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The effect of co-colonization with community-acquired
and hospital-acquired methicillin-resistant Staphylococcus

aureus strains on competitive exclusion

Joanna Pressleya, Erika M. C. D’Agatab, and Glenn F. Webba

a1527 Stevenson Center, Department of Mathematics, Vanderbilt University, Nashville,
TN 37240, USA

bDivision of Infectious Diseases, Beth Israel Deaconess Medical Center, 330 Brookline
Ave, East Campus Mailstop SL-435G, Harvard Medical School, Boston, MA 02215, USA

Abstract

We investigate the in-hospital transmission dynamics of two methicillin re-
sistant Staphylococcus aureus (MRSA) strains: hospital-acquired methicillin
resistant Staphylococcus aureus (HA-MRSA) and community-acquired me-
thicillin resistant Staphylococcus aureus (CA-MRSA). Under the assump-
tion that patients can only be colonized with one strain of MRSA at a time,
global results show that competitive exclusion occurs between HA-MRSA
and CA-MRSA strains; the strain with the larger basic reproduction ratio
will become endemic while the other is extinguished. Because new studies
suggest that patients can be concurrently colonized with multiple strains
of MRSA, we extend the model to allow patients to be co-colonized with
HA-MRSA and CA-MRSA. Using the extended model, we explore the ef-
fect of co-colonization on competitive exclusion by determining the invasion
reproduction ratios of the boundary equilibria. In contrast to results de-
rived from the assumption that co-colonization does not occur, the extended
model rarely exhibits competitive exclusion. More commonly, both strains
become endemic in the hospital. When transmission rates are assumed equal
and decolonization measures act equally on all strains, competitive exclu-
sion never occurs. Other interesting phenomena are exhibited. For example,
solutions can tend toward a co-existence equilibrium, even when the basic
reproduction ratio of one of the strains is less than one.
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population model, two-strain model, disease transmission, co-existence,
co-infection

Preprint submitted to Journal of Theoretical Biology February 12, 2015



Correspondence to:
Joanna Pressley
1527 Stevenson Center
Department of Mathematics
Vanderbilt University
Nashville, TN 37240
Phone: 615.322.6668
Fax: 615.343.0215
Email: j.pressley@vanderbilt.edu

2



1. Introduction

Methicillin-resistant Staphylococcus aureus is a gram-positive bacterium
that has historically been associated with hospital-acquired, or nosocomial,
infections. Traditionally, infections due to the hospital-acquired MRSA
strain (HA-MRSA) occurred predominantly in debilitated and elderly pa-
tients [22]. MRSA causes serious infections and is implicated in a large
percentage of hospital deaths [19]. Recently, a new strain of MRSA has
emerged in the community (CA-MRSA) which is genetically different from
HA-MRSA [4, 15]. Unlike HA-MRSA, CA-MRSA infects otherwise healthy
young people [4, 15]. Studies show that CA-MRSA is spreading through
the community and inevitably into the hospitals [10, 29, 33]. Some studies
suggest that CA-MRSA is eclipsing HA-MRSA in hospitals [31]. In [35],
a model was presented which supports this hypothesis, exhibiting competi-
tive exclusion, whereby the MRSA strain with the larger basic reproduction
ratio out-competes the other strain and becomes dominant in the hospital
setting, while the other strain is extinguished [12, 35]. An assumption of
the model is that a single patient is never co-colonized with both HA-MRSA
and CA-MRSA.

However, recent studies suggest that patients can be co-colonized with
different strains of MRSA simultaneously [9]. A single patient can also be
co-colonized with MRSA and other bacterial species [23]. Co-colonization
can cause serious problems since genes for antimicrobial resistance can be
horizontally transferred between different bacterial species resulting in new
highly resistant strains. Creating a model that allows for co-colonization in a
single patient is necessary to understand the transmission dynamics of mul-
tiple strains in a hospital setting. Such a model also allows us to understand
how interventions such as hand-hygiene measure compliance and decoloniza-
tion rate affect the spread of the bacteria through the hospital. Furthermore,
the model will help us to understand the effect of co-colonization on com-
petitive exclusion.

We know of no study which examines co-colonization in the hospital
setting. However, numerous mathematical models have been developed to
examine the dynamic interplay between two or more diseases in a single
host [1, 2, 5–8, 11, 16, 20, 24–27, 32, 34]. Mathematically, there is little
difference between studying co-infection and co-colonization. However, the
modes of transmission, population size and structure, and treatment ap-
proaches differ. For instance, mathematical models have been developed
to study the co-existence of pathogens, when patients can become immune
after infection, or removed from the population for other reasons such as
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vaccine [1, 5, 7, 16, 20, 27, 32]. These models are SIR type (susceptible-
infected-removed) models, whereas, in the hospital setting, decolonization
measures allow patients to return to the susceptible class. Researchers have
studied co-infection in SIS (susceptible-infected-susceptible) type models
[2, 6, 8, 11, 24–26, 34] which are more appropriate. However, these works
studied pathogens other than MRSA, in non-hospital settings, and therefore
these models differ in significant ways, such as treatments, possible popu-
lation size, the number of compartments, ease of deriving global results,
and most importantly the paths between compartments, which define the
transmission routes.

As a first step to understanding the effect of co-colonization on the trans-
mission dynamics of MRSA in the hospital setting, we develop a reduced
version of the model presented in [35], eliminating the infected compart-
ments, which reduces the model to three compartments: S - susceptible, C
- only colonized with CA-MRSA, and H - only colonized with HA-MRSA.
In the hospital setting, the total population size is well-approximated by a
conserved population, N - the number of beds in the hospital. Conserving
the population size allows us to reduce the dimension of the model to two,
and derive global results showing competitive exclusion always occurs when
both diseases are present and have basic reproduction ratios greater than
one.

We then extend the model to investigate the effect of co-colonization
on competitive exclusion, allowing single patients to be colonized with CA-
MRSA and HA-MRSA simultaneously. We add a compartment B - both,
which accounts for patients that are co-colonized with HA-MRSA and CA-
MRSA. Patients can become co-colonized after first becoming colonized with
HA-MRSA or CA-MRSA and through decolonization measures, can return
to the susceptible class, making the model SIS type. We then analyze
the model and use numerical simulations to understand the effects of co-
colonization on competitive exclusion, as well as to determine how different
parameters affect the number of patients that are co-colonized. At first, we
investigate a general model that assigns different parameters to transmis-
sion rates, decolonization rates, and length of stays. Since there is limited
evidence that transmission rates differ between MRSA strains, or that de-
colonization affects the strains differently, we next analyze the model with
all of the transmission rates and decolonization rates equal. The difference
between strains is then defined by a single parameter, the length of stay in
the hospital. We also investigate the efficacy of two standard interventions,
decolonization and compliance with hand-hygiene measures.

Although the model is fairly simple, complex dynamics are revealed.
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When transmission rates are assumed equal and the difference in the basic
reproduction ratios is solely due to the length of stay of patients colonized
with HA-MRSA versus colonized with CA-MRSA, competitive exclusion
never occurs, and both strains become endemic in the hospital. In the
more general case, where transmission rates of the strains are independent,
competitive exclusion depends not only on the basic reproduction ratios for
CA-MRSA and HA-MRSA, but also on the rates which patients become co-
colonized, as well as the efficacy of decolonization and hand-washing compli-
ance. Additionally we find that, due to co-colonization, a strain may become
endemic in the hospital even when its basic reproduction ratio is less than
one.

The paper is organized as follows. Section 2 gives a brief overview of
the models. In section 3, the existence and stability of boundary and co-
existence equilibria are analyzed for a model that does not allow a sin-
gle patient to be co-colonized and then for a model which does allow co-
colonization. In section 4, models in which decolonization strategies differ
for the strains, which allow patients to be co-colonized directly from the
susceptible state, or which allow the total number of patients in the hospital
to vary, are presented and analyzed. In section 5, we numerically investigate
how two standard interventions, hand-hygiene measures and decolonization,
affect transmission dynamics. In section 6, we summarize our findings.

2. Methods

Initially we analyze a reduced model similar to the model presented in
[12, 35]. In this model, the “single-colonization model,” susceptible patients
in a N = 400 bed hospital can be colonized with either CA-MRSA or HA-
MRSA but not co-colonized. The single-colonization model differs from
the model in [35] by focusing on colonization and not including infected
states. The single-colonization model produces similar local results as the
model in [12, 35]; the MRSA strain with the larger basic reproduction ratio
(RC

0 or RH
0 ) competitively excludes the other strain from the hospital, even

when both basic reproduction ratios are larger than 1. Here, the single-
disease basic reproduction ratio RC

0 or RH
0 is a threshold parameter which

determines whether CA-MRSA or HA-MRSA will become endemic in the
hospital, due to entrance (into a disease free population) of a single colonized
patient (notation and description for basic and invasion reproduction ratios
are summarized in D.1, Table D.2). Adding the assumption that the total
size of the population equals the number of beds in the hospital, we are
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able to reduce the model to two dimensions and derive a global competitive
exclusion result.

Next, we extend the single-colonization model to the “co-colonization
model,” by adding a fourth possible patient state, B, in which patients are
co-colonized with both CA-MRSA and HA-MRSA. Patients can enter B
from either C or H. For instance, the transition to B from C occurs with
a transmission rate βCH when a patient in the C state comes into contact
with a health care worker who has become colonized with HA-MRSA by
coming into contact with a patient in either the H state or B state. Note
that patients must enter one of the single colonized states before entering
the co-colonized state (results are similar if patients are able to become co-
colonized directly, section 4.2). Next we investigate which parameters cause
competitive exclusion or lead to indefinite co-existence of both strains in the
hospital.

3. Model Description and Results

3.1. Basic SIS model

First assume that there is only one strain of MRSA in the hospital,
HA-MRSA. Thereby, patients exist in one of two possible states:

• S(t) = number of patients susceptible at time t

• H(t) = number of patients colonized with HA-MRSA at time t.

After a breakdown in hand-hygiene practices, healthcare workers can be-
come colonized by coming into contact with colonized patients. Suscepti-
ble patients can become colonized when visited by contaminated healthcare
workers. Susceptible patients become colonized with HA-MRSA at a trans-
mission rate (1 − η)β̂H . Here, η represents compliance with hand-hygiene
practices (0 ≤ η ≤ 1). The lengths of stay for susceptible patients and
patients colonized with HA-MRSA are 1/δS and 1/δH , respectively. Decol-
onization efficacy is given by αH . The percentage of patients entering the
hospital colonized with HA-MRSA is given by 100λH . The total number
of patients entering the hospital per day is given by Λ. The equations that
govern the transmission dynamics of HA-MRSA in the hospital are given by

dS

dt
= Λ(1− λH)− (1− η)β̂HSH

N
+ αHH − δSS (1)

dH

dt
= ΛλH +

(1− η)β̂HSH

N
− (δH + αH)H. (2)
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To simplify the analysis, we absorb (1−η)/N into the transmission term
so that

βH =
(1− η)β̂H

N
. (3)

We then conserve the total population of patients at size N , the number of
beds in the hospital. Allowing the population size to vary does not qualita-
tively change the local results of any of the following models, while conserv-
ing the population allows us to reduce the dimensionality of the models and
therefore to derive the global stability of the systems. Here, the conserva-
tion condition reduces the system to a single equation, by replacing S with
N −H.

To determine if transmission dynamics alone cause the strains to remain
in the hospital indefinitely, we let λH = 0. This can be seen as a perfect
screening model, where all patients are screened for bacteria upon entrance
and screening is 100% effective. Under these refinements, transmission dy-
namics are governed by the basic SIS model under conservation,

dH

dt
= βH(N −H)H − (δH + αH)H. (4)

We define RH
0 as the basic reproduction ratio when only HA-MRSA

exists in the hospital. RH
0 is easily found using standard linearization tech-

niques,

RH
0 =

βHN

(δH + αH)
. (5)

The disease-free equilibrium (DFE, EH
0 ) (see D.1, Table D.1 for descrip-

tion of all equilibria),
EH

0 : H = 0 (6)

for the basic SIS model is globally asymptotically stable when RH
0 < 1. Note

that here S = N . Otherwise there is a unique boundary equilibrium, where
HA-MRSA remains indefinitely in the hospital,

EH : H =
NβH − δH − αH

βH
= N

(
1− 1

RH
0

)
, (7)

which is globally asymptotically stable [21].
Symmetrically, for the community strain in the absence of the hospital

strain, (C(t) = number of patients colonized with CA-MRSA at time t, and
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S = N − C),

RC
0 =

βCN

(δC + αC)
. (8)

Here, RC
0 is the basic reproduction ratio when only CA-MRSA exists in

the hospital. Susceptible patients become colonized with CA-MRSA with a
transmission rate of (1 − η)β̂H and βC = (1 − η)β̂C/N . The length of stay
for patients colonized with CA-MRSA is 1/δC and decolonization efficacy
is given by αC . The percentage of patients entering the hospital colonized
with CA-MRSA (100λC) would be included in the model in the same form
as in system 2, but here has also been set to zero.

Again, the DFE,
EC

0 : C = 0, (9)

is globally asymptotically stable when RC
0 < 1 (here also, S = N). Otherwise

there is a unique boundary equilibrium,

EC : C =
NβC − δC − αC

βC
= N

(
1− 1

RC
0

)
, (10)

which is globally asymptotically stable [21].
RC

0 and RH
0 increase when transmission (βH or βC) increases. The ba-

sic reproduction ratios are also dependent on the length of stay of patients
colonized with the strains (1/δC and 1/δH), as well as the efficacy of decolo-
nization (αC and αH). Therefore, if one strain is more highly transmissible
than the other, its basic reproduction ratio will be higher. Additionally, if
one strain causes more severe infections or only affects populations of the
hospital that on average stay longer in the hospital (such as the elderly),
then the length of stay will be longer and the R0 value for that strain will
be larger.

3.2. Single-colonization Model

Next, we extend the model to be similar to [35], where patients can
only be colonized with a single strain of MRSA (co-colonization with HA-
MRSA and CA-MRSA is not included but both strains exist in the hospital).
Therefore, patients are in one of the three states, S, H or C, which are now
included in the model together. The equations that govern the transmission
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dynamics of CA-MRSA and HA-MRSA in the hospital are then given by

dC

dt
= βC(N − C −H)C − (δC + αC)C (11)

dH

dt
= βH(N − C −H)H − (δH + αH)H, (12)

where the parameter definitions are the same as in the basic SIS models and
where now, S = N − C −H (figure 3.2).

S

C H

EH1 - ΛC - ΛH L

ΑC

ΒC
ΒH

ΑH

∆H

∆S∆S

∆C

E ΛC E ΛH

3.3. Single-colonization Results

The single-colonization model, equations (11) and (12), shows qualita-
tively similar local results as [35]. These local results suggest that com-
petitive exclusion occurs. When 1 < RC

0 < RH
0 , the boundary equilibrium

Esc
H : (C,H) = (0, N(1 − 1/RH

0 )) is stable while the boundary equilibrium
Esc

C : (C,H) = (N(1− 1/RC
0 ), 0) is unstable (see D.1 for equilibria and local

stability results). When 1 < RH
0 < RC

0 , E
sc
C is stable while Esc

H is unstable.
Since the single-colonization model is two-dimensional, we are able to

extend these results to show global competitive exclusion occurs.

Theorem 3.1. The disease-free equilibrium, Esc
0 = (C,H) = (0, 0) exists

for all parameters for the single-colonization model, equations (11) and (12),
and is globally asymptotically stable if RC

0 and RH
0 are both less than one.

This global result shows that, independent of the initial number of pa-
tients colonized with either strain, if neither strain would become endemic
in the absence of the other, neither will become endemic when both are
present.

Theorem 3.2. If 1 < RC
0 < RH

0 and if there are initially some patients
colonized with HA-MRSA (the initial condition does not start on the C-axis),
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the boundary equilibrium Esc
H exists and is globally asymptotically stable.

Also, the boundary equilibrium Esc
C exists and is globally unstable. Therefore,

competitive exclusion occurs.

A symmetric result (exchange C’s with H’s) holds when 1 < RH
0 < RC

0 .
These global results show that if either strain would have become en-

demic in the absence of the other strain, then the dominant strain (the
one with the larger basic reproduction ratio) will become endemic while the
other will be extinguished. Global stability, as opposed to local stability,
shows that competitive exclusion will occur independently of how many pa-
tients are originally colonized with each strain (as long as there is initially
at least one patient colonized with each strain).

Note here that if the inferior strain has an R0 < 1 while the dominant
strain has an R0 > 1, then the dominant strain will become endemic and
the inferior strain will be extinguished over time. In this case, the boundary
equilibrium associated with the inferior strain does not exist.

Proofs for theorems 3.1 and 3.2 are given in Appendix A.

3.4. Co-colonization model

Next we extend the model, equations (11) and (12), to allow patients to
be concurrently colonized with CA-MRSA and HA-MRSA. The compart-
ment dynamics are now governed by the equations:

dC

dt
= (δSS + δCC + δHH + δBB)λC+ (13)

βCS(C +B)− βCHC(H +B)− (δC + αC)C

dH

dt
= (δSS + δCC + δHH + δBB)λH+ (14)

βHS(H +B)− βHCH(C +B)− (δH + αH)H

dB

dt
= (δSS + δCC + δHH + δBB)λB+ (15)

βCHC(H +B) + βHCH(C +B)− (δB + αB)B.

Here, B signifies the compartment of patients co-colonized with CA-MRSA
and HA-MRSA. Also now, from the conservation condition, S = N−C−H−
B. The transmission rates are (1 − η)β̂CH for patients colonized with CA-

MRSA becoming co-colonized with both strains, and (1−η)β̂HC for patients

colonized with HA-MRSA becoming co-colonized; βCH = (1−η)β̂CH/N and

βHC = (1− η)β̂HC/N . The length of stay for co-colonized patients is 1/δB.
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Decolonization efficacy is given by αB for co-colonized patients. All other
parameters remain the same (figure 3.4).

Again, to analyze the transmission dynamics in the hospital, thinking of
this as a perfect screening model, we let λC = λH = λB = 0, where 100λB

is the percentage of patients entering the hospital co-colonized.

S

C H

EH1 - ΛC - ΛH - ΛBL

ΑC

ΒC ΒH

ΑH

∆H

∆S

B
ΒHCΒCH

ΑB

E ΛB∆B

∆C

E ΛC
E ΛH

3.5. Co-colonization Results

Theorem 3.3. The DFE, Ecc
0 : (C,H,B) = (0, 0, 0), of the co-colonization

model, equations 13 - 15, exists and is locally asymptotically stable if RC
0

and RH
0 < 1. (The basic reproduction ratio for the co-colonization model,

Rcc
0 = max{RH

0 , RC
0 }.)

This result suggests that, even with the allowance of co-colonization, if
neither strain would have become endemic in the hospital in the absence of
the other, neither will be endemic in the presence of the other.

Besides the DFE, there are two other analytically known equilibria, the
boundary equilibria. Each of these represents the state where one strain
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of MRSA is endemic in the hospital while the other strain is extinguished.
If one of these is locally stable while the other is unstable, competitive
exclusion is suggested. If both are unstable, competitive exclusion does not
occur. These equilibria are

Ecc
H : (C,H,B) = (0, N(1− 1/RH

0 ), 0) (16)

Ecc
C : (C,H,B) = (N(1− 1/RC

0 ), 0, 0). (17)

We use the corresponding invasion reproduction ratios, IccH and IccC , to
determine when only the hospital strain or only the community strain exclu-
sively remains endemic in the hospital over time. I, the invasion reproduc-
tion ratio, is a threshold parameter similar to R0. The difference between
them is that R0 is a threshold parameter, which, when greater than one,
signifies that at least one strain will become endemic in the hospital and
when less than one signifies that both strains will be extinguished over time.
In this way, it describes the stability of the DFE; when R0 > 1 the DFE
is unstable and when R0 < 1 the DFE is stable. Whereas, I is a threshold
parameter that determines when a secondary strain will become endemic in
the presence of another strain which is endemic in the hospital [11, 34, 37].
This can mean that the new strain replaces the old strain, and the old strain
is extinguished over time or that both strains are endemic over time leading
to co-existence. For the co-colonization model, I describes the stability of
the boundary equilibria (see D.1, Table D.2). For example, IccC is the in-
vasion reproduction corresponding to the boundary equilibrium Ecc

C , which
represents only CA-MRSA being endemic in the hospital. When IccC > 1,
then Ecc

C is unstable (just as the DFE is unstable when R0 > 1); the intro-
duction of one patient with HA-MRSA would push the system away from
the boundary equilibrium containing only CA-MRSA and susceptible pa-
tients, (Ecc

C ), towards an equilibrium where H is positive and HA-MRSA
becomes endemic.

It is not possible to have an equilibrium where both C and H are positive
and B = 0. This is apparent if we look at the equation describing the rate
of change of B. If C > 0 and H > 0 then dB

dt > 0, and therefore B cannot
equal zero in the asymptotic state.

There is a fourth equilibrium, the “co-existence equilibrium,” that is
found in numerical solutions which has a known form under realistic as-
sumptions (shown below) but does not have a general known form. All
compartments are positive in the fourth equilibrium, and both diseases re-
main endemic over time. We expect this equilibrium to be stable when the
three analytically known equilibria are concurrently unstable.
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Theorem 3.4. Ecc
H exists if RH

0 > 1, is locally asymptotically stable if
IccH < 1 and is locally asymptotically unstable if IccH > 1, where IccH is the
invasion reproduction ratio given by

IccH =
RC

0

RH
0

 βCH

(αB+δB)N
(
1− 1

RH
0

)
+ 1

βCH

(αC+δC)N
(
1− 1

RH
0

)
+ 1

+
βHC

αB + δB
N

(
1− 1

RH
0

)
. (18)

Symmetric results hold for Ecc
C and IccC , the boundary equilibrium and

invasion reproduction ratio where only CA-MRSA is endemic.
IccH has a complicated form, but we can extract some interesting biological

ideas from the equation. First, if we let βCH = βHC = 0, the system reduces
to the single-colonization model, and IccH = IscH = RC

0 /R
H
0 . Otherwise, IccH

differs from IscH in that it is dependent not only on RC
0 and RH

0 , but also
on the rates of transmission to the co-colonized state, as well as the lengths
of stay of patients colonized only with CA-MRSA as well as patients co-
colonized.

When IccH > 1, the boundary equilibrium Ecc
H is unstable. This means

that over time, HA-MRSA will not be the only strain remaining in the
hospital, and it is likely that CA-MRSA invades, also becoming endemic.
The system then tends toward the co-existence equilibrium. The only other
possibilities are both strains are extinguished or CA-MRSA alone remains
endemic. Both strains cannot be extinguished, because that would mean the
DFE would be stable, and since we assumed RH

0 > 1, the DFE is unstable.
When 1 < RC

0 < RH
0 , most parameters that make IccH > 1 also make IccC > 1.

This is because RC
0 /R

H
0 < RH

0 /RC
0 and (1 − 1/RH

0 ) < (1 − 1/RC
0 ), the

smaller terms being part of IccH and the larger terms being part of IccC . When
both IccH and IccC are greater than one, both strains become endemic in the
hospital over time, because neither boundary equilibria nor the disease-free
equilibrium is stable.

There is limited evidence that transmission rates differ between MRSA
strains, or that antimicrobial agents affect the strains differently. Therefore,
we next assume that all transmission rates are equal and antimicrobial agents
act equally.

Theorem 3.5. If β = βC = βH = βCH = βHC , and if α = αC = αH = αB,

Icc2H =
1

1− 1
RH

0
+ 1

RC
0

+RH
0 − 1, (19)

and competitive exclusion will not occur.
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Under these conditions (all β′s are equal and all α′s are equal) a known
form exists for the co-existence equilibrium (see Appendix C for the form of
the co-existence equilibrium).

Corollary 3.6. Under the assumptions of theorem 3.5,

Icc2H > 1 (20)

whenever

RC
0 >

1
1

2−RH
0
+ 1

RH
0
− 1

. (21)

Notice that Icc2H > 1 even for some values where RC
0 < 1. In fact, when

RH
0 > 2, Icc2H > 1 for all possible values of RC

0 (RC
0 > 0) (see figure 3.5).

This counterintuitive result says that the invasion reproduction ratio of the
dominant strain can be larger than one even when the basic reproduction
ratio of the inferior strain is less than one. When RC

0 < 1 and condition 21 is
true, co-colonization causes CA-MRSA to become endemic in the hospital.
Under the same parameters, CA-MRSA would have been extinguished over
time without co-colonization.
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Since all β′s are equal and all α′s are equal, the only difference between
RC

0 and RH
0 lies in the lengths of stay of patients colonized with CA-MRSA

and patients colonized with HA-MRSA, CLOS = 1/δC and HLOS = 1/δH ,
respectively. The length of stay of co-colonized patients (BLOS) is assumed
to be the longer of CLOS and HLOS (BLOS = 1/δB = max{1/δC , 1/δH}),
since they are colonized with the dominant strain. But co-colonized patients
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are also colonized with the inferior strain. Therefore, due to co-colonization,
the effective length of stay of patients with the inferior strain increases,
causing it to remain in the hospital even for parameters where RC

0 < 1 if
they also make condition 21 true.

Numerical simulations suggest that the co-existence equilibrium exists
and is globally asymptotically stable if and only if the invasion reproduction
ratio of the dominant strain, the strain with the larger basic reproduction
ratio, is greater than one (see Appendix C for details). All numerical simu-
lations were performed using Mathematica (Wolfram Research, Inc).

If there are other differences between the strains besides the lengths of
stay, such as different transmission rates or different rates of decolonization
(not all β′s or α′s are equal), then equation 18 determines when IccH > 1. In
this case, IccH is not dependent only on RH

0 and RC
0 . It is also dependent on

the rates that patients become co-colonized, as well as the decolonization
rates, and CLOS and BLOS. For example, if patients that are colonized
with HA-MRSA are more likely to become colonized with CA-MRSA (in-
crease the transmission rate βHC while keeping all other transmission rates
equal) then the second term in equation 18 increases. In this case, there
are smaller values of RC

0 than those from condition 21 which would make
IccH > 1, and therefore co-existence likely.

Proofs of theorems 3.3, 3.4, and 3.5 are given in Appendix B.

4. Model Variations

4.1. Different Antimicrobial Strategies

In the case where strains are removed with different antimicrobial agents
[4], decolonization will remove one strain at a time and patients will transfer
to either the C compartment or to the H compartment before being able to
transfer to the S compartment.
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The equations governing transmission dynamics are then

dC

dt
= (δSS + δCC + δHH + δBB)λC+ (22)

βCS(C +B)− βCHC(H +B)− (δC + αC)C + αBCB

dH

dt
= (δSS + δCC + δHH + δBB)λH+ (23)

βHS(H +B)− βHCH(C +B)− (δH + αH)H + αBHB

dB

dt
= (δSS + δCC + δHH + δBB)λB+ (24)

βCHC(H +B) + βHCH(C +B)− (δB + αBC + αBH)B.

Here, αBC and αBH represent the efficacy of removing the CA-MRSA strain
or the efficacy of removing the HA-MRSA strain from a co-colonized patient,
respectively. The parameters are written in the most general form but are
likely to be equal to αH and αC , respectively.

Analyzing the new equations with the same methods used for the co-
colonization model shows that the invasion reproduction ratio is the same
(equation 18), except we replace αB with αBC + αBH .

4.2. Patients are Directly Co-colonized

We can modify the model by allowing patients to become co-colonized
with both CA-MRSA and HA-MRSA directly from the susceptible state,
due to contact with healthcare workers who are co-colonized. The only
change to the system of equations is adding βBSB patients per time from
the S to the B compartment. Then

dB

dt
= (δSS + δCC + δHH + δBB)λB+ (25)

βCHC(H +B) + βHCH(C +B)− (δB + αB)B + βBSB.
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If the system remains conserved with S = N −C −H −B, and if we let

TB = βHCN

(
1− 1

RH
0

)
−(αB + δB) +

NβB

RH
0

(26)

TC =
βCN

RH
0

−
(
αC + δC + βCHN

(
1− 1

RH
0

))
(27)

NB = βHCN

(
1− 1

RH
0

)
+βCHN

(
1− 1

RH
0

)
(28)

NC =
βCN

RH
0

, (29)

EH is locally asymptotically stable when the following two conditions are
met

1. TB + TC < 0

2. NBNC < TBTC .

The proof is the same as for theorem 3.4, except that we can no longer
say that NB > TB. Therefore, both conditions must be met for stability.

4.3. The Hospital Population is Not Conserved

If instead of conserving the population, we allow entrance at a rate of
Λ, the invasion reproduction ratio is similar. The same methods show that
under this condition, IpncH is

IpncH =
RC

0

RH
0

 βCH

(αB+δB)
Λ
δH

(
1− 1

RH
0

)
+ 1

βCH

(αC+δC)
Λ
δH

(
1− 1

RH
0

)
+ 1

+
βHC

αB + δB

Λ

δH

(
1− 1

RH
0

)
, (30)

where in this case Epnc
H : (S,C,H,B) = ((αH + δH)/βH , 0,Λ/δH − δS(αH +

δH)/(βHδH), 0), RH
0 = ΛβH/(δS(αH + δH)) and RC

0 = ΛβC/(δS(αC + δC)).

5. Numerical Results

Two standard interventions, hand-hygiene measures and decolonization,
affect transmission. Therefore, we next investigated the effect of these two
interventions on the transmission dynamics of the co-colonization model.
We assume that all transmission rates and decolonization rates are equal.

Hand-hygiene is a simple, effective, and inexpensive intervention. How-
ever, since washing hands takes time and is necessary after visiting each
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patient, health care workers commonly do not comply completely with hand-
hygiene measures. Thus, we varied hand-hygiene compliance, η, between 0
and 1, zero signifying no compliance and 1 signifying perfect compliance.
For each η value, we simulated the system for two years. In figure 5, the
results of this simulation are shown. As hand-hygiene compliance increases,
transmission (β = (1 − η)β̂/N) changes, and therefore RC

0 , R
H
0 , and Icc2H

change (figure 5 bottom). After two years, both strains remain in the hos-
pital, as long as Icc2H > 1. Notice that this is true, even though RC

0 is less
than one for some values of η where Icc2H > 1. Once Icc2H becomes less than
one, EH becomes stable, and only HA-MRSA remains in the hospital.

Besides being much more expensive than hand-hygiene measures, decol-
onization strategies have limited efficacy, since emergence of resistance to
the decolonizing agent develops rapidly. To compare the effects of increased
decolonization efficacy with hand-hygiene compliance, we next investigated
how the efficacy of decolonization affects transmission. We simulated the
system for two years, for varying degrees of decolonization efficacy, α, from
0% per day to 100% per day (0% to 10% shown, figure 5). As with hand-
hygiene compliance, both strains remain in the hospital until Icc2H decreases
below one (figure 5 bottom). This is true for lower values of α where RC

0

is less than one. Increasing decolonization efficacy quickly reduces the per-
centage of the patients colonized. The invasion reproduction ratio Icc2H drops
below one with just 2% per day decolonization, leaving only HA-MRSA in
the hospital. When decolonization efficacy reaches 6%, both strains are erad-
icated over time and the system tends towards the disease-free equilibrium.

6. Summary

Historically, there has been one known strain of MRSA in the hospital,
HA-MRSA. The majority of HA-MRSA infections occurred in elderly or de-
bilitated patients. In recent years, a new strain of MRSA (CA-MRSA) has
been found in the population at large, infecting young and otherwise healthy
people. As CA-MRSA spreads through the community, it is inevitably en-
tering the hospital, possibly infecting a larger population in the hospital
than HA-MRSA would have alone. Understanding how MRSA is transmit-
ted in the hospital setting, when there are multiple strains present, is key to
determining appropriate interventions and antimicrobial treatments. Cre-
ating mathematical models to elucidate transmission dynamics augments
epidemiological studies, which cannot easily determine dynamics because of
the numerous factors contributing to bacteria transmission.

18



0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

Hand-hygiene HΗL

%
C

ol
on

iz
ed

at
2

ye
ar

s

Co-colonized

CA-MRSA

HA-MRSA

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5

Hand-hygiene HΗL

R
0

I0

IH
cc2

R0
C

R0
H

19



0.00 0.02 0.04 0.06 0.08 0.10
0

5

10

15

20

Decolonization HΑL

%
C

ol
on

iz
ed

at
2

ye
ar

s

Co-colonized

CA-MRSA

HA-MRSA

0.00 0.02 0.04 0.06 0.08 0.10
0.6
0.8
1.0
1.2
1.4

Decolonization HΑL

R
0

I0

IH
cc2

R0
C

R0
H

20



One issue is whether or not MRSA strains are competing, and if they are,
will one strain drive the other strain out of the hospital, causing competi-
tive exclusion. Possible phenotypic characteristics which would distinguish
strains are their transmission rates, efficacy of decolonization treatments for
each strain, as well as the average length of stay of patients colonized with
the strain. If any of these factors differ between CA-MRSA and HA-MRSA,
one strain will have a larger basic reproduction ratio (R0).

Under the assumption that a single patient cannot be colonized with
both strains simultaneously, previous work has indicated with local results
that competitive exclusion will occur [12, 35]; when both strains have a
basic reproduction ratio greater than one, the dominant strain, the one
with the larger R0, will become endemic in the hospital while the inferior
strain is extinguished over time. We confirmed these local results using a
simplified model, the single-colonization model, and derived global stability
results, which showed that competitive exclusion occurred in the hospital
independent of how many patients were originally colonized with each strain
(theorem 3.2).

The single-colonization model assumed that a single patient could not be
concurrently colonized with multiple strains of MRSA. However, recent stud-
ies have shown that a single patient can be co-colonized with multiple strains
of MRSA simultaneously [9]. Therefore, we next created a model, the co-
colonization model, in which patients could be co-colonized with CA-MRSA
and HA-MRSA. By determining and analyzing the invasion reproduction
ratios, we found that when co-colonization in a single patient is possible,
competitive exclusion is parameter dependent, and rare (theorem 3.4). In
fact, assuming that the main distinguishing characteristic between strains
is the length of stay of colonized patients, competitive exclusion never oc-
curs (theorem 3.5 and figure 3.5). Under the same assumptions, numerical
simulations suggested that the co-existence equilibrium (which has a known
form in this case) exists and is globally stable if and only if the invasion re-
production ratio of the dominant strain is greater than one. Therefore, both
strains become endemic in the hospital over time, and the system tends to-
wards the known co-existence equilibrium. Hence, even if CA-MRSA has a
competitive disadvantage, it will remain in the hospital, causing higher rates
of morbidity and mortality. We also found that both strains can become si-
multaneously endemic, even when the basic reproduction ratio of the inferior
strain is less than one (corollary 3.6). For the same parameters, the inferior
strain would have been extinguished in the absence of co-colonization.
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Appendix A.

Proof of Theorem 3.1

Proof. Consider the Lyapunov function

V = C +H. (A.1)

V is positive definite, because C ≥ 0 and H ≥ 0 and is radially un-
bounded.

dV

dt
= βC(N − C −H)C − (δC + αC)C+ (A.2)

βH(N − C −H)H − (δH + αH)H

= (βCN − (δC + αC))C + (βHN − (δH + αH))H− (A.3)

βC(C +H)C − βH(C +H)H.

When RC
0 < 1, βCN − (δC + αC) is negative. Similarly, when RH

0 < 1,
βHN − (δH + αH) is negative. For all points other than Esc

0 , the third and
fourth terms are always negative. Therefore

dV

dt
< 0 (A.4)

everywhere except at Esc
0 , where dV

dt = 0. Therefore, Esc
0 is globally asymp-

totically stable when RC
0 and RH

0 are both less than one [30].

Proof of Theorem 3.2

Proof. Let F : R2 → R2 and consider[
dC
dt
dH
dt

]
=

[
βC(N − C −H)C − (δC + αC)C
βH(N − C −H)H − (δH + αH)H

]
= F (C,H). (A.5)

The only critical points of the system are (0, 0), (0, N(1 − 1/RH
0 )) and

(N(1− 1/RC
0 ), 0).

Let Ω = {(C,H) ∈ R2|0 ≤ C ≤ N, 0 ≤ H ≤ N and 0 ≤ C +H ≤ N}.
We must first show that all trajectories that start in Ω stay in Ω (Ω is a
compact forward invariant set for the system). First, consider trajectories
starting on the C-axis. H = 0 initially, so then dH

dt = 0, and thus H = 0
for all time. Symmetrically, all solutions that start on the H-axis stay on
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the H-axis. Accordingly, solutions that start on the boundary stay on the
boundary for all time. Since F ∈ C1(R2), solutions exist and are unique.
Therefore, any solution starting in the interior of Ω cannot cross the axes.
Finally, since the system is conserved (N = S+C+H), C+H ≤ N . We see
that no solutions can cross the line H = N − C. Therefore, Ω is a compact
forward invariant set.

Since F ∈ C1(R2) and the system only has a finite number of critical
points in Ω, we know from the Poincaré-Bendixson Theorem, that the ω-
limit set of each trajectory is either a critical point, a periodic orbit, or
consists of a finite number of critical points and a countable number of limit
orbits whose α and ω-limit sets are one of the critical points [30].

We can rule out periodic orbits, for if there were any periodic orbits, we
know from index theory that a critical point would lie inside of that orbit.
But all critical points lie on the boundary of Ω. We can rule out the critical
point (0, 0) because it is locally unstable (both eigenvalues of the linearized
system are positive) when RH

0 > RC
0 > 1. Additionally, when RH

0 > RC
0 >

1, Esc
H : (C,H) = (0, N(1 − 1/RH

0 )) is locally asymptotically stable (both
eigenvalues of the linearized system are negative), and Esc

C : (C,H) = (N(1−
1/RC

0 ), 0) is a saddle point (one eigenvalue of the linearized system is positive
and one is negative) [30]. Since Esc

H is locally asymptotically stable, there
can be no trajectory whose α-limit set is Esc

H . Therefore, trajectories either
have the ω-limit set Esc

C or Esc
H .

By the Hartman-Grobman Theorem, we know that Esc
C is a topological

saddle [30]. Therefore exactly two trajectories approach Esc
C : the trajectory

below Enn
C on the C-axis, and the one above it. All other solutions which

start in a sufficiently small deleted neighborhood of Esc
C leave the neighbor-

hood as t → ±∞. Therefore, all other trajectories must tend to the only
possible ω-limit set, Esc

H . Therefore, Esc
H is globally asymptotically stable

everywhere in Ω except on the C-axis.
Therefore, competitive exclusion occurs in the single-colonization model.

Appendix B.

Proof of Theorem 3.3

Proof. If we linearize the co-colonization model about Ecc
0 , we find that the
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eigenvalues of the matrix are:

λ1 = −αB − δB (B.1)

λ2 = NβC − (αC + δC) (B.2)

λ3 = NβH − (αH + δH). (B.3)

λ1 is always negative. When RC
0 < 1 then λ2 is negative. When RH

0 < 1
then λ3 is negative. Therefore if both RC

0 and RH
0 are less than one, all three

eigenvalues are negative and Ecc
0 is locally asymptotically stable. Otherwise,

either λ2 or λ3 is positive and Ecc
0 is unstable.

Proof of Theorem 3.4

Proof. Ecc
H exists if RH

0 > 1 because H = N(1− 1/RH
0 ) > 0.

To show that Ecc
H is locally asymptotically stable, we linearize the system

around Ecc
H . Next, we compute the eigenvalues of the Jacobian of the system.

The first eigenvalue is

λ1 = −(αH + δH +NβH(1 + 2/RH
0 )). (B.4)

λ1 is negative since all values inside of parentheses are positive.
Next, let TB and TC equal

TB = βHCN(1− 1/RH
0 )− (αB + δB) (B.5)

TC = βCN/RH
0 − (αC + δC + βCHN(1− 1/RH

0 )). (B.6)

Then, the other two eigenvalues of the Jacobian can be expressed as

λ2,3 = TB + TC ±
√

(TC + TB)2 − 4(TCTB −NCNB) (B.7)

where NC = βCN/RH
0 and NB = βHCN(1− 1/RH

0 ) + βCHN(1− 1/RH
0 ).

If the following two conditions are met, the real parts of these eigenvalues
are negative:

TB + TC < 0 (B.8)

NCNB < TCTB. (B.9)

However, we see that NC > TC , since TC = NC − (αC + δC + βCHN(1 −
1/RH

0 )) where (αC+δC+βCHN(1−1/RH
0 )) > 0. Similarly NB > TB. Also,

note that NC and NB are always greater than or equal to zero. From these
two conditions, we see that NCNB < TCTB is only possible if both TC and
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TB are negative. So TB +TC < 0. Consequently, the only condition we need
for EH to be locally asymptotically stable is

NCNB < TCTB. (B.10)

From this condition, IccH is derived and is found to be

IccH =
RC

0

RH
0

 βCH

(αB+δB)N
(
1− 1

RH
0

)
+ 1

βCH

(αC+δC)N
(
1− 1

RH
0

)
+ 1

+
βHC

αB + δB
N

(
1− 1

RH
0

)
. (B.11)

IccH is less than one when condition B.10 holds.

Proof of Theorem 3.5

Proof. For competitive exclusion to occur, either Icc2H < 1 or Icc2C < 1.
Assume without loss of generality, that Ecc2

H is the dominant equilibrium,
so that RH

0 > RC
0 > 1. Then, Icc2H is

Icc2H =
RC

0

RH
0

 βCH

(αB+δB)N
(
1− 1

RH
0

)
+ 1

βCH

(αC+δC)N
(
1− 1

RH
0

)
+ 1

+
βHC

αB + δB
N

(
1− 1

RH
0

)
. (B.12)

Under the assumptions that β = βC = βH = βCH = βHC and α = αC =
αH = αB, I

cc
H becomes

Icc2H =
1

1− 1
RH

0
+ 1

RC
0

+RH
0 − 1. (B.13)

Since RH
0 > RC

0 > 1, we know that

1 >
1

1− 1
RH

0
+ 1

RC
0

>
1

2
. (B.14)

Therefore, if RH
0 > 3/2

Icc2H >
1

2
+

1

2
= 1. (B.15)

Next, consider the triangular region T = {(RH
0 , RC

0 )|1 ≤ RH
0 ≤ 3

2 and 1 ≤
RC

0 ≤ RH
0 }. Icc2H is continuous and has no critical points inside of T . Ergo,

we must only check the boundaries to find the absolute extrema of the
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function in T . The minimum value in the region is 1, and this occurs at
(RH

0 , RC
0 ) = (1, 1). Therefore, Icc2H ≥ 1 whenever RH

0 > RC
0 ≥ 1. In fact, for

RH
0 > RC

0 > 1, Icc2H > 1.
Because the model is symmetric,

Icc2C =
1

1− 1
RC

0
+ 1

RH
0

+RC
0 − 1. (B.16)

When RH
0 > RC

0 > 1, Icc2C > 1.
Since both Icc2H and Icc2C are greater than one, both Ecc2

H and Ecc2
C are

unstable. This shows that competitive exclusion will not occur.

Appendix C.

The co-existence equilibrium for

dC

dt
= βS(C +B)− βC(H +B)− (δC + α)C (C.1)

dH

dt
= βS(H +B)− βH(C +B)− (δH + α)H (C.2)

dB

dt
= βC(H +B) + βH(C +B)− (δB + α)B (C.3)

is given by

C =
1

2β(δC − δH)

[
−2N2β2 +Nβ(α− 3δC + 4δH) + (δC − δH)(3α− δC + 4δH)

+ (Nβ + δC − δH)
√

α2 + (2Nβ + δC)2 − 8(Nβ + δC)δH + 8δ2H + α(8δH − 4Nβ − 6δC)

]
H =

1

2β(δC − δH)

[
−2N2β2 + 2(δC − δH)(α+ δH) +Nβ

(
α− δC + 2δH

+
√

α2 + (2Nβ + δC)2 − 8(Nβ + δC)δH + 8δ2H + α(8δH − 4Nβ − 6δC)

)]
B =

−1

2β(δC − δH)

[
−2N2β2 + 4(δC − δH)(α+ δH) +Nβ

(
α− 3δC + 4δH

+
√

α2 + (2Nβ + δC)2 − 8(Nβ + δC)δH + 8δ2H + α(8δH − 4Nβ − 6δC)

)]
(C.4)

To investigate the existence and the stability of the co-existence equilib-
rium, we performed the following numerical simulations.

Our first goal was to show that, when 1 < RC
0 < RH

0 , the co-existence
equilibrium only exists for parameters that make Icc2H > 1. The co-existence
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equilibrium, Ecc2
H exists when all coordinates (given by the forms in Ap-

pendix C) are positive. If Ecc2
H only exists when Icc2H > 1, Ecc2

H should only
exist when condition 21 is true. To see if this condition holds, we varied RH

0

between one and two (if RH
0 > 2 then Icc2H > 1 for any RC

0 ). For each RH
0 ,

we numerically found the smallest RC
0 for which the co-existence equilibrium

exists. We then compared this estimated value of RC
0 with the infimum of

condition 21. Since RH
0 is dependent on β, η, δH and α, we varied RH

0 by
varying each of these parameters independently. Table C.1 lists the ranges
of the parameters and the step size taken for each parameter.

Table C.1: Parameter Value Ranges and Step sizes

Parameter Minimum Maximum Step size

α 0% per day 90% per day 10% per day

η 0% 90% 10%

HLOS 1 day 50 days 1 day

RH
0 1.05 1.95 0.05

Next, we let the length of stay of patients colonized with CA-MRSA
(CLOS) start at 0.01 days, increasing in steps of 0.01, until all coordinates
of the co-existence equilibrium were positive (using the formulas for the co-
existence equilibrium above). The first estimated CLOS value for which the
co-existence equilibrium existed was then compared with the infimum CLOS
value that would make condition 21 true. The difference was always less
than 0.01 days, our step size. Therefore, when 1 < RH

0 < 2, the simulations
suggest that the co-existence equilibrium only exists for values of RC

0 that
make Icc2H > 1.

Our next goal was to show that if Icc2H > 1, then the co-existence equi-
librium exists. Therefore, we varied the same parameters above, but let RH

0

range between 1.1 and 10, in steps of 0.1. For each RH
0 , we varied RC

0 by
varying the length of stay of patients colonized with CA-MRSA in steps of
1 day. The starting value for RC

0 was either the infimum RC
0 which makes

condition 21 true, or if this is less than or equal to zero, then the starting
value was 0.1 days. The maximum RC

0 was the largest iterated value less
than RH

0 . All other parameters were varied as in the previous simulations.
We found that for all choices of parameters, the co-existence equilibrium
exists. This suggests that, when RH

0 > 1 and RH
0 > RC

0 , the co-existence
equilibrium exists, if Icc2H > 1.

Finally, we tested the stability of the co-existence equilibrium. For each
choice of parameters in the previous simulations, we let the initial values of C
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and H vary between 0 and 396 and the initial value of B vary between 1 and
397 in steps of 99, with C +H + B < 400. We then numerically simulated
the system for 100, 000 days to find the approximate equilibrium point.
We calculated the greatest difference, for all initial conditions, between the
ending state of our simulation and the co-existence equilibrium. For all
values, the coordinates of the numerically simulated equilibrium were within
0.5 of the coordinates of the co-existence equilibrium, suggesting that when
the co-existence equilibrium exists, it is globally stable.
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Appendix D.

Table D.1: Symbols, values and stability properties for the disease-free equilibria (E0) and
boundary equilibria (EH and EC) for the different models. The values and models for the
corresponding reproduction ratios in the last column are given in Table D.2.
Equilibrium Value Stability

EH
0 H = 0 RH

0 > 1: unstable
RH

0 < 1: stable

EC
0 C = 0 RC

0 > 1: unstable
RC

0 < 1: stable

Esc
0 (C,H) = (0, 0) Rsc

0 > 1: unstable
Rsc

0 < 1: stable

Ecc
0 (C,H,B) = (0, 0, 0) Rcc

0 > 1: unstable
Rcc

0 < 1: stable

Esc
H

(C,H) = (0, N(1− 1
RH

0
)) IscH > 1: unstable

IscH < 1: stable

Esc
C

(C,H) = (N(1− 1
RC

0
), 0) IscC > 1: unstable

IscC < 1: stable

Ecc
H

(C,H,B) = (0, N(1− 1
RH

0
), 0) IccH > 1: unstable

IccH < 1: stable

Ecc
C

(C,H,B) = (N(1− 1
RC

0
), 0, 0) IccC > 1: unstable

IccC < 1: stable

Ecc2
H

(C,H,B) = (0, N(1− 1
RH

0
), 0) Icc2H > 1: unstable

Icc2H < 1: stable

Ecc2
C

(C,H,B) = (N(1− 1
RC

0
), 0, 0) Icc2C > 1: unstable

Icc2C < 1: stable

Epnc
H (S,C,H,B) = Ipnc

H > 1: unstable
((αH+δH)/βH , 0,Λ/δH−δS(αH+δH)/(βHδH), 0) Ipnc

H < 1: stable

Epnc
C (S,C,H,B) = Ipnc

C > 1: unstable
((αC + δC)/βC ,Λ/δC − δS(αC + δC)/(βCδC), 0, 0) Ipnc

C < 1: stable

30



Table D.2: Explanation and values of symbols for basic reproduction ratios R0, and
invasion reproduction ratios I.
Symbol Model Value

RH
0 SIS HA-MRSA βHN

(δH+αH )

RC
0 SIS CA-MRSA βCN

(δC+αC)

Rsc
0 single-colonization max{RC

0 , R
H
0 }

Rcc
0 co-colonization max{RC

0 , R
H
0 }

IscH single-colonization
RC

0

RH
0

IscC single-colonization
RH

0

RC
0

IccH co-colonization
RC

0

RH
0

 βCH
(αB+δB)

N

(
1− 1

RH
0

)
+1

βCH
(αC+δC )

N

(
1− 1

RH
0

)
+1

+ βHC
αB+δB

N
(
1− 1

RH
0

)

IccC co-colonization
RH

0

RC
0

 βHC
(αB+δB)

N

(
1− 1

RC
0

)
+1

βHC
(αH+δH )

N

(
1− 1

RC
0

)
+1

+ βCH
αB+δB

N
(
1− 1

RC
0

)
Icc2H co-col. under 1

1− 1

RC
0

+ 1

RH
0

+RC
0 − 1

assump. of th. 3.5

Icc2C co-col. under 1

1− 1

RH
0

+ 1

RC
0

+RH
0 − 1

assump. of th. 3.5

Ipnc
H co-col.

RC
0

RH
0

 βCH
(αB+δB)

(RH
0 −1)

RH
0 δH

+1

βCH
(αC+δC )

(RH
0 −1)

RH
0 δH

+1

+ βHC
αB+δB

(RH
0 −1)

RH
0 δH

pop. not conserved

Ipnc
C co-col.

RH
0

RC
0

 βHC
(αB+δB)

(RC
0 −1)

RC
0 δC

+1

βHC
(αH+δH )

(RC
0 −1)

RC
0 δC

+1

+ βCH
αB+δB

(RC
0 −1)

RC
0 δC

pop. not conserved
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Table D.3: Parameter values for the transmission dynamics of community-acquired and
hospital-acquired methicillin-resistant Staphylococcus aureus colonization (CA-MRSA and
HA-MRSA).

Parameter Symbol Baseline Value Source

Total number of patients N 400

Percent of admissions per day

Colonized CA-MRSA 100 λC 3 [17, 18]
Colonized HA-MRSA 100 λH 7 BI, [17, 18]

Length of stay

Susceptible 1/δS 5 days BI
Colonized CA-MRSA 1/δC 5 days BI
Colonized HA-MRSA 1/δH 7 days [13]
Co-colonized 1/δB 7 days

Hand-hygiene compliance efficacy (as %) 100 η 50%

Transmission rate per susceptible patient to

Colonized CA-MRSA per colonized CA-MRSA βC 0.4 per day [3, 28]
Colonized HA-MRSA per colonized HA-MRSA βH 0.4 per day [3, 28]

Transmission rate per patient colonized with CA-MRSA to

Co-colonized per colonized CA-MRSA βCH 0.4 per day [3, 28]

Transmission rate per patient colonized with HA-MRSA to

Co-colonized per colonized HA-MRSA βHC 0.4 per day [3, 28]

Decolonization rate per colonized patient

per day per length of stay (as %)

CA-MRSA 100 αC 0% [14, 36]
HA-MRSA 100 αH 0%
Co-Colonized 100 αB 0%

BI: data obtained from the Beth Israel Deaconess Medical Center
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Figure Captions

Figure 1: Diagram for single-colonization model - A compartment dia-
gram describing the transmission dynamics of CA-MRSA and HA-MRSA
in a 400-bed hospital, when co-colonization is assumed not possible. The
arrows and parameter values correspond to entry and exit from the 3 com-
partments (S-susceptible patients, C-patients colonized with CA-MRSA,
and H-patients colonized with HA-MRSA). The percentages of patients
admitted colonized with CA-MRSA or colonized with HA-MRSA are ex-
pressed as 100λC , and 100λH , respectively. Discharge and death rates from
the compartments are expressed as follows: δS , δC , and δH for susceptible
patients, patients colonized with CA-MRSA, and patients colonized with
HA-MRSA, respectively (with mean length of stays defined as 1/δS , 1/δC ,
and 1/δH). The colonization rates of susceptible patients to the CA-MRSA
compartment is βC and to the HA-MRSA compartment is βH . The rates of
decolonization of patients with CA-MRSA and HA-MRSA are given by αC

and αH , respectively. To conserve the population, E = δSS + δHH + δCC.

Figure 2: Diagram for co-colonization model - A compartment diagram
describing the transmission dynamics of CA-MRSA and HA-MRSA in a
400-bed hospital, when co-colonization is possible. B is the compartment for
co-colonized patients, 100λB is the percentage of patients admitted already
co-colonized, δB is the exit rate from B. The co-colonization rate from C to
the co-colonized compartment (B) is βCH and from H to B is βHC , and αB

is decolonization rate of co-colonized patients. To conserve the population,
E = δSS + δHH + δCC + δBB. All other parameters are the same as in
figure 1.

Figure 3: Asymptotic behavior of the system - Equilibrium states for
different values of RC

0 and RH
0 under the assumption that all transmission

rates and rates of decolonization are equal. Co-existence occurs when both
RC

0 and RH
0 are greater than one, but also for some values where one re-

production ratio is greater than one and the other is less than one. When
Icc2H < 1, Ecc2

H is stable and only HA-MRSA is endemic. When Icc2C < 1,
Ecc2

C is stable and only CA-MRSA is endemic. When both RC
0 and RH

0 are
less than one, neither disease remains in the hospital over time.

Figure 4: Varying hand-hygiene compliance - Top: the percentage of
patients colonized with HA-MRSA (dashed), CA-MRSA (dotted), and both
(solid) after 2 years, versus hand-hygiene compliance (η). The bottom pic-
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ture shows RH
0 (dashed), RC

0 (dotted) and Icc2H (dash-dotted) versus η. Other
parameters are given in D.1, Table D.3.

Figure 5: Varying decolonization efficacy - Top: the percentage of pa-
tients colonized with HA-MRSA (dashed), CA-MRSA (dotted), and both
(solid) after 2 years, versus decolonization efficacy (α). Bottom: RH

0 (dashed),
RC

0 (dotted) and Icc2H (dash-dotted) versus α. Other parameters are given
in D.1, Table D.3.
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