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Pairwise and many-body contributions to interaction potentials 
in He,, clusters 

Carol A. Parish and Clifford E. Dykstra 
Department of Chemistry, Indiana University-Purdue University at Indianapolis, II25 East 38th Street, 
Indianapolis, Indiana 46205 

(Received 20 July 1992; accepted 14 September 1992) 

High level ab initio calculations have been carried out to assess the pairwise additivity of 
potentials in the attractive or well regions of the potential surfaces of clusters of helium atoms. 
A large basis set was employed and calculations were done at the Brueckner orbital 
coupled cluster level. Differences between calculated potentials for several interacting atoms 
and the corresponding summed pair potentials reveal the three-body and certain 
higher order contributions to the interaction strengths. Attraction between rare gas atoms 
develops from dispersion, and so helium clusters provide the most workable systems 
for analyzing nonadditivity of dispersion. The results indicate that the many-body or 
nonpairwise contributions tend to be less than a few percent of the attractive interaction across 
regions around the minima of the potential energy surfaces of small clusters. 
Dipole-dipole-dipole dispersion and dipole-dipole-quadrupole dispersion are noticeable parts 
of the small three-body terms. 

I. INTRODUCTION 

Models of weak interaction potentials are a necessary 
ingredient for carrying out simulations of weakly bound 
clusters and ultimately liquids. The most general ap- 
proaches are for intra- and intermolecular bonding, though 
rare gas atoms among the interacting species have not been 
ignored (see, for instance, Refs. l-3). A number of ele- 
ments may be thought of as contributing to weak interac- 
tions, and they enter into an interaction potential in a va- 
riety of ways. Whatever their source, an important issue in 
developing models for large aggregations is the extent of 
pair-wise additivity. In other words, it is important to know 
if a sum of pair potentials provides a complete description. 
If it is not complete, then it is useful to know the relative 
sizes of nonpairwise contributions from different elements 
so as to make the most judicious choice of what to include 
in a model potential. In this report, we focus on pair-wise vs 
nonadditive elements in the vicinity of the potential well 
and on to long range. 

Nonadditivity in the potential well regions of a cluster 
of rare gas atoms should be mostly associated with disper- 
sion, an attractive contribution that arises through inter- 
molecular quantum effects. An assembly of rare gas atoms 
lacks the electrical attractions and polarizations that occur 
among molecules, which may be nonadditive, and so such 
an assembly provides an ideal system to examine dispersion 
contributions in as pure a form as possible. We have un- 
dertaken to use very high level ab initio calculations to 
determine the extent of pairwise additivity in a series of 
small helium clusters. Because there are few electrons in 
these clusters, ab initio calculations can be carried out at 
very reliable levels. The results provide a quantitative as- 
sessment of the effect of neglecting three-body and four- 
body contributions in weak interaction models for helium 

atoms. In addition, this serves as a guide for the nonaddi- 
tivity in weak clusters of other species. 

II. THEORETICAL APPROACH 

Ab initio calculations were carried out at the coupled 
clusters level with double substitutions (CCD)“” with 
Brueckner orbitals, a calculation level designated B- 
CCD.12,13 The B-CCD calculations (the same as the “BO” 
treatment of Handy et al. 14) used the original Brueckner 
orbital method of Chiles and Dykstra.12 This is a pair co- 
efficient operator method where the wave function is rep- 
resented directly in terms of the atomic orbital basis set, 
and in place of a conventional full-integrals transform, pair 
Coulomb and exchange operators are constructed. We 
have long employed a number of procedures to enhance 
the computational effectiveness of this approach. These in- 
clude the selection of optimum external or virtual orbitals, 
going only to a partially converged double substitution CC 
wave function when undertaking the first Brueckner itera- 
tion, and automatic extrapolations of the energy that ac- 
celerate the CCD convergence. I5 

In the B-CCD treatment, the molecular orbitals are 
optimized to annihilate the amplitudes of the single substi- 
tutions in the coupled cluster expansion. This is a strictly 
size-extensive treatment that is exactly equivalent to the 
full-C1 result for separated electron pairs (i.e., noninter- 
acting helium atoms). That is, the full correlation energy is 
recovered at the separated limit, and so the nature of any 
lingering correlation error will be an undervaluing of the 
well depth. Basis set error, which we tried to reduce to an 
unimportant level will tend to artificially deepen the well. 

There have been numerous He2 ab initio calculations 
(in particular, Refs. 16-30) that serve as a guide to select- 
ing a suitably flexible, nearly complete basis set. In order to 
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FIG. 1. Helium-helium potential energy curves obtained from the B- 
CCD calculations (filled circle), the HFD-B potential of Aziz ef al. (Ref. 
25) (triangle), the LM2 ab inifio potential (Ref. 27) (square), the ex- 
perimental potential ESMVII of Burgmans et al. [Ref. 32(a)] (open cir- 
cle), and the quantum Monte Carlo potential of Lowther and Coldwell 
(Ref. 31) (open square). 

be able to carry out calculations on as many as six inter- 
acting helium atoms, we accepted a limit of thirty func- 
tions per atom. The basis set we chose was a (10s 4p 2d) 
set of primitive Gaussian functions contracted to 
(8s 4p 2d). We may assess the lingering error in this level 
of treatment by comparison with other results on Hez. The 
potential of Aziz et aI.,” the recent ab initio potential of 
Liu and McLean,27 and the quantum Monte Carlo calcu- 
lations of Lowther and Coldwel13’ are the most critical 
information about the He, potential. Relative to these, our 
potential is 0.5 cm-’ too shallow in the well depth. Along 
with this small undervaluing of the attractiveness is an 
error in the separation distance of the minimum of the 
potential of at least 0.05 A. A comparison of the calculated 
He, potential with the ab initio potential of Liu and 
McLean2’ the quantum Monte Carlo potential of Lowther 
and Coldwell, the scattering potentials of Lee and co- 

workers,32 and the potential of Aziz et al.25 is shown in 
Fig. 1. The calculated curve is faithful to these curves, 
though, again, with the well being 0.4-0.5 cm-’ too shal- 
low. 

The selection of the number of polarization functions 
and their exponents was based, in part, on several basis set 
tests on the helium dimer potential energy curve. Table I 
presents basis set information and the calculated values of 
the equilibrium separation, electronic energy at equilib- 
rium, and the well depth. For most basis sets, we used the 
8s basis of Huzinaga, 33 either contracted to 6s functions or 
uncontracted. Basis A consists of this s set supplemented 
with two p functions and one d function set. Expanding 
this basis to three p functions (i.e., basis B) yields a good 
improvement in the quality of the potential energy curve. 
The further improvement in the p function and d function 
sets in basis C yields another signficiant improvement. The 
well depth is within 0.54 cm-’ of that of Aziz et aL25 A 
test of the effect of contracting vs not contracting the s set 
was carried out via basis C’, and the results show only a 
small effect. However, enlarging the primitive s function 
set to the 10s basis of Huzinaga yielded a slightly more 
noticeable change as seen for the results with basis D. A 
final test basis E was constructed from basis D by replacing 
the primitive s function with the largest exponent 
(3293.694) with three uncontracted functions with expo- 
nents of 8600, 3300, and 1270. This had little effect on the 
potential curve. Basis D was used for all calculations on 
larger helium clusters, and it is clear that there still remain 
basis set deficiencies, of course, in our results. Our treat- 
ment respresents the compromise needed to explore clus- 
ters with up to six helium atoms over the use of an ex- 
tremely large basis such as the (9s 7p 4d 3 f 2g lh) Slater 
basis of Liu and McLean.27 

Calculations were carried out for the helium dimer at 
72 separation distances. The interaction energies (i.e., the 
total electronic energy less twice the energy of an isolated 
helium atom) were tabulated for these points. This set of 
values is the “pair potential” of this study. It was con- 
structed by explicit ab initio calculation at many points 
rather than by curve fitting to fewer points in order to 
reduce numerical error in extracting three-body effects. In 
all trimer and larger cluster calculations, the separation 

TABLE I. Helium dimer potential curve parameters. 

Basis set/number 
of functionsa s set 

p-function d-function 
exponents exponents 

gcco 
-2 

(a.u.) 
0, 

(cm-‘) 

A 18 8s/6s 1.2, 0.3 0.8 - 5.795 935 4 3.1318 -4.386 
B 21 8s/6s 1.3, 0.51, 0.2 0.8 - 5.797 130 8 3.0753 - 5.761 
C28 8s/6s 1.4, 0.58, 0.24, 0.1 1.0, 0.2 - 5.798 543 0 3.0212 -7.070 
C’ 30 8s/8s 1.4, 0.58, 0.24, 0.1 1.0, 0.2 -5.798 597 6 3.0224 -7.040 
D 30 lOs/Ss 1.4, 0.58, 0.24, 0.1 1.0, 0.2 -5.798 690 0 3.0217 -7.112 
E 33 12s/lls 1.4, 0.58, 0.24, 0.1 1.0, 0.2 -5.798 694 8 3.0217 -7.112 
HFD (Ref. 25 ) 2.963 -7.611 
LM-2 (Ref. 27) 2.969 -7.605 
QMC (Ref. 31) 2.963 -7.787 

“The number of functions is per helium atom. 
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6.0 distance between every pair of helium atoms in the cluster 
was one of these 72 separations. 

Calculations on the helium trimer and on clusters with 
up to six helium atoms were carried out at the same level 
of calculation as for the dimer. A number of linear and 
triangular structures were considered for the trimer. The 
three-body interaction energy, Vs, was calculated at each 
point as the difference between the total interaction energy, 
V, and the sum of the pairwise (dimer) potentials. R23 

~dwhr3) = Vh,Gr3) - v2( I rl -cl ) 

-~2(Irl--r3I)-~2(1r2-r31). (1) 

Likewise, the four-body contributions were isolated in 
He,,s,6 calculations by subtracting two- and three-body po- 
tentials. 

III. RESULTS AND DISCUSSION 

A slice of the potential energy surface of He3 carrel 
sponding to a linear arrangement of the atoms is shown in 
Fig. 2(a). Subtracting the pair contributions to the energy 
based upon the ab initio data points for He, gives the non- 
pairwise component of the surface in Fig. 2 (b) . In the very 
close-in regions, where the helium atoms are much closer 
than their van der Waals radii, the nonadditivity remains 
less than 2 cm-‘. From long range and through the poten- 
tial minimum, the nonadditivity is no more than 0.7 cm-‘. 
This is about 5% of the well depth. 

2.8 
2.8 6.0 

(4 R 12 

Another slice of the He3 potential energy surface was 
obtained for triangular arrangements. Two atoms were 
fixed at a separation distance of 3.0 A. The lengths of the 
other two sides of the triangle were varied through a range 
of values from 2.8-6.0 A. This slice of interaction potential 
surface, shown in Fig. 3 (a), includes a point very near the 
He, global minimum. The actual minimum energy struc- 
ture is that of an equilateral triangle with sides 3.0225 A 
long and a well depth of -22.1 cm-‘. This atom-atom 
distance is 0.0008 %, less than the equilibrium separation 
calculated for He*. There is likely some cancellation of 
error sources between He, and He3, and so this relative 
value (the 0.0008 A atom-atom contraction) is probably 
more accurate than the absolute value for the He3 equilib- 
rium separation. 

R23 

2.8 6.0 
W R 12 

Subtracting the pairwise contributions from the inter- 
action energies at each of the grid points used to generate 
Fig. 3 (a) yields the contours shown in Fig. 3 (b). These are 
the contours of the nonpairwise part of the interaction en- 
ergy. In the vicinity of the equilibrium, this amounts to no 
more than 0.4 cm-’ or 2% of the well depth. We have also 
obtained other slices for triangular arrangements and we 
find essentially the same degree of nonadditivity and sim- 
ilar features in the contours. 

FIG. 2. (a) Potential energy surface contours (in cm-‘) for linear He,. 
The horizontal axis gives the separation distance in 8, between the first 
and second atoms, and the vertical axis gives the distance between the 
second and third atoms. ,(b) Contours (in cm-‘) of V,, which is the 
difference between the potential energy surface for linear He3 and the sum 
of the dimer potentials given as Eq. ( 1). 

We expect the V3 surfaces in Figs. 2 and 3 to be mostly 
a consequence of three-body dispersion interaction; how- 
ever, the surfaces are total three-body contributions and 
have not been partitioned into dispersion vs other ele- 
ments. This is in line with our aim of being able to model, 
if necessary, the collective three-body effects other than 
those that arise from charge polarization. The early anal- 

ysis of three-body dispersion by Axilrod and Teller34 indi- 
cated a repulsive contribution for an equilateral triangular 
arrangement of three like atoms and an attractive contri- 
bution for a symmetric, linear arrangement. This qualita- 
tive conclusion is found to hold in our calculations. On a 
more quantitative basis, Axilrod and Teller’s analysis indi- 
cated that the ratio of the three-body interaction for linear 
to equilateral triangular structure with the same He-He 
distances (realizing that one of the He-He distances in the 
linear arrangement is twice the other two) would be -2/ 
11 (?r -0.18). At an atom-atom separation distance of 
3.0 A, our results give a value of about -2.4, and even at 
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We have used the data set for the He, potential surface 
_ to find a representation of the three-body terms. There 

were 50 unique structures or surface points and the three- 
body interaction energies were least-squares fitted to sev- 
eral different functional forms. In each case, permutation 
symmetry [e.g., v(r12,r239r13) = v(~23J13J*2)] was imposed 
by expanding the data set to include all structures related 
by permutation to the unique structures and/or by impos- 
ing the symmetry in the fitting of the potential. 

The first functional fit of the three-body potential data 
was to a simple function, f i, that gives the radial depen- 
dence in the Axilrod and Teller34 analysis. 

The rms error in this single term fit was 0.223 cm-‘. The 
next fit was to the dipole-dipole-dipole dispersion term of 
Axilrod and Teller, f2. 

f2= I+! cos 012 cos 023 cos 013 . 
3 3 

r.12d3313 ~ 
(3) 

2.75 6.0 

(b) R23 

FIG. 3. Three-body interaction energies for nonlinear He,. (a) Potential 
energy surface contours (in cm-‘) with the separation distance in 8, 
between the first and second atoms on the horizontal axis, and the dis- 
tance between the second and third atoms on the vertical axis. The third 
side of the triangle, the separation between the first and third atoms, was 
fixed at 3.0 .&. (b) Contours (in cm-‘) of V, for the nonlinear He, 
corresponding to (a). 

fl=&*- 
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a distance of 4.5 A, the ratio is still -0.7. In this view, the 
Axilrod and Teller analysis does not entirely describe the 
nonadditive elements in He3. 

(The angle designation identifies each angle as being op- 
posite a particular side of the triangle of three atoms.) The 
rms deviation in this single term fit was 0.202 cm-‘, which 
is slightly better than the fit to f r. However, a better im- 
provement in the fit was achieved by a two-term fit to 
functions f 1 and f2, which, of course, is the same as allow- 
ing the two terms in f2 to be independent. The rms devi- 
ation was found to be 0.099 cm-’ and the coefficients off 1 
and the cosine part of f2 are -5225.69 and 79 034.2 
cm-’ A’, respectively. The difference in these two coeffi- 
cients indicates that the data have a different sensitivity to 
the separation distances than that of only dipole-dipole- 
dipole dispersion. 

Since the paper by Axilrod and Teller,34 there have 
been a number of ab initio calculations on three helium 
atoms,35111 including several addressing the important is- 
sue of nonadditivity in the polarizability.42a Also, there 
have been fundamental efforts at determining nonadditivity 
in the dispersion contributions to interaction poten- 
tials.40,45-50 The Axilrod and Teller analysis may be termed 
a dipole-dipole-dipole (DDD) analysis of the interaction 

The size of the dipole-dipole-dipole dispersion inter- 
action may be expressed as an integral over frequency of 
the product of the frequency-dependent dipole polarizabil- 
ities of the three interacting atoms.47-4g As a point of com- 
parison for future investigations, we note that a, the fre- 
quency independent dipole polarizability (i.e., the w=O 
value), for helium from our ab initio calculations is 1.395 
a.u. The correlation treatment is full configuration interac- 
tion, as this is the separated helium atom limit of the 

of the instantaneous atom dipoles, and Spa&man has 
achieved a direct ab initio determination of these terms for 
a number ,of molecules.” Meath and Koulis46 have ex- 
plained that higher order multipole dispersion contribu- 
tions (e.g., dipole-dipole-quadrupole or DDQ) should not 
be overlooked, and that they have a different dependence 
on the separation distances. The DDD interaction goes as 
F9 (or more specifically, as rG3rfi3rjj3), whereas the 
higher order multipole interactions enter as r-g-2n (n 
=1 2 3 , 9 ,*** ).46,48 At the same time, as Meath and Aziz con- 
cluded,45 there may be cancellations between higher mul- 
tip& many-body terms and other many-body terms. Since 
our-calculations are concerned only with total interaction 
ener$jies, the F&ults only indirectly address the possibility 
of different sources. 

(2) 
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Brueckner orbital CCD approach, and so any error in a 
must be entirely attributed to basis set deficiency. Tests of 

near the complete limit with respect to the dipole polariz- 

the effect on a of enlarging the p and d sets and varying 
ability, and that provides further assurance that the basis is 

exponent values, yielded changes in the dipole polarizabil- 
suited to analyzing the multibody dispersion effects. 

ity of less than 0.001 a.u. This indicates that the basis is 
The dipole-dipole-quadrupole dispersion term is48 

,-. A 

f3=(1+~12,13+~12,23) 
9 COS &--25 COS(%&) +6 cos(&-613) [3+5 COS(2012)] 

6Zri3’i3 
9 (4) 

where the i operators interchange variable subscripts so 
that the symmetry of the potential is preserved. This is 
sometimes assumed to be the next most important disper- 
sion term. A least-squares fit of our data to the functions 
f ,, f2, and f3 improves the rms deviation to a value of 
0.062 cm-‘. However, a somewhat better fit was obtained 
from the set of functions fl, f2, and f4, where the last of 
these is 

f4= 
cos ~3,~ cos e,, cos e13 

ri2r;3r;3 
. _~-~ (5) 

The rms deviation of this fit was 0.053 cm-‘. The radial 
dependence in f4 was determined by testing other powers 
of the separation distances; rT2rf3ri3 gave the smallest rms 
deviation of all. Tests were also carried out with higher 
powers of the cosine functions, but none proved important 
in the fit. f4 does not correspond to a higher multipole 
dispersion term, and we attribute its importance to the 
need for a different radial dependence for the triple cosine 
product of f2 

The four term fit of the data to f i, f2, f3, and f4 gave 
an rms deviation of 0.044 cm-‘, and this was the best 
four-term fit we found. This fit could be improved to an 
rms deviation of about 0.03 cm-’ by including an addi- 
tional term that could be either a pure radial term or the 
triple cosine product of f2 with a different radial depen- 
dence in the denominator. The best of these choices was 
the following function. 

f5= 
cos e,2 cos e,, cos e13 

426363 
(6) 

A fit of the data to f ,, f2, f3, f4, and f 5 gave an rms 
deviation of 0.027 cm-’ and the fitting coefficients are in 
Table II. Further tests gave rather small improvements. 

TABLE II. Coefficients of function terms in least-squares fit” of three- 
body energies of He,. 

Function 

;; 
f3 

E: 

Coefficient (cm-’ An) 

3.099 93 x 104 
3.311 76x IO5 

-3.894 35x lo3 
- 1.581 77x 10’ 

2.707 80x 10’ 

The optimum fitting function differs from the multi- 
pole dispersion elements in a way that can be regarded as 
a few additional terms in a series expansion over radial 
coordinates. That is, it has the form 

2 

C~+COS e12 cos e13 cos e23 C. 
4 

~ 
n=o 424343 I 

+c3f3 * (7) 

The difference between the simple Axilrod and Teller for- 
mula and Eq. (7) is the dipole-dipole-quadrupole disper- 
sion term (i.e., f3) and the more complicated radial de- 
pendence. The exponents of the separation distances that 
we have used in the additional terms in Eq. (7)) II = 1 and 
n=2, are not definite forms because the numerical preci- 
sion of the data (about 0.002 cm- ’ ) and the geometrical 
range covered by the data preclude such a determination. 

The practical consequence of this work is that the first 
realistic representation of three-body effects in helium clus- 
ters is one in which the two terms of the Axilrod and Teller 
formula34 are allowed to be independent. With that still- 
simple functional form, the error in V3 should be less than 
1% of the He3 well depth. If greater accuracy is required, 
then a power series expansion of these two terms in r12, rz3, 
and r13 may be used plus the next higher multipole disper- 
sion term. For clusters with heavier rare gas atoms, or 
other heavier atoms, it is possible that higher order multi- 
pole dispersion terms will be of greater relative importance 
partly as a consequence of the higher multipole polarizabil- 
ities being larger in heavier elements. For instance, in a 
study of the vibrational states of Ar3, Horn et al. 50~ con- 
cluded that the dipole-dipole-quadrupole term was the 
most important higher-multipole three-body dispersion 
term and that its effects on vibrational transition frequen- 
cies were smaller by only a factor of 2 than the effects of 
the Axilrod-Teller dipole-dipole-dipole dispersion term. 

The final aspect of this study was to examine larger 
helium clusters. The nonadditivity of the interaction en- 
ergy was evaluated for a number of geometries of He,. The 
results of these calculations are given in Table III. Again, 
they show that the nonadditivity of the interaction poten- 
tial amounts to tenths of wave numbers or just a few per- 
cent of the net attractiveness. 

Additional calculations were performed for linear He, 
and He6 clusters. The separation distance between adjacent 
atoms was 3.0 A. The energies are decomposed by first 

J. Chem. Phys., Vol. 98, No. 1, 1 January 1993 
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TABLE III. Calculated energies of He,. ACKNOWLEDGMENTS 

Geometry of He, ’ E(B-CCD) A.@ Interaction energy 
r (A) e a.u. cm-’ less pair terms 

2.8 180 - 11.597 394 - 17.328 -2.313 
120 -11.597 391 - 16.724 -1.103 
90 -11.597 399 -18.343 -0.771 
60 - 11.597 412 -21.271 -0.909 

3.0 180 - 11.597 420 -23.131 - 1.459 
120 - 11.597 419 -22.771 -0.724 
90 - 11.597 424 -23.942 -0.440 
60 - 11.597 449 -29.465 -0.361 

3.2 180 -11.597409 -20.705 -0.904 
120 - 11.597 409 -20.524 -0.501 
90 -11.597412 -21.365 -0.282 
60 - 11.597 437 -26.745 -0.236 

4.0 180 - 11.597 353 - 8.292 -0.320 
120 - 11.597 352 - 8.208 -0.212 
90 -11.597 353 -8.354 -0.126 
60 - 11.597 364 - 10.723 -0.104 

aThe geometries of the clusters were with three atoms (1, 2, and 3) 
collinear with r,2=r23=r. The fourth was at an angle 8 with respect to 
the line of the first three and at a distance r from atom 3. 

bAE is the interaction energy, which is E(B-CCD) leas four times the 
helium atom energy of -2.899 328 8 a.u. 
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