
University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

2011

The Dynamics of Integrate-and-Fire: Mean vs.
Variance Modulations and Dependence on
Baseline Parameters
Joanna R. Wares
University of Richmond, jwares@richmond.edu

Todd W. Troyer

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Mathematics Commons, and the Neurosciences Commons

This Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been accepted for
inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information,
please contact scholarshiprepository@richmond.edu.

Recommended Citation
Wares, Joanna R., and Todd W. Troyer. "The Dynamics of Integrate-and-Fire: Mean Versus Variance Modulations and Dependence on
Baseline Parameters." Neural Computation 23, no. 5 (2011): 1234-247. doi:10.1162/NECO_a_00114.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Richmond

https://core.ac.uk/display/232761177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1010?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


The Dynamics of Integrate-and-Fire: Mean Versus Variance
Modulations and Dependence on Baseline Parameters
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Todd W. Troyer
todd.troyer@utsa.edu
Biology Department, University of Texas at San Antonio, San Antonio TX 78249,
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The leaky integrate-and-fire (LIF) is the simplest neuron model that cap-
tures the essential properties of neuronal signaling. Yet common intu-
itions are inadequate to explain basic properties of LIF responses to si-
nusoidal modulations of the input. Here we examine responses to low -
and moderate-frequency modulations of both the mean and variance of
the input current and quantify how these responses depend on baseline
parameters. Across parameters, responses to modulations in the mean
current are low pass, approaching zero in the limit of high frequencies.
For very low baseline firing rates, the response cutoff frequency matches
that expected from membrane integration. However, the cutoff shows a
rapid, supralinear increase with firing rate, with a steeper increase in the
case of lower noise. For modulations of the input variance, the gain at
high frequency remains finite. Here, we show that the low-frequency re-
sponses depend strongly on baseline parameters and derive an analytic
condition specifying the parameters at which responses switch from be-
ing dominated by low versus high frequencies. Additionally, we show
that the resonant responses for variance modulations have properties not
expected for common oscillatory resonances: they peak at frequencies
higher than the baseline firing rate and persist when oscillatory spiking
is disrupted by high noise. Finally, the responses to mean and variance
modulations are shown to have a complementary dependence on baseline
parameters at higher frequencies, resulting in responses to modulations
of Poisson input rates that are independent of baseline input statistics.

1 Introduction

A fundamental problem in neuroscience is to understand how the func-
tional response properties of neurons depend on the underlying mechanis-
tic parameters at the level of membrane biophysics. To make things more
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tractable, the problem of neuronal signaling is often conceptually divided
into two processes: synaptic integration and spike generation. Mechanis-
tically, synaptic integration is often studied by measuring the magnitude
and duration of postsynaptic potentials, and spike generation is examined
by recording spike trains elicited by a series of current steps. Functionally,
extracellular spike responses to external stimuli are often characterized us-
ing the linear-nonlinear cascade model (Carandini, Mechler, Leonard, &
Movshon, 1996; Chichilnisky, 2001), where the input signal is first passed
through a linear synaptic filter, followed by a static nonlinear response func-
tion. As tempting as it is to make direct connections between the mechanis-
tic measurements and the functional description, research in simple model
neurons has demonstrated that common intuitions can be poor guides for
predicting neural responses to a barrage of synaptic input.

Central to this work is the leaky integrate-and-fire (LIF) model, the sim-
plest model that captures the basic properties of integration by a capacitive
membrane and spike generation based on a voltage threshold (Lapique,
1907, 2007). A common intuition is that the response time of the LIF should
be limited by the response time of the membrane, τm. In particular, the
response to sinusoidal modulations of the input should approach zero for
modulation frequencies that are significantly faster than 1/τm. However,
recent studies have shown that under some circumstances, the LIF model
continues to respond, even for modulation frequencies approaching infin-
ity (Brunel, Chance, Fourcaud, & Abbott, 2001; Fourcaud & Brunel, 2002).
Furthermore, if one applies a signal with constant mean but a sinusoidally
modulated variance, the LIF model can follow the variance changes to arbi-
trarily high frequencies (Lindner & Schimansky-Geier, 2001). Subsequently,
slice recordings have confirmed that cortical neurons can follow rapid mod-
ulations in the variance of noisy currents (Silberberg, Bethge, Markram,
Pawelzik, & Tsodyks, 2004; Boucsein, Tetzlaff, Meier, Aertsen, & Naundorf,
2009). Follow-up studies in generalized integrate-and-fire types of models
have examined how the response at very high frequencies is limited by the
dynamics of spike initiation (Naundorf, Geisel, & Wolf, 2005; Fourcaud-
Trocme & Brunel, 2005; Khorsand & Chance, 2008; Vilela & Lindner, 2009).

In addition to rate responses that are more rapid than individual post-
synaptic potentials, the LIF model possesses other response properties that
cannot be explained by a process of synaptic filtering followed by spike
initiation. For example, the same LIF model can be made to operate in
qualitatively distinct regimes of behavior simply by changing the parame-
ters governing the input statistics (Abeles, 1991; Troyer & Miller, 1997). If
the mean input current is large and synaptic noise is small, the voltage is
driven monotonically across threshold, and spikes are produced at regular
intervals. In this “regular regime,” the model acts like an oscillator, display-
ing resonant behavior for perturbations near its baseline firing frequency
(Knight, 1972a). If the mean input is subthreshold and the noise is large,
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voltage trajectories follow a random walk, and spike times are irregular
(Shadlen & Newsome, 1994).

As a first step toward a deeper understanding of LIF dynamics, we si-
nusoidally modulated the statistics of the input current, specifically the
mean and the variance. We then quantified how several aspects of LIF re-
sponse depend on baseline input parameters, which were chosen to cover
the range of LIF behavior. We find that at very low firing rates, the low-pass
cutoff frequency for modulations of the mean current matches that expected
from capacitive filtering. However, this limiting frequency increases with
greater baseline levels of current, and the increase is more rapid with lower
noise. We also find that resonant responses to modulations in the variance
of the input current are different from the resonant responses to modu-
lations in the mean, as variance-based resonances persist into the random
regime and peak at frequencies greater than baseline firing rates. Finally, we
demonstrate that at higher frequencies, the responses to mean and variance
modulations have complementary dependence on the baseline parameters,
implying that the high-frequency gain in response to Poisson inputs will
be similar for neurons operating in the regular and random regimes of
behavior.

2 Methods

We investigate the response dynamics of the LIF model,

C
dV
dt

= gL (VL − V) + I (t), (2.1)

where V is the membrane voltage and I (t) is the time-varying stochastic
input current. Model parameters are set at numerically convenient values
near the typical range for cortical pyramidal neurons. The membrane time
constant τm(= C

gL
) is set to 10 msec; membrane resistance R (= 1

gL
) is set to

100 M�, and VL (= −70 mV) is the resting potential. The neuron spikes
when the voltage reaches threshold θ (= −60 mV), after which the voltage
is reset (Vr = −70 mV). Thus, it takes 0.1 nA of current to drive the cell
to spike. For simplicity, we do not include an absolute refractory period,
which contributes little to the dynamics other than to slow the mean firing
rate and push the model further toward regular spiking.

2.1 Stochastic Differential Equation. We adopt a diffusion approxima-
tion in which the input current, I (t), is decomposed into the mean current,
μ(t), plus fluctuations, σ (t)η(t), where η(t) is a gaussian white noise pro-
cess. μ(t) represents the mean charge accumulating per time and has units
pC/msec = nA. σ 2(t) measures the variance of the charge accumulating
per time and has units pC2/msec = nA2msec.
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Our results are based on the Fokker-Planck (forward Kolmogorov) ap-
proach (Ricciardi, 1977; Brunel & Hakim, 1999; Knight, 2000; Lindner &
Schimansky-Geier, 2001; Allen, 2003) that tracks the probability density
over voltage as a function of time, ρ(V, t). The net flux, or rate of flow
J V(V, t), across a given voltage V can be calculated as

J V(V, t) = − R2σ 2(t)
2τ 2

m

∂ρ(V, t)
∂V

+ (VL − V(t)) + Rμ(t)
τm

ρ(V, t). (2.2)

The probability density obeys

τm
∂ρ(V, t)

∂t
= τm

−∂ J V(V, t)
∂V

(2.3)

= R2σ 2(t)
2τm

∂2ρ(V, t)
∂V2 − ∂

∂V
[(VL − V(t)) + Rμ(t)]ρ(V, t).

(2.4)

The first term on the right-hand side is the diffusion term, which describes
how the voltage distribution spreads due to noise, and the second term
describes the driving effects of the mean input and leak currents. The firing
rate is equal to the probability flux crossing threshold, r (t) = J V(θ, t), which
is then reinjected at voltage reset. Under the standard diffusion approxima-
tion, the density must equal zero at the absorbing boundary at threshold,
so the firing rate equation becomes

r (t) = J V(θ, t) = R2σ 2(t)
2τ 2

m

(
− ∂ρ

∂V
(θ, t)

)
. (2.5)

Note that the firing rate equation is a product of two terms. The first term is
proportional to the instantaneous input variance. Since the density is zero
at threshold, the second term, −∂ρ/∂V(θ, t), is proportional to the proba-
bility that the voltage lies within a small boundary layer near threshold.
Letting B(t) denote the probability of being near threshold, the firing rate
is proportional to B(t) multiplied by the probability that noise causes the
trajectory to “jump” across threshold:

r (t) ∝ σ 2(t)B(t). (2.6)

This multiplication is key in understanding the dynamic response of the
LIF model to changing inputs.

3 Linear Systems Analysis

We characterize LIF dynamics using a linear systems approach. Concep-
tually we fix baseline values for the mean and variance of the input
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current (μ0 and σ 2
0 , respectively). These lead to a baseline firing rate

r0. We consider two types of input perturbations: sinusoidal modula-
tions in the mean, μ(t) = μ0 + μ1 cos(2πωt), or sinusoidal modulations
in the variance, σ 2(t) = σ 2

0 + σ 2
1 cos(2πωt). For each combination of mod-

ulation frequency and type of input perturbation, the firing rate is ap-
proximated as r (t) = r0 + r1(ω) cos(2πωt + φ(ω)). The value φ(ω) is the
frequency-dependent phase of the response, and the ratio gμ(ω) = r1(ω)/μ1

or gσ 2 (ω) = r1(ω)/σ 2
1 is the frequency-dependent gain. Note that the fre-

quency dependence of both the gain and phase can be captured by a single
complex valued function, f (ω) = g(ω)eiφ(ω).

Since the baseline firing rate r0 varies widely over the range of parameters
μ0 and σ 2

0 , we characterize the response gain as the fractional change in
firing rate from baseline, r1(ω)/r0, divided by the fractional change in the
input, μ1/μ0 or σ 2

1 /σ 2
0 :

Gμ(ω) = r1(ω)/r0

μ1/μ0
, Gσ 2 (ω) = r1(ω)/r0

σ 2
1 /σ 2

0

. (3.1)

Note that the use of normalized gain alters the shape of the gain dependence
across baseline parameters but not the shape of each gain curve as a function
of frequency.

To cover all regimes of model behavior, we varied the baseline mean
input μ0 between 0.05 nA and 0.25 nA in 0.0125 nA steps, and the base-
line variance σ 2

0 between 0.004 nA2 msec and 0.03 nA2 msec in steps of
0.001 nA2msec. Parameter values for the figures were chosen as represen-
tatives of relatively low (0.0075 nA2msec) or high (0.015 nA2msec) noise
variance.

Closed-form expressions have previously been derived for the baseline
firing rate (Brunel & Hakim, 1999; Lindner & Schimansky-Geier, 2001) and
linear response gain (Brunel et al., 2001; Lindner & Schimansky-Geier, 2001).
The firing rate function contains the complementary error function, and the
gain functions chosen for use rely on parabolic cylinder functions (Lindner
& Schimansky-Geier, 2001), which we approximated numerically (Mathe-
matica, Wolfram Research, Cambridge, MA). We also obtained gain curves
through numerical simulations of equation 2.4, and found no significant
differences over the range of parameters reported here. All results reported
here rely on numerical approximations to the analytic solution.

4 Results

4.1 Modulations of the Mean. The responses to modulations in the
mean input current are low-pass, with response gain roughly constant
for low frequencies but decaying toward zero at higher frequencies (see
Figure 1A). The low gain at high frequencies means that the model is
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Figure 1: Response gain for modulations in the mean input current. (A) Norma-
lized gain versus frequency for low (σ 2 = 0.0075 nA2msec, top) and high
(σ 2 = 0.015 nA2msec, bottom) noise. Baseline mean current equals 0.05, 0.075,

0.1, 0.125, and 0.15 nA. The thick middle line represents a just threshold cur-
rent (0.1 nA); lower currents yield greater low-frequency gain. Circles mark the
baseline firing frequency for each set of parameters. The bottom dashed curve
shows the gain resulting from the capacitive membrane. (B) Cutoff frequency
versus steady-state firing rate for low (top curve) and high (bottom curve) noise.
Dashed horizontal line: the cutoff for membrane filtering (= 1/2πτm); dashed
angled line: cutoff expected from Nyquist arguments (= r0/2).

unable to respond rapidly to changes in the mean level of input current.
There are two obvious mechanisms that might limit LIF response times.
First, responses may be limited by capacitive filtering of the cell membrane.
Alternatively, at high rates, spiking and reset can erase past membrane in-
tegration at a rate that is faster than the limitations imposed by capacitive
filtering. In this case, one might expect the limiting frequency to be near half
of the baseline firing frequency, similar to a noiseless integrator that requires
two interspike intervals—one short and one longer—to track oscillatory in-
put as it is modulated above and below its mean value (Knight, 1972a,
1972b). This second argument is similar to those governing the Nyquist
frequency for digital sampling.

To examine these mechanisms, we calculated the cutoff frequency at
which the response power (the square of the response gain) drops to half
of the low-frequency limit (see Figure 1B). As in Figure 1A, we fixed the
noise at σ 2

0 = 0.0075 nA2msec or 0.015 nA2msec. The cutoff frequency ap-
proaches the membrane cutoff in the limit of very low baseline firing rates
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(<< 1 Hz = 1/100τm) but increases for increasing firing rates. For moderate
rates, the cutoff frequency is substantially above the values predicted from
membrane filtering (1/2πτm = 15.9 Hz; dashed horizontal line) or for the
perfect integrator (r0/2; dashed angled line) suggesting that the mechanism
limiting the response times of the LIF model is distinct from membrane fil-
tering or rate-based sampling. The cutoff frequency is higher for inputs with
lower noise versus higher noise, and has a faster than linear dependence
on baseline firing rate (Brunel et al., 2001).

For baseline current levels that are supratheshold, the gain curves in
Figure 1A show an increase in the response gain for modulations near
the baseline firing frequency of the neuron (open circles). These regions
of enhanced gain are termed resonances and are common in oscillatory
systems driven at their natural frequency (Knight, 1972b). When the noise
is large or baseline input is subthreshold, spiking is irregular and firing rate
resonances are reduced or absent.

4.2 Modulations of the Variance. The LIF model responds quite differ-
ently to modulations in the noise amplitude than it does to modulations in
the mean (see Figure 2A). Perhaps the most striking difference is the large
gain at high frequencies (Lindner & Schimansky-Geier, 2001). Recall that
the firing rate is proportional to the instantaneous variance, σ 2(t), times the
probability of lying within a boundary layer just below threshold, B(t) (see
equation 2.6). At very high frequencies, the integrative membrane filters out
changes in the voltage distribution, and B(t) remains essentially constant
(Silberberg et al., 2004; Masuda, 2006). As a result, a fractional change in
variance leads to the same fractional change in firing rate. Hence,

lim
ω→∞ Gσ 2 (ω) = 1. (4.1)

This implies that the LIF model is able to respond instantaneously to rapid
changes in the input variance.

The plots in Figure 2A reveal that the high-frequency gain increases
toward 1 when the mean current is suprathreshold (μ0 > 0.1 nA), and de-
creases toward 1 when the mean current is subthreshold. Thus, the division
between increasing or decreasing gain for high frequencies corresponds to
a common dividing line between the random and regular regimes of LIF
behavior.

In the regular regime, the mean return time to threshold depends mostly
on the mean input current, and the firing rate is largely independent of the
input variance (Salinas & Sejnowski, 2002). As a result, the low-frequency
gain is near zero. But in the random regime, increasing the variance sub-
stantially increases the probability of a random threshold crossing, and the
low-frequency gain is finite, exceeding the high-frequency gain for baseline
parameters far into the random regime (see Figure 2A).
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Figure 2: (A) Response gain for modulations in the variance of the input current.
Normalized gain versus frequency. Baseline values as in Figure 1. (B) Frequency
difference between resonance peak frequency and steady-state firing rate for
modulations of the mean (thick, along the diagonal) and variance (thin) for low
noise (σ 2

0 = 0.01 nA2msec). μ0 ranged from 0.05 to 0.25 nA, leading to firing rates
ranging from 3 Hz to 173 Hz. Mean modulations did not yield robust resonances
for subthreshold currents (μ0 < 0.1 nA, firing rate <43 Hz not shown).

To further understand the low-frequency gain, we exploited the multi-
plicative decomposition of the firing rate, r̃ ∝ σ 2 B̃ (see equation 2.6), where
r̃ and B̃ represent steady-state values of the firing rate and the probability
that a trajectory is near threshold for a fixed value of the variance σ 2. Taking
derivatives,

∂ r̃
∂σ 2 (σ 2) ∝ B̃ + σ 2 ∂ B̃

∂σ 2 (4.2)

lim
ω→0

Gσ 2 (ω) = 1 + R2σ 4
0

2τ 2
mr̃ (σ 2

0 )
∂ B̃
∂σ 2 (σ 2

0 ). (4.3)

Since the high-frequency gain is equal to 1, we concluded that the low-
frequency gain is larger than the high-frequency gain when ∂ B̃/∂σ 2 > 0,
and vice versa.

To interpret this result, consider a model subject to a slow increase in the
variance. In the regular regime, the drift toward threshold dominates, and
changing the variance has little effect on the flow of trajectories entering
the subthreshold boundary layer. However, increasing the variance does
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cause an increase in the rate that trajectories cross threshold. This decreases
the probability of finding a trajectory near threshold, so ∂ B̃/∂σ 2 < 0. In the
random regime, an increase in variance will cause the steady-state voltage
distribution to widen, as well as cause an increase in the probability of
leaving the boundary layer. If the spread of the distribution into the sub-
threshold boundary layer is greater than the increased flow out, then the
density in the boundary layer will increase: ∂ B̃/∂σ 2 > 0. The point at which
the low-frequency gain equals the high-frequency gain corresponds to the
point at which the density in the boundary layer becomes more sensitive
to the dynamics of subthreshold integration than to the dynamics of spike
initiation.

Perturbations in the variance also lead to firing rate resonances, in which
response gain is amplified over a relatively narrow range of frequencies
(Lindner & Schimansky-Geier, 2001). For the mean, firing rate resonances
are found only in the regular regime, and the frequency of peak gain closely
tracks the baseline oscillation frequency (i.e., the firing rate; see Figure 2B,
thick line). However for modulations in the variance, these resonances
persist into the random regime, and the peak frequency is consistently
higher than the baseline firing rate (see Figure 2B, thin line). Far into the
random regime, the resonance peaks appear to become decoupled from
the baseline firing rates, with the baseline firing rates (marked by circles in
Figure 2A) falling outside the region of enhanced gain.

4.3 Poisson Input. Thus far, we have analyzed the firing rate response
of the LIF model to perturbations of the mean and variance of the input
current. However, under the assumption that neurons transmit information
through firing rates, the key transformation is from input firing rate to
output firing rate. If we assume that the input comes from a single Poisson
distributed spike train, then the mean and variance of the input current are
proportional: μ(t) = Qλ(t) and σ 2(t) = Q2λ(t), where Q is the total charge
carried by one input and λ(t) is the average rate of the Poisson process.
For any combination of baseline mean and variance, we can find a Poisson
process generating those statistics by choosing Q = σ 2

0 /μ0 and λ0 = μ0/Q.
Given these values, modulating the input rate by a given fraction

f = λ(t)/λ0 will cause the mean and variance of the input current to be
modulated by the same fraction f . For small f , the result of perturbing the
mean and perturbing the variance will be additive. Therefore, the response
of the LIF model to small modulations of Poisson input rates is simply
the sum of the responses to mean and variance modulations, where the
addition is applied to the complex valued filter function that encompasses
both gain and phase (see section 3). For frequencies greater than the inverse
of the membrane time constant, the gain curves coalesce into a common
trajectory that drops toward a gain of one (see Figure 3). This implies that
the LIF model responds similarly to high-frequency modulations in Poisson
input rate, independent of whether the model is operating in the random



The Dynamics of Integrate-and-Fire 1243

Figure 3: Response gain for modulations of the Poisson input rate. Parameter
values as in Figure 1A, top (low noise). The curves converge at frequencies
>1/τm.

or regular regime of firing. It also implies that although the gain curves for
mean modulations and variance modulations are strongly dependent on
baseline input parameters (see Figures 1A and 2A), these dependencies are
complementary, canceling when the two gain functions are added together.
This complementarity does not hold for lower-frequency perturbations,
where the response gain for all three types of input modulations—mean,
variance, and Poisson rate—is highly dependent on the baseline regime of
LIF behavior.

5 Discussion

With the aim of gaining a deeper understanding of LIF dynamics, we quan-
titatively examined several aspects of LIF responses to sinusoidal modula-
tions in the mean and variance of the input current and how these depend
on baseline parameters. In accord with previous studies, LIF responses are
low pass in response to modulations in the mean input current. The cutoff
frequency approaches that of the membrane filter in the limit of low firing
rates, increasing rapidly as the baseline firing rate is increased. This increase
is greater with lower noise.

The LIF model also responds to modulations in the variance of the input
current, having identical normalized gain at high frequencies in both the
regular and random firing regimes. In contrast, the low-frequency gain is
highly dependent on regime. Starting from zero in the regular regime, the
low-frequency gain increases and then surpasses the high-frequency gain
as the mean current is lowered below threshold. The switching point, where
low-frequency gain exceeds the gain at high frequencies, comes at the point
where the contribution from the variance-induced spread in the overall
distribution of voltages begins to play a dominant role in determining the
density near threshold (see equation 4.3).
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By comparing the gain curves for mean and variance modulations, we
have demonstrated that these gain curves have a complementary depen-
dence on baseline parameters at high frequencies. This complementarity
implies that in an LIF model driven by a single Poisson input train, the
gain function relating high-frequency modulations in Poisson input rate to
output spike probability is similar for models operating in the regular and
random regimes of spiking (see Figure 3). Previously we have shown that in
the perfect integrate-and-fire model (without leak), this complementarity is
exact and covers all frequencies: low-pass responses to perturbations in the
mean are exactly complementary to high-pass responses to perturbations
in the variance, so that responses to Poisson inputs have a uniform gain of
one (Pressley & Troyer, 2009).

We speculate that the high-frequency response properties of integrate-
and-fire-like neurons, including response complementarity, are dominated
by the probability density dynamics within the boundary layer just below
spike threshold. Across models, responses are determined by a generalized
version of equation 2.6, with firing rates proportional to the probability of
being near threshold multiplied the probability of crossing threshold con-
ditioned on the voltage already being near threshold (Troyer, 2006; Helias,
Deger, Diesmann, & Rotter, 2010). At very high modulation frequencies,
the distribution of voltages does not have time to change (Silberberg et al.,
2004; Masuda, 2006), and responses are determined by the probability that
trajectories already near threshold go on to produce an action potential. For
models where synaptic noise has a finite correlation time, changes in the
mean current, as well as changes in the input variance, contribute to the
conditional probability of crossing threshold (Fourcaud & Brunel, 2002),
resulting in a finite gain in response to high-frequency modulations of
the mean input current (Brunel et al., 2001). For models in which the LIF
assumption of instantaneous spike initiation is relaxed by including nonlin-
ear voltage-dependent currents (Fourcaud-Trocme, Hansel, van Vreeswijk,
& Brunel, 2003; Gutkin & Ermentrout, 1998), spikes take a millisecond or so
to initiate, and responses to very high-frequency modulations are filtered
out (Naundorf et al., 2005; Fourcaud-Trocme and Brunel, 2005).

If noninstantaneous spiking is included in models expected to have
finite high-frequency responses (either variance modulations or mean
modulations with correlated noise), one expects gain curves to be quali-
tatively similar to Figure 1A: low pass with a cutoff that is substantially
higher than expected from membrane integration. However, the dynamic
mechanisms in the two cases are substantially different, with cutoff fre-
quencies for models with finite spike times in the range of several hundred
Hz (Naundorf et al., 2005; Fourcaud-Trocme & Brunel, 2005). At this point,
it is unclear whether the cutoff frequencies in the ranges of tens of Hz, for
the basic LIF model, are chiefly due to dynamics near threshold or result
from more global dynamics having to do with integration and spike reset.

Consistent with previous studies, we found that the LIF model dis-
plays response resonances—regions of enhanced gain around a relatively
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narrow range of moderate frequencies (Knight, 1972b; Lindner &
Schimansky-Geier, 2001). Such resonances are commonly found when os-
cillatory systems are driven at their natural frequency. Consistent with this
notion, resonances for modulations in the mean are found only in the oscil-
latory regular firing regime, and the peak resonance frequency is very close
to the baseline firing rate. In contrast, the peak frequencies of resonances
for modulations in the variance persist into the random regime and are
significantly greater than the underlying baseline firing rates (see Figure
2B). In both cases, the enhanced gain is likely to result from a dynamic in-
teraction between the processes of synaptic integration and spike initiation.
As a result, these effects cannot be easily captured in the cascade descrip-
tion, where the two processes are separated, nor will they be understood
by focusing exclusively on the dynamics near spike threshold.

Spurred by results obtained in simple models, several in vitro studies
have investigated cortical response properties by injecting noisy currents
designed to mimic in vivo patterns of synaptic input. Early studies used
stationary statistics and focused on determining the shape of the steady-
state response function (Chance, Abbott, & Reyes, 2002; Fellous, Rudolph,
Destexhe, & Sejnowski, 2003; Rauch, La Camera, Luscher, Senn, & Fusi,
2003; Giugliano, Darbon, Arsiero, Luscher, & Streit, 2004; La Camera et al.,
2006; Arsiero, Luscher, Lundstrom, & Giugliano, 2007). More recently, this
approach has been used to investigate step changes (Silberberg et al., 2004)
and sinusoidal modulations (Kondgen et al., 2008; Boucsein et al., 2009)
of the input current statistics. While there is general agreement between
theory and experiment, the point-neuron models considered cannot be ex-
pected to match the complexity of real neuronal responses. However, simple
models can reveal robust qualitative relationships between input and neu-
ronal parameters and the resulting magnitude of neuronal response. These
relationships are most likely to be understood by quantifying responses
to systematic changes in input parameters, such as those considered here.
Lacking a deeper understanding of simple models, such as the LIF, it will
be difficult to determine if the complex dynamics of real neurons stem
from greater biological detail or follow directly from the basic dynamics of
integrate, fire, and reset.
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