
University of Nebraska at Omaha
DigitalCommons@UNO

Interdisciplinary Informatics Faculty Proceedings &
Presentations School of Interdisciplinary Informatics

2013

A structure-preserving hybrid-chordal filter for
sampling in correlation networksA structure-
preserving hybrid-chordal filter for sampling in
correlation networks
Kathryn Dempsey Cooper
University of Nebraska at Omaha, kdempsey@unomaha.edu

Tzu-Yi Chen
University of Nebraska at Omaha

Sriram Srinivasan
University of Nebraska at Omaha, sriram882004@gmail.com

Sanjukta Bhowmick
University of Nebraska at Omaha, sbhowmick@unomaha.edu

Hesham Ali
University of Nebraska at Omaha, hali@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/
interdiscipinformaticsfacproc

Part of the Bioinformatics Commons, and the Health Information Technology Commons

This Conference Proceeding is brought to you for free and open access by
the School of Interdisciplinary Informatics at DigitalCommons@UNO. It
has been accepted for inclusion in Interdisciplinary Informatics Faculty
Proceedings & Presentations by an authorized administrator of
DigitalCommons@UNO. For more information, please contact
unodigitalcommons@unomaha.edu.

Recommended Citation
Cooper, Kathryn Dempsey; Chen, Tzu-Yi; Srinivasan, Sriram; Bhowmick, Sanjukta; and Ali, Hesham, "A structure-preserving hybrid-
chordal filter for sampling in correlation networksA structure-preserving hybrid-chordal filter for sampling in correlation networks"
(2013). Interdisciplinary Informatics Faculty Proceedings & Presentations. 12.
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc/12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232762319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/interdiscipinformatics?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1239?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc/12?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages

A structure-preserving hybrid-chordal filter for

sampling in correlation networks

Kathryn Dempsey*
α
, Tzu-Yi Chen⁰, Sriram Srinivasan

α
, Sanjukta Bhowmick

α
, Hesham Ali*

α

α
College of Information Science and Technology, University of Nebraska at Omaha

*Department of Pathology & Microbiology, University of Nebraska Medical Center

⁰Department of Computer Science, Pomona College

Contact Email: hali@mail.unomaha.edu

Abstract— Biological networks are fast becoming a popular tool

for modeling high-throughput data, especially due to the ability

of the network model to readily identify structures with

biological function. However, many networks are fraught with

noise or coincidental edges, resulting in signal corruption.

Previous work has found that the implementation of network

filters can reduce network noise and size while revealing

significant network structures, even enhancing the ability to

identify these structures by exaggerating their inherent qualities.

In this study, we implement a hybrid network filter that

combines features from a spanning tree and near-chordal

subgraph identification to show how a filter that incorporates

multiple graph theoretic concepts can improve upon network

filtering. We use three different clustering methods to highlight

the ability of the filter to maintain network clusters, and find

evidence that suggests the clusters maintained are of high

importance in the original unfiltered network due to high-degree

and biological relevance (essentiality). Our filter highlights the

advantages of integration of graph theoretic concepts into

biological network analysis.

Keywords—bioinformatics; clusters; network filters;

correlation networks; hub nodes; spanning trees

Previous work [5, 6, 7, and 9] reveals that filters imposed

on networks generated by correlation of gene expression are

an effective means for removing coincidental edges while

enhancing biological signal. Duraisamy et al. [9] and

Dempsey et al. [5,6] revealed that a filter that removes edges

that create large cycles in biological networks (i.e. identifying

a chordal subgraph from original graph G) removes about

25% of original edges, maintains clusters that exist in the

original network, and also reveals clusters that were

previously hidden. Dempsey et al. [7] explored the how a

spanning tree filter affects biological relevance of high degree

or hub nodes in the correlation network. (Biologically relevant

nodes in a correlation network can typically be expected to

represent lethal nodes [8, 15], or nodes that represent genes

that when knocked out in vivo results in expiration of the

organism at some early stage in development [3].) This study

found that using a spanning tree filter, it is possible to more

accurately identify biologically relevant hub nodes in the

correlation network due to the removal of coincidental edges.

Further, this enhanced this type of spanning tree filter using a

“hybrid” filter that incorporated a spanning tree and a chordal

filter by adding edges back into the network. The focus of the

study then became the examination of how the biological

relevance of hub nodes is further enhanced (i.e., hub nodes

from the original network gain more edges back, making them

easier to identify as hub nodes). This filter incorporated edge

re-addition in two steps, one where edges were added such

that chordality is maintained, and a second where edges were

added with a less strict condition--- chordality is preferred, but

not some larger cycles are allowed, if they are part of clusters.

The best parameters from this study revealed that adding in

edges that did not necessarily maintain chordality (but not

adding in all edges) was best able to identify biologically

relevant hub nodes. In short, we have four major versions of

the network that we are able to test for biological relevance;

these variations are shown in Figure 1.

“Hub” nodes in correlation networks can be disassortative

or assortative [14, 18] (), the former indicating that its

neighbors are poorly connected and the latter indicating that

the hub is very well connected; in such cases the assortative

hub can be found to exist within clusters as a member of a

dense community. Results from Dempsey et al. [7] show that

while the aforementioned spanning tree (ST) only filter is able

I. INTRODUCTION

High-throughput assays that survey the activities of a cell

at once are becoming more popular; indeed the growing

technological capacity for examining biological processes

reflects the current focus on data generation in biomedical

research. With this increase in technological capacity comes

an exponential increase in heterogeneous data and a massive

need for methods to analyze it. Correlation networks are one

type of data model employed by bioinformaticians to

visualize, analyze, and manipulate these types of datum.

Representing genes as nodes and edges as tightly correlated

patterns of expression, correlation networks have been found

to reflect biological network theory in that structures within

these networks (hubs, clusters, etc) [1,10] can point to

biological functions, and how genes in those functions are

related. While these networks are increasing in popularity, the

issue remains that networks are typically large and filled with

noise [19], corrupting the biological signal behind observed

phenotypes. As such, multiple methods for sorting signal from

noise have been proposed. One such general method, network

filtering, has found measurable success in reducing network

size and noise while enhancing ability to identify relevant

biological functions.

to identify lethal hub nodes better than the original network

(according to degree), the edge-addition methods are both

better than the spanning tree only approach. We speculate that

this is because the ST only approach only identifies

disassortative nodes within the network; adding edges back in

allows for the assortative hubs, which by definition require

more edges between neighbors, makes identification of these

hubs possible. Theoretically speaking, a biological network is

self-organizing and as contains multiple built-in redundancies

to ensure survival in structural breakdown; this characteristic

of self-organizing systems [17] is consistent with the need for

clusters in a correlation network –it reflects the inherent need

for a set of genes to be co-expressed and working in concert

toward some discrete function.

In this study, we further examine the applicability of this

hybrid filter by examining its effectiveness in enhancing

clusters in correlation networks. The study on chordal filters

by [5], [6] and [9] revealed that a chordal filter is able to

maintain current clusters from the original network and

identify new clusters that were previously hidden. Previous

studies on the hybrid chordal filter have only examined its

effectiveness in identifying biologically relevant hub nodes,

not clusters. Therefore, in this study we implement and apply

a hybrid chordal filter to networks generated from an aging

mouse gene expression study to show its effectiveness in

identifying clusters. We use three different methods

(AllegroMCODE, MCL, and our own CliqueCode) to indicate

how well the filter is able to identify clusters in the network,

and for each clustering type we compare clusters from the

original network to clusters from the filtered network. This

comparison reveals that the hybrid filter is able to identify

biologically relevant clusters stemming from cores in the

original network and remove coincidental edges. The

networks contained here are relatively small for gene

expression correlation networks, so it is important to be able

to parallelize the clustering method (typically the longest step

in the analytic pipeline) and still be able to identify relevant

biological clusters. We show in our results that the parallel

implementation of CliqueCode approach is very scalable and

yields same results as the sequential version.

A. Hypothesis

Our approach uses an original network G and applies our

hybrid chordal filter to that network. Our filter creates an

augmented spanning tree by first computing a spanning tree,

and then adding back selected non-tree edges that create

cycles of length three in the filter. This augmentation can be

performed over several iterations—at each iterations T+1, the

distance-2 nodes of the graph created at iteration T are

considered and new triangles are added. As the number of

iterations increase, we will finally recreate most of the original

network. Therefore an important parameter for an effective

filter is to judiciously select the number of levels of iterations.

The different parameters that affect the performance of the

hybrid chordal filter include:

1. Tree selection: The node selection process for the initial

tree can use a breadth-first-search (BFS) or maximum

weighted spanning tree (MST).

2. Augmentation: This determines how edges are added

back to the tree. The tree itself is named as the 'None'

filter. We add back a subset of the edges from the original

networks between nodes at distance-2 in the tree." The

subset can be chosen to ensure chordality, or made looser

Figure 1. (A) The original network with lethal hub nodes identified in red.
(B). The network filtered to a spanning tree. (C) A version of the “chordal”

implementation of the hybrid filter, where edges are added back and

chordality is maintained. (D) A version of the “all” implementation where
edges are added back but chordality is not maintained. A 4-cycle is

highlighted in red in Figure 1D. Note that while the lethal hub that is not

contained in the cluster is maintained as a hub throughout each version, the
lethal hub in the original network cluster only becomes a hub again after

edges are added back in at stage (C), and becomes even “hubbier” as edges

are added back in (D). The cluster density change from (C) to (D) for the 6
nodes involved goes from 46.7% (7 edges) to 73.3% (11 edges) and the lethal

hub node goes from degree = 2 to degree = 4.

Figure 2. The assortativity of hub nodes. The disassortative hub in this
definition has a low clustering coefficient, or its neighbors are not well

connected. The assortative hub is very well connected to its neighbors. Both

types of hubs have been found to be relevant in various kinds of biological
networks.

to allow for some larger cycles. In this paper we consider

the second case and add back all distance-2 edges. A final

option is to add even more edges back to the network via

iterations (described below). This filter was called the 'All'

filter.

3. Iterations: This parameter determines how many times

the augmentation should be performed, and applies only to

the “all” augmentations.

From our previous results using network filters, we have

observed the following phenomena:

 Chordal filters maintain network clusters [4,8]

 Spanning tree filters maintain lethal hub nodes [5,6]

 The hybrid filter maintains lethal hub nodes best

when edges are added back into the network without

necessarily maintaining chordality [6]

We are able to define biological relevance as a node that is

essential or lethal, meaning the removal of that particular gene

results in a lethal organism phenotype. Based on these

observations, we propose our hypothesis for how well the

hybrid filter is able to identify clusters:

H0: A hybrid filter based on tree and chordal structure will

identify clusters from the original network that contain high

degree nodes of biological relevance.

II. METHODS

For the majority of our studies, networks from aging

mouse studies were used. Young (Yng) and Middle-Aged

(MID) mouse aging networks were created using gene

expression data from GEO Series [12] GSE5078 [20] using

Pearson Correlation Coefficient [as described in 11] (p-

val<0.005) as described in Dempsey [6]. Briefly, the pairwise

correlation coefficient was calculated for each gene pair.

Genes or gene products are represented in the network as

nodes. If the correlation was within the threshold range (0.70-

1.00), an edge with the weight of the correlation was drawn

between the two nodes for those genes/gene products. For

parallel studies, we used larger networks GSE5140 [2] which

study the effect of creatine supplementation on older mice

(treated vs. untreated) and GSE17072 [16] which compares

breast cancer in humans in normal tissue, familial breast

cancer, and non-familial breast cancer (Control vs. Familial

vs. Non). Duplicate edges and self loops were removed from

networks before filtering and clustering. Our hybrid chordal

filter (coded in MATLAB) was applied to each network under

a variety of conditions; for each network there were a total of

9 implementations including the original (Table 1):

TABLE I. DESCRIPTION OF FILTERS

Network Name Node Selection Iterations

Original Orig - -

Spanning
Tree Only

NONE-BFS Breadth First Search -

Spanning

Tree Only

NONE-MST Maximum Spanning Tree -

Chordal Chordal-BFS-1 Breadth First Search 1

Chordal Chordal-MST-1 Maximum Spanning Tree 1

Non-

chordal

All-BFS-1 Breadth First Search 1

Non-

chordal

All-MST-1 Maximum Spanning Tree 1

Non-

chordal

All-BFS-2 Breadth First Search 2

Non-

chordal

All-MST-2 Maximum Spanning Tree 2

Non-

chordal

All-BFS-3 Breadth First Search 3

Non-

chordal

All-MST-3 Maximum Spanning Tree 3

The number of edges removed for each network and the

resulting edge density is contained in Table 2. We used three

clustering methods for our study, including AllegroMCODE

v1.0 (implemented in Cytoscape v2.8.3) [23], MCL 09-308,

v1.088 [13], and CliqueCode v1.0 in sequential and parallel

versions. A description of the CliqueCode implementation is

contained under Methods – CliqueCode. AllegroMCODE was

run using degree cutoff=4, node score cutoff = 0.2, K-core=4,

and max depth = 100. These parameters were chosen to find

all small, dense clusters of minimum size 4 with a minimum

core density of a K4. MCL was run under default parameters.

The fill-in parameters of the CliqueCode were selected to find

very dense subgraphs. When fill-in is set to zero, the set of

vertices form a complete clique. We also relax the fill-in to 1,

which indicates that the subgraph is a complete clique minus

one edge. Larger values of fill-in lead to less dense cliques.

For the networks considered in this paper, we found fill-in of 0

and 1 to give the best value. The size of the clique also plays

an important role in determining the significance. In this paper

we considered all cliques of size 4 or larger. Clusters from

each method were then compared in from the original

networks to the filtered networks. For example,

AllegroMCODE original clusters were only compared to

AllegroMCODE filtered clusters; clusters from different

methods were not compared for accuracy. Filtered clusters

were measured against original clusters using sensitivity

measures for both nodes and edges. To measure this, we used

the following where x = node or edge:

 xTP = an element in the original cluster set was also

found in the filtered set

 xFP = an element in the filtered set was not found in

the original set

 xFN = an element in the original set was not found in

the filtered set

Using these metrics, we are able to identify sensitivity for

each filter where xSensitivity (xSn) = xTP /(xTP+xFN). In

addition to sensitivity, we also measure cluster size, count, and

filter speed. Based on our hypothesis, the ideal result for our

networks is to identify small, dense clusters with biologically

relevant nodes [10].

TABLE II. THE SIZES AND EDGE DENSITIES OF THE ORIGINAL AND

FILTERED NETWORKS

Age Node

Selection

Filter Iterations Nodes Edges Edge

Density

YNG

Original 5,348 7,274 0.0509%

BFS

None - 5,348 3,885 0.0272%

Chordal - 5,348 4,206 0.0294%

All 1 5,348 5,379 0.0376%

All 2 5,348 6,153 0.0430%

All 3 5,348 6,596 0.0461%

MST

None - 5,348 3,885 0.0272%

Chordal - 5,348 4,280 0.0299%

All 1 5,348 4,449 0.0311%

All 2 5,348 4,907 0.0343%

All 3 5,348 5,479 0.0383%

MID

Original 5,549 7,178 0.0466%

BFS

None - 5,549 4,154 0.0270%

Chordal - 5,549 4,542 0.0295%

All 1 5,549 5,267 0.0342%

All 2 5,549 5,726 0.0372%

All 3 5,549 6,005 0.0390%

MST

None - 5,549 4,154 0.0270%

Chordal - 5,549 4,808 0.0312%

All 1 5,549 5,117 0.0332%

All 2 5,549 5,924 0.0385%

All 3 5,549 6,490 0.0422%

A. Description of Clustering Methods

AllegroMCODE is an implementation of MCODE as a

Cytoscape Plug-in that weights nodes according to high k-core

values. The more dense the local community around a node,

with high core value, the heavier the weight. The code was

originally designed to find clusters in protein-protein

interaction networks [2], which tend to be small, dense

clusters representative of protein complexes. MCL was

originally designed for clustering in protein-protein interaction

networks as well; it uses Markov clustering and network

topology to rapidly identify groups of nodes in weighted or

unweighted networks [13].

B. CliqueCode

We developed CliqueCode as a more efficient and scalable

alternative to AllegroMCODE. As the name suggests,

CliqueCode focuses on finding near-cliques in the network.

For each vertex, we check the connections between its

neighbors, and compute the fill-in, i.e. the number of edges

required to create a complete clique comprising of the vertex

and its neighbors. The value of fill-in can be adjusted

according to the tightness of cliques required. In these

experiments, fill-in was set to zero (perfect clique) and one

(clique with one edge missing).

In contrast to the other clustering methods, finding cliques

provides a very simple yet effective method for finding

clusters of biological importance. In our algorithm a clique is

detected by identifying a seed vertex with low fill-in(0 or 1)

and adding its neighbors to form the clique. In general, if the

seed has low fill-in, the neighbors do not, since they can be

connected to vertices outside of the clique as well. However, if

a vertex is part of two cliques we use a tie breaking scheme to

assign one vertex to one clique only. Thus we will never

include the same clique more than once in our analysis. The

results, in most cases are comparable to those obtained by

AllegroMCODE (see section on Experiments). However

because the algorithm only considers distance-2 neighbors of

each vertex, it is faster and more amenable to parallelization

as compared to the k-core discovery method of

AllegroMCODE.

The parallelization of CliqueCode is very simple. Ideally,

each vertex in parallel can determine whether it is part of a

clique. In practice the number of available processing units

determines the degree of parallelism. The parallelization of

CliqueCode is implemented as follows: the fill-in for each

vertex can be computed in parallel, and based on the threshold

of fill-in, the cliques are formed, also in parallel, by including

the neighbors of each vertex. Each vertex is associated with

the id of the seed vertex of the clique. If the vertex is found to

belong to two cliques, the clique with the smaller seed id is

selected. The results of this implementation are also stable

under parallelization—that is they are not affected by the

number of processing units used, or the ordering of the

network. However, this simple code also produces redundant

results. For example, the same clique is returned for each of its

constituent vertices. After the initial phase, we cull out the

duplicate cliques. Another issue is when a group of vertices

belong to multiple cliques. In this case we merge the cliques

containing the common vertices.

III. EXPERIMENTAL RESULTS

For each experimental run, we have recorded clustering

accuracy in identifying original clusters, network size, cluster

counts, and a number of other variables that indicate the

hybrid chordal filter indeed identifies clusters with

biologically relevant high degree nodes.

A. Filtered Network Size

Table 2 contains network node and edge counts as well as

edge density (where edge Density = edge count / [(node

count
2
-node count)/2] as a percentage). If the filter performs

correctly, we expect that the edge count and edge density

should increase in the following order: None < Chordal < All

i=1 < All i=2, All i=3 < Original. We find that this is indeed

the case, with the None augmentation containing around

~50% of the original edges and the All i = 3 augmentation

containing around 75% of original edges.

B. Sensitivity and Cluster Count

In comparing original network clusters to filtered network

clusters, we again note that the ideal cluster for this type of

network is a small number of dense clusters with relatively

few nodes. This guarantees that the search space for further

biological testing is narrowed (small number of clusters) and

that the clusters are tightly correlated and thus more likely to

retain biological function. Further, we want to ensure that if

clusters are found, they are also found in the original network.

To measure performance of the filter in finding original

clusters, we use the aforementioned definitions. The node and

 Figure 3. (A) Node Sensitivity for BFS runs. (B) Node Sensitivity for MST runs. (C) Edge Sensitivity for BFS runs. (D) Edge Sensitivity for MST runs. (E)
Cluster count for BFS. (F) Cluster count for MST. X-axis: Filter type. Y-axis for A-D: Sensitivity, Y-axis for E-F: Cluster count. If lines are not shown for a

particular run, that is because no clusters were found for that particular version of the filter.

0%

20%

40%

60%

80%

100%

None Chordal

i=1

All i=1 All i=2 All i=3

A. Node Sensitivity - BFS

AllegroMCODE-Yng

AllegroMCODE-Mid

MCL-Yng

MCL-Mid

CliqueCode-Yng

CliqueCode-Mid
0%

20%

40%

60%

80%

100%

None Chordal

i=1

All i=1 All i=2 All i=3

B. Node Sensitivity - MST

AllegroMCODE-Yng

AllegroMCODE-Mid

MCL-Yng

MCL-Mid

CliqueCode-Yng

CliqueCode-Mid

0%

20%

40%

60%

80%

100%

None Chordal

i=1

All i=1 All i=2 All i=3

AllegroMCODE-Yng
AllegroMCODE-Mid
MCL-Yng
MCL-Mid
CliqueCode-Yng
CliqueCode-Mid

C. Edge Sensitivity: BFS

0%

20%

40%

60%

80%

100%

None Chordal

i=1

All i=1 All i=2 All i=3

AllegroMCODE-Yng
AllegroMCODE-Mid
MCL-Yng
MCL-Mid
CliqueCode-Yng
CliqueCode-Mid

D. Edge Sensitivity: MST

0

500

1000

1500

2000

2500

None Chordal i=1 All i=1 All i=2 All i=3

AllegroMCODE-Yng
AllegroMCODE-Mid
MCL-Yng
MCL-Mid
CliqueCode-Yng

E. Cluster Count: BFS

0

500

1000

1500

2000

2500

None Chordal i=1 All i=1 All i=2 All i=3

AllegroMCODE-Yng

AllegroMCODE-Mid

MCL-Yng

MCL-Mid

CliqueCode-Yng

CliqueCode-Mid

F. Cluster Count: MST

 Figure 4. Percent of clusters from results containing lethal nodes for Original, MST All and BFS All networks. (None and chordal

networks did not find clusters using our methods).

Figure 5: Percent of clusters from results containing hub nodes from the original network for Original, MST All and BFS All networks. (None and
chordal networks did not find clusters using our methods).

248

edge sensitivity results are contained in Figure 3a-d. We find

that in terms of node sensitivity, MCL is the best performer.

However, this result is misleading as MCL clusters the entire

network together; the majority of MCL clustering results

contain around 2,000 clusters on average and finds every node

in the network. Inherently, even though sensitivity is high,

guessing everything does not yield the type of results we

desire (few small dense clusters). AllegroMCODE and

CliqueCode both have moderately sensitive results;

AllegroMCODE finds more clusters and thus has more

sensitivity whereas CliqueCode is more conservative and finds

fewer smaller clusters. As was the case in Dempsey et al. [7],

the BFS is a better performer overall than MST. Comparing

cluster counts (Figure 3e,3f) we see that AllegroMCODE and

CliqueCode are better at identifying fewer clusters; examining

the individual density of those clusters we find that they are

indeed small and dense, with CliqueCode clusters being

smaller (results not shown).

C. Lethal and Hub Node Identification

To further probe our hypothesis that clusters that contain

high-degree nodes tend to be biologically relevant, we look at

the original and filtered network clusters and examine how

many of them contain lethal nodes (Figure 5) and how many

of them contain hub nodes as shown in Figure 6 (hub nodes as

defined in the original network). This analysis was performed

only for AllegroMCODE and sequential CliqueCode. We find

that overall, the Yng original networks have 40-60% of

clusters that contain lethal nodes; in the Mid network 100% of

clusters found contain lethal nodes. The BFS augmentation is

a slightly better performer at maintaining clusters with lethal

nodes. If our hypothesis is correct, we should find that the

chordal network contains fewer on average clusters with lethal

nodes. In the current case, the chordal networks had no

clusters identified. Therefore, in AllegroMCODE, we

loosened the parameters for the chordal network (degree

cutoff=2, node score cutoff = 0.2, K-core=2, and max depth =

100), which identified between 100-200 small chordal clusters

for each network. For these networks we examined the ratio of

clusters with lethal nodes to total clusters for the top 25

clusters of each result; we found that the following: Yng-BFS-

Chordal = 28%, Yng-MST-Chordal = 32%, Mid-BFS-Chordal

= 44%, and Mid-MST-Chordal =46%. Indeed, the chordal

approach finds less lethal nodes per cluster than any “All”

augmentation result, lending evidence that re-addition of more

edges makes assortative hubs more clearly evident.

To further probe our hypothesis that clusters contain high

degree nodes from the original network, we perform the same

analysis with hub nodes. We took the top 15% (determined to

be an optimal hub threshold cutoff by [8]) of nodes according

to degree from the original networks (top 802 nodes for Yng,

top 832 for Mid) and examined how many clusters contained

hub nodes. We find that for all clusters found by

AllegroMCODE and CliqueCode, 90-100% of the clusters are

composed of hub nodes from the original network. This

confirms our hypothesis that the clusters we identify contain

high-degree nodes, and that these nodes point towards those

biologically relevant assortative hubs.

D. Parallel Results

We implemented a parallel algorithm for our Clique Code,

where each vertex identifies whether its neighbors and itself

together form a clique conforming to the bounds on fill-in.

Since the networks obtained from the young and middle aged

mouse were too small, we tested our scalability on larger

networks obtained from creatine and untreated mice and breast

cancer networks. The node and edge counts for the networks

are as following: Untreated: 45020 nodes, 655698 edges;

Creatine: 45023 nodes, 714628 edges; Familial: 48803 nodes,

687783; Non: 48803 nodes, 1109553 edges. The experiments

were conducted on an Opteron multicore processor with 64

cores per node and 256 GB Ram per node. We used a shared

memory OpenMP and tested the scalability of the code by

execution over 1 to 64 threads. As shown in Figure 6, our code

shows good scalability.

IV. DISCUSSION

In this study, we have examined how well our hybrid filter

identifies dense clusters with high-degree nodes and

biologically relevant nodes in correlation networks. It has

been shown previously that network filters can remove noise

from biological networks. We have identified that our filter,

Figure 6. Strong scalability for the parallel implementation of CliqueCode.

which begins with a spanning tree and fills edges back in a

quasi-chordal way, allows for edge removal with maintenance

of high-degree and biologically relevant nodes in clusters. We

speculate that the biologically relevant nodes that are

maintained are assortative hubs, or those hub nodes whose

neighbors are very well connected. Our results lend credence

to this concept because as more edges are added in, cluster

identification increases (node sensitivity and edge sensitivity),

and the numbers of clusters containing lethal nodes and hub

nodes from the original network matches or usurps the same

levels in the original network. We have also implemented our

own clustering method, CliqueCode, that identifies near-

cliques within the network, and have also implemented a

scalable version of this method in parallel. As network sizes

continue to increase, it is important to know that methods for

assessment of networks will be able to be parallelized and

maintain integrity of results. Future work includes trying other

values for the fill-in step and running a shared memory

implementation of MCODE to compare its performance with

parallel CliqueCode as well as parallelization of the filter.

ACKNOWLEDGMENT

This publication was made possible by the College of

Information Science and Technology, University of Nebraska

at Omaha and Grant P20 RR16469 from the NCRR, a

component of the National Institutes of Health.

REFERENCES

[1] Barabasi, A. L., & Oltvai, Z. N. (2004). Network biology:
Understanding the cell's functional organization. Nature
Reviews.Genetics, 5(2), 101-113.

[2] Bender, A., Beckers, J., Schneider, I., Holter, SM. et al. (2008). Creatine
improves health and survival of mice. Neurobiol Aging 29(9):1404-11.

[3] Bult, Cj, Eppig JT, Kadin JA, Richardson JE, Blake JA; and the
members of the Mouse Genome Database Group. 2008. The Mouse
Genome Database (MGD): mouse biology and model systems. Nucleic
Acids Res 36(Database Issue):D724-8.

[4] Christakis, NA., et al. (2007). The spread of obesity in a large social
network over 32 years. New England Journal of Medicine.357 no 4:370-
379.

[5] Dempsey, K., Duraisamy, K., Ali, H., & Bhowmick, S. (2011). A
Parallel Graph Sampling Algorithm for Analyzing Gene Correlation
Networks. Proceedings of the 2011 International Conference on
Computational Science.

[6] Dempsey, K., Duraisamy, K., Bhowmick, S., and H. Ali (2012). The
Development of Parallel Adaptive Sampling Algorithms for Analyzing
Biological Networks. 11th IEEE International Workshop on High
Persformance Computational Biology (HiCOMB 2012). May 21, 2012:
Shanghai, China.

[7] Dempsey, K., Bhowmick, S., and H. Ali. (2012). Function-preserving
filters for Sampling in Biological Networks. Proc Comp Sci (9):587-
595. Proceedings of the 2012 International Conference on
Computational Science.

[8] Dempsey, K. and Ali, H. On the discovery of Cellular subsystems in
correlation networks using centrality measures (2012). Current
Bioinformatics, 7(4).. Publication pending.

[9] Duraisamy, K., Dempsey, K., Ali, H., and S. Bhowmick (2011). A noise
reducing sampling approach for uncovering critical properties in large
scale biological networks. High Performance Computing and Simulation
2011 International Conference (HPCS): July 4-8. Istanbul, Turkey.

[10] Dong, J., & Horvath, S. (2007). Understanding network concepts in
modules. BMC Systems Biology, 1, 24.

[11] Ewens, W. J., & Grant, G. R. (2005). Statistical methods in
bioinformatics (Second Edition ed.). New York, NY: Springer.

[12] Edgar, R., Domrachev, M., and AE. Lash (2002). Gene Expression
Omnibus: NCBI gene expression and hybridization array data
repository. Nuc Acid Res 30(1):207-10.

[13] Enright A.J., Van Dongen S., Ouzounis C.A. An efficient algorithm for
large-scale detection of protein families. Nucleic Acids Research
30(7):1575-1584 (2002).

[14] Hao D, Li C (2011) The dichotomy in degree correlation of biological
networks. PloS one 6: e28322. doi: 10.1371/journal.pone.0028322.

[15] Jeong, H., Mason, S. P., Barabasi, A. L., & Oltvai, Z. N. (2001).
Lethality and centrality in protein networks. Nature, 411(6833), 41-42.

[16] Lim E, Vaillant F, Wu D, Forrest NC et al. Aberrant luminal progenitors
as the candidate target population for basal tumor development in
BRCA1 mutation carriers. Nat Med 2009 Aug;15(8):907-13.
PMID: 19648928

[17] Linkser, R. (1988). Self-organization in a perceptual network. Computer
21(3):105-117.

[18] Newman, MEJ. Assortative mixing in networks.Phys. Rev. Lett.,
89:208701–1 – 208701–4, Oct 2002.

[19] Opgen-Rhein, R., & Strimmer, K. (2007). From correlation to causation
networks: A simple approximate learning algorithm and its application
to high-dimensional plant gene expression data. BMC Systems Biology,
1, 37.

[20] Verbitsky, M., Yonan, A. L., Malleret, G., Kandel, E. R., Gilliam, T. C.,
& Pavlidis, P. (2004). Altered hippocampal transcript profile
accompanies an age-related spatial memory deficit in mice. Learning &
Memory (Cold Spring Harbor, N.Y.), 11(3), 253-260.

[21] Subramanian, A., Tamayo, P., Mootha, VK., Mukherjee, S., Ebert, BL.,
Gilette, MA., Paulovich, A.,Pomeroy, SL., Golub, TR., Lander, ES., and
JP Mesirov (2005). Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wise expression profiles. Proc Natl
Acad Sci 102(43):15545-15550.

[22] Gleich, D. 16 May 2009. Gaimc: Graph Algorithms in Matlab Code.
Mathworks.com. Obtained on 01.17.2012, from
http://www.mathworks.com/matlabcentral/fileexchange/2
4134

[23] Yoon, JS and WH Jung (2011). A GPU-accelerated bioinformatics
application for large-scale protein interaction networks. APBC poster
presentation.

	University of Nebraska at Omaha
	DigitalCommons@UNO
	2013

	A structure-preserving hybrid-chordal filter for sampling in correlation networksA structure-preserving hybrid-chordal filter for sampling in correlation networks
	Kathryn Dempsey Cooper
	Tzu-Yi Chen
	Sriram Srinivasan
	Sanjukta Bhowmick
	Hesham Ali
	Recommended Citation

	A Structure-preserving Hybrid-chordal Filter for Sampling in Correlation Networks

