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Abstract In the perfect integrate-and-fire model (PIF),
the membrane voltage is proportional to the integral of
the input current since the time of the previous spike. It
has been shown that the firing rate within a noise free
ensemble of PIF neurons responds instantaneously to dy-
namic changes in the input current, whereas in the pres-
ence of white noise, model neurons preferentially pass
low frequency modulations of the mean current. Here, we
prove that when the input variance is perturbed while
holding the mean current constant, the PIF responds
preferentially to high frequency modulations. Moreover,
the linear filters for mean and variance modulations are
complementary, adding exactly to one. Since changes in
the rate of Poisson distributed inputs lead to propor-
tional changes in the mean and variance, these results
imply that an ensemble of PIF neurons transmits a per-
fect replica of the time-varying input rate for Poisson
distributed input. A more general argument shows that
this property holds for any signal leading to proportional
changes in the mean and variance of the input current.

1 Introduction

In the simplest of the integrate-and-fire models, the per-
fect integrate-and-fire (PIF) model, the membrane volt-
age is driven exclusively by external currents. With leak
channels omitted, capacitive integration causes the mem-
brane voltage to be perfectly proportional to the integral
of the input current since the last spike. The simplicity
of the model allows the derivation of closed form solu-
tions in many instances (Knight 1972; Stein et al 72;
Abbott and van Vreeswijk 1993; Salinas and Sejnowski
2002; Lindner 2004).
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In his seminal work, Knight (1972) determined the
firing rate response of the PIF to deterministic input.
Knight first defined the firing rate as the inverse of the
interval between two spikes in a single neuron. Under
this definition, the firing rate response to small pertur-
bations of the input current is proportional to the input
perturbation averaged over the baseline inter-spike in-
terval, T0. This averaging causes the PIF to act as a
low-pass filter and for the gain to go to zero when the
period of the input is a multiple of T0. Knight then ana-
lyzed the response dynamics of a large ensemble of PIF
neurons, defining firing rate as the spike probability per
unit time across the ensemble. In contrast to the inter-
spike interval definition, the ensemble firing rate was an
exact scaled replica of the input signal.

More recently, Fourcaud and Brunel (2002) analyzed
ensembles of PIF neurons in the presence of white noise
inputs, using methods introduced by Gerstein and Man-
delbrot (1964). They showed that the linear response
to small perturbations in the mean current was low-
pass, dropping to zero for input modulations significantly
faster than σ2/2µ2, where σ2 is the variance and µ is the
mean of the input current at baseline.

But under the rate coding hypothesis, the ultimate
goal is to understand how neural populations transform
input rates to output rates; parameters describing the
input current are just intermediate variables. Under the
assumption that the dominant origin of neuronal noise
is synaptic (Calvin and Stevens 1967; Dodge et al 1968),
we expect both the mean and the variance to be strongly
dependent on pre-synaptic firing rate. For example, for
Poisson-distributed pre-synaptic spike trains, changes in
the variance of the current are proportional to changes
in the mean. If we separate the input into excitatory and
inhibitory components, balanced changes will modulate
the variance of the synaptic current while causing rela-
tively minor changes in the mean, whereas a push-pull
interaction of excitation and inhibition will cause large
changes in the mean current but relatively minor changes
in the variance (Abbott and Chance 2005). Thus, it is
possible to transmit signals using modulations in input
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variance as well as modulations in the mean (Lindner and
Schimansky-Geier 2001; Silberberg et al 2004; Fourcaud-
Trocmé and Brunel 2005). In this work, we derive the
linear response of the PIF for modulations of the input
variance, and show that this is exactly complementary to
the linear response to modulations in the mean. We also
show that proportional changes in the mean and vari-
ance lead to output firing rates that perfectly replicate
modulations in the input.

2 Model

The starting point for the model is a pattern of synap-
tic input consisting of a series of instantaneous current
pulses:

Is(t) =
∑
k

Qδ(t− tk). (1)

Q is the total charge carried by one input and δ is the
Dirac delta function. The arrival times of pre-synaptic
spikes, tk, are assumed to be generated by a Poisson
process with average rate λ(t). The current is then a
stochastic process whose time varying mean is given by

µ(t) = Qλ(t) and whose variance σ2(t) = Q
2
λ(t). This

variance, which has units of charge2/time can be thought
of as the rate of the accumulation in charge variance.

If synaptic inputs are instantaneous, weak, and un-
correlated in time, we can adopt a diffusion approxima-
tion, and consider the stochastic PIF:

C
dV

dt
= µ(t) + σ(t)η(t), (2)

where C is the membrane capacitance, V is the mem-
brane potential, and η(t) is Gaussian white noise pro-
cess (⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t − t′)) (Ricciardi
1977). A spike is generated when the voltage reaches a
threshold value Vθ, after which the voltage is reset to Vr.
To facilitate the analysis, we assume that the spike and
reset process is instantaneous.

Instead of directly tracking individual trajectories, we
adopt the Fokker-Planck (forward Kolmogorov) formal-
ism and study the dynamics of the density ρ(V, t) that
describes the probability that a given trajectory is near
the voltage V at time t (Gerstein and Mandelbrot 1964;
Ricciardi 1977; Tuckwell 1988; Nykamp and Tranchina
2000; Fourcaud and Brunel 2002). For any given voltage
the net flux or “rate of flow” JV (V, t) across that voltage
can be calculated as

JV (V, t) = −σ2(t)

2C2

∂ρ(V, t)

∂V
+

µ(t)

C
ρ(V, t). (3)

The probability density function (PDF) obeys the fol-
lowing dynamics:

∂ρ(V, t)

∂t
=

−∂JV (V, t)

∂V
(4)

∂ρ

∂t
=

σ2

2C2

∂ρ2

∂2V
− µ

C

∂ρ

∂V
. (5)

The first term on the right-hand side is the diffusion
term, which describes how the ensemble’s voltage distri-
bution spreads due to noise. The second term describes
how the mean level of input forces the distribution left
or right and is often called the drift or driving force. In
this framework, the ensemble firing rate is equal to the
flux crossing threshold:

r(t) = JV (Vθ, t). (6)

To model the spike and reset mechanism, the flux cross-
ing threshold is re-injected at the reset voltage Vr.

3 Perturbations of the Variance

Previous work has produced solutions for the probability
density function when µ and σ are held constant (Abbott
and van Vreeswijk 1993), as well as time-dependent so-
lutions for sinusoidal perturbations in µ (Fourcaud and
Brunel 2002). Here we extend the latter derivation to
examine the response dynamics of the PIF when the in-
put variance is perturbed by sinusoids of frequency ω
and amplitude ϵσ2

0 (complex notation is used to simplify
calculations):

σ2(t) = σ2
0(1 + ϵ exp(iωt)). (7)

To simplify notation, we change variables to a nor-
malized (unit-less) membrane voltage u:

u =
2µ0V C

σ2
0

. (8)

The Fokker-Planck equation becomes

τe
∂ρ(u, ω)

∂t
= (1 + ϵ exp(iωt))

∂ρ2

∂2u
− ∂ρ

∂u
, (9)

where τe = σ2
0/(2µ

2
0). Since σ2

0 has units of charge2 per
time and µ has units of charge per time, τe has units
of time and hence sets a characteristic timescale for the
PIF.

The boundary conditions in the new variables are as
follows:

To prevent an infinite value of the flux, the density
must be continuous both at threshold and spike reset,

ρ(uθ, t) = 0 (10)

ρ(ur− , t) = ρ(ur+ , t). (11)
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The firing rate is given as the flux across threshold,
and this flux is injected back at the reset voltage ur,

dρ

du
(uθ, t) = −r(t)τe (12)

dρ

du
(ur+ , t)−

dρ

du
(ur− , t) = −r(t)τe. (13)

Finally, the integrated probability must be equal to
one,∫ uθ

−∞
ρ(u, t)du = 1. (14)

To characterize the first order response, ρ(u, ω, t) and
r(t) are expanded in orders of ϵ (assumed to be small):

ρ(u, ω, t) = ρ0(u) + ϵ exp(iωt)ρ̂(u, ω) +O(ϵ2) (15)

r(t) = r0(1 + ϵ exp(iωt)r̂σ2(ω)) +O(ϵ2) (16)

where the complex quantities ρ̂(u, ω) and r̂σ2 determine
the amplitude and phase of the first order response rela-
tive to input. We then plug the approximation (15) into
the Fokker-Planck equation (9) and the boundary con-
ditions (10-14), and separate the terms into two sets of
equations. The solution to the first set of equations de-
scribes the steady-state PDF and response (ρ0 and r0).
The solution to the second set of equations describes the
dynamics of the PIF’s response to the sinusoidal compo-
nent of variance that is first order in ϵ (ρ̂ and r̂σ2).

The steady state solution is given by (Abbott and
van Vreeswijk 1993)

ρ0 = r0τe[1−exp(u−uθ−Θ(ur−u)(1−exp(u−ur))], (17)

where Θ(x) is the Heaviside function that steps from a
value of 0 to 1 at x = 0. The first order equation for ρ̂ is
a nonhomogeneous ordinary differential equation:

d2ρ̂

du2
− dρ̂

du
− iτeωρ̂ = −d2ρ0

du2
. (18)

To determine the first order modulations in firing
rate, we find a particular solution to (18), and add to
this the class of general solutions to the corresponding
homogeneous equation

d2ρ̂

du2
− dρ̂

du
− iτeωρ̂ = 0. (19)

The final solution is determined by satisfying the first
order boundary conditions derived from (10)-(14):

ρ̂(uθ) = 0 (20)

ρ̂(ur+) = ρ̂(ur−) (21)

∂ρ0
∂u

(uθ) +
∂ρ̂

∂u
(uθ, ω) = −r0r̂σ2(ω)τe (22)

∂ρ0
∂u

(ur+)−
∂ρ0
∂u

(ur−) +
∂ρ̂

∂u
(ur+ , ω)−

∂ρ̂

∂u
(ur− , ω) (23)

= −r0r̂σ2(ω)τe∫ uθ

−∞
ρ̂(u, ω)du = 0. (24)

Following (Fourcaud and Brunel 2002), we guess that

the particular solution has the form ρ̂p = K ∂ρ0

∂u . Plugging

this into (18) and using the fact that ∂nρ0

∂un = ∂ρ0

∂u for
n > 1, we find

iτeωK
∂ρ0
∂u

=
∂ρ0
∂u

+K
∂ρ0
∂u

−K
∂ρ0
∂u

. (25)

So K = 1
iωτe

and the particular solution is given by

ρ̂p =
1

iωτe

∂ρ0
∂u

. (26)

To find the general solution of the homogenous equa-
tion (19), we assume that the solution is of the form
exp(z(ω)u), and find:

z2 − z − iωτe = 0 (27)

z±(ω) =
1±

√
1 + 4iωτe
2

. (28)

The general solutions to the homogeneous equation are
given by

c1 exp(z+(ω)u) + c2 exp(z−(ω)u). (29)

To satisfy the boundary conditions, some algebra (see
the appendix) reveals that the solution for ρ̂ is

ρ̂ =
r0
iω

[− exp(u− uθ) +Θ(ur − u) exp(u− ur)+

exp(z+(ω)(u− uθ))−Θ(ur − u) exp(z+(ω)(u− ur))].
(30)

Additionally, the boundary conditions allow us to
find the solution for the first order firing rate modulation
r̂σ2(ω), which is given by

r̂σ2(ω) = 1−
√
1 + 4iωτe − 1

2iωτe
. (31)

3.1 Gain and Phase of the Response

The complex valued response function r̂σ2(ω) describes
the filter that transforms an input modulation ϵ exp(ωt)
into the first order output response r0ϵ exp(iωt)r̂σ2 . The
magnitude of r̂σ2(ω) is the gain of the filter, and the
angle of r̂σ2(ω) is the phase shift. A plot of gain as a
function of frequency shows that the PIF has low gain,
and hence weak responses to low frequency modulations
in the input variance and strong responses to high fre-
quency modulations, i.e. the PIF acts like a high-pass
filter (figure 1). The phase shift approaches zero at high
frequencies. However, for low frequency modulations, the
phase lead approaches 90◦. The phase lead suggests that
the PIF is responding to increases in the input variance.

The cutoff frequency is commonly defined as the fre-
quency where the power of the response is 1

2 of its maxi-
mum value. Since power is proportional to the square of
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a voltage signal, the cutoff frequency is determined by
finding the frequency that results in a gain equal to 1√

2

(the maximum gain is 1). Since the frequency ω always
enters the expression for the filter in terms of ωτe, the
gain will be constant for ω = c/τe for any constant c.
For variance modulations, the gain is equal to 1√

2
for

c = 4.24. At this frequency, the phase shift is 19.5◦.
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Fig. 1 Gain and phase curves for the PIF model due to per-
turbations in the variance. Asterisks mark the natural cutoff
of the filter ω = 4.24

τe
.

4 Complementarity Between Mean and Variance
Filtering

Fourcaud and Brunel (2002) previously used a similar
derivation (see appendix) to show that perturbations in
the mean current with variance held constant lead to
firing rate modulations with the gain and phase given
by the function

r̂µ(ω) =

√
1 + 4iωτe − 1

2iωτe
. (32)

A comparison of equation (59) with equation (31) reveals
that

r̂µ(ω) + r̂σ2(ω) = 1. (33)

Thus, the filters for modulations in the mean and vari-
ance of the input are exactly complementary in that the
sum of the two filters equals one (figure 2).

Note that the complementarity of the filters exists in
the complex plane. While this implies that the gain of
two filters need not add exactly to one, it is true that
the filtering of modulations in the mean and variance
are low and high-pass respectively. The single parameter
τe determines the cutoff frequency marking the transi-
tion between the two filters. The gain curves intersect
where the gain equals 0.58 and at a frequency given by
ω = c/τe with c = 1.73. Complementarity in the com-
plex plane also means that the phases of the two filters
only sum exactly to zero when the gain curves intersect.
At this point the phase lag/lead is 30◦. However, comple-
mentarity does imply that the phases must have opposite
sign, i.e. if responses to the mean show a lag at a given
frequency, then the response to changes in the variance
must show a phase lead.
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Fig. 2 Gain and phase curves for the PIF model due to per-
turbations in the mean and variance. The PIF model acts like
a low-pass filter for mean changes and a high-pass filter for
variance changes. The two filters are exactly complementary,
summing to 1 at all frequencies.

The general shape of the each filter stems from the
multiplicative nature of the firing rate equation (the flux
over threshold). At threshold, the flux, JV , is given by

JV (θ, t) =
σ2(t)

2C2

(
− ∂ρ

∂V
(θ, t)

)
, (34)

since ρ(θ) = 0. Because the boundary conditions con-
strain the density ρ to equal zero at threshold, the steep-
ness of the decline toward zero determines the total prob-
ability that the voltage falls in a boundary layer near
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threshold. Therefore, equation (34) implies that the fir-
ing rate is proportional to the instantaneous value of the
input variance multiplied by the accumulated probabil-
ity that the membrane voltage lies near threshold. For
fixed variance, the first term is fixed and an increase in
the mean current increases the firing rate by pushing
more trajectories toward threshold. Since this buildup
will take time to accumulate, the response to changes in
the mean are low pass. Conversely, a step increase in the
input variance will immediately increase the firing rate.
However, this increase in firing rate will cause a deple-
tion in the density of trajectories near threshold. This
depletion in turn will lead to a decay of firing rate un-
til it matches the flux of probability flowing in to the
boundary layer near threshold. Thus, the response to
the change in variance is high pass. In the PIF model,
both the mean and the variance of the input current are
voltage independent and these near-threshold dynamics
determine the firing rate response.

5 Response to a Proportional Change in Mean
and Variance

Thus far, we have analyzed the filter that transforms
modulations in the mean and variance of the input cur-
rent to modulations in the ensemble firing rate. But if we
assume that neural information is carried by firing rate,
then the key transformation is from the rate of synap-
tic input, to the rate of spike output. The statistics of
the input current simply characterize one step along this
more fundamental transformation.

If we assume that the PIF model receives input from
a single train of input spikes that are Poisson distributed,
then the mean and variance of the current arising from
these inputs are proportional: µ(t) = Qλ(t) and σ2(t) =

Q
2
λ(t).
Following the approach of the previous sections, con-

sider sinusoidal modulations in Poisson input rate that
lead to proportional modulations in the mean and vari-
ance of the input current.

λ(t) = λ2
0(1 + ϵ exp(iωt)). (35)

For small modulations, the perturbations of the output
rate caused by the mean and variance modulations add
linearly, and the firing rate filtering is just the sum of
the mean and variance filters:

r̂(ω) = r̂µ(ω) + r̂σ2(ω) = 1. (36)

This argument demonstrates that the PIF model propor-
tionally transmits small modulations in input rate for a
single train of Poisson inputs.

This is a special case of a much more general result.
For any proportional modulation of the mean and vari-
ance, we can write σ2(t) = as(t) and µ(t) = bs(t) where
s(t) is a positive signal and a and b are constants. The

argument does not take a perturbation approach, and
changes in s(t) need not be small.

The Fokker-Planck equation that describes the change
in the p.d.f due to the signal s(t) is then

s(t)−1 ∂ρ

∂t
=

a

2C2

∂2ρ

∂V 2
− b

C

∂ρ

∂V
. (37)

We define T =
∫ t

0
s(t′)dt′. Because s(t) is positive, the

relationship between T and t is invertible, and we can
view this transformation as a rescaling of time. Under
this re-scaling,

s(t)−1 ∂

∂t
=

∂

∂T
, (38)

and the Fokker-Planck equation is now

∂ρ

∂T
=

a

2C2

∂2ρ

∂V 2
− b

C

∂ρ

∂V
. (39)

But this is just the equation for the PIF with a constant
mean and variance. The equilibrium distribution ρ0 is
given by equation (17) and is determined by the ratio
of the variance and the mean current τe = σ2/2µ =
a/2b Abbott and van Vreeswijk (1993). This implies that
proportional changes in the mean and variance do not
alter the shape of the underlying p.d.f. of the voltage.

To determine the firing rate, we examine the flux at
threshold

JV (θ) =
σ2

2C2

(
−∂ρ0
∂V

(θ)

)
. (40)

Since the voltage distribution does not change and the
signal is proportional to the variance, it follows that the
output firing rate is a proportional replica of the input
signal s(t).

6 Discussion

Knight (1972) previously demonstrated that the ensem-
ble response of the PIF model perfectly replicates deter-
ministic modulations in the input current. Subsequent
research has shown that the addition of constant am-
plitude diffusive noise causes the PIF model to act like
a low-pass filter (Fourcaud and Brunel 2002). Here, we
have shown that in response to perturbations of the vari-
ance for constant mean input, the PIF acts like a high-
pass filter. Moreover, the response to mean modulations
and variance modulations are exactly complementary,
with the two filter functions summing to one.

A primary motivation for studying simple models is
that the clarity of the analytic results provides insight
into the biophysical mechanisms that govern the proper-
ties of real neurons. High-pass filtering of modulations in
the input variance has been shown for several integrate-
and-fire type models (Fourcaud-Trocmé and Brunel 2005;
Naundorf et al 2005), and has also been demonstrated
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in real neurons using somatic current injection in vitro
(Silberberg et al 2004). In the PIF model, we have shown
that filtering of modulations in the mean and variance
of input currents are complementary, and this comple-
mentarity is unaltered by cutoff frequencies changing in
response to alterations in the relative magnitude of the
noise.

The degree to which this complementarity generalizes
to more realistic models and to real neurons is an open
question. With the addition of a leak current, response
resonances exist at integer multiples of the baseline fir-
ing rate (Knight 1972; Plesser and Geisel 1999; Brunel
et al 2001; Fourcaud and Brunel 2002; Troyer 06), and
these resonances will disrupt response complementarity.
Furthermore, the leaky integrate-and-fire model (LIF)
model can operate in a regime in which the mean in-
put current is subthreshold and spikes result from occa-
sional noise-driven fluctuations in the membrane voltage
(Abeles 1991; Troyer and Miller 1997). Firing rates then
depend on both the mean and the variance in the steady
state, and can display complex resonances to modula-
tions in input variance (Lindner and Schimansky-Geier
2001). Depending on LIF parameters, these factors com-
plicate the relationship between the filtering of mean and
variance modulations in ways that violate the exact com-
plementarity seen in the PIF model. A full exploration
of these effects is beyond the scope of this paper.

Within the framework of the rate encoding hypoth-
esis, modulations in the statistics of the synaptic cur-
rent are simply intermediate stages in the more funda-
mental transformation from input rates to output rates.
However, we know of no studies directly characterizing
transformations from time-varying rates to spike proba-
bility in real neurons. In the PIF model, a single train of
rate-modulated Poisson inputs will induce proportional
changes in the mean and variance of the input current.
For small modulations, complementarity of the filters for
mean and variance modulations can be used to show that
the PIF model produces rate responses that are a scaled
replica of the Poisson input rate. This argument is ac-
tually a special case of a much more general argument
demonstrating that, as long as the diffusion approxima-
tion is valid, firing rates in the stochastic PIF model
replicate any input signal in which the mean and vari-
ance of the input current change proportionally.

Although a single Poisson source leads to propor-
tional scaling of the mean and variance, the two input
variables become decoupled when considering both ex-
citatory and inhibitory inputs (Miller and Troyer 2002;
Abbott and Chance 2005). In the simplest case, adding
an exact balance of excitation and inhibition to a base-
line pattern of input will increase input variance while
leaving the mean unchanged. Alternatively, changing the
ratio of excitatory to inhibitory inputs while fixing the
total rate of synaptic inputs will change the mean but not
the variance of the input current. Complementary filters
for the mean and variance suggest that neural signals

carried by balanced inputs will be subject to high-pass
filtering whereas inputs that result in a ‘push-pull’ trade-
off between excitation and inhibition will be subject to
low-pass filtering.

Traditionally, it has been assumed that firing rate is
a function of an underlying ‘generator potential’ (Granit
1947; Katz 1950; Fuortes 1959), and hence response dy-
namics are low-pass due to capacitive filtering of mem-
brane currents (Knight et al 70; Wilson and Cowan 1973;
Carandini et al 1996). Others have shown that responses
can be much faster than the membrane time constant,
and have argued that synaptic filtering is the rate-limiting
step for neural responses (Frolov and Medvedev 1986;
Brunel and Hakim 1999; Koch 1999; Brunel et al 2001).
Yet others have focused on the refractory period as the
key timing parameter (Wilson and Cowan 1973; Abeles
1991). Our analysis of the PIF model suggests that the
response time of neurons is also affected by relative mag-
nitude of the mean and variance of synaptic input, a
quantity that is not directly tied to a specific underlying
biophysical timescale. Future research will be required
to understand how timescales emerging from stochastic
integration interact with the rich array of synaptic and
membrane dynamics encountered in more realistic mod-
els of neural spiking.

7 Appendix

7.1 Perturbations of the Variance

The full solution for the nonhomogeneous equation (equa-
tion 18) is determined by choosing the correct constants
for solutions to the homogeneous equation (19) which,
when added to the particular solution (26), satisfy the
boundary conditions (equations 20-24). Since the deriva-
tive of the solution is discontinuous at reset, the solu-
tion is determined on two intervals separately: the in-
terval from ur to uθ and the interval from −∞ to ur.
Letting d1 exp(z+u)+d3 exp(z−(ω)u) and d2 exp(z+u)+
d4 exp(z−(ω)u) be the solutions to the homogeneous so-
lution on these two intervals, the general solution to
equation 18 has the form,

ρ̂ =
r0
iω

[− exp(u−uθ)]+d1 exp(z+(ω)u)+d3exp(z−(ω)u),

ur ≤ u ≤ uθ

ρ̂ =
r0
iω

[− exp(u− uθ) + exp(u− ur)]+

d2 exp(z+(ω)u) + d4 exp(z−(ω)u), u ≤ ur (41)

Since the real part of z−(ω) is negative, d4 = 0 to
ensure the integrability of ρ on the interval u ≤ ur. To
simplify the remaining calculations, we let k = r0/iω and
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make the following reassignments:

d1 = k c1 exp(−z+(ω)uθ) (42)

d2 = k c1 exp(−z+(ω)uθ) + kc2 exp(−z+(ω)ur) (43)

d3 = k c3 exp(−z−(ω)uθ). (44)

The general solution is then given by

ρ̂ = k[− exp(u− uθ) + c1 exp(z+(ω)(u− uθ))

+ c3 exp(z−(ω)(u− uθ))],

ur ≤ u ≤ uθ

ρ̂ = k[− exp(u− uθ) + exp(u− ur)

+ c1 exp(z+(ω)(u− uθ)) + c2 exp(z+(ω)(u− ur))

+ c3 exp(z−(ω)(u− uθ))], u ≤ ur. (45)

First we use the second boundary condition, equation
(21), to solve for c2:

−k − c2k = 0 =⇒ c2 = −1. (46)

Next, solving (20) for c3 in terms of c1 we get

−k + kc1 + kc3 = 0 =⇒ c3 = 1− c1. (47)

Equation (23) is then used to solve for the first order
response component r̂(ω):

−r0τe − k − kc2z+(ω) = −r0r̂(ω)τe

(48)

r̂(ω) = 1 +
k

r0τe
(1− z+(ω)) = 1−

√
1 + 4iωτe − 1

2iωτe
.

(49)

From the third boundary condition (22) we obtain:

−r0τe − k + kc1z+(ω)− kc3z−(ω) = −r0r̂(ω)τe (50)

Using equation (48), substituting for c3 and c2 and using
z+(ω) + z−(ω) = 1 yields

kc1z+(ω) + kc3z−(ω) = −kc2z+(ω) (51)

c1(z+(ω)− z−(ω)) = (z+(ω)− z−(ω)) =⇒ c1 = 1
(52)

Substituting the values for the constants c1, c2, and
c3 into (45) yields the general solution given by equation
(30).

7.2 Perturbations of the Mean

While holding σ2 constant, let

µ(t) = µ0(1 + ϵ exp(iωt)). (53)

The Fokker-Planck equation in the transformed coordi-
nates is then

τe
∂ρ(u, ω)

∂t
=

∂ρ2

∂2u
− (1 + ϵ exp(iωt))

∂ρ

∂u
. (54)

Breaking out the first order terms yields the nonhomo-
geneous differential equation:

d2ρ̂

du2
− dρ̂

du
− iτeωρ̂ =

dρ0
du

. (55)

Since ∂2ρ0

∂u2 = ∂ρ0

∂u , this equation differs from the corre-
sponding variance equation (18) only in the sign of the
nonhomogeneous term dρ0/du. Therefore, the same sub-

stitution, ρ̂p = K ∂ρ0

∂u , can be used to find the particular
solution

ρ̂p =
−1

iωτe

∂ρ0
∂u

. (56)

Furthermore, the homogeneous equation is identical to
that for variance modulations and hence yields the same
general solution. Equations (20), (21), and (24) remain
the same for modulations in the mean. Equations (22)
and (23) are replaced by:

∂ρ̂

∂u
(uθ, ω) = −r0r̂µ(ω)τe (57)

∂ρ̂

∂u
(ur+ , ω)−

∂ρ̂

∂u
(ur− , ω) = −r0r̂µ(ω)τe. (58)

Using these boundary conditions to solve for the con-
stants in the general solution (Fourcaud and Brunel 2002),
the firing rate modulations r̂µ(ω) are given by

r̂µ(ω) =

√
1 + 4iωτe − 1

2iωτe
. (59)
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