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Identifying Modular Function via Edge Annotation in Gene Correlation Networks
using Gene Ontology Search

Kathryn Dempsey, Ishwor Thapa, Dhundy Bastola, Hesham Ali

College of Information Science & Technology, University of Nebraska at Omaha
Department of Pathology & Microbiology, University of Nebraska Medical Center
hali@mail.unomaha.edu

Abstract-Correlation networks provide a powerful tool for
analyzing large sets of biological information. This method of
high-throughput data modeling has important implications in
uncovering novel knowledge of cellular function. Previous
studies on other types of network modeling (protein-protein
interaction networks, metabolomes, etc.) have demonstrated
the presence of relationships between network structures and
organization of cellular function. Studies with correlation
network further confirm the existence of such network
structure and biological function relationship. However,
correlation networks are typically noisy and the identified
network structures, such as clusters, must be further
investigated to verify actual cellular function. This is
traditionally done using Gene Ontology enrichment of the
genes in that cluster. In this study a novel method to identify
common cluster functions in correlation networks is proposed,
which uses annotations of edges as opposed to the traditional
annotation of node analysis. The results obtained using
proposed method reveals functional relationships in clusters
not visible by the traditional approach.

Keywords-Ontology, edge enrichment

L INTRODUCTION

Network models are gaining popularity as a tool for
modeling large-scale biological data from a holist view: a
network can represent the entire transcriptome or
interactome of the cell at different environmental
conditions. Thus, application of network theory can be a
powerful model for identifying shifts in function between
varying states, such as aging and disease. Specifically, it is
advantageous to examine high throughput gene expression
data using network model to identify relationships among
groups of genes, which was traditionally done using
statistical analyses such as Gene Set Enrichment Analysis
that allowed identification of functionally related genes. In
this network model, commonly known as a correlation
network, nodes represent genes and edges represent the
correlation, or strength of the relationship between
expression patterns of two genes over multiple samples in
the same environment. Models made in this way are
particularly helpful in identifying temporal changes in the
biological system.

Further, multiple types of biological networks have been
found to contain specific network structures that reveal
knowledge about critical functions occurring within the cell.
For example, nodes in the network with the most

connections have been found to correspond with essential
genes, and clusters of well-connected nodes corresponded to
cellular substructures such as protein complexes or
regulatory cohorts (Barabasi 2004, Dong et al. 2007). The
power of the correlation network model is palpable;
however, implementation of this type of network analysis
requires expertise with graph theory, high-performance
computing, and intimate knowledge of the target domain,
leaving the process of modeling somewhat tedious and
overwhelming for individual or small laboratories with
limited resources. Particularly, the current method uses
Gene Ontology (GO) Enrichment to identify functions
within the substructures of the network, which does not
always reveal clear functions due to a variety of issues such
as high levels of noise and database incompleteness.
Further, Gene Ontology Enrichment is performed on the
genes in the cluster. This does not tell us about the
relationships between genes, only about the gene population
of the cluster. For example, consider performing GO
Enrichment on two subgraphs: set 1, with 10 nodes and 10
edges, and set 2, with the same 10 nodes but 35 edges. GO
Enrichment on node sets of both subgraphs will return the
same result, when these two subgraphs are inherently
different in the relationships that exists between the genes in
the cluster.

As such, it is critical to also examine the GO
functionality of the edges in a network, just as it is critical to
identify the GO functionality of the nodes. In this vein we
propose that the process of identifying functional clusters
can be improved and automated such that more confidence
can be placed in cluster annotation. We present our method
for annotating edges of a correlation network with Gene
Ontology function where the parent-child nature of the GO
tree is used in associating a score with each gene
relationship (edge). Furthermore, we examine the node
population versus the edge population of the networks and
show that the edge population identified by our method
reveals more significant intra-cluster functions than the node
population. At the present state, this work is not
comprehensive but serves as a proof of concept
demonstrating the need to examine relationships in clusters
of correlation networks, which has unfortunately been
overlooked.

The method used in the current study takes two genes
with a high correlation from a filtered correlation network (a



Depth: 4 60:0008150
Breadth: 2 Biological process
Score: T
Depth-Breadth = 2 s
GO:000987
Cellular process
1
12
GO:0050789
Regulation of
biological process
H
13
GO0:0050794
Regulation of cellular
process
T
DEEPEST COMMON SO
Regulation of cellular
PARENT metabolic process

-

-
.‘— -

G0:0031324
Postive regulation of
cellular metabolic process

G0:0031324
Negative regulation of
cellular metabolic process

Smre 2

B
Regulation of cellular Q
metabolic process

Depth: 0
Breadth: 3
Score:

Depth-Breadth =-3

DEEPEST COMMON PARENT

GO0:0008150
Biological process

-
i et
=5
GO:000987 G0:0065007
Cellular process Biological regulation
I
G0:0050789

Regulation of
biological process

FIGURE 1. Our method of GO Scoring. Overall scheme for terms A and
B (in red), the deepest common parent (DCP, in purple) and the root
node (in green at top, Biological Process). Top: Depth of 4, breadth of 2
resulting in score of 2 (4-2=2). Bottom: Depth of 0 (root node is DCP),
breadth of 3 for a score of -3 (0- 3=73)

Biological process

method described by Dempsey ef a/ 2011) and identifies any
Gene Ontology (GO) terms associated with those genes, and
additionally identifies the position of those terms in the tree
structure of the Gene Ontology. There are three possible

trees in the Gene Ontology: Biological Process, Molecular
Function, and Cellular Component. Here we focus only on
Biological Process solely to leave the process as
uncomplicated as possible; however, this method can be
applied to any of the trees. Once the terms are identified, we
implement the algorithm for finding the deepest common
parent of those terms within the network. The deeper the
common parent of two genes, the better the score associated
with that relationship. This score takes advantage of the
increasing specificity of function with depth-based tree
traversal in the GO; terms that are closer to the root have
broader definitions of function, and terms that are deeper are
more definite. Our method, explained in the Methods
section, uncovers true function of relationships (edges)
within correlation networks by application of tree-traversal
and ontological enrichment of relationships instead of node
population.

II.  PREVIOUS WORK

Many previous studies have focused on functional
predictions of proteins or gene products using the Gene
Ontology (Schwikowski et al., 2000, Hishigaki et al., 2001,
Vazquez et al. 2003, Karaoz et al. 2004) but few methods
have focused on the annotation of edges or relationships in
clusters. More recently, Zhu 2007 proposed a method for
functional prediction based upon GO’s Biological Process
tree that predicts specific functional classes for proteins with
unknown function based on three measures, including gene
co-expression data as additional evidence. Further, Deng et
al. 2004 defined a method for predicting the probability of
Gene Ontological function on a protein based on a Markov
Random Field model. Cakmak et al. 2007 proposed a
method for identifying novel functional metabolic pathways
by exploiting the true path quality of the Gene Ontology
(Gene Ontology Consortium, 2000). These methods,
while effective, have not caught on as a standard for
identifying cluster function in correlation networks, and
further, few of these methods have been applied to the
correlation network (and remain applicable for networks
such as protein-protein interactions and metabolome).

The Gene Ontology (http://www.geneontology.org/) has
been used by many groups performing biological network
analysis to measure functional similarity. These approaches
focused mainly in finding (a) similarity score between two
sets of gene annotation (terms) based on Information
Content of the terms (probability of the term occurring in
the Gene Ontology) (Lord et al. 2003), and (b) similarity
score between gene pairs based on the number of common
GO Terms (Chabalier et al. 2007, Huang ef al. 2007, Mistry
et al. 2008). The first group of studies uses the similarity
measure as a function of the Information Content of Lowest
Common Ancestor between the terms, but do not consider
how far the terms are with respect to each other. Mistry et
al. 2008 proposed a simpler method to find functional
similarity between genes. The method is based on the Term



Overlap Measure as the cardinality of the common terms in
two sets of gene annotation.

A. Correlation Networks and Ontology

The main thrust of the method presented in this study is to
combine the power of correlation network with the parent-
child nature of the Gene Ontology. We define a correlation
network in this study as a network model composed of
nodes and edges, where nodes represent genes or gene
products and edges are drawn between them if the
expression pattern of two particular genes over a series of
homologous samples is correlated (correlation represented
as p). Generally, a high correlation is considered to be -1.00
< p <-0.70 and 0.70 < p < 1.00 (Dempsey et al. 2011,
Carter et al. 2004) and thus networks made from this model
are filtered to contain only correlations of this value. The
resulting network typically has thousands of nodes and can
have upwards of a million edges, although reducing the
number of edges by correlation filtering and hypothesis
testing is typical (Zhang, Horvath 2005). The networks used
within our study are filtered to correlations of 0.91 < p <
1.00 and p-value < 0.0005 unless otherwise noted.
Additionally, these networks tend to be “scale-free”, which
means that their degree distribution is indicative of a few
nodes that are well connected (Albert ef al. 2005, Barabasi
et al. 2004).

The Gene Ontology works off the premise that the
deeper the tree traversal, the deeper the specificity of the
function obtained. Each child node in the GO tree can be
considered a sub-function of its parent. This particular
ontology was made to clarify functionalities of genes and is
maintained and updated by the community and the GO
Consortium to act as a repository for cellular functions, but
it remains incomplete as the functionalities of genes and
gene products are continually being added. Further, as the
complexities of the mechanisms behind observed functions
continued to be uncovered, it may be necessary to modify
the structure of the Gene Ontology and other data
repositories to match new findings.

Previous work by Dempsey ef al. 2011 revealed that
identification of high-degree nodes, or hubs, in correlation
networks can be performed and that hubs identified indeed
corresponded to lethal or essential genes at a rate of 50-70%
(similar studies of essentiality in protein protein interaction
networks can be found in Jeong et al. 2001). This implies
that a filtered network created from gene expression data
follows a power-law degree distribution, (correlations
follow a normal distribution), and from these characteristics
hubs can be identified. Hubs were verified for essentiality
using the JAX Mouse Genome Informatics database
(http://www.informatics.jax.org/) and out of the 29 hubs
identified that had been tested for in vivo knockouts, only
three were found to have no observable phenotype when
tested. Eleven of hubs tested were lethal for mice pre- to
post-natally, and 27 had some effect on one of the 24 major

Input: Correlation network

Output: Returns the deepest common parent
and depth score of two genes connected by
an edge

For each edge in the correlation network({
Get the set of all GO terms for genel
Get the set of all GO terms for gene?2
For each terml in GO setl

For each term2 in GO_set2

Get the GO depth score for terml and
term2 via function Get GOScore (terml,
term2)

}

Get GOScore (terml, term2) {
For term tl, find all of its parent terms
For each parent term (P1)
Find minimum distance from Pl to term tl
Find depth (distance from root)of parent

For term t2, find all of its parent terms
For each parent term (P2)
Find minimum distance from P2 to term
t2
Find depth of parent
Compare current parent terms Pl and P2
For each common parent term, Pl == P2:
Path length = sum of distance of
terml to Pl & distance of term2 to P2
GO Score = Difference of common
parent term (P1 == P2) to path length
Return the highest GO score and
corresponding parent term for terml and
term2

systems identified by the MGI database (growth, lifespan,
etc.). The rate of hub essentiality is important because it
suggests that the structures (hubs, clusters) found to be
important in other biological networks (metabolome,
interactome, etc) also have potential importance in
correlation network studies. Thus, in this study we identify
those critical network structures and use the Gene Ontology
to aide in identifying their functional importance in the cell.

III.  METHODS

Network creation and filtering. Data was obtained from
NCBI’s Gene Expression Omnibus (GEO — see Barrett et
al.) database in January 2011. Dataset used was GSE5078
(Verbitsky et al. 2004), which was originally designed to
identify changes in gene expression relating to learning in
the hippocampus of Young mice (YNG) versus middle-aged
mice (MID). Networks were created as stated with Pearson
Correlation coefficient and filtered to only the highest of
correlations (p = 1.00) and only correlations passing P-value
< 0.0005 were kept.



Cluster 1 Cluster 6 Cluster 1 [ Cluster 6
regulation of cellular process 6.16% metabolic process 21.05% multicellular organismal proc. =~ 7.13% signal transduction 9.09%
cellular biosynthetic process 6.16% signal transduction 21.05% response to stimulus response to chemical stimulus 9.09%
primary metabolic process protein modification process 10.53% regulation of cellular process regulation of cell proliferation 9.09%
Cluster 2 Cluster 7 Cluster 2 Cluster 7
primary metabolic process 6.40% |metabolic process 13.33% transport 11.54% metabolic process 6.09%
E multicell. organismal developmen! cellular macromolecule metabol 13.33% " regulation of cellular process 7.69% | cell adhesion
3 organ development cellular protein metab.process 13.33%| | &|cellular metabolic process primary metabolic process
g Cluster 3 Cluster 8 % Cluster 3 Cluster 8
S regulation of cellular process 7.48% |reg. of transcription, DNA-dep. - = |signal transduction 9.43% |pos. reg. of transcrip.-RNA polyn 15.38%
o biosynthetic process 5.61% regulation of cellular process 13.33% 'C;' regulation of cellular process 8.81% |primary metabolic process 15.38%
& |regulation of biological quality - neg. regulation of transcription, DI 13.33%| |==|cell surface recep. linked signaling  6.29%|macromolecule metabolic process 11.54%
g Cluster 4 Cluster 9 E Cluster 4 Cluster 9
> regulation of cellular process  16.22% pos. regulation of cellular proce: 7.14% transport 8.51% |regulation of cellular process 10.48%
biological_process 13.51% |regulation of cellular process 7.14% regulation of cellular process 7.09% | metabolic process 6.67%
cell proliferation 8.11%|metabolic process signal transduction 6.38% |signal transduction
Cluster 5 Cluster 10 Cluster 5 Cluster 10
macromole metabol. process 9.84% |reg. of biological process 10.34% regulation of cellular process regulation of cellular process  12.50%
cellular biosynthetic process 8.20%|signal transduction 6.90% signal transduction 14.81%|cellular protein metabolic proc. 12.50%
organ development multicellular organismal process 6.90% transport 14.81%|cellular macromolec. biosynthet 12.50%

FIGURE 2. Top 3 Edge Annotations for YNG and MID clusters: Terms are ranked according to percentage. Percentage represents number of edges in the
cluster annotated with that term versus total edges in the GO depth filtered network. Bolded terms are the top term(s) by percentage for that cluster.

A. Algorithm

We describe the algorithm used in this study in page 3 and
visually in Figure 1. Correlation networks are notorious for
having noise — indeed; a major concern for those using
correlation networks is filtering coincidental edges from
causative relationships. Two genes connected in the
correlation network who also share a deep relationship in
the Gene Ontology are more likely to be important that two
genes who have a high correlation but no GO relationship.

Our algorithm examines each edge in the network,
where nodes represent genes and an edge represents the
correlation in gene expression of those two genes. The
algorithm then loads a local version of the GO association
table, which links genes to its known GO terms (it is
possible and probable that a gene will be associated with
more than one term). Each gene then has a list of GO terms
associated with it in memory, at which point the algorithm
identifies matches between these two lists. It is possible for
there to be no match in the lists (thus, this edge will not be
present in the result network) or it is possible for the
algorithm to identify multiple common terms, thus the need
to identify the deepest (and therefore most specific)
common GO term in the two sets. Once the deepest
common parent (DCP) is identified, the nodes, score, and
GO term id are output as a result network.

Caveats. Caveats associated with our method include the
fact that the GO is incomplete and can contain false or
misleading data. Future work will focus on statistical testing
of our method for quality control and also integration of
other knowledge-based information to improve result
confidence scores.

IV.  EXPERIMENTAL RESULTS

The initial results of our method reveal a number of things
about examining relationships in correlation networks and
the completeness of the Gene Ontology itself. We highlight
the most intriguing results here:

Networks filtered using our method were found to
maintain the integrity of the scale-free biological network —
resulting networks have a power-law node degree
distribution and contain critical high-degree nodes, or hubs.
Out of the 100 nodes in the network with the highest degree,
more than half of the nodes tested for in vivo knockout are
involved in mortality/aging as determined by the MGI
database (62.82% - YNG, 67.14% MID). This is in
agreement with previous studies investigating correlation
networks.

Application of our method resulted in drastic reduction
of node and edge number in each network. Edges with no
relationship or whose deepest common parent was the root
of the tree (GO:0008150, biological process) were removed.
50.22% of edges were removed from the YNG original
network and 51.32% of edges were removed from the MID
original network. Even with the drastic reduction of edges,
modularity of the network was maintained. We identified
the top 10 clusters within the filtered networks using
AllegroMCODE under default settings
(www.allegroviva.com/allegromcode) by Jun et al. 2011.
After cluster identification, we represented the edge
annotations of our GO method as a percentage of the total
edges. A portion of these results are presented in Figure 2.
The top GO term per cluster for the YNG network was
responsible for 14.46% of the edges on average; in the MID
network the average was 11.61%. These numbers do not
network the average was 11.61%. These numbers do not
take into account overlapping or parent-child terms. Edges
annotated as “metabolic process” (depth of 1) were
considered separate from “primary metabolic process”
(depth of 2). Combination of parent-child terms is planned
for future studies.

We compared our method to the node populations of
each cluster by identifying all GO terms for each gene in the
cluster and then identifying the most common terms among
the union of all gene GO term sets. The top results from the




Our Method Traditional Method
Cluster| NC EC TPEs Density Di;gth Annotation 32:;1 % Annotation 32:;1 %
il 43 782 903 08660 2.8056 regulation. of cellula-r process 3 6.16% metabolic process 1 6.54%
cellular biosynthetic process 3 6.16%
yng 2 62 878 1891 0.4643 2.7335 primary metabolic process 2 6.40% metabolic process 1 6.70%
yng 3 21 189 210 0.9000 2.8677 regulation of cellular process 3 7.48% metabolic process 1 8.92%
) 15 60 105 05714 24667 cellular biosynthetic process 3 17.78% | primary metabolic process 2 8.93%
metabolic process 1 8.93%
macromolecule metabolic 2 9.84%
yng 5 25 94 300 03133 2.5851 process primary metabolic process 2 7.41%
metabolic process 1 7.41%
metabolic process 1 5.61% metabolic process 1 6.54%
yng 6 8 28 28 - 26429 signal transduction 3 5.61%
metabolic process 1 13.33% metabolic process 1 8.79%
cellular macromolecule . .
yng7 | 12 33 66 05000 27576 metabolic process  ©  L>05/ | primary metabolic process 2 8.79%
cellular protein metabolic 4 13.33%
process
regulation of transcription, DNA- 7 - primary metabolic process 2
yng 8 6 15 15 4.6667 dependent 6.67%
metabolic process 1 6.67%
positive regulation of cellular
yng9 | 41 102 820 01244  3.2549 process RN 1% developmental process 1, 5,
regulation of cellular process 3 7.14%
yng 10| 19 44 171 0.2573 2.3182 response to stimulus 1 12.12% cell communication 2 4.05%

FIGURE 3: YNG Network Results: NC = Node count, EC = Edge Count, TPEs = Total Possible Edges. Density is the density of the cluster based on
actual versus possible edges, and average depth is the average of the DCP of edges annotated with a depth of 0 or higher. The annotations from our

method and the traditional method are the most common edge annotations (our method) and node annotations (traditional method) per each cluster.

Our Method Traditional Method
Cluster| NC EC TPEs Density Dt‘sih Annotation ]1;2 ::31 % Annotation g::;; %
midl | 41 645 820 [ 30512 multicellular organismal process ! 713% metabolic process 1 8.14%
mid 2 28 184 378 0.4868 2.7554 transport 3 11.54% metabolic process 1 5.24%
mid 3 41 239 820 0.2915 2.5565 signal transduction 3 9.43% cell communication 2 5.01%
mid 4 41 208 820 0.2537 2.8750 transport 3 8.51% | primary metabolic process 2 5.45%
mid 5 10 43 45 0.9556 2.6047 regulation of cellular process 3 25.93% | primary metabolic process 2 5.26%
signal transduction 3 9.09% cell communication 2 8.54%
mid 6 11 47 55 0.8545 2.8511 response to chemical stimulus 2 9.09%
regulation of cell proliferation 4 9.09%
mid 7 65 225 2080 0.1082 2.9733 metabolic process 1 6.09% metabolic process 1 6.65%
positive regulation of
transcription from RNA 15.38% | primary metabolic process 2
mid 8 10 30 45 0.6667 3.3000 polymerase II promoter 8.97%
metabolic process 1 8.97%
primary metabolic process 2 15.38%
mid 9 58 171 1653 0.1034 2.6199 regulation of cellular process 3 10.48% | primary metabolic process 2 5.35%
regulation of cellular process 3 12.50% | primary metabolic process 2 7.55%
cellular protein metabolic 4 12.50% cell communication 2 7.55%
mid 10 | 12 33 66 0.5000 2.3333 cellu.lar macr(.Jmolecule 3 12.50% signal transduction 3 755%
biosynthetic process
metabolic process 1 7.55%

FIGURE 4. MID Network Results: NC = Node count, EC = Edge Count, TPEs = Total Possible Edges. Density is the density of the cluster based on actual
versus possible edges, and average depth is the average of the DCP of edges annotated with a depth of 0 or higher. The annotations from our method and
the traditional method are the most common edge annotations (our method) and node annotations (traditional method) per each cluster.




node population analysis are shown in Figures 3 and 4.
Some common themes we have identified from our method
are the following:

Density does not necessarily imply likelihood of
common or true function. YNG Cluster 1 and YNG Cluster
9 both have a similar node count (41 and 43 respectively)
but YNG C1 is much more dense. However, average density
and annotation with our method and traditional methods
indicate that the YNG C9 cluster has more defined function.
The difference in annotation depth is subtle, but the
difference in density decides the rank of YNG C9 in
clustering. Using our method, it would be suggested that
YNG C9 is more likely to be representative of true cellular
function and C1.

Traditional methods may overlook the relationships
that edges represent. YNG Cluster 8 (Fig. 2) is a small,
complete clique (K¢) and 7 of its edges were found to be
associated with DNA-dependent regulation of transcription.
Our method readily identifies this set of edges.

Clusters likely cannot be annotated with just one
function; instead, they should be represented as a
distribution of functions. While the reason behind
functional overlaps in clusters remains unclear, it is evident
that oftentimes a cluster cannot be associated with only one
function. A ‘pleiotropic’ nature of a cluster is entirely
possible within the concept of a cellular network.

V. DISCUSSION

In this study, an algorithm has been presented for
identifying the deepest common relationship between two
nodes in a network using the parent-child structure of the
Gene Ontology. This method allows for the functional
annotations for edges in correlation networks. We show that
this method enhances the functional relationships within
clusters, and provides a stepping stone for future work by
allowing us to better identify clusters of interest with higher
likelihood of actual cellular impact. In the future, we hope
to apply this work to the automation of functional cluster
annotation in correlation networks, resulting in the ability to
visually and computationally reduce the size and complexity
of the correlation network while maintaining biological
relevance of network structure. Further, this method could
be supplemental in identifying unknown gene function by
exposing the common shared functions of genes in common
clusters of the unknown gene.

As the Gene Ontology and other publicly available data
warchouses continue to expand and improve, so will the
need for tools to incorporate the data within these stores
while sorting biological signal from noise. It is critical, then,
that the ability to automate these processes of identifying
functions of network structures becomes available to the
scientific community. Our method specifically has shown
that examining the ontological enrichment of edges in the
correlation network is critical for understanding function of
network structures.
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