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Three-body analytical potential for interacting helium atoms 
Carol A. Parish and Clifford E. Dykstra 
Department of Chemistq Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202 

(Received 21 April 1994; accepted 15 July 1994) 

Large basis set ab initio calculations have been carried out for a dense grid of points on the He, 
potential energy surface. Three-body contributions were extracted at every point, and a number of 
concise functional representations for the three-body potential surface were then examined. 
Three-body multipolar dispersion terms and other radial and angular terms were used in the 
representations, and an assessment of relative importance of the different terms is presented. 
Combined with a two-body He-He potential, the results of this work should offer a high quality 
interaction potential for simulations of aggregated helium. 

INTRODUCTION 

Accurate interaction potentials are a foundation element 
in the modeling and simulation of weakly bound clusters and 
ultimately of liquids. Interaction potentials are usually for- 
mulated in terms of various N-body interactions. Computa- 
tional ease may be assured when N is 2, i.e., when only 
pairwise additive elements are included: but then, accuracy 
may be compromised. Pairwise additive interaction should 
be the major contributor to long-range and weak interaction 
potentials, but nonadditive components may still be impor- 
tant, especially as the size and complexity of the system 
increases. As well, macroscopic properties, by their very 
many-body nature, may be sensitive to nonadditivity in the 
intermolecular interactions. So, the accurate prediction of 
features from surface phenomena’-s to the structure of solids 
and liquids4-7 may call for the inclusion of reliable, nonpair- 
wise potential terms. 

Three-body and higher order N-body contributions to 
long-range and weak interaction potentials can arise from 
some of the same sources as the two-body terms, and this 
includes polarization, dispersion, and exchange repulsion. 
Polarization is quite important in a small cluster if there is at 
least one polar molecule, and it has become routine to evalu- 
ate pairwise and nonpairwise polarization energies of clus- 
ters of small molecu1es.s In contrast, a cluster of rare-gas 
atoms exhibits no electrostatic polarization, and so these sys- 
tems offer a way of isolating nonpolarization contributions to 
many-body effects. 

We recently reported9 pairwise and many-body contribu- 
tions to the long-range interaction energies in He, clusters 
(n=l to 6) on the basis of high level ab initio calculations. 
Nonpairwise interaction energies at long range were found to 
grow as the cluster size increases, going from less than 1% in 
the trimer to nearly 10% in the hexamer. Dipole-dipole- 
dipole and dipole-dipole-quadrupole dispersion terms were 
found to comprise a major share of the three-body potential 
at long range. The current study is a continuation of that 
work to the close-in regions where the potential becomes 
strongly repulsive. We focus exclusively on He, in order to 
understand and accurately represent three-body interactions. 
With this new information, one may achieve a global picture 
of the role of three-body effects in helium clusters, and this 
may contribute to the understanding of many-body potentials 

in general. In addition, the assessment of multipolar disper- 
sion terms vs others may be a guide to the inclusion of three- 
body effects into model potentials of other rare gases and 
possibly other systems. Finally, by adding the pair contribu- 
tions, our representation of the three-body terms offers a 
good model potential for He, simulation studies. 

THEORETICAL APPROACH 

The first aspect of this work was the generation of He, 
potential energy surface points at close-in regions. This ex- 
tends the previous surface,g and the calculational approach is 
the same. Ab initio calculations were carried out using a 
large basis set, selected previously’ on the basis of prior 
ab initio studies of Hq’“-” and their comparison with an 
experimentally derived dimer potential.24 This was a 
( lOs4p2d) set of primitive Gaussian functions contracted to 
(8s4p2d). Wave functions were those of the highly corre- 
lated, coupled cluster level with double substitutions 
(CCD)25-“2 and using a Brueckner orbital reference configu- 
ration. The Brueckner orbital CCD method, or B-CCD, was 
the pair coefficient operator method of .Chiles and 
Dykstra.“3-35 

The B-CCD treatment is size-extensive and is equivalent 
to the full-C1 result in the limit of noninteracting helium 
atoms. Since the full correlation energy is recovered at the 
separated limit, the nature of any lingering correlation error 
will tend to be an undervaluing of the well depth. On the 
other hand, basis set superposition error (BSSE) will tend to 
artificially deepen the well. There may be a small advanta- 
geous cancellation of lingering error sources in certain re- 
gions. 

B-CCD energies for the helium dimer were calculated 
for 182 internuclear separations, which includes the 72 dimer 
points previously obtained.g Dimer interaction energies at 
each of these points were obtained as the dimer electronic 
energy less twice the energy of an isolated helium atom. This 
set of values constitutes the “pair potential” [i.e., Vz(r)] of 
this study. We elected to have at hand a large number of V, 
points rather than a functional fit of a small set of points in 
order to keep numerical error to a minimum in the analysis 
of the relatively small three-body effects. 

Ab initio caIculations on the helium trimer were carried 
out at the same level of calculation as for the- dimer, and 
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trimer interaction energies were obtained as the difference 
between the trimer electronic energy and three times the en- 
ergy of an isolated helium atom. Then, the three-body inter- 
action energy, which we designate V3, was calculated for 
each trimer structure as the difference between the trimer 
interaction energy V and the sum of the pairwise (dimer) 
potentials. Taking ri to be the position vector of atom i, V3 is 
simply expressed in the following way: 

-Wlr2-r3l). (1) 
Calculations were carried out for 106 trimer structures, and 
at all surface points, the separation distance between every 
pair of helium atoms in the cluster was one of the 182 dimer 
separations for which V, had been obtained. Table I presents 
a subset of these 182 points that spans the range of separa- 
tions considered; the complete list is available from the au- 
thors on request. Table IIz3 gives the V, energies. 

Instead of expressing the timer potential in terms of po- 
sition coordinates, it is of course simpler to express it in 
terms of the atomic separations its, rz, and rt3. These are 
the lengths of the sides of a triangle, and so the potential 
must be symmetric with respect to permutation among any of 
the triangle sides. The 106 trimer surface points, the unique 
structures studied, correspond to 407 points on the total sur- 
face. Of these, 177 were obtained previously.g The new 
points are those for which all three distances were shorter 
than the calculated dimer equilibrium separation distance of 
3.02 ii.9 

THE HELIUM DIMER POTENTIAL 

The highly repulsive, or close-in, region of the helium 
dimer potential has been studied by Ceperley and Partridge 
utilizing the Green’s function quantum Monte Carlo (QMC) 
method,36 and so, comparison of. our B-CCD values with 
their results provides a close-in assessment of basis set and 
correlation error in the B-CCD values. Table III lists the 
QMC energies along with the B-CCD energies calculated at 
the same internuclear separations. The B-CCD energies in 
this region differ from the QMC energies by up to 3%; how- 
ever, the shape and form of the B-CCD potential is probably 
better than the accuracy in the absolute electronic energy. 
Figure 1 is a plot that compares the QMC energies, the 
B-CCD energies, the potential of Aziz et a1.37 which was 
extracted from experimental data, and the ab initio potential 
of Liu and McLean.” The correspondence in the potential 
shapes is seen to be very good. Though we did not need to 
find a functional fit of the He, curve {i.e., of VJ in order to 
isolate three-body effects in the trimer, it is of interest to use 
the 182 He, points for constructing a functional representa- 
tion. We shall consider that and then return to the trimer 
surface. 

We carried out least-squares fitting of the He, energy 
points to a number of different functional forms. The sim- 
plest form was A exp(-j?R), and the rms error is given in 
Table IV. Exponentials with a quadratic dependence on R 
[e-g., exp(-,0R+ aR2>] have been used for rare-gas 
potentials.38’3g However, in this case, there was only a small 

TABLE I. Helium dimer potential energy. 

E-E, (cm-*‘) 

0.661471561 -5.242 7877 12 2 002.3 
0.793 765 874 -5.464 9519 7 3 241.7 
0.926 060 186 -5.600 7500 4 3 436.8 
1.058 354 498 -5.682 5963 2 5 473.1 
1.094 464 459 -5.698 5129 2 1 979.8 
1.162 868 487 -5.723 0837 1 6 586.9 
1.231 272516 -5.7417806 1 2 483.4 
1.299 676 545 -5.755 9681 9369.5 
1.368 080 573 -5.766 7050 7013.0 
1.436 484 602 -5.774 8094 5234.2 
1.450 000 000 -5.776 1566 4938.5 
1.500 000 000 -5.780 5304 3978.5 
1.550 000 000 -5.784 0784 3199.8 
1.600 000 000 -5.786 9524 2569.0 
1.650 000 ODO -5.789 2773 2058.8 
1.700 000 000 -5.791 1557 1646.5 
1.750 000 000 -5.792 6712 1313.9 
1.800 000 000 -5.793 8924 1045.8 
1.850 000 000 -5.794 8754 830.11 
1.900 000 000 -5.795 6652 656.74 
1.950 000 000 -5.796 2991 517.62 
2.000 000 000 -5.796 8068 406.21 
2.050 000 000 -5.797 2123 317.18 
2.069 788 859 -5.797 3492 287.15 
2.100 000 000 -5.797 5356 246.24 
2.121 320 344 -5.797 6525 220.59 
2.150 000 000 -5.797 7925 189.85 
2.191 541 144 -5.797 9649 152.03 
2.210 000 000 -5.798 0312 137.45 
2.250 000 000 -5.798 1567 109.93 
2.262 741700 -5.798 1918 102.22 
2.300 000 000 -5.798 2830 82.203 
2.313 293 430 -5.798 3117 75.896 
2.333 452 378 -5.798 35 19 67.086 
2.400 000 000 -5.798 4591 43,549 
2.435 045 716 -5.798 5026 33.998 
2.474 873 734 -5.798 5433 25.053 
2.500 000 000 -5.798 5650 20.305 
2.530-949 061 -5.798 5880 15.274 
2.570 000 000 -5.798 6118 10.035 
2.600 000 000 -5.798 6269 6.726 
2.630 000 000 -5.798 6395 3.948 
2.660 000 000 -5.798 6501 1.628 
2.690 000 000 -5.798 6589 -0.298 
2.720 000 000 -5.798 6661 - 1.884 
2.750 000 000 -5.798 6720 -3.178 
2.800 000 000 -5.798 6794 -4.798 
2.850 000 000 -5.798 6843 -5.885 
2.900 000 000 -5.798 6874 -6.568 
3.000 000 000 -5.798 6899 -7.101 
3.020 000 000 -5.798 6899 -7.114 
3.080 000 000 -5.798 6896 -7.03 1 
3.100 000 000 -5.798 6893 -6.971 
3.200 000 000 -5.798 6872 -6.521 
3.300 000 000 -5.798 6846 -5.944 
3.400 000 000 -5.798 6819 -5.344 
3.600 000 000 -5.798 6769 -4.244 
3.804 230 000 -5.798 6727 -3.328 
4.000 000 000 -5.798 6695 -2.629 
4.500 000 000 -5.798 6639 - 1.407 
5.000 000 000 -5.798 6607 -0.707 
5.500 000 000 -5.798 6591 -0.338 
6.000 000 000 -5.798 6583 -0.170 
7.000 000 000 -5.798 6578 -0,059 
9.000 000 000 -5.798 6577 - 0.029 

12.000 000 000 -5.798 6575 -0.002 
18.000 000 000 - 5.798 6575 -0.001 
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TABLE II. Helium trimer three-body potential energy. STABLE II. (Co&hued.) 

R23 6, R,, (A) V, points R,,(A) .A.3 6) R13 CA) v, points 

1.490 1.49 2.107 178 208 -406.457 
1.490 1.49 2.753 161007 67.537 
1.500 1.50 1.826 284 287 -806.314 
1.600 1.60 1.948 036 573 -439.619 
1.670 1.67 11670 000 000 -601.251 
1.670 1.67 2.200 130 000 - 191.898 
1.670 1.67 2.777 108 505 - 19,356 
1.670 1.67 3.085 757 639 17.979 
1.700 1.70 2.069 788 859 -236.989 
1.700 1.70 3.141190411 13.944 
1.700 1.70 3.348 346 360 23.68 
1.790 1.79 1.790 000 000 -303.302 
1.800 1.80 2.191541 144 -126.713 
1.850 1.85 1.850 000 000 -214.643 
1.850 1.85 2.616 295 090- -37.386 
1.850 1.85 3.418 354 270 2.612 
1.850 1.85 3.700 000 000 4.099 
1.900 1.90 2.3 13 293 430 -67.370 
1.900 1.90 3.5 10 742 224 0.934 
1.900 1.90 3.742 269 461 1.607 
2.000 2.00 1.368 080 573 -279.385 
2.000 2.00 2.000 000 000 -89.538 
2.000 2.00 2.828 427 125 - 13.657 
2.000 2.00 3.325 878 449 -3.131 
2.000 2.00 3.695 518 130 -0.740 
2000 3.00 3.808 080 000 0.015 
2.000 3.50 4.867 170 000 -0.073 
2.090 2.09 2.090 000 000 -52.413 
2.100 2.10 1.436 484 602 - 165.188 
2.100 2.10 2.556 798 002 -18.467 
2.100 2.10 3.880 294 037 - 1.164 
2.100 2.10 4.136 192 563 -2.173 
2.210 2.21 2.210 000 000 -25.119 
2.210 2.21 3.125 410 000 -3.095 
2.210 2.21 3.675 095 686 -1.168 
2.210 2.21 4.083 547 534 - 1.076 
2.210 2.21 4.420 000 000 -2.884 
2.300 2.30 1.573 292 659 -56.130 
2.300 230 2.300 000 000 -14.151 
2.300 230 4.530 115 664 - 1.922 
2.400 2.40 4.727 077 214 -1.610 
2.435 2.00 2.000 000 000 -35.547 
2.500 2.50 1.710 100717 - 18.412 
2.500 2.50 4.924 038 765 - 1.335 
2.570 2.57 2.570 000 000 -2.004 
2.570 2.57 3.634 530 000 0.061 
2.570 2.57 5.140 000 000 -1.512 
2.600 2.60 3.676 950 000 0.118 
2.600 2.60 5.200 000 000 -1.431 
2.630 2.63 3.719 380 000 0.164 
2.630 2.63 5.260 000 000 - 1.354 
2.660 2.66 2.660 000 000 -0.828 
2.660 2.66 3.761 808 076 0.200 
2.660 2.66 5.320 000 000 - 1.280 
2.690 2.69 2.690 000 000 -0595 
2.690 2.69 3.804 230 000 0.224 
2.690 2.69 5.380 000 000 - 1.209 
2.700 2.70 4.676 537 180 -0.074 
2.720 2.72 2.720 000 000 -0.389 
2.720 2.72 3.846 660 000 0.244 
2.725 2.72 5.440 000 000 - 1.142 
2.750 2.75 3.889 090 000 0.263 
2.750 2.75 5.500 000 000 - 1.077 
2.750 3.50 6.250 000 000 -0.514 
2.750 4.50 7.250 000 000 -0.157 
2.900 2.90 5.022 947 342 -0.057 
3.000 2.75 3.200 210 000 0.254 

3.000 2.80 
3.000 2.80 
3.000 3.00 
3.000 3.00 
3.000 3.00’ 
3.000 3.00 
3.000 3.27 
3.000 3.50 
3.000 3.60 
3.000 3.60 
3.000 4.00 
3.000 4.00 
3.000 4.00 
3.ooci 4.50 
3.000 5.00 
3.000 5.00 
3.000 5.70 
3.000 5.70 
3.000 6.00 
3.000 9.00 
3.000 12.00 
3.250 3.75 
3.250 4.50 
3.300 3.30 
3.500 3.50 
3.500 3.50 
3.500 4.00 
3.500 4.25 
3.500 4.75 
3.700 3.70 
4.000 4.00 
4.000 4.50 
4.000 5.00 
4.500 4.50 
4.500 5.00 
4.750 6.00 
5.000 5.00 
6.001) 6.00 
6.000 12.00 

2900 190 000 0.187 
3.000 000 000 0.224 
4.000 000 ooo- 0.268 
4.596 270 000 0.170 
5.638 160 000 -0.277 
6.000 000 600 -0.628 
3.495 040 000 0.158 
6.500 000 000 -0.388 
3.996 550 000 0.195 
5.500 000 000 -0.046 
5.000 000 000 0.090 
6.000 000 000 ,-0.076 
7.000 000 000 -0.263 
4.500 260 000 0.143 
5.000 260 000 0.069 
8.000 000 000 -0.066 
5.100 240 000 0.019 
6.000 000 000 0.008 
9.000 000 000 -0.010 

12.000 000 000 0.016 
15.000 000 000 0.000 . 
7.000 000 000 -0.266 
7.750 000 000 -0.126 
2.257 332 946 0.138 
2.394 141003 0.259 
7.000 000 000 -0.267 
7.500 000 000 -0.193 
7.750 000 000 -0.156 
8.250 000 000 -0.083 8 
2.530 949 061 0.286 
8.000 000 000 -0.154 
8.500 000 000 -0.093 
9.000 000 000 -0.036 , 
9.000 000 000 -0.052 
9.500 000 000 -0.016 

10.750 000 000 -0.003 
10.000 000 000 -0.004 
12.000 000 000 -0.000 
18.000 000 000 0.000 ’ 

improvement in the quality of the fit as indicated by the rms 
error in Table IV. A sum of three inverse even powers (e.g., 
y-6;r-8,,-10 ) offered a better representation than a single 
exponential. Scaling that sum by an exponential offered fur- 
ther improvement, but the best concise functional fit from a 
distance of 1.3 A outward was that used by Ceperley and 

TABLE III. Quantum Monte Carlo energies (Ref. 36) and B-CCD energies 
of H% at close-in separations. 

E(QMC) E(BCCD) 
(cm-‘) (Crn~“) 

0.661471561 121 370.245 122 0023 11 
0.793 765 874 72 974.905 73 241.707 
0.926 060 186 42 686.665 43 436.754 
1.058 354 498 24 908.785 25 473.108 
1.190 648 810 14 571.277 14 783.554 
1.322 943 123 8 294.149 8 492.942 
1.500 005 830 3 860.653 3 978.441 
1.587 531747 2 653.513 2 714.087 

(cm ‘) 96 

632 0.52 
266 0.36 
750 1.75 
564 2.26 
212 1.45 
198 2.39 
117 3.03 
60 2.26 

J. Chem. Phys., Vol. 101, No. 9, 1 November 1994 
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60000 

0.6 0.8 1.0 1.2 1.4 

r 

2:7 3:2 317 

FIG. 1. Hes potential in cm-‘. The solid circles are the B-CCD calculations. The open squares in the close-in region are the QMC calculations of Ceperley 
and Partridge (Ref. 36). The open circles are based on experiment (Ref. 37), and the open triangles are the exhaustive or limiting ab inifio calculational results 
of Liu and McLean (Ref. 20). In both the middle and rightmost parts of the figure, plotting both the values of Aziz et al. (Ref. 37) and Liu and McLean would 
show these curves to be coincident on the scale of the figure. 

Partridge36 to fit QMC energies in the highly repulsive re- 
gion: 

V(r) = exp-@ 5 ukrk. 0) 
tz-1 

with this functional form, the rms error was 0.3 cm-‘. Of 
course, this functional form does not have the explicit l/r6 
term of dipole-dipole dispersion that should be the longest- 
range interaction between two helium atoms. It represents 
more of a practical than physical choice for the form of the 

potential. The fact that it serves to- represent the dimer po- 
tential quite well highlights the difficulty of using surface 
fitting to extract true multipolar dispersion coefficients. We 
can see this from the “6-8-10” fit of the dimer potential 
(Table IV) where the cg, cs , and cl0 coefficients that are 
optimum over the stated range of distances are considerably 
different than the explicitly calculated multipolar dispersion 
coefficients of Thakkar.” 

The well depth and equilibrium separation of our ab ini- 
tio potential are -7.428 cm -* and 3,033 A, respectively, In 

J. Chem. Phys., Vol. 101, No. 9, 1 November 1994 
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TABLE IV. Functional fits of the calculated He, potential energies. 

rms error (cm-‘) 
Parameter values 

Function 0.6<r(&<1.6 1.3-G-(+16 1.3<r(.&)<16 

V(r)=A e-p’ 401 19.3 

v(r)=c,+ $ + $ + 3 

218 18.0 

v(r)=,-- 
i 
co+ 9 + $ + 3) 

41.3 11.2 

pyr) = A e -wr+~A 221 8.97 

v(r)=e-F* 5 u&f 
0.013 0.29 

k=-, 

p=4.35 

A =268 8503 

c,=-5.9015747 
c,=-27 258.228 
cs=289 38453 
~~~‘-283 091.43 

co=2 199 509 
ch=44 666 817 
CT,=--133 793 9.55 
cl,,=105 138 760 

p=3.50 
n=0.285 
A=1 435 858 

u-,=84 139.61 
a”= I 410 276 
a*=-1 290504 
a2=406 603.1 
a3=-47 421.51 
u4= 196.6650 
p=2.85 

comparison, the corresponding potential parameters deduced 
from experimental results37 are -7.611 cm-’ and 2.963 A. 
The very extensive, limiting ab initio calculations of Liu and 
McLear~‘~ yielded -7.605 cm-’ for the well depth and 2.969 
A for the equilibrium separation. Our equilibrium distance, 
though 0.07 Atoo long, corresponds to an energetic error of 
only about 0.4 cm-’ as this is the energy we obtain at a 
distance of 2.963 A relative to our equilibrium value. 

THE HELIUM THREE-BODY POTENTIAL 

We have already reported on many-body effects in clus- 
ters of helium atoms at long range.’ We found that the many- 
body or nonpairwise contributions tend to be less than a few 
percent of the overall attractive interaction in regions near 

the minima. These contributions can be represented with a 
small number of terms that include an Axilrod-Teller? 
dipole-dipole-dipole (DDD) dispersion term, along with the 
next higher multipole dispersion term,42 dipole-dipole- 
quadrupole (DDQ), plus several terms from a power series 
expansion in the radial and angular coordinates. And it was 
found important to include as an independent term one part 
of the DDD term, namely ~IT~~P~~Y:~. 

The analysis of three-body dispersion by Axilrod and 
TelleP’ predicts a repulsive contribution for an equilateral 
triangular arrangement of three like atoms and an attractive 
contribution for a symmetric, linear arrangement. This quali- 
tative conclusion was supported by our earlier results on the 
attractive region of the potential. However, three-body non- 
additivity in the close-in, repulsive regions seems dominated 
by the exchange repulsion which has been shown43 to behave 
in an opposite fashion. 

The previously determined’ attractive representation, 
and then other functional forms, were applied to the ex- 
tended potential surface generated here. The previously used 
potential9 was not flexible enough to adequately describe 
both the attractive and repulsive regions; fitting yielded an 
rms deviation of 3.98 cm-‘. Let us consider the fitting of V3 
by terms in order of their importance in diminishing the rms 
error of the fit. 

The best one-term functional fit was to a simple func- 
tion, f, , that describes the radial dependence of the Axilrod 
and Teller function: 

f,=-ji 3. 
r12r23r13 

The rms error was 2 1.3 cm-‘. The most significant improve- 
ment in the fit was achieved by including the angular depen- 
dence of the Axilrod and Teller function via a function we 
designate as fi: 

f2= 
cos 812 cos 023 cos e,3 

3 
r12&-A 

(4) 

The angle subscript identifies the angle which is opposite a 
particular side of the triangle composed of the three atoms. 
The rms deviation with the two-term function c $r + czf; 
was 10.5 cm-‘. The next improvement in the description of 
the three-body energies was achieved by including the 
dipole-dipole-quadrupole (DDQ) term, which is the next 
higher multipole dispersiorr term: 

I 

f,=(l+pl, 13+p12 23) 
9 cos 012-25 ~0~(3012)+6 c0~(1923-013)[3+5 ~0~(21912)] 

3 4 4 6) 
r12r23r13 

The P operators interchange variable subscripts so that the cos 812 cos 023 cos !9,3 
symmetry of the potential is preserved. The rms error for the g5= 5 5 5 (7) 
three term fit was 4.20 cm-‘. The fourth and fifth most im- rIir23r13 

portant terms in the attractive region were But, these were not the next most important in improving the 
COS 012 COS 823 COS 013 

g4= 
fit of the entire surface. Instead, the next most important 

4 4 
r;2r23r13 

7 (6) function was a radial function, ji: 
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1 
f4=c1+p12 13+P12 23) 9 9 5 . 

ri2r13ri3 
(8) 

The rms deviation for the four term fit was 3.47 cm-‘. 
If instead of f4, the fourth term in the fit is the dipole- 

quadrupole-quadrupole (DQQ) dispersion,” the quality of 
the fit corresponds to an rms error of 3.79 cm-‘. Most of the 
improvement develops at long range, not close-in, whereas 
the function f4 is a somewhat better term in the representa- 

tion overall. If the DQQ and QQQ terms are included with 
the DDQ term (no f4), a fit with an rms error of 2.82 cm-’ is 
achieved. These terms together seem balanced at represent- 
ing the potential close-in and at long range, but we found a 
different functional form would work still better. 

An additional radial term and then the terms g4 and gs 
that were important at long range were included. The rms 
error was reduced to 0.52 cm-‘. So, the final function for V3 
is 

1 COS v,=c, i-c2 e12 COS e23 3 cos 013 3 3 3 

r12r23r13 

3 3 

r12r23r13 
+c3(i+p12 13%2 23) 

X9 cos f&-25 cos(3812)+6 cos(e23-813)[3+5 cos(2e,,j] 1 
3 4 4 y12r23r13 +c4(1+p12 lffP12 23) 7 r12r23r13 2 5 

1 +c,c1 COS fPl2 231 COS COS 13.fP12 COS COS 1 5 
r:2r23r13 

+c6 1112 823 813 012 823 COS 
fC7 

013 
r;‘2r23r13 4 4 S 

r:2r;3r13 

1 ‘+cdi+~lZ 13+h2 23) +C9(i+P12 1 2 2 3 

rl2r23r13 

13%2 

23+p23 13+h2 23p23 13sp12 23p12 13) 1 3 5 ’ r12r23r13 

where in units of cm-’ and A the coefficients are 
Cl=-194 219.60, C2=322 529.34, C,=683.883 83, 
C4==-256 800.13, Cs=-1445.9536, C6=-2 433 561.9, 
C7=6 698 227.6, Cs=24 919.062, C9= 125 677.98. The de 
viation for close-in points was only 0.68 cm-’ and for long- 
range points was only 0.15 cm-‘. If the additional flexibility 
of DQQ and QQQ terms is incorporated, the rms error is 
reduced only slightly more, to 0.34 cm-‘. Whereas the DDQ 
term seems essential throughout, the DQQ and QQQ terms’ 
importance at long range seems to be somewhat outweighed 
close-in by other terms. Of course, the practical consequence 
of this work is the analytic representation of the three-body 
potential in helium clusters rather than the true long-range 
multipolar dispersion coefficients. Again, potential surface 
fitting is not an ideal means for finding the dispersion coef- 
ficients, and so, it is not surprising that the C, and C3 values 
given above are quite different than the directly calculated 
DDD and DDQ coefficients of Thakkar4’ 

The B-CCD calculated equilibrium structure of He, is 
that of an equilateral triangle with an atom-atom separation 
distance of 3.02 A and a well depth of 21.1 cm-‘. At the 
equilibrium, the three-body effects are destabilizing, though 
only by 0.27 cm-‘. The total electron correlation contribu- 
tion to the stabilization energy at the equilibrium is 35.7 
cm -’ at the B-CCD level. This is greater than the well depth, 
of course, because the SCF interaction energy is repulsive at 
the 3.02 A equilateral triangle structure relative to three sepa- 
rated atoms. 

The nature of the correlation effects is interesting in 
other ways. In the course of obtaining B-CCD energies, we 
also obtained CCD energies (double substitution coupled 
cluster values with SCF reference orbitals rather than 

Brueckner orbitals). The difference between the two levels is 
an effect of single, triple, and quintuple substitutions. 
Throughout much of the surface, the differences between 
B-CCD and CCD energies are around 0.5 cm-‘; for instance, 
at the equilibrium the difference is 0.67 cm-‘. The extremes 
in the difference are that it is at its smallest size close-in, 
diminishing to about 0.26 cm-‘, and at its largest size, up to 
about 1 cm-’ , when two atoms are close and the third is well 
removed from both. The CCD vs B-CCD differences are 
very small fractions of the total electronic energies, and they 
are no more than a few percent of the correlation contribu- 
tion to the stability of the He, equilibrium structure. In view 
of that, it is unlikely that significant refinement in three-body 
potentials would come about from going beyond B-CCD. 
This is supported by information from the opposite direction: 
At the level of second order many-body perturbation theory, 
MBPT2, we find that the correlation contribution to the sta- 
bility of equilibrium He, is 32.2 cm-’ or 90% of the B-CCD 
correlation contribution (92% of CCD). Furthermore, the 
three-body effect on the He, equilibrium structure’s energy is 
a destabilization of 0.29 cm-‘, for which the corresponding 
B-CCD value is a very similar 0.27 cm-‘. On that basis, we 
believe that the functional tit of V, presented above should 
be quite accurate for He, simulations, especially when com- 
bined with the best possible pair potential. 
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