
University of Richmond
UR Scholarship Repository

Math and Computer Science Faculty Publications Math and Computer Science

2006

Temporal Processing in the Exponential Integrate-
and-Fire Model is Nonlinear
Joanna R. Wares
University of Richmond, jwares@richmond.edu

Todd W. Troyer

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Mathematics Commons, and the Neurosciences Commons
This is a pre-publication author manuscript of the final, published article.

This Post-print Article is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Faculty Publications by an authorized administrator of UR Scholarship Repository. For more
information, please contact scholarshiprepository@richmond.edu.

Recommended Citation
Wares, Joanna R. and Troyer, Todd W., "Temporal Processing in the Exponential Integrate-and-Fire Model is Nonlinear" (2006). Math
and Computer Science Faculty Publications. 51.
http://scholarship.richmond.edu/mathcs-faculty-publications/51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Richmond

https://core.ac.uk/display/232761167?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1010?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-faculty-publications/51?utm_source=scholarship.richmond.edu%2Fmathcs-faculty-publications%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


Temporal Processing in the Exponential Integrate-and-Fire Model is Nonlinear 

Joanna Pressley and Todd W. Troyer 

Applied Math and Scientific Computation Program 

University of Maryland, College Park, MD 20742 

 

Abstract 

The exponential integrate-and-fire (EIF) model was introduced by Fourcaud-Trocme et al. (2003) 

as an extension of the standard leaky integrate-and-fire model (LIF).  Here, the nonlinearity in the 

EIF model’s temporal response to square-wave inputs is investigated.  Comparing the time course 

of onset and offset responses revealed that offset responses have a steeper initial slope, but a 

slower approach to equilibrium.  A linear systems analysis performed for these square-wave 

inputs indicates that at frequencies above ~40 Hz, gain was slightly smaller for square-wave 

inputs, but phase did not change significantly relative to simulations in which the corresponding 

sinusoids were presented in isolation. 

 

Introduction 

In their 2003 work, Fourcaud-Trocmé et al formulated the exponential integrate-and-fire (EIF) 

neuron model, whose peri-threshold voltage dynamics more closely matched models containing 

an active sodium current [2].  They investigated the response of the EIF and other related models 

to sinusoidal inputs of varying amplitude and claimed that the model was well-approximated by a 

linear low-pass filter, for a range of inputs.  The claim of linearity was based only on the fact that 

at each frequency, the gain of the response was independent of the amplitude injected.   

To determine if the response of the EIF model continued to be linear for a broader range of 

inputs, we calculated the temporal response to square-wave currents constructed with a range of 

amplitudes and a range of baseline currents. In a linear model, the onset and offset responses 

should be identical except for the sign.  Our basic finding is that onset responses show a slower 



initial response but more rapidly reach the new equilibrium rate. We also compared the onset and 

offset response of the EIF model to the responses of the leaky integrate-and-fire (LIF) model.  

Generally, the EIF and LIF showed similar response patterns.  The one substantial difference was 

that onset responses of the EIF model showed a greater delay relative to the LIF model.  Finally, 

in a fully linear system, the response to a sum of inputs equals the sum of the responses to the 

individual inputs.  To investigate this, we performed a Fourier analysis of the square-wave input 

and compared the resulting gain and phase calculated from the separate presentation of the 

component sinusoidal inputs.  At higher frequencies, the gain for the square wave inputs was 

reduced relative to the sinusoids, while the phase of the response was remarkably similar across 

frequencies. 

 

Methods 

We constructed an EIF model as proposed by Fourcaud-Trocmé et al [2].  The model consists of a 

passive leak conductance, gL (=0.1 mS/cm
2
) plus an instantaneous voltage-dependent spiking 

current )(Vψ  that is activated near threshold: 
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LV (= -65 mV) is the equilibrium potential of the leak, T∆ (=3.48 mV) is the “spike slope factor” 

which determines the voltage sensitivity of the spiking current, and TV (= -59.9 mV) is a voltage 

threshold at which the slope of the I-V curve vanishes and the equation becomes unstable.  The 

membrane time constant (= τ = C/ gL) was set at 10 msec.  η(t) is additive Gaussian noise (see 

below).  Conceptually, spikes are triggered at the time at which voltage diverges to infinity.  

Practically, the time at which voltage crossed a triggering threshold (= -30 mV) was recorded, 

and the time from –30 mV to infinity was calculated analytically. After the spike, the voltage was 



reset immediately to VAHP = -68 mV, and voltage integration resumed after waiting for a 

refractory period of 1.7 msec. 

 

The LIF model used identical parameters, except )(Vψ =0. A spike was registered immediately 

when the voltage reached spike threshold, set at TV = -59.9 mV.  We found that by adding a 3.5 

msec refractory period, the f-I curve matched that of the EIF model surprisingly well. The 

refractory period was implemented by resetting voltage to VAHP = -68 mV, waiting 3.5 msec after 

the spike, and then resuming integration according to the equation: 

)()()( tCgtIVVg
dt

dV
C LLL ησ++−−= .  

Simulations were performed in MATLAB (Mathworks, Natick, MA) using a using a 2
nd

 order 

stochastic Runge-Kutta method [4] with step size (dt = 2
-4

 = 0.0625 msec).  Noise currents η(t) 

were assumed constant over each time step.  The amplitudes of these currents were chosen from a 

zero-mean Gaussian distribution with standard deviation equal to 1.  The noise power was 

determined by the parameter σ, which was set to 6.3 mV [2]. To more accurately simulate the 

rapid spike dynamics in the EIF model, during any time step in which voltage went above the 

voltage threshold, TV , the dynamics were re-simulated using a reduced time step of 1/5*2
-4

 = 

0.0125 msec.  (Noise currents were still assumed fixed over the larger 2
-4

 msec time step.) 

 

Results 

To assess the nonlinear components of response, we focused on input currents, I(t), containing 

sharp onset and offset transients.  In particular, the majority of our simulations used a 5 Hz 

square-wave input current.  Initially, we compared the instantaneous firing rate of the model for 

the onset period and offset period, averaging 750,000 trials over bins of 1 msec.  Figure 1A 

illustrates the histogram obtained from the EIF model for a baseline current of 0.25 nA and a 5 



Hz square-wave input of 0.5 nA amplitude.  If the response of the EIF was linear, the onset and 

offset response should have the same shape.  However, the time course of these responses differs 

significantly (figure 1B).  From these simulations, it appears that there are three stages of the 

response of EIF models to a transient step in input current.  First, there is a period from one to 

several milliseconds in which the response to an onset transient is delayed.  While rates do 

increase slightly during this period, the increase is slow.  The response to the offset transient 

shows no such delay, and firing rate immediately shows a rapid decline.  In the second stage, the 

response to both onsets and offsets changes rapidly, accounting for roughly 80% or more of the 

total change in rate.  For the offset response, there is no noticeable distinction between these first 

two stages.  In the third stage, the change in rate slows and eventually asymptotes at the steady 

state firing rate corresponding to the new level of current.  It appears that the transition into this 

third, slowly changing stage happens earlier in time for the offset responses, and these rates 

approach asymptote more gradually.  The response pattern for the LIF model is similar (figure 

1C).  However, the onset response does not show a distinct delay phase.  Rather, both onset and 

offset responses change smoothly from baseline, but the onset response changes with a smaller 

slope. 

 

Figure 1: (A) The PSTH of the response of the EIF model to a square-wave input of 0.50nA with a baseline 

current of 0.25nA.  (B) The onset and offset responses are depicted together for comparison. Inset shows 

the first 3 msec of the response. (C) The onset and offset responses for the LIF model to a square-wave 

input of 0.50 nA and a baseline current of 0.25nA.  Inset shows the first 2 msec of the response 

 



Parameter Dependence – Qualitative Results 

To characterize the dependence of the onset/offset difference on the amplitude of the input 

changes, we held the baseline current constant and varied the amplitude of the square-wave 

currents.  As expected, for all baseline currents the difference between the onset and offset 

responses grew as the amplitude of the square-wave was increased.  The case where I0 = 0.25 is 

delineated in figure 2A and 2C. 

 

Figure 2: (A)The onset vs. offset responses for the baseline current I0 = 0.25nA.  The amplitude of the 

square-wave is varied from 0.2 to 0.8nA.  The difference in the onset and offset responses grows as the 

amplitude of the square-wave grows. (B) The onset vs. offset responses for square-wave current with 

amplitude 0.5nA and baseline currents varying from 0.25 to 1nA. (C) Same as A except for the LIF instead 

of the EIF model.  (D) Same as B except for the LIF instead of the EIF model. 



 

Next, we varied the baseline current while holding the amplitude of the square-wave current 

constant.  Figure 2B and 2D depict the case where the baseline is 0.5 nA and the amplitude of the 

square-wave is varied from 0 to 0.50 nA.  The slopes of the initial response for the onset and 

offset differ less as the baseline current is increased.  However, as the baseline current is 

increased, the neuron moves between the ``random firing” regime, in which the mean current is 

sub-threshold and spikes are driven by random threshold crossings, and the “regular firing” 

regime in which the mean current is above threshold and the model produces regular trains of 

action potentials as the voltage is integrated up to threshold [1, 6]. As the neuron moves into the 

regular firing regime, its response to a step change causes a predilection for spiking 

synchronously, creating an oscillation in the firing rate (figure 2B,D last box) [3].  It is unclear 

whether an over-damped version of this oscillation is related to the faster approach to the new 

firing rate demonstrated in the onset responses across the range of input parameters. 

 

Parameter Dependence – Quantitative Results 

To more systematically examine how the response changes to changes in the amplitude and 

baseline of the input, we fit the onset and offset curves with the two-parameter hyperbolic 

ratio:
nn

n

ct

t
tf

+
=)( .  To enable the fit, we normalized the curves by dividing by the difference 

in equilibrium firing rates.  The c parameter is most associated with the delay: time t equals c 

marks the time at which responses are midway between the new and old rates. The n parameter is 

associated with the steepness of the response, with a larger value of n meaning a steeper response 

function. When the regime starts switching to the regular firing regime, the response exhibits 

synchrony effects and this function no longer fits well.  However, even though the function 

cannot fit the oscillations seen in this regime, it still fits the initial phases of the response, as well 

as doing a reasonable job of characterizing the overall approach to the new firing rate. 



 

Figure 3 shows the values of the best-fit parameters as a function of square-wave amplitude for 

both low (dashed) and higher (solid) levels of the baseline current.  The plots on the left show that 

increasing the amplitude affects the delay parameter c in opposite directions, increasing the delay 

for onset responses and reducing the delay for offset responses.  Similar patterns are seen for high 

and low baseline simulations in both the EIF and LIF models, although high baseline currents and 

the LIF model are associated with lower delay overall. Increasing amplitude also causes an 

increasing difference in the steepness parameter n for both the EIF and LIF models at high and 

low gain (right).  However, unlike the delay parameter, changes in the steepness parameter are 

much more pronounced for the onset response; the offset response shows little change in n across 

parameters. 

 

Figure 3: (A) The EIF model’s onset and offset responses are fit with the equation 
nn
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parameters of f(t) are plotted for square-wave currents with amplitudes varying (x-axis) from 0.2 to 0.8.  

The parameters are plotted for 0nA (dotted line) and 0.25nA (solid line) baseline currents.  (B)  Same as A 

for the LIF model. 

 



Fourier Analysis 

Finally, we disassembled the square-wave input and resulting output into their Fourier 

components and calculated the gain and phase for each component.  We then presented the 

sinusoidal components individually and calculated the gain and phase.  The comparison between 

the two calculations for a baseline current of 0 nA is shown in figure 4.  For the model to act 

linearly, the response of the sums of inputs should be equal to the sum of the responses of the 

inputs.  For low frequencies, the gain and phase for square-wave and sinusoidal inputs are very 

similar. But as the frequencies increase above approximately 40 Hz, the gains of the responses 

diverge.  Near 100 Hz, the gain using the EIF model for square-wave inputs is nearly 25% lower 

than for the corresponding sinusoids and for the LIF model the gain is around 10% lower for the 

square-wave components.  (The low gain found at higher frequencies resulted in less reliable 

measurements of gain and so these results are not shown.)   

 

Figure 4:  (A) The gain and phase of the EIF’s response to the square-wave Fourier components and 

corresponding sinusoidal inputs for a baseline of 0 nA and a square-wave of 0.3 nA. (B) Same as A for the 

LIF model. 

 

Discussion 



Our results indicate that the temporal response of both the EIF and LIF models have a significant 

nonlinear component.  In particular, offset transients have a more rapid onset followed by a 

slower decay as compared to onset transients.  The difference between the onset and offset 

responses increases as the amplitude of the square-wave input is increased.  Additionally, the gain 

due to the Fourier components of the square-wave response do not match the corresponding gain 

of the response to the sinusoids presented individually, especially for higher frequencies. With 

our parameters, the difference becomes pronounced above about 40 Hz.  Although linear analyses 

can be a useful first step in characterizing the dynamic responses of model neurons, these results 

argue for a cautious interpretation of the results.  More complete characterizations will require a 

parametric exploration of the dynamic range over which the analysis is valid and/or an 

exploration of a wider range of stimuli than simple sinusoids. 

 

Our study using square-wave inputs revealed three basic nonlinearities in the response of 

integrate-and-fire models. The most striking non-linearity is a delay in the onset response of the 

EIF model.  This delay is not seen during offset responses or in either onset or offset responses of 

the LIF model.  We speculate that this delay relates to time it takes for trajectories to travel from 

the voltage to infinity to be registered as a spike.  The second basic nonlinearity is the slightly 

reduced slope in the rapidly changing phase of the response for onsets relative to offsets.  In the 

LIF model, this is the main effect that makes the initial stage of onset responses slower than offset 

responses.  Finally, a third nonlinearity is seen that results in offset responses returning more 

slowly to the new steady state firing rates than onset responses.  Currently, it is unclear whether 

these different stages of the response should be considered distinct dynamical mechanisms, or 

whether they result from a single dynamical process unfolding over time. 

 

 

References 



[1] M. Abeles, Corticonics: Neural Circuits of the Cerebral Cortex (Cambridge University 

Press, New York, 1991). 

[2] N. Fourcaud-Trocmé, D. Hansel, C. van Vreeswjik, and N. Brunel,  How Spike Generation 

Mechanisms Determine the Neuronal Response to Fluctuating Inputs, The Journal of 

Neuroscience 23 (2003) 11628-11640. 

[3] W. Gerstner, Population Dynamics of Spiking Neurons: Fast Transients, Asynchronous 

States, and Locking, Neural Computation 12 (2000) 43-89. 

[4] R. L. Honeycutt, Stochastic Runge-Kutta algorithms I. White noise, Physical Review A 45 

(1992) 600-603. 

[5] T. W. Troyer, Rate Dynamics in Integrate-and-Fire Neurons: Two Regimes and Multiple 

Time Scales, CNS2001, Monterrey, 2001. 

[6] T. W. Troyer and K. D. Miller, Physiological Gain Leads to High ISI Variability in a Simple 

Model of a Cortical Regular Spiking Cell, Neural Computation 9 (1997) 971-983. 


	University of Richmond
	UR Scholarship Repository
	2006

	Temporal Processing in the Exponential Integrate-and-Fire Model is Nonlinear
	Joanna R. Wares
	Todd W. Troyer
	Recommended Citation


	Microsoft Word - 429324-convertdoc.input.417155.WeFpX.doc

