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ZEROS OF FUNCTIONS  WITH FINITE  DIRICHLET INTEGRAL 
 

STEFAN RICHTER, WILLIAM T. ROSS, AND CARL SUNDBERG 

 
(Communicated by Juha M. Heinonen) 

 

Abstract. In this paper, we refine a result of Nagel, Rudin, and Shapiro 

(1982) concerning the zeros of holomorphic functions on the unit disk with 

finite Dirichlet integral. 

 

This is a remark about the zeros of functions f = 
),

n�0 anz 

 
holomorphic on 

U z z < 1} that have finite Dirichlet integral 
 

D(f ) := 

∞ 

|f t|2dA =       n|an|2, 
n=0 

where dA is Lebesgue measure in the plane. Clearly such functions belong to the 
classical Hardy space H2, and so the zeros (zn)n�1 ⊂ U of f (repeated according 

to multiplicity) satisfy the Blaschke condition 
),

 (1 − |zn|2) < ∞ [4, p. 18]. 
However, not every Blaschke sequence are the zeros of a holomorphic f with D(f ) < 

∞ [2]. 
In 1962, Shapiro and Shields [6] improved a result of Carleson [3] and showed 

that if 
 

(1) 
∞   

< ∞, 

n=1 
− log(1 − |zn|) 

then there is a nontrivial holomorphic f on U with D(f ) < ∞ such that f (zn) = 0 

for all n. 
This condition does not completely characterize the zero sets of analytic functions 

with finite Dirichlet integral. For example, if (zn)n�0 ⊂ (0, 1) is a Blaschke sequence 
for which (1) fails, then f = (1 − z)2B has finite Dirichlet integral, where B is the 

Blaschke product with zeros (zn)n�0. Nevertheless, in the converse direction, Nagel, 
Rudin, and Shapiro [5] proved that if (rn)n�0 ⊂ (0, 1) is such that 

∞ 
1 

= ∞, 

n=0 
− log(1 − rn) 

then there is a sequence of angles (θn)n�0 such that the sequence (rneiθn )n�0 is not 
the zeros of any nontrivial holomorphic function f on U with D(f ) < ∞. They do 
this by first noting that when D(f ) < ∞, the limit 

lim 
z→eiθ ,z∈Ωeiθ 

f (z) 
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exists for almost every eiθ , where Ωeiθ   is the exponential contact region 

Ωeiθ   := {reiφ : 1 − r2  > e
− |θ−φ| }. 

Beginning at z = 1, lay down arcs In ⊂ ∂U of length 
1 

— log(1 − rn) 

end-to-end (repeatedly traversing the unit circle). Since 
),

n�1 |In| = ∞, by hy- 

pothesis, each eiθ ∈ ∂U will be contained in infinitely many of the intervals (In)n�0. 

Let eiθn be the center of the interval In, and note that simple geometry shows that 
for every eiθ , the exponential contact region Ωeiθ contains infinitely many of the 

points rneiθn . Thus if f has finite Dirichlet integral and f (rneiθn ) = 0 for all n, the 
above limit result says that the boundary function for f will vanish almost every- 
where on ∂U , forcing f to be identically zero. This argument actually shows that 

the sequence (rneiθn )n�0 cannot be the zeros of a nontrivial harmonic function f 2 

on U with finite Dirichlet integral (where |f t|2 is replaced by |∇f| 
of the Dirichlet integral). 

in the definition 

In this note, we refine this result and show that for analytic functions the angles 

θn can be chosen so that the zeros (rneiθn )n�0  need not accumulate at every point 
of the circle, but instead accumulate at a single point. 

Theorem 2. Suppose (rn)n�0 ⊂ (0, 1) with rn → 1 and 
∞ 

1 
= ∞. 

n=0 
− log(1 − rn) 

Then there are angles (θn)n�0 such that clos(rneiθn )n�0 ∩ ∂U = {1} and such that 

if f is holomorphic on U with D(f ) < ∞ and f (rneiθn )  =  0 for all n, then f is 

identically the zero function. 

Our proof is based on the following lemma. In order to make our construction 
easier, we will work in the upper half plane. 

Lemma 3. Let J ⊂ R be a finite open interval with center x0  and 0 < y0 < |J|. 

Set 

S := {x + iy : x ∈ J,  0 < y < |J|} 
and λ0 := x0 + iy0. Suppose f is holomorphic on S with 

r 

 
 

and f (λ0) = 0. If 

|f t|2dA < ∞ 
S 

and |E| � 1 |J|, then 
E = {x ∈ J : |f (x)| � 1}, 

r 
 

 
S 

where c is a universal constant. 

|f t|2dA � 
c 

, 

log(|J|/y0) 

Proof. Elementary considerations show that ωS (E), the harmonic measure of E 

with respect to S at λ0, is bounded below by a universal constant times y0/|J|. 
Indeed, 

ωS S 

λ0 
(E) � ωλ0 

(F ), 
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where F is the union of two intervals in the real line of length 1 |J| located at the 
lower corners of S. Let ψ : S → U be the conformal map that takes the centroid of 

S to the origin and the line segment containing λ0 and x0 to the positive real axis. 
Thus ψ(x0) = 1 and ψ(λ0) = r with 1 − r � y0/|J|.  Then 

 
ωS U 

r 
1 − r2

 

λ0 
(F ) = |ψ(F )| � ωr (ψ(F )) = 

dt. 

ψ(F ) |eit − r| 

But since ψ(F ) is a fixed distance from the point z = 1, the denominator in the 
above integral does not matter. Thus, since the measure of ψ(F ) is fixed, the above 
integral is comparable to 1 − r � y0/|J|. 

Let ϕ : U → S be the conformal map with ϕ(0) = λ0, and let g := f ◦ ϕ. Then 

g(0) = 0, |g| � 1 on ϕ−1(E), and |ϕ−1(E)| = ωS (E) � cy0/|J|. This means that g 

is a “test function” for the logarithmic capacity of ϕ−1(E) [1, Theorem 2], and so 
r 

|gt|2dA � c cap(ϕ−1(E)) � 
c 

. 

U log(|J|/y0) 

Here we are using the well-known fact that if W ⊂ ∂U with a = |W|, then 

 
 

Finally, note that 

cap(W ) � 
c 

. 
log(1/a) 

 

r r 

|gt|2dA = 
U 

|f t|2dA. 
S 

D 
 

We are now ready to prove our main theorem. To make the construction easier, 
we work in the upper half plane and replace the sequence (rn)n�0 with a sequence 

(yn)n�0 ⊂ (0, 1) with yn → 0 and such that 
∞ 
  

 
n=0 

1 
 

 

log(1/yn) 
= ∞. 

We will construct a sequence (xn + iyn)n�0 in the upper half plane whose closure 
intersects the real axis only at x = 0 and such that the only holomorphic function 
f in the upper half plane with finite Dirichlet integral for which f (xn + iyn) =  0 
for all n is the zero function. 

Assuming that yn � 0, we can find 

1 � n1 < m1 < n2 < m2 < · · ·  

such that, whenever n � nk , 
 
 
 

and 

 1 
yn log 

n 

 1 
< e− 

k2 

 

2k2
 

mk 

ke2k   <  
    

 < ke2k
 + 1. 

 

For each k, lay out intervals 

n=nk 
log(1/yn) 

Jnk , Jnk +1, · · · , Jmk 

y 

1 2 
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on the real axis end-to-end starting at x = 0 and such that 

1 
 

 
Then 

|Jn| = 
k2e2k2 

log(1/y 
) 
,   nk � n � mk. 

log 
|Jn|

 
yn 

1 
= log 

k2e2k2 
yn log(1/yn) 

= log(1/yn) − log k2 − 2k2 − log log(1/yn) 

< log(1/yn). 

Let xn be the center of Jn, and set λn := xn + iyn and 

Sn := {x + iy : x ∈ Jn, 0 < y < |Jn|}. 

Suppose that f is holomorphic on the upper half plane with finite Dirichlet integral 

and such that f (λn) = 0 for all nk � n � mk . Set 

Ak := {n : nk � n � mk   and |f | � e−k
 on a set En ⊂ Jn with |En| � 1 |Jn|}, 

Bk := {n : nk � n � mk , n /∈ Ak}. 

Apply Lemma 3 to see that if n ∈ Ak , then 
2 r 

 
Sn 

and if n ∈ Bk , then 

|f t|2dA � ce−2k � c 

log(|Jn|/yn) 

e−2k 
, 

log(1/yn) 
 
 

2 r 
log 

1 
dx � 

1 1 
|Jn|k2 = e−2k 

. 
 

We conclude that 

Jn 
|f | 2 2 log(1/yn) 

  
|f t|2dA +  

 
 log  1  

mk 

dx � ce−2k     
 

   1   
log(1/yn) � ck. 

n∈Ak    
Sn n∈Bk   

Jn |f | n=nk 

Thus by the log-integrability of f on the boundary [4, p. 17], f must be the zero 
function. 

It follows that the set 
∞ I 

(λn)n �n�m 

k=1 

cannot be the zeros of a holomorphic function with finite Dirichlet integral. Choose 
the remaining points (from the unused yn’s) on the imaginary axis to obtain a 
sequence (λn)n�0 that is not the zero set of a function with finite Dirichlet integral. 
Finally, since 

mk mk 

    ke2k   + 1  

n=nk 
|Jn| = 

k2e2k2 
n=nk 

< 
log(1/yn) k2e2k2 → 0,  k → ∞, 

it follows that the closure of the sequence (λn)n�0  intersects the real axis only at 
x = 0. 

2 

r 

k 

1 
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