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ABSTRACT 

A correlation network is a graph-based representation of 
relationships among genes or gene products, such as 
proteins. The advent of high-throughput bioinformatics 
has resulted in the generation of volumes of data that 
require sophisticated in silico models, such as the 
correlation network, for in-depth analysis. Each element 
in our network represents expression levels of multiple 
samples of one gene and an edge connecting two nodes 
reflects the correlation level between the two 
corresponding genes in the network according to the 
Pearson correlation coefficient. Biological networks 
made in this manner are generally found to adhere to a 
scale-free structural nature, that is, it is modular and 
adheres to a power-law degree distribution. Filtering 
these structures to remove noise and coincidental edges in 
the network is a necessity for network theorists because 
unfortunately, when examining entire genomes at once, 
network size and complexity can act as a bottleneck for 
network manageability. 

Our previous work demonstrated that chordal graph 
based sampling of network results in viable models. In 
this paper, we extend our research to investigate how 
different orderings affect the results of our sampling, and 
maintain the viability of resulting network structures. 
Our results show that chordal graph based sampling not 
only conserves clusters that are present within the 
original networks, but by reducing noise can also  help 
uncover additional functional clusters that were 
previously not obtainable from the original network.  

KEYWORDS: bioinformatics, biological properties, chordal 
graphs, correlation networks, graph theory, noise reduction, 
parallel algorithms.  

1. INTRODUCTION

The recent explosion of data in the biomedical research 
has provided us the opportunity to discover new 
mechanisms behind aging and disease. A popular method 
for analyzing this data is based on modeling information 
as networks. One particular set of networks, the 
correlation network, represents a set of genes and gene 
products whose expression is measured at certain time 
environments, such as diseased and normal states.  

The focus of current analyses in correlation networks is 
based on discovering certain structural properties. For 
example, high-degree nodes generally represent genes 
that are key to network robustness and thus are essential 
for organism survival. Clusters of genes in a protein 
interaction network have been known correspond to key 
components of protein complexes. Therefore, 
combinatorial algorithms are extensively used to discover 
how structural properties of the network affect the well-
being of the organism in vivo.   

Correlation networks are generated from probes spanning 
the coding sequence of an entire genome and are therefore 
very large and complex. For instance, a complete network 
made from 40k inputs will produce a model with over 800 
million edges. Analyzing these networks is a 
computationally expensive task. In order to efficiently 
explore this deluge of data, it is imperative to sample the 
network and obtain a reduced data intensive 
representation while maintaining key network structures. 

Most sampling methods focus only on retaining important 
combinatorial structures of the network, such as the high-
degree nodes or hubs, the clustering coefficients, or the 
number of cliques. However, not all edges in the network 
accurately represent genuine gene correlation. For 
example, two nodes may have a high correlation not 
because they are co-expressed, but because they have a 



common neighbor. Both nodes may be co-expressed with 
that common neighbor but under different environments 
or controls, thus an edge is falsely drawn between them. 
In order to avoid this and obtain accurate analysis, we 
require a sampling method that not only retains important 
functional relationships that form key structures in the 
network in form of clusters, but can improve the quality 
of clusters as compared to the original network by 
reducing the noise in the network. 

In our earlier work [14], we demonstrated that chordal 
graph based sampling conserves the important clusters in 
correlation networks. We also observed that in some 
cases, functionalities that were not found in the original 
network were identified in the sampled graph. This 
phenomenon motivated us to investigate and compare the 
effectiveness of different ordering strategies of chordal 
subgraphs for removing noise. In this paper, we apply an 
extensive search of the Gene Ontology database on larger 
networks (over 40,000 vertices and 200,000 edges) and 
compare chordal graph sampling based on Breadth First 
Search (BFS) and Reverse Cuthill Mckee (RCM) [2] 
ordering. Our experiments show that the sampled graphs, 
in particular those with RCM ordering, preserves 
important functionalities and removes some large clusters 
which occur in the original network but do not have any 
cohesive location in the ontology tree. These clusters, 
though combinatorially valid, do not map to any specific 
functionality. Thus our sampling technique can provide 
greater insight to data interpretation beyond combinatorial 
clustering techniques. 

This paper is arranged as follows. In the background 
section we provide an introduction on how correlation 
networks are generated. We also briefly describe some 
important properties of chordal graphs and why they are 
suitable for sampling. In Section 3, we present our main 
contribution, a noise reducing sampling scheme for large 
complex networks. In Section 4, we describe our 
experiment design and provide results on networks based 
on mouse hypothalamus. We conclude with a discussion 
of our future research plans. 

2. BACKGROUND
A correlation network is a graph model, where nodes 
represent genes and a set of sample expression levels for 
that gene, and an edge represents the level of correlation 
between two genes. Different measurements of 
correlation have been used to build these networks, such 
as the partial correlation coefficient [3], the Spearman 
correlation coefficient [4], or more commonly, the 
Pearson correlation coefficient [ref]. The network built 
from a dataset where all nodes (genes) are connected to 
each other is called the complete network, K, where n = 

the number of nodes/genes in the network. In Kn network, 
the number of edges is equal to n*(n-1)/2; this implies 
that in the case of datasets with a large number of genes, 
analysis of the Kn network is computationally and 
algorithmically taxing; thus, thresholding is a common 
method used for network reduction.  

There are many methods for thresholding the correlation 
network. The most straightforward involves removing 
edges with a low correlation. In a network created using 
the Pearson correlation coefficient, this would mean 
removing edges at and around 0.00. In the larger of these 
networks, this threshold will need to become more and 
more stringent as the number of edges gets larger in order 
to maintain a size of network that can be quickly and 
properly analyzed. We use a threshold of ±0.70 to ±1.00 
based on the fact that the coefficient of determination for 
these correlations will be at least 0.49. This determination 
threshold is chosen because of the indication that 
correlations remaining within the network will represent 
genes whose expression levels can be described as 
approximately 50% dependent on each other's expression. 
Carter et al. 2004 [5] used this method of “hard” 
thresholding by correlation level and used a p-value ≤ 
0.0001 threshold to ensure that only significant 
correlations had been retained.  

When one examines the log/log representation of the node 
degree distribution in a filtered correlation network, it 
follows a linear pattern associated with the power-law 
distribution that indicates a scale-free network structure 
[6]. Adherence to this distribution indicates that there are 
many nodes in the network that are poorly connected and 
a few nodes that are very well connected; these nodes are 
known as "hubs". Hubs have been found in multiple 
biological networks to correspond to essential genes [7] as 
well as being a characteristic structure of this particular 
type of network. Other properties have been found to be 
important within the scale-free network structure, such as 
a low clustering coefficient [6] indicating that the network 
has the tendency to form modules. These structures can be 
found by applying graph theoretic algorithms on the 
network and more importantly, can be found without the 
help of extra data such as the inclusion of biological 
attributes within the network. Thus, the method that finds 
structures within the network and later sorts noise from 
causative structures with true cellular function lends itself 
toward a higher impact result. However, this is only 
plausible for smaller networks. The issue remains that 
networks built from microarray data are too large for 
current structure finding algorithms to find clusters and 
modules in reasonable time (even with parallel computing 
resources at one's disposal), creating the need for more 
powerful analysis tools, and/or the ability to filter the 
network further.  



Recently, several research papers [8,9] have explored the 
use of machine learning techniques to reduce noise in 
biological data. This work focuses on using supervised 
learning techniques to create a decision model based on 
prior information. Graph sampling methods [10,11,12], 
however, are generally used to obtain representative 
samples of the original network, rather than to remove 
noise. Our sampling technique focuses on identifying 
densely connected portions of the network, by extracting 
the maximal chordal subgraphs. Chordal graphs are 
graphs where the length of a cycle is not more than three 
[2]. Chordal subgraphs therefore include the highly 
connected portions of the network, such as cliques. 
Finding the maximum chordal subgraph is a NP-hard 
problem. In our implementation, we use a polynomial 
heuristic to find maximal chordal subgraphs from [13]. 

3. CHORDAL GRAPH BASED SAMPLING

Advances in high-throughput assays within the 
bioinformatics domain have resulted in high yield of 
massive datasets. Experimental technologies can measure 
gene expression of multiple gene products and isoforms 
across an entire genome. Analyses of these datasets are 
typically based on statistical analysis and comparison of 
each gene as an individual element with techniques such 
as Gene Set Enrichment Analysis (GSEA). Correlation 
network models allow for the modeling of relationships 
rather than individual elements, resulting in the desired 
ability to identify and isolate sets of genes responsible for 
observed functions. The size and complexity of these 
networks, however, remains a problem because current 
network analyses typically cannot handle large networks.  

In our earlier work [14], we introduced a sampling 
technique based on extracting nearly chordal (quasi-
chordal) subgraphs of the network in parallel. We 
demonstrated that the maximal chordal subgraphs contain 
almost all the high density subgraphs in the original 
graph. Since chordal graphs do not include large 
chordless cycles, maximal chordal subgraphs of a given 
graph are likely to conserve dense neighborhood 
relationships and filter out relationships in sparse areas of 
the graph. Hence, chordal subgraphs of a given network 
are likely to include highly connected regions of the 
network such as cliques and therefore in most cases can 
preserve the important structural properties. This can 
potentially reduce the impact of having false edges added 
to the network due to noise and highlight the presence of 
important clusters that could not be detected in the 
original network.  

We therefore anticipate that a proper sampling technique 
can both limit the size as well as reduce the noise of the 

network. As a result, we propose a new data analysis 
technique by obtaining a carefully selected maximal 
subgraph of the original graph that represents the 
correlation network. We propose a new approach for 
sampling networks by removing noise contributes to the 
field of network analysis in two key ways: first, by 
creating speedup by parallel computation and filtering, 
and second, by preservation and improvement of 
biological functions of network structures. This method of 
sampling graphs for noise reduction conserves the 
properties from the original network while removing 
noise that is notorious in the typical correlation network. 
This leads to our key hypothesis below: 

Hypothesis H0: Given a graph G representing a 
correlation network obtained from bioinformatics 
expression data, a maximal chordal subgraph G1 of G will 
maintain most of the highly dense subgraphs of G while 
excluding edges representing noise-related relationships 
in the network. In particular, G1 will have the following 
properties:  

H0a - Key functional properties found in the clusters of 
unfiltered networks G are maintained in the sampled 
networks G1; and  
H0b - New clusters with biological function are 
uncovered. The identification of this novel function is 
revealed because functional attributes previously lost in 
noise can now be identified. 

Our experimental results in the following section prove 
that both these hypothesis are true, and are particularly 
effective in the case sampling using RCM ordering. The 
basic algorithm [13] for identifying the maximal chordal 
subgraph is based on growing the graph from a starting 
vertex and adding edges so long as they maintain the 
chordal characteristics. Therefore ordering of the vertices, 
as well as the number of partitions in the parallel 
algorithm, play a significant role in determining the size 
and quality of the maximal quasi-chordal graph. In this 
paper we present a comparison between quasi-chordal 
graphs with vertices ordered using breadth first search 
(BFS) and reverse Cuthill Mckee (RCM) [2]. 

BFS ordering is based on a level by level traversal of the 
graph, where the level of a vertex is its shortest distance 
from the starting vertex. The gene correlations networks 
are often formed of disconnected components, and 
accessing the vertices using BFS assures that the vertices 
in the same connected graph component will be processed 
together.RCM ordering, in addition to accessing 
connected components, ensures that closely connected 
groups of vertices are placed together. That is the 
temporal access pattern of the vertices is based not only 
on whether they are in the same component but is also 



proportional to how closely they are connected to each 
other. RCM ordering is implemented by reversing the 
vertex order obtained from a BFS search, with the 
constraint that the starting vertex is a peripheral vertex 
[2].  We believe that RCM ordering will be particularly 
suitable for obtaining maximal chordal subgraphs 
because (i) ordering closely connected vertex groups 
together, therefore will result in a greater probability that 
more modular portions of the networks will be included 
within the quasi-chordal subgraph and (ii) in case of 
parallel implementation of our sampling method, RCM 
ordering reduces the number of edges across partitions. 
This helps in lowering the communication and also in 
improving the result of the quasi-chordal graph detection 
by reducing the number of larger cycles (length>3). 

4. EMPIRICAL RESULTS

4.1 Test Suites 

Datasets were downloaded in January 2011 from NCBI's 
Gene Expression Omnibus, a publicly-available 
repository of high-throughput gene expression data. 
Datasets used were derived from series GSE8150, which 
was originally devised to identify the impact of anti-
inflammatory elements on the young and mouse whole 
brain. The subsets of these series used included 5 samples 
of young mouse whole brain, and 5 samples of old mouse 
whole brain. Two subsets, which were mice treated with 
anti-inflammatories, were not used. Networks were 
created for the young dataset and the old dataset using the 
methods described previously, with a correlation of 0.96 
to 1.00, and p-value ≤ 0.005. 

4.2  Experimental Design 

Our objective was to obtain strongly connected portions 
on the network through identifying the maximal chordal 
subgraphs. Given the large size of the network, we 
implemented a parallel algorithm as follows: We divided 
the network across P processors. Within each partition, 
we obtained the local maximal chordal subgraph formed 
only of the edges whose endpoints lie completely within 
the processor. The edges that lie across processors were 
included only if two border edges with a common vertex, 
combined with a previously marked chordal edge to form 
a triangle. This implementation generated quasi-chordal 
subgraphs, since we did not check whether the inclusion 
of border edges increase the length of any cycle by more 
than three. A detailed description of the method can be 
found in [14].   

The scalability of our algorithm was limited by the size of 
the networks. The networks exhibited good speedup from 
2-8 processors, but as we moved to 16 and 32 processors,
the speedup deteriorated due to increase in edges that fell
across processors, which in turn lead to increase in
communication. As expected, implementations RCM
ordering executed faster that those using BFS, which
indicates that a more appropriate graph partitioning
strategy would help improve the scalability.  However,
the focus of this paper is more on improving sampling
than on improving the performance. Therefore due to the
space constraints, we will address the aspects of
scalability in a future work.

We had observed in our earlier work, that chordal 
subgraphs conserve the common functionalities of the 
original network. Our goal in this paper was to observe 
how many new functionalities, beyond those found in the 
original network, can be discovered through sampling. 
For each network we obtained 12 different samples based 
on two different orderings (BFS and RCM) and 6 
different partitions (on 1, 2, 4, 8, 16 and 32 processors).  

We then clustered the data using AllegroMCODE which 
uses a node weighting algorithm to identify tightly 
connected groups of genes within the network and ranks 
them according to their novel clustering score. We ran the 
AllegroMCODE algorithm on each network under default 
settings and took the top 5 clusters from each network. 
After performing Gene Ontology Enrichment, we present 
the results from each cluster in Figures 1-4.  

4.3 Analysis of Results 

Here we provide the results of our analysis using clusters 
from the original networks and the sampled networks 
using BFS and RCM ordering. We highlight that original 
cluster key functions were in some cases maintained, or 
new cluster function was uncovered with noise removal 
using our graph sampling technique. 

Each column in the Table denotes clusters and 
corresponding enrichment score found in the original 
network and through sampled networks on 1, 2, 4, 8, 16 
and 32 processors respectively. Enrichment for a Gene 
Ontology term can be described as the ratio of the number 
of genes in the cluster with the specified term (c) to the 
number of genes in the cluster (n), divided by the ratio of 
the number of genes in the entire genome with the 
specified term (C) to the total number of genes in the 
tested genome (N). The formal equation to identify 
enrichment, then, is E = (c/n)/(C/N). The higher the 
enrichment score, the better. Using this Gene Ontology 
enrichment, most of the genes in the same cluster can be 
identified as having the same functionality. We verified 



the Gene Ontology classification of original clusters by 
filtering results of analysis to p-val < 0.005 and compared 
them to the GO classifications of the top clusters found in 
each 6 networks per dataset. A detailed description of the 
results is given as follows. 

The young mouse data, sampled using RCM ordering 
(Figure 1) preserved the Metabolism enriched cluster 
(cluster 6) from the original network (for sampling in one 
processor and two processors). New clusters identified 
were enriched in transport (cluster 2), metabolism (cluster 
1 and 3), and development (cluster 4). Compared to the 
BFS results (Figure 2), these results were more 
functionally specific, suggesting that RCM may retain 
knowledge better than BFS.  

In the young mouse dataset, the original network had 2 of 
the top clusters enriched in with GO terms associated with 
Development and Transport. Clusters matching to these 
functionalities were also found in the sampling method 
using BFS ordering (Figure 2).  The BFS results identified 
the Development cluster (cluster 3) for each number of 
partitions (1, 2, 4, 8, 16, and 32) whereas the Transport 
cluster (cluster 5) was only identified on the sample using 
one processor. The BFS method also helped in discovery 
of new clusters which were enriched in metabolism 
(cluster 1), development (clusters 2 and 3), and transport 
(cluster 4).  

For the middle aged mouse network, sampling using the 
BFS ordering (Figure 3) identified only clusters enriched 
in transport and localization (clusters 2 and 6) in the 
original network; however the sampling results identified 
other new clusters rich in Immune Defense (clusters 3, 4 
and 5), Cell Communication (cluster 7), and Cell Division 
(cluster 1). The uniformity of novel clusters was not as 
conserved as novel clusters identified in the young 
method, which may be expected from a more aged 
network.   

In the case of the RCM ordering (Figure 4), clusters 
enriched in Development (clusters 1 and 5), Cell Cycle 
Metabolism (cluster 2), and Homeostasis (cluster 3) were 
conserved from the original network. These clusters were 
conserved for the majority by sampling using 1 processor; 
novel clusters identified included those enriched in 
Defense and Immune Response (clusters 4, 6, and 7).  
Our results indicate that RCM had more matches to 
original GO clusters identified, indicating that lowering 
the bandwidth of the corresponding matrix can help in 
obtaining more clustered regions.  Additionally, both 
methods performed exceptionally at identifying novel 
clusters within networks, which indicates that sampling 
based on identifying quasi chordal subgraphs can indeed 
eliminate poorly connected edges, which form noise in 

the network.  The two methods together identified 
methods identified around 20 novel clusters, but the RCM 
method had higher conservation of novel cluster 
identification than BFS across number of partitions, 
suggesting it may be more stable than the BFS method. 

5. CONCLUSIONS
Our analysis has shown that a correlation network 
obtained from bioinformatics expression data, a maximal 
chordal subgraph will maintain or improve upon the 
biological information contained within the highly dense 
subgraphs. By excluding edges representing noise-related 
relationships in the network, we identify a sampled 
network that has fewer edges and where functional 
properties found in the clusters of unfiltered networks G 
are maintained in the sampled networks or new clusters 
with biological function are uncovered. The identification 
of this novel function is achieved through noise removal. 

These results indicate that while both methods of 
ordering in our parallel graph sampling method are useful 
in removing noise, the RCM method retains better cluster 
functionality from the original data and also finds a 
number of novel clusters. This is important in the 
continuing search for a method to reduce network size 
and noise while retaining important structural 
information, thus maintaining functional properties of 
each individual network. In the future we plan to 
investigate the impact of implementing other methods for 
reducing noise in the correlation network, such as 
identifying Steiner trees or hypergraphs. 
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Figure 1: The gene functionality of clusters for the young mouse network with RCM ordering. Enrichment scores are 
colored from low (green) to high (red). Spaces with no enrichment mean that for that number of partitions, there was no 
cluster found for that partition. Number of conserved clusters: 1. Number of new clusters in sampled networks: 6.  

GO Term Original 1p 2p 4p 8p 16p 32p
signal transduction 1.86 2.04 1.86 1.86 1.86
cell  communication 1.92 2.11 1.92 1.92 1.92
cell  surface receptor l inked signal transduction 1.03 1.14 1.03 1.03 1.03
cellular process 2.72 2.72 2.72
sulfur metabolic process 0.04 0.05 0.04 0.04 0.04
phosphate metabolic process 0.09 0.09
sensory perception 0.44 0.44
immune system process 1.14 1.14
phosphate transport 0.03 0.03
nuclear transport 0.02 0.02 0.02
response to interferon-gamma 0.03 0.03 0.03
cellular amino acid,derivative metabolic process 0.12 0.15 0.15
cellular component organization 0.48 0.60 0.60
nitrogen compound metabolic process 0.02 0.03 0.03
cellular process 2.18
cell  communication 1.54
complement activation 0.05
regulation of phosphate metabolic process 0.00 0.00 0.00
skeletal system development 0.10 0.10 0.10
muscle organ development 0.10 0.10 0.10
tricarboxylic acid cycle 0.01 0.01 0.01
cellular calcium ion homeostasis 0.01 0.01 0.01
homeostatic process 0.03 0.03 0.03
mesoderm development 0.32 0.32 0.32
phosphate metabolic process 0.04 0.04 0.04
mammary gland development 0.02 0.04
dorsal/ventral axis specification 0.03 0.05
protein metabolic process 3.34 2.13 0.76
metabolic process 8.07 5.13 1.83
primary metabolic process 7.66 1.74
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Figure 2: The gene functionality of clusters for the young mouse network with BFS ordering. Enrichment scores are 
colored from low (green) to high (red). Spaces with no enrichment mean that for that number of partitions, there was no cluster 
found for that partition. Number of conserved clusters: 1. Number of clusters with additional genes: 1. Number of new clusters in 
sampled networks: 3. 

GO Term Original 1p 2p 4p 8p 16p 32p
nucleo- base/-side/-tide, acid metabolic process 1.11 1.11 1.43 1.43
system development 0.59 0.59
developmental process 0.88 0.88
nervous system development 0.37 0.37
primary metabolic process 18.81 18.81 18.81 20.55 16.07 15.53
metabolic process 19.80 19.80 19.80 21.64 20.55 19.86
cellular process 14.71 14.71 14.71 16.07 21.64 20.90
apoptosis 2.13 2.13 2.13 2.33 2.33
coenzyme metabolic process 0.22 0.22 0.22 2.85 2.85
negative regulation of apoptosis 0.61 0.61 0.61 0.25 0.25
respiratory electron transport chain 1.12 1.12 1.12 0.67 0.67
macrophage activation 0.65 0.65 0.65 0.03 0.03
cellular calcium ion homeostasis 0.02 0.02 0.03
sensory perception of sound 0.04 0.04
homeostatic process 0.05 0.05
defense response to bacterium 0.02 0.02
oxidative phosphorylation 0.03 0.03
gut mesoderm development 0.04 0.04
immune system process 0.80 0.80
system development 1.61 1.61
hemopoiesis 0.16 0.16
nervous system development 1.00 1.00
metabolic process 6.97 6.97
cell  communication 3.65 3.65
ectoderm development 1.12 1.12
neurotransmitter secretion 0.25 0.25
developmental process 2.39 2.39
mesoderm development 1.23 1.23
exocytosis 0.29 0.29
signal transduction 3.52 3.52
cellular process 5.18 5.18
immune system process 1.25 1.36 1.36
response to stimulus 1.04 1.14 1.14
immune response 0.38 0.41 0.41
cellular process 3.27 3.27 3.27 4.63
response to stress 0.23 0.25 0.25
cellular defense response 0.24 0.26 0.26
mitosis 0.28 0.3 0.3 0.3 0.43
intracellular signaling cascade 0.72 0.79 0.79
defense response to bacterium 0.02 0.02 0.02
oxidative phosphorylation 0.02 0.03 0.03
immune system process 0.68 0.8 0.8
gut mesoderm development 0.03 0.04 0.04
sensory perception of sound 0.04 0.04
metabolic process 34.11 33.37
primary metabolic process 32.4 31.7
cellular defense response 2 1.96
system development 7.89 7.72
immune system process 10.56 10.34
developmental process 11.71 11.45
cellular process 25.33 24.79
response to stimulus 8.83 8.64
intracellular signaling cascade 6.11 5.98
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Figure 3: The gene functionality clusters for the middle aged mouse network with BFS ordering. Enrichment scores are 
colored from low (green) to high (red). Spaces with no enrichment mean that for that number of partitions, there was no 
cluster found for that partition. Number of conserved clusters: 4 Number of new clusters in sampled networks: 7. 

GO Term Original 1p 2p 4p 8p 16p 32p
cellular amino acid, derivative metabolic process 0.15 0.15 0.15 0.15 0.15
cellular component organization 0.60 0.60 0.60 0.60 0.60
nitrogen compound metabolic process 0.03 0.03 0.03 0.03 0.03
segment specification 0.24 0.24 0.24
cell  surface receptor l inked signal transduction 2.58 2.58 2.58
nervous system development 1.32 1.32 1.32
nucleo -base/-side/-tide, acid metabolic process 2.06 2.06 2.06 2.06 2.06 2.06 2.06
cell  motion 0.49 0.49 0.49 0.49 0.49 0.49
system development 1.10 1.10 1.10 1.10 1.10 1.10 1.10
nervous system development 0.68 0.68 0.68 0.68 0.68 0.68 0.68
ectoderm development 0.77 0.77 0.77 0.77 0.77 0.77
nuclear transport 0.05 0.05 0.05 0.05 0.05 0.05
primary metabolic process 4.53 4.53 4.53 4.53 4.53 4.53
protein transport 0.84 0.84 0.84 0.84 0.84 0.84
intracellular protein transport 0.84 0.84 0.84 0.84 0.84 0.84
mesoderm development 0.84 0.84 0.84 0.84 0.84 0.84 0.84
intracellular signaling cascade 0.85 0.85 0.85 0.85 0.85 0.85
ion transport 0.21 0.21
oxygen, reactive oxygen species metabolic process 0.02 0.02
response to toxin 0.03 0.03
transport 0.80 0.80
anion transport 0.04 0.04
vitamin transport 0.04 0.14
transport 1.38 4.48
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Figure 4: The gene functionality clusters for the middle aged mouse network with RCM ordering. Enrichment 
scores are colored from low (green) to high (red). Spaces with no enrichment mean that for that number of partitions, 
there was no cluster found for that partition. Number of conserved (or partially conserved) clusters: 4. Number of new 
clusters in sampled networks: 4 

GO Term Original 1p 2p 4p 8p 16p 32p
mitosis 0.25 0.43 0.43 0.43 0.43 0.43
cytokinesis 0.16 0.16 0.16 0.16 0.16
cell  cycle 1.31 1.31 1.31 1.31 1.31
chromosome segregation 0.14 0.14 0.14 0.14 0.14
nucleo -base/-side/-tide, acid metabolic process 2.70 2.70 2.70 2.70 2.70
meiosis 0.18 0.18 0.18 0.18 0.18
cellular process 4.63 4.63 4.63 4.63 4.63
cellular glucose homeostasis 0.05 0.05 0.05 0.05 0.05
cellular amino acid and derivative metabolic process 0.40 0.28
exocytosis 0.41 0.29
protein transport 1.74 1.22
intracellular protein transport 1.74 1.22
ferredoxin metabolic process 0.01 0.01
transport 3.10 2.18
peroxisomal transport 0.03 0.02
neurotransmitter secretion 0.35 0.25
intracellular signaling cascade 0.33 0.33
nucleo -base/-side/-tide, acid metabolic process 0.79 0.79
signal transduction 0.93 0.93
defense response to bacterium 0.02 0.02 0.02 0.02 0.02
oxidative phosphorylation 0.03 0.03 0.02 0.02 0.02
gut mesoderm development 0.04 0.04 0.03 0.03 0.03
immune system process 0.80 0.80
defense response to bacterium 0.04 0.04
amino acid transport 0.05 0.05
defense response to bacterium 0.02 0.02
oxidative phosphorylation 0.02 0.02
gut mesoderm development 0.03 0.03
immune system process 1.25 1.25
lipid transport 0.11 0.11
macrophage activation 0.13 0.13
cellular defense response 0.24 0.24
primary metabolic process 3.83 3.83
protein transport 0.45 0.58 0.58 0.58 0.58 0.45
intracellular protein transport 0.45 0.58 0.58 0.58 0.58 0.45
asymmetric protein localization 0.01 0.01
protein localization 0.01 0.01
localization 0.03 0.03
transport 0.80 1.03 1.03 1.03 1.03 0.80
heart development 0.14 0.14 0.14 0.14
endoderm development 0.02 0.02 0.02 0.02
nuclear transport 0.03 0.03 0.03 0.03
antigen processing and presentation 0.03 0.03 0.03 0.03
nucleo -base/-side/-tide, acid metabolic process 0.05 0.05 0.05 0.05
primary metabolic process 31.70 31.70
metabolic process 33.37 33.37
signal transduction 16.88 16.88
cellular process 24.79 24.79
cell  communication 17.49 17.49
cellular defense response 1.96 1.96
transport 10.46 10.46
induction of apoptosis 1.33 1.33
immune system process 10.34 10.34
homeostatic process 0.50 0.50
endoderm development 0.18 0.18
protein metabolic process 13.83 13.83
ectoderm development 5.38 5.38
system development 7.72 7.72
response to stimulus 8.64 8.64
apoptosis 3.60 3.60
cell  adhesion 5.01 5.01
cellular glucose homeostasis 0.26 0.26
developmental process 11.45 11.45
intracellular signaling cascade 5.98 5.98
mammary gland development 0.31 0.31
hemopoiesis 0.77 0.77
oxidative phosphorylation 0.33 0.33
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