients off. Thus the operator 

(Mf) (0 = C/(0, /E ~ 

*) Research of the first author was supported in part by the National Science Foundation and the Tennessee 
Science Alliance. 
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is a bilateral weighted shift operator, the bilateral Dirichlet shift. 

Our main results (Theorem 4.3 and Theorem 6.2) characterize the hyperinvariant 
subspaces of M, i.e. those (closed) subspaces .A of~ that are invariant for every operator 
that commutes with M. It is well known that the commutant of M can be identified with the 
multiplier algebra for ~. M(~) = {<p E L 2 (7T): <p~ c ~}, and it follows that .A is 
hyperinvariant fot M if and only.if .A is invariant for both Mand M-1 [22], p. 91. We shall 
use Lat (M, M-1) 

1to denote the lattice of hyperinvariant subspaces of M. If f E ~, then 
I 
I 
I 

[/] =span {Cnf((): n E Z} 

will denote the hyperinvariant subspace generated by f 

For a statement of the main theorems, we quickly recall some facts about logarithmic 
capacity and quasi-topology. We shall supply more definitions and details in Sections 2 
and 6. We say that a property holds quasi-everywhere (or q. e.) if it holds everywhere except on 
a set of (outer) logarithmic capacity zero. For a function f E ~. the values /(0 are well 
defined quasi-everywhere via the sum of the Fourier series off [3]. Furthermore, it turns 
out that for each set E c 7T the linear manifold 

~E = {f E ~:/IE= 0 q.e.} 

is a closed subspace of~. and of course hyperinvariant. A set E c 7T will be called quasi­
closed, if there are open sets V c 7T of arbitrarily small logarithmic capacity such that E \ V 
is closed. We shall write E = F q.e. if the symmetric difference of E and F has logarithmic 
capacity zero. One checks that this defines an equivalence relation on the quasi-closed 
sets of 7T. 

With our convention that /(0 q.e. denotes the sum of the Fourier series off at (, 
we will show that the set 

Z(f) = {C :/(0 = 0} 

is quasi-closed, thus for f E ~. 

(1.4) 

In Section 4, we shall prove that one always has equality in (1.4) and that this describes all of 
the hyperinvariant subspaces of M. More precisely, we have the following theorem: 

Theorem 1.1. (a) If E and Fare quasi-closed subsets of 7T, then 

(b) If .A E Lat(M, M-1), then there exists a bounded non-negative function/ E ~such 
that 

.,It = [/] = ~Z(f) • 



Richter, Ross and Sundberg, The harmonic Dirichlet space 3 

Thus the hyperinvariant subspaces of M are in one-to-one correspondence with the 
equivalence classes of quasi-closed subsets of 7r. 

Part (a) of this theorem will follow easily from well known facts about the pointwise 
behavior of So bolev space functions. For the proof of part (b) we shall use cut-off functions, 
the local Dirichlet integral, estimates from the theory of invariant subspaces in the analytic 
Dirichlet space [18], and Sobolev space techniques of Maz'ya and Shaposhnikova [16]. 

Our theorem may be considered as an analog of Wiener's theorem [14], p. 7, about the 
hyperinvariant subspaces of the bilateral unweighted shift B, i.e. multiplication by ( on 
L 2 ( 7r). Of course B is unitary, B-1 = B*, and it follows that Wiener's theorem also 
characterizes the reducing subspaces of B. In contrast to this, we shall see that the bilateral 
Dirichlet shift is irreducible. 

In Section 5, we will generalize our results to other types of Dirichlet spaces, namely the 
spaces ~a.• 0 < a < oo, of functions f E L 2 ( 7r) for which 

L (1+1nl)a.IJ(n)l2 <oo. 
neZ 

For a> 1, the hyperinvariant subspaces of ~a. are known, since in this case, ~a. is a Banach 
algebra of continuous functions and the hyperinvariant subspaces will be the closed ideals of 
~a.· Using Banach algebra techniques of Sarason, [21], p. 41, one can characterize these 
ideals in terms of their zero sets and snow they are all of the form 

for some closed F c 7r. Moreover, one can show there is a g E C 00 (7r) with g-1 (0) = F and 
~a..F = [g]. For 0 <a< 1, the situation becomes more complicated (since ~a is not a 
Banach algebra of continuous functions) but we are still able to describe the hyperinva­
riant subspaces of ~a by developing an analog of the machinery used above. 

In Section 6 we will show, under the equivalent norm 

that every hyperinvariant subspace .,It of~ can be generated by ~ 1, the orthogonal 
projection of the function 1 onto .fi, and moreover, this projec~ion is not only a logarithmic 
potential but is also the solution to a certain capacitary extremal problem. This will imply the 
following theorem: 

Theorem 1.2. Let E c 7r be quasi-closed. For a non-negative finite Borel measure µ 
on 7r let 

and set 

ME={µ: µ(7r\E) = 0, uµ(O ~ 1 q.e.}. 
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Then !l}E = [1 - uµE], where µEis the equilibrium measure for E, i.e. µE satisfies µEE ME and 

cap(E) = µE(7!) =sup {µ(7T): µ E ME}. 

(Here cap(E) is defined in (6.3).) 
I 
I 

It will be clear fyom the general set up that if µE is the equilibrium measure for E, then 
the logarithmic pote~tial uPE equals one q.e. on E, thus E c Z (1 - uµE) q.e. The difficulty 
lies in proving the cbnverse inclusion and our proof uses the harmonic extensions of 
logarithmic potentials uµ to C \supp(µ). The estimates in Section 6 were motivated by the 
connections between logarithmic capacity, harmonic measure, and escape probabilities of 
Brownian motion. 

Before proceeding, we make the following conventions so as not to confuse the reader 
when speaking about functions on the unit circle or their harmonic extensions to the disk. 
We shall always use 'and ~ for points on the unit circle 7T and z and w for points in the unit 
disk /IJ. When we write/(0 and/(~) we always mean a function defined on the circle and 
f(z) andf(w) to mean its harmonic extension to the disk (or even lzl > 1). Also, H 2 will 
denote the usual Hardy space of the unit circle and H 00 = H 2 n L 00

• 

2. Potentials and capacity 

In order to consider the zero sets of functions in the Dirichlet space, we must first be 
specific about the points of definition and for this we introduce potentials. We follow [17] 
and [23] and ref er the reader to these papers for proofs and further references. 

For two integrable functions f and g on 7T we set 

(f * g)(O =I ica)g(~) '2d~1 
T 7t 

and note that(/* g)"(n) =J(n)g(n). Define the kernel 

k(O = 11 - "-112 

and note there is a D > 0 such that 

Thus 

(2.1) !1} = {k * f:f E L 2 (T)} 

with Ilk *fll!?I comparable to llJllL2· 

For any set E c: 7T we define the capacity Cap (E) by 
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(2.2) Cap (E) =inf {II f llii : f E L!(7T), k * f ~ 1 on E}, 

where we use L!(7T) to denote the !!On-negative functions in L 2 (7T). We note that Cap is 
a monotone, subadditive set function, and an outer capacity [17], Theorem 1, in the sense 
that for any set E c 7T 

Cap(E) =inf {Cap(G): G;:) E, Gopen in 7T}. 

In fact, it is comparable to the square of the classical outer logarithmic capacity [17], 
Theorem 14 (i) (also see Section 6). Another important fact which will be used several times 
in this paper is that the inf in (2.2) is actually achieved by a function/E L;(7T), see [17], 
Theorem 9. That is to say, given any set E c 7T there is an f E L;(7T) such that 
Cap(E) = 11/11£1, k *f= 1 on E q.e. and 0~k*f~1. We call such a k *fa capacitary 
potential for E. From the definition of capacity we see that if f E LJ ( 7T) and a > 0, then 

(2.3) 
1 

Cap(g: (k * f)(O ~a})~ 2 llflli2 · 
a 

Thus the potentials k *fare finite valued q.e. 

If for every e > 0 there is a set E Sl.Jch that Cap (E) < e andfn - /uniformly on 7T \E, 
we say that fn - f quasi-uniformly. An Egorov type result of Meyers [17], Theorem 4 
(also see [2], Lemma 1), gives us the following string ofimplications:f,. - fin L 2 =>there 
is a subsequence k * f,.k - k * f quasi-uniformly => k * f,.k - k * f q.e. 

The potentials k *fare not, in general, continuous. To provide a substitution for 
continuity, we introduce the notion of quasi-continuity. We follow [2], [10], and [11]. 
A set E c 7T is said to be quasi-closed if for every e > 0, there is an open set W c 7T with 
Cap ( W) < e such that E \Wis closed. We say that a function f is quasi-continuous if for 
every e > 0 there is an open set W c 7T with Cap (W) < e such that/ continuous on 7T \ W. 
Facts which follow easily from the definitions are that all countable intersections and finite 
unions of quasi-closed sets are quasi-closed; if K is closed and/ is quasi-continuous, then 

] 1(K) is quasi-closed; and if/is quasi-continuous and/= g q.e. then g is quasi-continuous. 
For later reference, we record the following well known results as a proposition. The proofs 
of these facts are scattered throughout the literature and occasionally different definitions of 
capacity are used. So for the sake of completeness, we will give brief sketches of the proofs. 

Proposition 2.1. (a) If f EL 2 
( 7T ), then k * f is quasi-continuous. 

(b) For any set E c 7T, Cap(E) is comparable to infllJll;, where the inf is taken overall 
quasi-continuous f E !l) with 0 ~ f ~ 1 and f = 1 q. e. on E. 

(c) If fE !l) is quasi-continuous with/= 0 a.e. then/= 0 q.e. 

( d) If {gn : n E N} c !l) is a Cauchy sequence of quasi-continuous functions, then there 
exists a quasi-continuous function g E !!2 with gnk (() - g(() q.e. for some subsequence. 
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Proof (a) If p e C'xi(T), then k * p E C<Xl("'f). Hence, if we let {pn: n EN} be a 
sequence of trigonometric polynomials converging to fin L 2

, then by the Egorov-type 
result mentioned above, a subsequence of k * Pn will converge quasi-uniformly to k * f This 
implies that k * f is quasi-continuous. 

. (b) and (c). If E c: Fis compact, then one can show (see [2], proof of Theorem 2(i), 
I 

p. 263, and notice that the definition of capacity used there is given using cro functions only) 
that I 

;inf{ll</>11~: </> E C<Xl("'f), </> ~ 0, </> ~ 1 on E} 

= inf{ll/11.;,Jquasi-continuous,f~ O,f~ 1 q.e. on E} 

= inf{llJll;,Jquasi-continuous, 0~!~1,f = 1 q.e. on E}. 

The second equality follows because if f ~ 0 is quasi-continuous, then the function g defined 
by g =min{/, 1} is quasi-continuous with llglllil ~ 11/llliJ· From this (b) follows easily for 
compact sets E. This can be used to show that (c) is true (see [2], proof of Theorem 2(iii), 
p. 263). Then using (c) and the remarks above, one easily concludes that (b) holds for all 
sets E c: F. 

(d) It follows from (2.1) and (c) that gn = k * fn q.e. for some fn E L 2(T). Since 
Ilk* fnlllil is comparable to llfnllL2, we havefn--. /for some/ E L 2(T). Hence, as before, 
there exists a subsequence gnk = k * fnk --. k * f = g q.e. By (a), g is quasi-continuous. o 

In the introduction, we made the convention that for/ E fJ,f(() denotes the sum of the 
Fourier series at(. We now show that/ is quasi-continuous. 

Proposition 2.2. For f E fJ, /(() defined as the sum of the Fourier series is quasi­
continuous. 

Proof As mentioned in the introduction, the Fourier series off converges q.e. [3]. 
On the other hand, since the sequence of partial sums {Pn : n E N} converges to fin norm, 
by Proposition 2.1 (d) a subsequence will converge q.e. to a quasi-continuous function. 
Hence f, the sum of the Fourier series, must be quasi-continuous. o 

Remark. We note that it now follows from Abel's theorem, a result of Landau [15], 
p. 65-66, and the above that for f E fJ the radial limit function and the sum of the Fourier 
series agree everywhere, and they both equal the quasi-continuous representative off, 
which is uniquely defined except for sets of capacity zero. 

If f = k * g, g E L 2 
( F ), it may happen that the radial limit lim f (r ew) exists but 

k * g(e;9) does not exist in the Lebesgue sense. (For example, take , .... 1 

o < e < 112, 
-1/2<0<0, 

1/2 < I e I< n. 
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Then ge L 2(7f), J k(ei8)lg(e-i9)ld8 = oo, and f(r1) = 0 for all 0<r<1.) However, the 
following fact (which is not necessary for our arguments but we include it for the sake of 
completeness) is true for all 8: 

Proposition 2.3. If either 

or 

exists, then so does the other, and they are equal. 

Proof Define k.(ei8
) to be 11- ewl-112 ife<101 < n and zero if JOI< e. Let l.(ei6

) 

be equal to 1/2eifl 01 < eand zero if e < 10 I< n. Also, letP,(0) be the Poisson kernel. We will 
prove this proposition by showing that 

(2.4) lim [P1_. * f(ei6
)- k. * g(ei9

)] = 0 'VO. 
•-+O 

Sincefe !7J c VMO [24], we have 

lim llP1-a * f-1. *fll 00 = 0. 
e-+O 

So to prove (2.4) we need to show 

(2.5) lim [/. * f(ei6
) - k. * g(ei6

)] = 0 'Ve. 
•-+O 

To show (2.5) we may assume without loss of generality that ei6 = 1. Writing/= k * g 
we see that l. * f = (l. * k) * g, thus we need to show that 

(2.6) lim J [(/. * k)g-k,g]dO = 0 'Vg E L 2 (7f), 
e-+O 

i.e. that l. * k - k.--+ 0 weakly in L 2. Since (2.6) is true for continuous g, we need to show that 

remains bounded as e--+ 0. By symmetry we just need to show 

is uniformly bounded in e. 

If e < e < n-e, then 1. * k(ei6
),.., e-1 qlo+~ - ~). If 0 < e < e then 

1. * k(ei8),.., e-1cy'8+6 + y;-=e). If n - e < 0 < n then l. * k(ei9
) and k(e;9

) are both 
bounded by one. Thus 
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Also 

f u. * k- k.)2 ae = f u. * k)2 ae,..., f - cire+e + ire=e) ae . [1 ]2 
O<O<• o<O<• o e 

< q/2+1)2 1 (~ ire)2

ae = q/2+1)2
. 

Finally, it is clear that 

f u. * k - k.)2 ae 
x-e<O<x 

remains bounded as e -+ 0. o 

The following lemma is a slight generalization of a well known fact for compact sets 
(see (17], Theorem 7) and is foun.d in (11], Theorem 2.10 (see Footnote 2 on p.133). 

Lemma 2.4. If {E;: i E N} is a sequence of quasi-closed sets with E; l E, then 
Cap (E;) -+ Cap (E). 

3. Weak convergence and cut-off functions 

For an arbitrary function! e L 2 (7T), and a.e. ( e 7T,f(0 exists as the radial limit of 
f.(z) at(. We follow (18] and define the local Dirichlet integral D,(f) by the formula 

D (f) = f I f(O-f(~) 1

2 ld~I 
C T ( - ~ 2n ' 

and D, (f) = oo if f (0 does not exist. Thus we can norm ~ in terms of the local Dirichlet 
integral 

(3.1) 

Since ~ c L 2 (7T), every he~ can be written as h = h+ + h_, where h+ e ~ n H 2 and 
h_ E ~ n (H2)L. 
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Proposition 3.1. Let h = h + + h _ where h + E g) n H 2 and h _ E g) n (H2)1-. Then 

Proof Let ( E 7r such that D,(h+) and D,(h_) are finite. We note that 

If we let / 1 ( ~) be the first function in the above integrand and / 2 ( ~) the second, we see 
that / 1 E H 2 and / 2 E (H2 )1-. Thus / 1 and / 2 are orthogonal in L 2 norm, hence 
D,(h) = D,(h+) + D,(h_). o 

In [18], it was shown that if g belongs to the analytic Dirichlet space, i.e. g E g) n H 2
, 

and g,((), 0 < r < 1, is the analytic extension of g evaluated at r(, then D,(g,) ~ 4D,(g). 
From this it follows that if <p E H 00 and/ E g) n H 2 with <pf E g) then <pJ--+ <pf weakly in 
g) nH2

• This can be used to prove thatiff,ge g) nH2 with lg(z)I ~ 1/(z)I for allz E {[),then 

ge span{z"f(z): n E Nu {O}}. 

In this section, we plan to prove analogous results for the harmonic Dirichlet space which 
will enable us to work in a dense algebra via cut-off functions. 

The harmonic Dirichlet space g) is not an algebra. However, iff, geg)nL00
, then a 

routine calculation yields llfgll!j~C(ll/ll 00 llgll!j+llgll 00 ll/ll!j). Hence g)nL00 is an 
algebra. In the characterization of Lat(M, M- 1), we wish to describe the hyperinvariant 
subspace generated by a single vector f E g), that is 

[f] =span{("/((): n E Z}. 

To do this, we wish to work off a dense algebra in [f] and a natural candidate for this algebra 
is [f] n L 00

• Thus we introduce the cut-off function 

l/IM =min {I/I, M}, 

where MeN. Note that D(lflM)~D(lfl) so l/IMeg). (To avoid any confusion we 
note that 1/(01=1/1(0 and 1/(0IM = l/IM(() almost everywhere. Hence by the quasi­
continuity of 1/(0 I, I/I (0, 1/(0 IM, l/IM(O, and Proposition 2.1, the equalities hold quasi­
everywhere.) One hopes that l/IM E [f] and moreover that [l/IMJ = [f]. This is indeed 
the case and we state one of the main results of this section which is reminiscent of [18], 
Corollary 5.5. 

Theorem 3.7. Let g, h E g) with lg(OI ~ lh(()I almost everywhere. Then g E [h]. 

This theorem and many of our other results will depend on the following important 
lemma, which has analogs in other function spaces. It allows us to use weak convergence 
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instead of norm convergence, normally difficult to work with in the harmonic Dirichlet 
space. 

Lemma 3.3. Let {In: n E N} be a sequence of functions in q) which are uniformly 
bounded in Dirichlet norm and which converge to zero pointwise almost everywhere. Then 
fn -+ 0 weakly in ~. 

' I 

Proof By rlsing Egorov's theorem and the fact that the sequence {In : n E N} is 
uniformly bounded, in L 2 norm, one shows that (fn, h)L2-+ 0 for all h E L 00

, hencefn-+ 0 
weakly in L 2 • 

If z E llJ and Pz is the Poisson kernel at z, then for f E q) 

Thus evaluation at z E ~ defines a continuous linear functional on ~. i.e. there is a kz E ~ 

such that/(z) = (f, kz)!B. By the weak convergence in L 2 and the identity 

we have (fn, h)!B -+ 0 whenever his a finite linear combination of functions kz, z E llJ. But 
these finite linear combinations are dense in ~' hence {In: n E N} is a norm bounded 
sequence that converges to zero weakly on a dense set, hence In -+ 0 weakly in ~- o 

For a function h E L 2 (T) and 0<r<1, we define h, on T by setting h,(0 to be the 
harmonic extension of h evaluated at r(. 

Proposition 3.4. Let <p EL 00 and/ E ~with <pf E q)_ Then <p,f-+ <pf weakly as r-+ 1. 

Proof Note that <p,f - <pf-+ 0 almost everywhere, so to complete the proof, we just 
need to show (by Lemma 3.3) that II <p,f ll!B remains bounded as r-+ 1. By (3.1), we just need 
to get estimates on D;;(<p,f) for which we have 

(3.2) 

Note that <p, = <p: + <p; = (<p +), + (<p-), so we can use an estimate of [18], Theorem 
5.2, and Proposition 3.1 to get 

Thus 

where the second inequality follows from a computation similar to the one needed to verify 
(3.2) (see [18], p. 376). Combining this with (3.2), we see that II <p,f ll!B remains bounded as 
r-+1. D 
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Corollary 3.5. With <p andf as above, <pfE I/]. 

Proof. Since <p, E COC)(T), for 0 < r < 1, we can find a sequence of trigonometric 
polynomials that converge to <p, uniformly in all derivatives, thus <pJ E [f] for all 
0 < r < 1. Now apply Proposition 3.4 to get <pf E [/]. o 

Proof of Theorem 3.2. Let f = h and <p(() = g(()/h((), if h(() =F 0 and <p(() = 0 
otherwise, and note that <p E L CY:). Now apply Corollary 3. 5 to see that <pf= g E [ h]. o 

Corollary 3.6. If .A E Lat(M, M-1), then .An L CY:) is dense in .A. 

Proof. Let g E .A. It follows from Theorem 3 .2 that [I g I] = [g], thus we may assume 
g ~ 0. For ME N, let gM =min {g, M}. By Theorem 3.2, gM E [g] n L CY:) and it follows from 
Lemma 3.3 that gM -+ g weakly in !!). o 

4. Invariant subspaces 

For a quasi-closed set E c T, define 

f!)E = {f e ~:/IE= 0 q.e.}' 

and notice, by Proposition 2.1 (d), that f!)E is a closed subspace of!!). 

Proposition 4.1. Let E 1 and E2 be quasi-closed sets in T. Then !!)Et c ~E2 if and only if 
Cap(E2 \E1) = 0. Consequently, ~Et= ~E2 if and only ifCap(E1 !:iE2) = 0. 

Proof. Clearly Cap(E2 \E1) = 0 implies ~Etc .@E
2

• For the other direction, assume 
Cap(E2 \E1) > 0 and choose V open with Cap(V) < Cap(E2 \E1)/2 and E 1 \V closed. 
Let g be the capacitary potential funption for V (i.e. g = 1 q.e. on V, 0 ~ g ~ 1, and 
llgll; = Cap(V)) and pick <p E COC)(T) such that <p-1 (0) = E 1 \V. (E1 \Vis a compact subset 
of T, so this is always possible.) Then the function f = <p (1 - g) E ~Ei. If f E f!)E

2
, then 

1 - g = 0 q.e. on E 2 \E1 . Thus g is a test function for E 2 \E1 , i.e. 

Remark. We point out that for the analytic Dirichlet space fl) n H 2
, one defines the 

simply invariant subspaces f!)EnH2
, see [4], p. 295. However for this case, the structure of 

these subspaces is quite different and equality relations, as in Proposition 4.1, become more 
complicated. 

Clearly ~EE Lat(M, M-1
) for each quasi-closed set E c T. Our main result is that 

these subspaces exhaust all of Lat(M, M-1). We first prove this for the hyperinvariant 
subspaces generated by a single vector. Recall that Z(f) = 1-1 (0). 

• 
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Lemma 4.2. If f E ~, then [j] = ~z<n· 

Proof Clearly [f] c 92z<n· If lfl1 denotes the cut-off function 

lfl1 CO =min {If(() I, 1}, 

then Z(f) = Z(lfli) and since lfl1 (0 ~ 1!(01, it follows from Theorem 3.2 that 

Thus we may assume 0 ~!~ 1. Furthermore, it follows from Corollary 3.6 that it suffices 
to show ~z<nnL00 c [f]. 

" To this end, let g E ~z<n n L 00 and notice, by Theorem 3.2, we may assume g ~ 0. For 
n EN, let 

It follows from Lemma 3.3 that gn --+ g weakly, hence it is enough to show gn E [f] for each 
nEN. 

For the rest of the proof, we fix n EN. For t ~ 0 define 

The functions f and g are quasi-continuous, hence the sets 

are quasi-closed and for each t ~ 0 they satisfy Nt c Mt. Now M 0 c Z(f) \Z(g), hence by 
the assumption on g and Lemma 2.4, we have 

as t--+ 0. By Proposition 2.1 (b ), we can find a family 0 ~ wt ~ 1 offunctions in~ with wt = 1 
quasi-everywhere on N, and II w, ll!fl --+ 0 as t --+ 0. For t, (J > 0 we consider the function 

It is easy to verify (f + (J)-1 
E ~ n L 00 and thus <f>r,ll E ~ n L 00

, since it is the product of 
bounded Dirichlet functions. Furthermore, for the same reason <f>r,ll f E ~ n L 00

, in fact, by 
Theorem 3.2, <f>t,llfE [f]. We shall conclude the proof by showing that we can choose 
t, (J --+ 0 so that 

weakly in~-
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First we show tllat one can choose (J = (J (t) so that the Dirichlet norms of <f>t.~ f stay 
uniformly bounded as t -+ 0. Note that 

(4.1) 

It is clear that 

thus the first summand on the right hand side of (4.1) remains bounded, because 0 ~ wt~ 1 
and II wt 11 91 -+ 0 as t -+ 0. Hence it suffices to show that 

(4.2) 

independently of (J > 0. 

We write 

and let 

We shall estimate the size of the Douglas integral (1.1) of h (f + b)-1 by distinguishing several 
cases: 

First: If '' e EA, then 

I 

h(O h(e) 1
2 

ICC)+ (J -J(e) + (J = o. 

Second: If CE A, e ¢A, then/(e) >I, so 

I 

h(C) h(e) 1
2 1 2 1 2 ico + (J - ice)+ (J ~ 12 lhCe)I = 12 lhCO -h(e)1 . 

Third: The case C ¢A, e EA is similar to the second case. 

Fourth: If C, e ¢A, then/(C), J(e) >I, hence 

I 

hCO h(e) 1
2 

I hCO - hCe) 1co - ice) 1
2 

1co + (J - ice)+ (J = 1co + (J - h(e) c1co + b) c1ce) + b) 

~ 2 { :2 lhCO- h(e)12 + 1~ llhll! 11co - 1ce)12
}. 

2 Journal fiir Mathematik. Band 448 
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Thus it follows that 

l 
I 
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~ ~ {t2D(h) + llhll!D(f)}. 

Note that the aboJ~ is independent of(>> 0, hence (4.2) has been proved. 

Finally, we show that <f>t;,lJ(tJ)f--+ gn almost everywhere for some sequence ti--+ 0. Since 
llw,11~--+ 0 as t--+ 0, there is a sequence ti--+ 0 such that w,

1
--+ 0 a.e. asj--+ oo. Thus 

This is all we need, since <p11 ,a(tj)f = gn = 0 a.e. on Z(gn) and Z(f)\Z(gn) has measure 
zero. o 

Theorem 4.3. Let vH E Lat (M, M-1 ). Then there is a bounded non-negative f E ~ with 
.fi = [jJ = ~Z(f)• 

Proof Since .A is separable, 

vH =span{[/,.] :.f.. E ~./,. $ 0, n EN}. 

By Theorem 3.2 we may assume!,.~ 0 for all n. Let en= llfnll;1 2-n, th~n 

(4.3) 

and Z(g) = n Z(fn) quasi-everywhere. (Note by Proposition 2.1 (d), the pointwise limit 
n 

of the sum on the right hand side of (4.3) equals the sum of the Fourier series of g q.e.) 
We now have 

g E span {[f,.J : n E N} = Ac ~nzcfn> = ~Z(gJ, 
n 

hence by Lemma 4.2, 

Now let f = g 1 = min {g, 1} and note that Z (f) = Z (g) q.e. so 

.fi C [g] = [jJ = ~Z(f)• 0 

Remark. For any set E c 7r (not necessarily quasi-closed) we can define the set 

~E = {fe ~:/IE= 0 q.e.} 
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and see that by Proposition 2.1, g)E is a closed hyperinvariant subspace of g).Thus, by 
Theorem 4.3, P}E = g)F for some quasi-closed F c 7r. What is Fin terms of E? For notational 
purposes, we say that a set E 1 is quasi-contained in E 2 if Cap (E1 \E2) is zero and that E 1 is 
quasi-equivalent to E2 if Cap(E1 AE2) is zero. For a set Ac 7rwe let~ be the family of 
quasi-closed sets that quasi-contain A. A theorem of Fuglede [11], Theorem 2.7, states that 
~ has a "quasi-minimal" element, i.e. a quasi-closed A*E ~ such that A* is quasi­
containedin every EE~· We call this quasi-minimal element A* the quasi-closure of A. (A* 
is actually an equivalence class with respect to q.e.) Returning to our question, we now see 
that P}E = P}E* as follows: Clearly P}E* c P}E· If f E P}E then/= 0 q.e. on E and using the 
quasi-continuity off and the fact that Z(f) is quasi-closed, we get f = 0 q.e. on E* so 
f E g)v· The notation of quasi-closed is used to distinguish g)Ei from P}E

2 
(E1 and E2 are 

quasi-closed sets) as in Proposition 4.1. The analog of Proposition 4.1 is not true for g)E 

if Eis an arbitrary subset of 7r. An example of this can be derived from the remark following 
this next corollary. 

Also worth mentioning here is that the notion of quasi-closed is necessary here since P}E 

cannot always be written as g)F for some closed F c 7r. To see this, notice that for any open 
arc I in the unit circle (sufficiently small), we have (see [23], p.122, and Lemma 2.5) 

Using this estimate and a Cantor type.construction, one can construct a closed set K of 
positive capacity with E = 7r\K quasi-closed and dense in 7f. (Note that E will be a 
countable, disjoint union of arcs.) A straightforward argument yields Cap(EAF) > 0 for 
every closed set F, which means, by Proposition 4.1, that g)E is not equal to P}F for any 
closed set F c 7r. 

A hyperinvariant subspace .A of Mis called lattice complemented if there is another 
hyperinvariant subspace .% of M such that .An .% = (0) and .A v .% = g). 

Corollary 4.4. Let E c 7r be quasi-closed. Then P}E is lattice complemented in 
Lat(M, M-~) if and only if 7r\E is quasi-closed. If P}E is lattice complemented, then P}T\E 

is the unique lattice complementary hyperinvariant subspace. 

Proof If 7r\E is quasi-closed, then 

g)E n g)T\E = (0) 

and 

In fact, the first identity is clear. To see the second one, let/ and g be non-negative functions 
in P} such that [f] = g)E and [g] = P}T\E· Then/+ g E g)E v g)T\E and Cap(Z(f + g)) = 0, 
hence [/ + g] = g). Thus P}E is lattice complemented. 

Conversely, if g)E is lattice complemented, then there is a quasi-closed set F c 7r such 
that 
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(0) = ~E (') q}F = q}EvF 

and 

~=~EV ~F· 

By Proposition 4.1'we must have Cap (7r\(EuF)) = 0 and Cap(E nF) = 0, so 7r\E = F 
q.e. and the corollary follows. o 

I 
I 

Remark. Int~rvals are examples of quasi-closed sets whose complement is also 
quasi-closed. On the other hand, if E c 7rhas Lebesgue measure zero, then any function in 
!!)T\E equals 0 a.e., so ~T\E = (0). Thus any quasi-closed set of Lebesgue measure zero and 
of positive capacity is an example of a set whose complement is not quasi-closed. 

Corollary 4.5. Mis irreducible. 

Proof. If .,It and ,,uJ.. are invariant for M, then .,It and .,HJ.. are invariant for M-1
. 

By Corollary 4.4, .,It = ~E and .,HJ. = !!)T\E• where E and 7r \E are quasi-closed. 

Suppose .,It = ~E =I= (0) and choose f E .,It, f $ 0. If g E q)T\E• g ~ 0, then 

0=( J> =J (Y)f(Y) ldCI + J J (g(()-g(e))(J(O-JCO) ldClldel 
g, !j g "' "' 2n Ir - ?; 12 4n2 

T. T T '> 

= _ 2 J g(e) ( J !CO 
2 

1a'1) 1ac;1 . 
E T\E 1(-el 2n 2n 

But since f $ 0 and f ~ 0, the function 

h(?;)= f f(O ld(l>O 
T\E I( -e1 2 2n 

for each e. Thus g(?;) = 0 a.e., hence !!)T\E = (0). 0 

5. Other types of Dirichlet spaces 

In this section, we generalize our results to other types of Dirichlet spaces that lie 
betweenL2 (7r) and q). ForO <cc~ 1, define the harmonic Dirichlet space of order cc, denoted 
by ~a.• to be the space of L 2 (7r) functions which have finite Douglas type integral 

s (f)= J J 11co-1ce)12 1d'I ld?;J 
a. T T I ( - e 11 +er 2n 2n . 

We norm q) a. by 
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which by [7], Theorem 3 (c), is comparable to 

L (1+1nl)«l](n)l2
• 

neZ 

If f(z) represents the harmonic extension of f(O to /IJ, then SIX is also comparable to 

J IVJ(z)l2 (1- lzl)1 -«dA(z). 
CJ 

For A. E /lJ and h E L 2 (7f), we can define the local Dirichlet integral D;.(h) by 

D (h) = J I h(O- h(A.) 1
2 

ldCI 
;. T C - A. 2n · 

(Here h (A.) is the harmonic extension of h evaluated at A..) As in Proposition 3.1, one verifies 
that if h = h+ + h_, h+ E H 2

, h_ E (H2)\ then 

(5.1) 

and a computation analogous to the one in Lemma 5.1 and Theorem 5.2 of [18] shows that 
if h, (0 = h (rO then 

(5.2) D;. (h,) ~ 4D..t (h) 

for each 0~r<1 and he H 2
• Thus (5.1) implies that (5.2) holds for each h E L 2 (7f). • 

In [1] is was shown that for an analytic function f(z) on /IJ, w(r) e C2 [O,1], w(r) 
decreasing, concave, and w (r) --+ 0 as r --+ 1, (e.g. w (r) = (1 - r) 1 -«, 0 < oc ~ 1) 

J lf'(z)l2 w(]zl)dA(z) = - ~ J Aw(z)(1-lzl 2)D,,(f)dA(z), 
CJ CJ 

where w(z) = w(lzl). As in Section 3 (with the obvious modifications) we show that if 
g, he !!lJrr. with lg(OI ~ lh(OI a.e. then g E [h]. 

To discuss the pointwise behavior of functions in !!lJrr., we develop an appropriate 
capacity for the !!JJ« spaces. For 0 < oc ~ 1 define 

and note there is a b > 0 with 

Hence!!JJ« = {krr. * f :f e L 2 (7f)} with llkrr. * fllrr.comparableto llfllL2· For any setE c 7rwe 
define the capacity Cu. (E) by 

Crr.(E) = inf{llfl\£2 :fe L~(7r), krr. *f~ 1 on E} 
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and note that if we define ct-quasi-everywhere (ct-q.e.), ct-quasi-closed, and ct-quasi-conti­
nuous analogously as in Section 2, we have similar types of properties as in Proposition 2.1. 
A result of Salem and Zygmund [20] shows that the Fourier series off E !l)a converges ct-q.e. 
and a similar argument as in Section 2 shows that if we definef(O to be the ct-q.e. sum of its 
Fourier series, then f is ct-quasi-continuous. 

For an ct-quasi-closed set E c 7r, we let 

g)a,E = {f E g)a.:flE = 0 ct-q.e.} 

and note that by Proposition 2.1, !l)a,E is a closed subspace of !l)a· One also proves, as in 
Lemma 4.2, that if f E !l)a then [f] = !l)a,Z<J> and the following theorem holds: 

Theorem 5.1. (a) If E and Fare ct-quasi-closed subsets of 7r, then 

g)a,E = g)a,F ~ E = F ct-q.e. 

(b) If .,II E Lat(M, M-1), then there isaboundednon-negativefunctionf E !l)asuch that 

.,/( = [j] = g) a, Z(f) · 

(c) Let E c 7r be ct-quasi-closed. Then !l)a,E is lattice complemented in Lat(M, M-1
) if 

and only if 7r \Eis ct-quasi-closed. If !l)a,E is lattice complemented, then !l)a,T\E is the unique 
lattice complementary hyperinvariant subspace. 

(d) Mon !l)a is irreducible. 

Remark. Using a similar type of construction as in the remark following Theorem 4.3, 
and the fact that for an open arc I c 7r (sufficiently small), [23], p.122 and Lemma 2.5, 

we can construct ct-quasi-closed sets E for which !l)a,E cannot always be written as !l)a,F for 
some closed F c 7r. This is a stark contrast to the ct > 1 case where, as mentioned in the 
introduction, every hyperinvariant subspace can be written as !l)a,F for some closed F. 

6. Extremal functions and generators of invariant subspaces 

In Section 4 we saw that every hyperinvariant subspace of Mis generated by a single 
function. In the case of the Dirichlet space, we shall now describe such a function as the 
solution to a certain extremal problem. 

As all Hilbert spaces do, the Dirichlet space carries many equivalent norms. While the 
invariant subspaces do not depend on the particular norm chosen, the orthogonal 
projections will. For this section, we fix a new norm on the Dirichlet space by setting 

(6.1) 
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This norm is obviously equivalent to the one defined in ( 1.2) and ( 1.3). We shall see that with 
this norm each hyperinvariant subspace .,It of M is generated by the orthogonal projection 
of the constant function 1 onto .fi. We point out that this result is analogous to the situation 
in L 2 ( 7r ), where the hyperinvariant subspaces of the bilateral shift are generated by 
characteristic functions, and these are just the orthogonal projections of 1 (with respect to 
the usual norm on L 2 

( 7r)) onto the hyperinvariant subspaces. 

Below, we will make use of the representation of capacitary potential functions as 
logarithmic potentials with respect to measures of finite energy. We will recall a few known 
facts and follow [12], Chapter 3. However, our choice of norm (6.1) is different from the one 
in [12], so we explicitly state properties of the norm that are used in [12] as a lemma. 

Lemma 6.1. Let f, g E ~ be real-valued and set u = min {f, g} and v = max {f, g}. 
Then 

(a) 111/1II~11/11, 

(b) 1lull 2 +1lv1l2 ~11/112 + llgll2
• 

Proof (a) Let A= {( :/(0 ~ O} and B = 7r\A. A straightforward computation 
shows that 

ll/ll2 -lll/lll2 =J JJ((}/(~)(2- 8 
) ld'I ld~I ~o 

A, B " - ~ 12 2n 2n - ' 

and thus (a) follows. 

(b) This follows from (a) and the parallelogram law, because u =Hf+ g - If - gl) 
and v =Hf+ g + 1/-gl). D 

If .,It E Lat(M, M-1), then by Theorem 4.3 there is a quasi-closed set E c: 7r such that 
.,It= ~E· The projection of 1 onto .fi, ~ 1, is the unique function that solves the extremal 
problem 

If g E ~E• then Re (g) E ~E and 111 - Re (g) 11 2 ~ 111 - g 11 2, hence it is clear that ~ 1 is real 
valued. Thus, as in the proof of Proposition 2.1 (b), one sees (using absolute values and 
cut-off functions with Lemma 6.1) that the unique solution/E to 

(6.2) inf{ll/112
: 0 ~!~ 1, f = 1 q.e. on E} 

satisfies JE = 1 - ~ 1. Comparing (6.2) with Proposition 2.1 (b), we see that JE is the 
capacitary potential function for the capacity 

(6.3) cap(E) = inf{ll/112
: 0~!~1, f= 1 q.e. on E}. 

Remark. This capacity is comparable to the one defined in (2.2) (see Proposition 
2.1 (b) and notice the small c versus the capital C in our original definition of capacity). 
The reason for redefining capacity will become clear in our proof of Theorem 6.2. However, 



20 Richter, Ross and Sundberg, The harmonic Dirichlet space 

it is not clear to us whether this is just a technicality necessitated by our proof or not (see also 
the remarks following the proof). 

Theorem 6.2. Let E c: F be quasi-closed, and letfE be the capacitary potential function. 
for E, i.e. the unique solution to (6.3) using the norm (6.1). Then 

(6.4) ' ' 
I 
I 

Proof Let F\= Z (1 - fE). Then Fis quasi-closed, and it is clear that E c: F q.e. Thus, 
by Lemma 4.2 and Proposition 4.1, it suffices to show that cap(F\E) = 0. Since/Eis the 
capacitary potential for E we have 

llJEll 2 = cap(E) ~ cap(F) ~ ll!Ell 2
• 

This implies cap (E) = cap (F), hence we shall be done, once the following lemma has been 
established. o 

Lemma 6.3. Let E c: F be subsets of F with E quasi-closed. If cap (F) = cap (E), then 
cap (F \E) = 0. 

Remark. If the hypothesis that E be quasi-closed is dropped in Lemma 6.3, then 
its conclusion becomes false. To see this, let K be the Cantor set, E = F \K, and F = F. 
Indeed, as remarked after the proof of Corollary 4.4, up to q.e. the only quasi-closed super­
set of E is F. Thus F = F is the quasi-closure of E and hence cap (E) = cap (F), while 
cap(F\E) > 0. 

Before we prove Lemma 6.3 we need to recall a few known facts about potentials (see 
[12], Chapter 3). We say that a non-negative finite Borel measureµ on F has.finite energy 
integral if 

J jgjdµ ~ Cllgll 
T 

for all g E !l) n C ( F) and some positive constant C independent of g. We denote the set of 
non-negative finite Borel measures on F with finite energy by E+(F). Thusµ E E+(F) if 
and only if there is a function uµ E ~ such that 

for each g E !l) n C(T). (Here ( ·, ·)is the inner product induced by the norm (6.1).) One 
checks that uµ is of the form 

(6.5) 
e 

uµ(0=2Jlog IC-~I dµ(~). 

Note that uµ (()is defined for each C E F with values in [O, oo] and that uµ naturally extends 
to be harmonic on C \supp(µ). This will be used below and it is the reason for our choice of 
norm (6.1) and the definition of cap in (6.3). Also note that a routine estimate yields 
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(6.6) 

for all ( E 7r. Ifµ has a finite energy integral, thenµ puts no mass on any set of capacity zero 
and 

(6.7) (g, uµ) = J gdµ 
T 

for each g E ~. Furthermore, if A c: 7r is compact, then there is a measure µ with finite 
energy integral and supp(µ) c: A such that/A = uµ (see [12], Section 3.3). By use of Fatou's 
lemma, the facts that 

and uµ (z) ~ 1 for all z E C, and (6.6), one shows that 

limfA (z) = lim uµ (z) = 1 
z-+{ z-+{ 

for quasi-every ( E A (the unrestricted limit). Thus uµ is continuous on C, except possibly on 
a set of capacity zero. 

Lemma 6.4. Let E c: 7rbe quasi-closed. Then the set 

(6.8) !l'E = {uµ: µ E E+(1r), µ(7r\E) = 0, uµ(() ~ 1 q.e.} 

is closed in~. FurihermorefE E !l'E. Thus all capacitary extrema/functions are logarithmic 
potentials. Also note that by (6.6) these extremal functions have radial limits at each point 
( E 7f. 

Proof. Let {uµn: n EN} be a sequence in !l'E with u~--+ fin~- We must first show 
that f = uµ for some measure µ E E + ( 7r) with µ ( 7r \E) = 0. Each µn is a non-negative 
measure and 

hence a subsequence of the measures, also denoted by µn will converge to a non-negative 
measureµ in the weak-star topology of M(7r). If g E ~ n C(7r), then 

soµ E E+(1r) and uµ E ~- Furthermore, for fixed z E IIJ the function 

e 
2log lz _(I 

is continuous on 7r. Thus, by (6.5), the harmonic extensions of uµn converge pointwise on IIJ 
to uµ (z). This implies that uµ = f and 0 ~ uµ ~ 1. 
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Next we show thatµ ( 7r \E) = 0. It is clear that !t'E .l q)E• thus J f dµ = 0 for all/ E £!JE. 
Now let/ E q)E be such that Z(f) = E q.e. (Theorem 4.3). Then J cnJdµ = 0 for all n E Z, 
sofdµ = 0, thus µ(7r\Z(f)) = 0. This implies µ(7r\E) = 0. 

Finally, to see that/EE !t'E, we choose an increasing sequence of compact subsets En 
of Ewith cap(En) - cap(E). Then/En= uµn E !t'E and using (6.7), one easily checks that 
uµn - JE, i.e. JE E lfE· 0 

I 

Next we recallithat if A c: B, then£. ~Jn q.e. on 7r (Lemma 6.1 allows us to apply the 
argument of [9], p.

1
157). We shall need a stronger statement, namely, thath_(O ~fa(O 

for each C E 7r. This follows from the weaker statement, because the harmonic extensions 
to {[)satisfy£. (z) ~fn(z) for each z ED, hence by Lemma 6.4 we obtain£. (0 ~fa(O for 
each CE 7r. 

Proof of Lemma 6.3. We will show that the hypothesis implies 

(6.9) cap(F \L) = cap(E \L) 

for any closed subset L of E. This will finish the proof, because since Eis quasi-closed, we 
can find a sequence {Ln: n E N}'of closed subsets of Ewith cap(E\Ln) - 0 and thus 

cap(F\E) ~ cap(F\Ln) = cap(E\Ln) - 0. 

In order to show (6.9) we fix a closed subset L of E. It suffices to show that 

(6.10) !E\L (0 = 1 q.e. on F \E 

for this will imply that fE\L is a test function for the capacitary problem (6.3) for the set 
F\L, thus 

cap(E\L) ~ cap(F\L) ~ 11/E\Lll2 = cap(E\L). 

Let En c: Ebe an increasing sequence of closed sets such that cap (En) - cap (E) as 
n - oo. The hypothesis implies that/F = fE, so by the remarks before the proof, we have 
that/En (0 - JE(O = 1 q.e. on F\E. Let Co E F\E be such that/En (C0) - 1 and set 

D = ~ dist(L, C0) > 0. 

Furthermore, let 

then Fn c: En \L c: E \L. Hence 

and (6.10) will follow (and the proof will be finished), once we show that/Fn (C0) - 1. 
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The following part of the proof was motivated by the connections between logarithmic 
capacity, harmonic measure, and escape probabilities of Brownian motion (though no 
probability is used in the proof). More precisely, when in our statement we see the quantity 
f,1,. ('0 ) for a set A c T, we think of the probability that Brownian motion starting at ' 0 leaves 
a large disc (say of radius 4) minus A for the first time through A. Thus, our hypothesis that 
!En ('0) --+ 1 can roughly be interpreted as saying that the Brownian traveler with high 
probability hits En before he hits {z EC: lzl = 4}. Our goal is to show that he must hit En 
near , 0 , i.e. in Fn. We shall accomplish this below with a comparison argument for harmonic 
functions by putting up little barriers at the ends of Fn. 

Let G c C be the open set that is symmetric with respect to T and satisfies 

i!J n G = i!J n {z E C: I z - 'o I< 15} 

and fix 7', 0 < 1' < b. 

For each n EN, let vn be the harmonic function in G\Fn which has boundary values 
zero q.e. on 

8Gn{zEC:lzl>'1+K} 

and boundary values one q.e. on 

(Here we use the general solution of the Dirichlet problem due to Wiener, see [13], p. 243.) 
For z E G\Fn let 

Then wn andfFn are harmonic in G\Fn and by considering their values on o(G\Fn), we see 
that 

(6.11) 

for each n E N, where ro (15, K) denotes the harmonic measure for G at ' 0 of the set 

For small values of b, G looks like a disc with radius b, thus ro(b, K) ~ 4K/b as 1'--+ 0. 

Furthermore, since !En is the logarithmic potential of the form (6.5), it takes negative 
values on the circle {z EC: lzl = 4}. Of course, 0 ~!En~ 1 on T, hence in the annulus 
{z EC: 1<lzl<4}, we have 1- fEJz) ~ loglzl/log4. This implies 

1 - '" (z) ~ log (1 + ") " !'.lG { "' I I 1 } J En _ log 
4 

1or z E u n z E I(_, : z > + 1' • 

... 
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On the set 

we have 1 - !En (z) ~ 1 - vn (z), because the left hand side is non-negative and the right 
hand side is zero. It follows that 

\ 

' 
'1 

\ 
for all z E a (G \Fn) ari~ so 

' 

(6.12) l-J; (( )~(l-v (( ))log(1+K) 
En o n O log4 

for each n E N. Combining (6.11) with (6.12) and using wn ((0) = 2 vn ((0) -1 we obtain 

log4 
1 - JFn ((o) ~ 2 log(l + 1') (1 - fEn ((o)) +OJ (c5, 1') 

for all n. Now let n -+ co and then" -+ 0, thus lim JF ((0 ) ~ 1 and so, in factfF ((0 ) -+ 1 
n-t-OO " n 

as n-+ co. o 

The question which we have not been able to answer is for which capacities does 
Lemma 6.3 remain true. As pointed out earlier, Lemma 6.3 and Theorem 6.2 imply that 
P~E1 generates {i)E when equipped with the norm (6.1). The following example shows that 
this fact becomes false for some other equivalent norms on ~. 

Example. Let E c 7r be quasi-closed with (0) =I= {i)E =I=~ and take g E ~. 0 ~ g ~ 1, 
1 - g E {i)E, but [1 - g] =I= {i)E (e.g. g = 1). Then g ¢ {i)E, and 

.,({ = {f + rx.g : f E {i)E, rt. E C} 

is closed, hence every h E ~has a unique representation h = f +,rx.g + h1, wheref + rx.g E .A 
and h 1 J_ .A with respect to the usual inner product on ~ defined in (1.2). We define a new 
norm by 

One checks that II h 11 2 ~ 211 h II!, thus by the open mapping theorem the two norms are 
equivalent. In this new norm g J_ {i)E and, of course, 1 - g E ~E• hence P~E1 = 1 - g. 
However, by our choice of g we have [P~E1] =I= {i)E· 

The capacitary potential functionfE for a quasi-closed set Eis a logarithmic potential 
function uw We shall now seee that the quasi-support ofµ (defined below) is equal to E. For 
µ E E+(7r) (the non-negative finite Borel measure's on 7r with finite energy integral) we let 

-*'ii= {Ac 7r: A is quasi-closed, µ(7r\A) = O}. 

We note that since µ puts no mass on any set of capacity zero, it follows that if two sets 
satisfy A = B q.e., then either A and Bare both in .rt;, or neither one is. Also, it is easy to 
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verify that J"t'µ is closed under countable intersections. Thus by a theorem of Fuglede (11], 
Theorem 2.7, J"t'µ has a quasi-minimal element A* E ~·That is to say cap(A* \A)= 0 for all 
A E J"t'w A* is called the quasi-support ofµ. The equivalence class of A* (with respect to q.e.) is 
unique and every set in this equivalence class is also a quasi-support of µ. Thus, when we 
speak of the quasi-support of µ we should keep in mind that we are thinking about an 
equivalence class of sets rather than about a set itself. We also note that considerations about 
the existence of quasi-supports by Choquet and Getoor [6] were the motivation for 
Fuglede's theorem, which we used here to prove the existence of the quasi-support. Fuglede's 
theorem is true for capacities other than the ones considered here, but we point out that for 
our special case, Fuglede's theorem can easily be deduced froin the results of Section 4 and 
the separability of ~. 

Theorem 6.5. Let E c 7r be quasi-closed and let JE = uµE be the capacity potential for E 
(in the norm (6.1)). Then the quasi-support ofµ equals E. Also, µE is the unique measure in 
E+(1f) with µ(7!\E) = 0, uµE(O ~ 1 q.e., and 

(6.13) cap(E) = µE(7r) = sup{µ(7f): uµ(O ~ 1 q.e., µ(7!\E) = 0, µEE+(1f)}. 

Proof It is well known (and at this point elementary to show) that µE solves the 
extremal problem (6.13) and that µE(7r) = cap(E) (see e.g. (17], Theorems 13 and 14). 

To finish the proof we must show that the quasi-support of µE equals E q.e. Let A 
denote the quasi-support of µE. Since µE(7r\E) = 0, we have Ac E q.e. The measure µEis 
a test measure for the extremal problem (6.13) for the set A, hence 

This implies cap(A) = cap(E). Thus, by Lemma 6.3, cap(A\E) = 0, i.e. A= E q.e. 

For the uniqueness part, suppose that for two measuresµ and v we have uµ = uv q.e. 
Then the harmonic extensions agree everywhere in {[). But for all z E /[), 

and the result follows. o 

Together with Theorem 6.2, this theorem implies Theorem 1.2. 
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