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Abstract— Biological networks are fast becoming a popular tool 

for modeling high-throughput data, especially due to the ability 

of the network model to readily identify structures with 

biological function. However, many networks are fraught with 

noise or coincidental edges, resulting in signal corruption. 

Previous work has found that the implementation of network 

filters can reduce network noise and size while revealing 

significant network structures, even enhancing the ability to 

identify these structures by exaggerating their inherent qualities. 

In this study, we implement a hybrid network filter that 

combines features from a spanning tree and near-chordal 

subgraph identification to show how a filter that incorporates 

multiple graph theoretic concepts can improve upon network 

filtering. We use three different clustering methods to highlight 

the ability of the filter to maintain network clusters, and find 

evidence that suggests the clusters maintained are of high 

importance in the original unfiltered network due to high-degree 

and biological relevance (essentiality). Our filter highlights the 

advantages of integration of graph theoretic concepts into 

biological network analysis. 

Keywords—bioinformatics; clusters; network filters; 

correlation networks;  hub nodes; spanning trees 

Previous work [5, 6, 7, and 9] reveals that filters imposed 

on networks generated by correlation of gene expression are 

an effective means for removing coincidental edges while 

enhancing biological signal. Duraisamy et al. [9] and 

Dempsey et al. [5,6] revealed that a filter that removes edges 

that create large cycles in biological networks (i.e. identifying 

a chordal subgraph from original graph G) removes about 

25% of original edges, maintains clusters that exist in the 

original network, and also reveals clusters that were 

previously hidden. Dempsey et al. [7] explored the how a 

spanning tree filter affects biological relevance of high degree 

or hub nodes in the correlation network. (Biologically relevant 

nodes in a correlation network can typically be expected to 

represent lethal nodes [8, 15], or nodes that represent genes 

that when knocked out in vivo results in expiration of the 

organism at some early stage in development [3].) This study 

found that using a spanning tree filter, it is possible to more 

accurately identify biologically relevant hub nodes in the 

correlation network due to the removal of coincidental edges. 

Further, this enhanced this type of spanning tree filter using a 

“hybrid” filter that incorporated a spanning tree and a chordal 

filter by adding edges back into the network. The focus of the 

study then became the examination of how the biological 

relevance of hub nodes is further enhanced (i.e., hub nodes 

from the original network gain more edges back, making them 

easier to identify as hub nodes). This filter incorporated edge 

re-addition in two steps, one where edges were added such 

that chordality is maintained, and a second where edges were 

added with a less strict condition--- chordality is preferred, but 

not some larger cycles are allowed, if they are part of clusters. 

The best parameters from this study revealed that adding in 

edges that did not necessarily maintain chordality (but not 

adding in all edges) was best able to identify biologically 

relevant hub nodes. In short, we have four major versions of 

the network that we are able to test for biological relevance; 

these variations are shown in Figure 1.  

“Hub” nodes in correlation networks can be disassortative 

or assortative [14, 18] (), the former indicating that its 

neighbors are poorly connected and the latter indicating that 

the hub is very well connected; in such cases the assortative 

hub can be found to exist within clusters as a member of a 

dense community. Results from Dempsey et al. [7] show that 

while the aforementioned spanning tree (ST) only filter is able  

I. INTRODUCTION 

High-throughput assays that survey the activities of a cell 

at once are becoming more popular; indeed the growing 

technological capacity for examining biological processes 

reflects the current focus on data generation in biomedical 

research. With this increase in technological capacity comes 

an exponential increase in heterogeneous data and a massive 

need for methods to analyze it. Correlation networks are one 

type of data model employed by bioinformaticians to 

visualize, analyze, and manipulate these types of datum. 

Representing genes as nodes and edges as tightly correlated 

patterns of expression, correlation networks have been found 

to reflect biological network theory in that structures within 

these networks (hubs, clusters, etc) [1,10] can point to 

biological functions, and how genes in those functions are 

related. While these networks are increasing in popularity, the 

issue remains that networks are typically large and filled with 

noise [19], corrupting the biological signal behind observed 

phenotypes. As such, multiple methods for sorting signal from 

noise have been proposed. One such general method, network 

filtering, has found measurable success in reducing network 

size and noise while enhancing ability to identify relevant 

biological functions.  



to identify lethal hub nodes better than the original network 

(according to degree), the edge-addition methods are both 

better than the spanning tree only approach. We speculate that 

this is because the ST only approach only identifies 

disassortative nodes within the network; adding edges back in 

allows for the assortative hubs, which by definition require 

more edges between neighbors, makes identification of these 

hubs possible. Theoretically speaking, a biological network is 

self-organizing and as contains multiple built-in redundancies 

to ensure survival in structural breakdown; this characteristic 

of self-organizing systems [17] is consistent with the need for 

clusters in a correlation network –it reflects the inherent need 

for a set of genes to be co-expressed and working in concert 

toward some discrete function. 

In this study, we further examine the applicability of this 

hybrid filter by examining its effectiveness in enhancing 

clusters in correlation networks. The study on chordal filters 

by [5], [6] and [9] revealed that a chordal filter is able to 

maintain current clusters from the original network and 

identify new clusters that were previously hidden. Previous 

studies on the hybrid chordal filter have only examined its 

effectiveness in identifying biologically relevant hub nodes, 

not clusters. Therefore, in this study we implement and apply 

a hybrid chordal filter to networks generated from an aging 

mouse gene expression study to show its effectiveness in 

identifying clusters. We use three different methods 

(AllegroMCODE, MCL, and our own CliqueCode) to indicate 

how well the filter is able to identify clusters in the network, 

and for each clustering type we compare clusters from the 

original network to clusters from the filtered network. This 

comparison reveals that the hybrid filter is able to identify 

biologically relevant clusters stemming from cores in the 

original network and remove coincidental edges. The 

networks contained here are relatively small for gene 

expression correlation networks, so it is important to be able 

to parallelize the clustering method (typically the longest step 

in the analytic pipeline) and still be able to identify relevant 

biological clusters. We show in our results that the parallel 

implementation of CliqueCode approach is very scalable and 

yields same results as the sequential version. 

A. Hypothesis

Our approach uses an original network G and applies our

hybrid chordal filter to that network. Our filter creates an 

augmented spanning tree by first computing a spanning tree, 

and then adding back selected non-tree edges that create 

cycles of length three in the filter. This augmentation can be 

performed over several iterations—at each iterations T+1, the 

distance-2 nodes of the graph created at iteration T are 

considered and new triangles are added.  As the number of 

iterations increase, we will finally recreate most of the original 

network. Therefore an important parameter for an effective 

filter is to judiciously select the number of levels of iterations. 

The different parameters that affect the performance of the 

hybrid chordal filter include:  

1. Tree selection: The node selection process for the initial

tree can use a breadth-first-search (BFS) or maximum

weighted spanning tree (MST).

2. Augmentation:  This determines how edges are added

back to the tree.  The tree itself is named as the 'None'

filter.  We add back a subset of the edges from the original

networks between nodes at distance-2 in the tree."  The

subset can be chosen to ensure chordality, or made looser

Figure 1. (A) The original network with lethal hub nodes identified in red. 
(B). The network filtered to a spanning tree. (C) A version of the “chordal” 

implementation of the hybrid filter, where edges are added back and 

chordality is maintained. (D) A version of the “all” implementation where 
edges are added back but chordality is not maintained. A 4-cycle is 

highlighted in red in Figure 1D. Note that while the lethal hub that is not 

contained in the cluster is maintained as a hub throughout each version, the 
lethal hub in the original network cluster only becomes a hub again after 

edges are added back in at stage (C), and becomes even “hubbier” as edges 

are added back in (D). The cluster density change from (C) to (D) for the 6 
nodes involved goes from 46.7% (7 edges) to 73.3% (11 edges) and the lethal 

hub node goes from degree = 2 to degree = 4. 

Figure 2. The assortativity of hub nodes. The disassortative hub in this 
definition has a low clustering coefficient, or its neighbors are not well 

connected. The assortative hub is very well connected to its neighbors. Both 

types of hubs have been found to be relevant in various kinds of biological 
networks.  



to allow for some larger cycles.  In this paper we consider 

the second case and add back all distance-2 edges.  A final 

option is to add even more edges back to the network via 

iterations (described below).  This filter was called the 'All' 

filter. 

3. Iterations: This parameter determines how many times

the augmentation should be performed, and applies only to

the “all” augmentations.

From our previous results using network filters, we have 

observed the following phenomena: 

 Chordal filters maintain network clusters [4,8]

 Spanning tree filters maintain lethal hub nodes [5,6]

 The hybrid filter maintains lethal hub nodes best

when edges are added back into the network without

necessarily maintaining chordality [6]

We are able to define biological relevance as a node that is 

essential or lethal, meaning the removal of that particular gene 

results in a lethal organism phenotype. Based on these 

observations, we propose our hypothesis for how well the 

hybrid filter is able to identify clusters:      

H0: A hybrid filter based on tree and chordal structure will 

identify clusters from the original network that contain high 

degree nodes of biological relevance. 

II. METHODS

For the majority of our studies, networks from aging 

mouse studies were used. Young (Yng) and Middle-Aged 

(MID) mouse aging networks were created using gene 

expression data from GEO Series [12] GSE5078 [20] using 

Pearson Correlation Coefficient [as described in 11] (p-

val<0.005) as described in Dempsey [6]. Briefly, the pairwise 

correlation coefficient was calculated for each gene pair. 

Genes or gene products are represented in the network as 

nodes. If the correlation was within the threshold range (0.70-

1.00), an edge with the weight of the correlation was drawn 

between the two nodes for those genes/gene products. For 

parallel studies, we used larger networks GSE5140 [2] which 

study the effect of creatine supplementation on older mice 

(treated vs. untreated) and GSE17072 [16] which compares 

breast cancer in humans in normal tissue, familial breast 

cancer, and non-familial breast cancer (Control vs. Familial 

vs. Non). Duplicate edges and self loops were removed from 

networks before filtering and clustering. Our hybrid chordal 

filter (coded in MATLAB) was applied to each network under 

a variety of conditions; for each network there were a total of 

9 implementations including the original (Table 1): 

TABLE I. DESCRIPTION OF FILTERS 

Network Name Node Selection Iterations 

Original  Orig - - 

Spanning 
Tree Only 

NONE-BFS Breadth First Search - 

Spanning 

Tree Only 

NONE-MST Maximum Spanning Tree - 

Chordal Chordal-BFS-1 Breadth First Search 1 

Chordal Chordal-MST-1 Maximum Spanning Tree 1 

Non-

chordal 

All-BFS-1 Breadth First Search 1 

Non-

chordal 

All-MST-1 Maximum Spanning Tree 1 

Non-

chordal 

All-BFS-2 Breadth First Search 2 

Non-

chordal 

All-MST-2 Maximum Spanning Tree 2 

Non-

chordal 

All-BFS-3 Breadth First Search 3 

Non-

chordal 

All-MST-3 Maximum Spanning Tree 3 

The number of edges removed for each network and the 

resulting edge density is contained in Table 2. We used three 

clustering methods for our study, including AllegroMCODE 

v1.0 (implemented in Cytoscape v2.8.3) [23], MCL 09-308, 

v1.088 [13], and CliqueCode v1.0  in sequential and parallel 

versions. A description of the CliqueCode implementation is 

contained under Methods – CliqueCode. AllegroMCODE was 

run using degree cutoff=4, node score cutoff = 0.2, K-core=4, 

and max depth = 100. These parameters were chosen to find 

all small, dense clusters of minimum size 4 with a minimum 

core density of a K4. MCL was run under default parameters. 

The fill-in parameters of the CliqueCode were selected to find 

very dense subgraphs. When fill-in is set to zero, the set of 

vertices form a complete clique. We also relax the fill-in to 1, 

which indicates that the subgraph is a complete clique minus 

one edge. Larger values of fill-in lead to less dense cliques. 

For the networks considered in this paper, we found fill-in of 0 

and 1 to give the best value. The size of the clique also plays 

an important role in determining the significance. In this paper 

we considered all cliques of size 4 or larger. Clusters from 

each method were then compared in from the original 

networks to the filtered networks. For example, 

AllegroMCODE original clusters were only compared to 

AllegroMCODE filtered clusters; clusters from different 

methods were not compared for accuracy. Filtered clusters 

were measured against original clusters using sensitivity 

measures for both nodes and edges. To measure this, we used 

the following where x = node or edge: 

 xTP = an element in the original cluster set was also

found in the filtered set

 xFP = an element in the filtered set was not found in

the original set

 xFN = an element in the original set was not found in

the filtered set

Using these metrics, we are able to identify sensitivity for 

each filter where xSensitivity (xSn) = xTP /(xTP+xFN). In 

addition to sensitivity, we also measure cluster size, count, and 

filter speed. Based on our hypothesis, the ideal result for our 



networks is to identify small, dense clusters with biologically 

relevant nodes [10]. 

TABLE II. THE SIZES AND EDGE DENSITIES OF THE ORIGINAL AND 

FILTERED NETWORKS 

Age Node 

Selection 

Filter Iterations Nodes Edges Edge 

Density 

YNG 

Original 5,348 7,274 0.0509% 

BFS 

None - 5,348 3,885 0.0272% 

Chordal - 5,348 4,206 0.0294% 

All 1 5,348 5,379 0.0376% 

All 2 5,348 6,153 0.0430% 

All 3 5,348 6,596 0.0461% 

MST 

None - 5,348 3,885 0.0272% 

Chordal - 5,348 4,280 0.0299% 

All 1 5,348 4,449 0.0311% 

All 2 5,348 4,907 0.0343% 

All 3 5,348 5,479 0.0383% 

MID 

Original 5,549 7,178 0.0466% 

BFS 

None - 5,549 4,154 0.0270% 

Chordal - 5,549 4,542 0.0295% 

All 1 5,549 5,267 0.0342% 

All 2 5,549 5,726 0.0372% 

All 3 5,549 6,005 0.0390% 

MST 

None - 5,549 4,154 0.0270% 

Chordal - 5,549 4,808 0.0312% 

All 1 5,549 5,117 0.0332% 

All 2 5,549 5,924 0.0385% 

All 3 5,549 6,490 0.0422% 

A. Description of Clustering Methods

AllegroMCODE is an implementation of MCODE as a

Cytoscape Plug-in that weights nodes according to high k-core 

values. The more dense the local community around a node, 

with high core value, the heavier the weight. The code was 

originally designed to find clusters in protein-protein 

interaction networks [2], which tend to be small, dense 

clusters representative of protein complexes.  MCL was 

originally designed for clustering in protein-protein interaction 

networks as well; it uses Markov clustering and network 

topology to rapidly identify groups of nodes in weighted or 

unweighted networks [13].   

B. CliqueCode

We developed CliqueCode as a more efficient and scalable

alternative to AllegroMCODE. As the name suggests, 

CliqueCode focuses on finding near-cliques in the network. 

For each vertex, we check the connections between its 

neighbors, and compute the fill-in, i.e. the number of edges 

required to create a complete clique comprising of the vertex 

and its neighbors. The value of fill-in can be adjusted 

according to the tightness of cliques required. In these 

experiments, fill-in was set to zero (perfect clique) and one 

(clique with one edge missing). 

In contrast to the other clustering methods, finding cliques 

provides a very simple yet effective method for finding 

clusters of biological importance. In our algorithm a clique is 

detected by identifying a seed vertex with low fill-in(0 or 1) 

and adding its neighbors to form the clique. In general, if the 

seed has low fill-in, the neighbors do not, since they can be 

connected to vertices outside of the clique as well. However, if 

a vertex is part of two cliques we use a tie breaking scheme to 

assign one vertex to one clique only. Thus we will never 

include the same clique more than once in our analysis. The 

results, in most cases are comparable to those obtained by 

AllegroMCODE (see section on Experiments). However 

because the algorithm only considers distance-2 neighbors of 

each vertex, it is faster and more amenable to parallelization 

as compared to the k-core discovery method of 

AllegroMCODE.   

The parallelization of CliqueCode is very simple. Ideally, 

each vertex in parallel can determine whether it is part of a 

clique. In practice the number of available processing units 

determines the degree of parallelism. The parallelization of 

CliqueCode is implemented as follows: the fill-in for each 

vertex can be computed in parallel, and based on the threshold 

of fill-in, the cliques are formed, also in parallel, by including 

the neighbors of each vertex. Each vertex is associated with 

the id of the seed vertex of the clique. If the vertex is found to 

belong to two cliques, the clique with the smaller seed id is 

selected. The results of this implementation are also stable 

under parallelization—that is they are not affected by the 

number of processing units used, or the ordering of the 

network. However, this simple code also produces redundant 

results. For example, the same clique is returned for each of its 

constituent vertices. After the initial phase, we cull out the 

duplicate cliques. Another issue is when a group of vertices 

belong to multiple cliques. In this case we merge the cliques 

containing the common vertices.  

III. EXPERIMENTAL RESULTS

For each experimental run, we have recorded clustering 

accuracy in identifying original clusters, network size, cluster 

counts, and a number of other variables that indicate the 

hybrid chordal filter indeed identifies clusters with 

biologically relevant high degree nodes. 

A. Filtered Network Size

Table 2 contains network node and edge counts as well as

edge density (where edge Density = edge count / [(node 

count
2
-node count)/2] as a percentage). If the filter performs 

correctly, we expect that the edge count and edge density 

should increase in the following order: None < Chordal < All 

i=1 < All i=2, All i=3 < Original. We find that this is indeed 

the case, with the None augmentation containing around 

~50% of the original edges and the All i = 3 augmentation 

containing around 75% of original edges. 

B. Sensitivity and Cluster Count

In comparing original network clusters to filtered network

clusters, we again note that the ideal cluster for this type of 

network is a small number of dense clusters with relatively 

few nodes. This guarantees that the search space for further 

biological testing is narrowed (small number of clusters) and 

that the clusters are tightly correlated and thus more likely to 

retain biological function. Further, we want to ensure that if 

clusters are found, they are also found in the original network. 

To measure performance of the filter in finding original 

clusters, we use the aforementioned definitions. The node and  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3. (A) Node Sensitivity for BFS runs. (B) Node Sensitivity for MST runs. (C) Edge Sensitivity for BFS runs. (D) Edge Sensitivity for MST runs. (E) 
Cluster count for BFS. (F) Cluster count for MST. X-axis: Filter type. Y-axis for A-D: Sensitivity, Y-axis for E-F: Cluster count. If lines are not shown for a 

particular run, that is because no clusters were found for that particular version of the filter. 
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 Figure 4. Percent of clusters from results containing lethal nodes for Original, MST All and BFS All networks. (None and chordal 

networks did not find clusters using our methods). 

Figure 5: Percent of clusters from results containing hub nodes from the original network for Original, MST All and BFS All networks. (None and 
chordal networks did not find clusters using our methods). 
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edge sensitivity results are contained in Figure 3a-d. We find 

that in terms of node sensitivity, MCL is the best performer. 

However, this result is misleading as MCL clusters the entire 

network together; the majority of MCL clustering results 

contain around 2,000 clusters on average and finds every node 

in the network. Inherently, even though sensitivity is high, 

guessing everything does not yield the type of results we 

desire (few small dense clusters). AllegroMCODE and 

CliqueCode both have moderately sensitive results; 

AllegroMCODE finds more clusters and thus has more 

sensitivity whereas CliqueCode is more conservative and finds 

fewer smaller clusters. As was the case in Dempsey et al. [7], 

the BFS is a better performer overall than MST. Comparing 

cluster counts (Figure 3e,3f) we see that AllegroMCODE and 

CliqueCode are better at identifying fewer clusters; examining 

the individual density of those clusters we find that they are 

indeed small and dense, with CliqueCode clusters being 

smaller (results not shown). 

C. Lethal and Hub Node Identification

To further probe our hypothesis that clusters that contain

high-degree nodes tend to be biologically relevant, we look at 

the original and filtered network clusters and examine how 

many of them contain lethal nodes (Figure 5) and how many 

of them contain hub nodes as shown in Figure 6 (hub nodes as 

defined in the original network). This analysis was performed 

only for AllegroMCODE and sequential CliqueCode. We find 

that overall, the Yng original networks have 40-60% of 

clusters that contain lethal nodes; in the Mid network 100% of 

clusters found contain lethal nodes. The BFS augmentation is 

a slightly better performer at maintaining clusters with lethal 

nodes. If our hypothesis is correct, we should find that the 

chordal network contains fewer on average clusters with lethal 

nodes. In the current case, the chordal networks had no 

clusters identified. Therefore, in AllegroMCODE, we 

loosened the parameters for the chordal network (degree 

cutoff=2, node score cutoff = 0.2, K-core=2, and max depth = 

100), which identified between 100-200 small chordal clusters 

for each network. For these networks we examined the ratio of  

clusters with lethal nodes to total clusters for the top 25 

clusters of each result; we found that the following: Yng-BFS-

Chordal = 28%, Yng-MST-Chordal = 32%, Mid-BFS-Chordal 

= 44%, and Mid-MST-Chordal =46%. Indeed, the chordal 

approach finds less lethal nodes per cluster than any “All” 

augmentation result, lending evidence that re-addition of more 

edges makes assortative hubs more clearly evident. 

To further probe our hypothesis that clusters contain high 

degree nodes from the original network, we perform the same 

analysis with hub nodes. We took the top 15% (determined to 

be an optimal hub threshold cutoff by [8]) of nodes according 

to degree from the original networks (top 802 nodes for Yng, 

top 832 for Mid) and examined how many clusters contained 

hub nodes. We find that for all clusters found by 

AllegroMCODE and CliqueCode, 90-100% of the clusters are 

composed of hub nodes from the original network. This 

confirms our hypothesis that the clusters we identify contain 

high-degree nodes, and that these nodes point towards those 

biologically relevant assortative hubs.  

D. Parallel Results

We implemented a parallel algorithm for our Clique Code,

where each vertex identifies whether its neighbors and itself 

together form a clique conforming to the bounds on fill-in. 

Since the networks obtained from the young and middle aged 

mouse were too small, we tested our scalability on larger 

networks obtained from creatine and untreated mice and breast 

cancer networks. The node and edge counts for the networks 

are as following: Untreated: 45020 nodes, 655698 edges; 

Creatine: 45023 nodes, 714628 edges; Familial: 48803 nodes, 

687783; Non: 48803 nodes, 1109553 edges. The experiments 

were conducted on an Opteron multicore processor with 64 

cores per node and 256 GB Ram per node. We used a shared 

memory OpenMP and tested the scalability of the code by 

execution over 1 to 64 threads. As shown in Figure 6, our code 

shows good scalability. 

IV. DISCUSSION

In this study, we have examined how well our hybrid filter 

identifies dense clusters with high-degree nodes and 

biologically relevant nodes in correlation networks. It has 

been shown previously that network filters can remove noise 

from biological networks. We have identified that our filter, 

Figure 6. Strong scalability for the parallel implementation of CliqueCode. 



which begins with a spanning tree and fills edges back in a 

quasi-chordal way, allows for edge removal with maintenance 

of high-degree and biologically relevant nodes in clusters. We 

speculate that the biologically relevant nodes that are 

maintained are assortative hubs, or those hub nodes whose 

neighbors are very well connected. Our results lend credence 

to this concept because as more edges are added in, cluster 

identification increases (node sensitivity and edge sensitivity), 

and the numbers of  clusters containing lethal nodes and hub 

nodes from the original network matches or usurps the same 

levels in the original network. We have also implemented our 

own clustering method, CliqueCode, that identifies near-

cliques within the network, and have also implemented a 

scalable version of this method in parallel. As network sizes 

continue to increase, it is important to know that methods for 

assessment of networks will be able to be parallelized and 

maintain integrity of results. Future work includes trying other 

values for the fill-in step and running a shared memory 

implementation of MCODE to compare its performance with 

parallel CliqueCode as well as parallelization of the filter. 

ACKNOWLEDGMENT  

This publication was made possible by the College of 

Information Science and Technology, University of Nebraska 

at Omaha and Grant P20 RR16469 from the NCRR, a 

component of the National Institutes of Health. 

REFERENCES 

[1] Barabasi, A. L., & Oltvai, Z. N. (2004). Network biology: 
Understanding the cell's functional organization. Nature 
Reviews.Genetics, 5(2), 101-113. 

[2] Bender, A., Beckers, J., Schneider, I., Holter, SM. et al. (2008). Creatine 
improves health and survival of mice. Neurobiol Aging 29(9):1404-11. 

[3] Bult, Cj, Eppig JT, Kadin JA, Richardson JE, Blake JA; and the 
members of the Mouse Genome Database Group. 2008. The Mouse 
Genome Database (MGD): mouse biology and model systems. Nucleic 
Acids Res 36(Database Issue):D724-8. 

[4] Christakis, NA., et al. (2007). The spread of obesity in a large social
network over 32 years. New England Journal of Medicine.357 no 4:370-
379. 

[5] Dempsey, K.,  Duraisamy, K., Ali, H., & Bhowmick, S. (2011). A 
Parallel Graph Sampling Algorithm for Analyzing Gene Correlation 
Networks. Proceedings of the 2011 International Conference on
Computational Science. 

[6] Dempsey, K., Duraisamy, K., Bhowmick, S., and H. Ali (2012). The 
Development of Parallel Adaptive Sampling Algorithms for Analyzing 
Biological Networks. 11th IEEE International Workshop on High 
Persformance Computational Biology (HiCOMB 2012). May 21, 2012: 
Shanghai, China. 

[7] Dempsey, K., Bhowmick, S., and H. Ali. (2012). Function-preserving 
filters for Sampling in Biological Networks. Proc Comp Sci (9):587-
595. Proceedings of the 2012 International Conference on 
Computational Science. 

[8] Dempsey, K. and Ali, H. On the discovery of Cellular subsystems in 
correlation networks using centrality measures (2012). Current 
Bioinformatics, 7(4).. Publication pending. 

[9] Duraisamy, K., Dempsey, K., Ali, H., and S. Bhowmick (2011). A noise
reducing sampling approach for uncovering critical properties in large 
scale biological networks. High Performance Computing and Simulation 
2011 International Conference (HPCS): July 4-8. Istanbul, Turkey.

[10] Dong, J., & Horvath, S. (2007). Understanding network concepts in 
modules. BMC Systems Biology, 1, 24. 

[11] Ewens, W. J., & Grant, G. R. (2005). Statistical methods in 
bioinformatics (Second Edition ed.). New York, NY: Springer.

[12] Edgar, R., Domrachev, M., and AE. Lash (2002). Gene Expression 
Omnibus: NCBI gene expression and hybridization array data 
repository. Nuc Acid Res 30(1):207-10. 

[13] Enright A.J., Van Dongen S., Ouzounis C.A. An efficient algorithm for 
large-scale detection of protein families. Nucleic Acids Research 
30(7):1575-1584 (2002). 

[14] Hao D, Li C (2011) The dichotomy in degree correlation of biological 
networks. PloS one 6: e28322. doi: 10.1371/journal.pone.0028322. 

[15] Jeong, H., Mason, S. P., Barabasi, A. L., & Oltvai, Z. N. (2001). 
Lethality and centrality in protein networks. Nature, 411(6833), 41-42. 

[16] Lim E, Vaillant F, Wu D, Forrest NC et al. Aberrant luminal progenitors 
as the candidate target population for basal tumor development in 
BRCA1 mutation carriers. Nat Med 2009 Aug;15(8):907-13. 
PMID: 19648928 

[17] Linkser, R. (1988). Self-organization in a perceptual network. Computer 
21(3):105-117. 

[18] Newman, MEJ. Assortative mixing in networks.Phys. Rev. Lett., 
89:208701–1 – 208701–4, Oct 2002. 

[19] Opgen-Rhein, R., & Strimmer, K. (2007). From correlation to causation 
networks: A simple approximate learning algorithm and its application 
to high-dimensional plant gene expression data. BMC Systems Biology,
1, 37. 

[20] Verbitsky, M., Yonan, A. L., Malleret, G., Kandel, E. R., Gilliam, T. C., 
& Pavlidis, P. (2004). Altered hippocampal transcript profile 
accompanies an age-related spatial memory deficit in mice. Learning & 
Memory (Cold Spring Harbor, N.Y.), 11(3), 253-260. 

[21] Subramanian, A., Tamayo, P., Mootha, VK., Mukherjee, S., Ebert, BL., 
Gilette, MA., Paulovich, A.,Pomeroy, SL., Golub, TR., Lander, ES., and 
JP Mesirov (2005). Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wise expression profiles. Proc Natl 
Acad Sci 102(43):15545-15550. 

[22] Gleich, D. 16 May 2009. Gaimc: Graph Algorithms in Matlab Code. 
Mathworks.com. Obtained on 01.17.2012, from 
http://www.mathworks.com/matlabcentral/fileexchange/2
4134 

[23] Yoon, JS and WH Jung (2011). A GPU-accelerated bioinformatics 
application for large-scale protein interaction networks. APBC poster 
presentation. 


	University of Nebraska at Omaha
	DigitalCommons@UNO
	2013

	A structure-preserving hybrid-chordal filter for sampling in correlation networksA structure-preserving hybrid-chordal filter for sampling in correlation networks
	Kathryn Dempsey Cooper
	Tzu-Yi Chen
	Sriram Srinivasan
	Sanjukta Bhowmick
	Hesham Ali
	Recommended Citation


	A Structure-preserving Hybrid-chordal Filter for Sampling in Correlation Networks

