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ZEROS OF FUNCTIONS WITH FINITE DIRICHLET INTEGRAL

STEFAN RICHTER, WILLIAM T. ROSS, AND CARL SUNDBERG

(Communicated by Juha M. Heinonen)

Abstract. In this paper, we refine a result of Nagel, Rudin, and Shapiro
(1982) concerning the zeros of holomorphic functions on the unit disk with
finite Dirichlet integral.

This is a remark about the zeros of functions f = )’nw anz " holomorphic on

u z Z <1} that have finite Dirichlet integral
r oo
D(f):==" |ff|]2dA= n|an|?
T u n=0

where dA is Lebesgue measure in the plane. Clearly such functions belong to the
classical Hardy spgace IIE|1§, and so the %)eros (Zn)net }é U of f (repeateg accgording

to multiplicity) satisfy the Blaschke condition ,neo (1 = |z0|®) < oo [4, p. 18].
However,not everyBlaschkesequencearethezerosofa holomorphicfw1tf1 B(f) <

oo [2].

In 1962, Shapiro and Shields [6] improved a result of Carleson [3] and showed
that if
(1) 1 <o

 —log(i— [zl)
then there is a nontrivial holomorphic f on U with D(f) < oo such that f(zn) = 0

for all n.

_This condition does not completely characterize the zero sets of analytic functions
with finite Dirichlet integral. For example, if (zn)ngo C (0, 1) is a Blaschke sequence

for which (1) fails, then f = (1 — z)?B has finite Dirichlet integral, where B is the
Blagchke p o%u(gi\pgt&ﬁeros (za)%t%eeze heless, in the conﬁetrﬁe direction, Nagel,

Rudin, and Sha prove rn)neo C (0,1) is such that
1
= OO,
—log(1 —rn)

n=0

then there is a sequence of angles (anln_oo such that the sequence (rme®)ngg is not
the zeros of any nontrivial holomorphic function f on U with D(f) < oo. They do

this by first noting that when D(f) < 0o, the limit
lim f(2)

z—e® zeQ o
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exists for almost every e, where Qi is the exponential contact region
; — 1
Qeio 1= {1 11 —r? > e 1001 },

Beginning at z = 1, lay down arcs In C 60U of length
1

—log(1—rn)

end-to-end (repeatedly traversing the unit circle). Since ),nol [In] = o, by hy-

pothesis, eache®® € 0Uwillbe contained in infinitely many of the intervals (In)ngo.
Let % be the center of the interval I, and note that simple geometry shows that
for every e, the exponential contact region Qe contains infinitely many of the
points rme®. Thus if f has finite Dirichlet integral and f(rne®) = o for all n, the
above limit result says that the boundary function for f will vanish almost every-
where on U, forcing f to be identically zero. This argument actually shows that
the sequence (rme®)ngo cannot be the zeros of a nontrivial harmonic function f
on U with finite Dirichlet integral (where |f¢|2isreplaced by | Vf| inthe definition
of the Dirichlet integral).

In this note, we refine this result and show that for analytic functions the angles
6n can be chosen so that the zeros (e )ngo need not accumulate at every point
of the circle, but instead accumulate at a single point.

Theorem 2. Suppose (rn)neo C (0,1) with rp = 1 and
°° 1
= 0O,
o —log(1—rn)
Then there are angles (6n)neo such that clos(rne®®)neo N U = {1} and such that
if f is holomorphic on U with D(f) < oo and f(rn,e’®") = o for all n, then f is
identically the zero function.

Our proof is based on the following lemma. In order to make our construction
easier, we will work in the upper half plane.
Lemma 3. Let J C R be a finite open interval with center xo and 0 <yo < |J].
Set
S:={x+iy:x€J, o<y<|J|}
and Ao := Xo + iyo. Suppose f is holomorphic on S with
r

|f€]2dA < o0
s

and f(lo) = 0. If
E={xeJ:[f(X)| @1},
r
HEX:
s log(J1/yo)
where c is a universal constant.

and |E| 01%] |, then
c

Proof. Elementary considerations show that coj (E), the harmonic measure of E
o]

with respect to S at o, is bounded below by a universal constant times yo/|J]|.
Indeed,

S S
“ . (E) @y, (F),
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where F is the union of two intervals in the real line of length 1|J| located at the
lower corners of S. Let y : S = U be the conformal map that takes the centroid of

S to the origin and the line seg t contajnin and Xo to the positive real axis.
uswxsgl1andw/1 —rw1 1—réyoﬁ Ilgen P

_2
T
y let—=r] ?
But since y(F) is a fixed distance from the point z = 1, the denominator in the
above integral does not matter. Thus, since the measure of w(F) is fixed, the above
integral is comparable to 1 —r @Yo/ |J]|.
Let ¢ : U — S be the conformal map with ¢(o) =Jg, and let g :=f ° ¢. Then
g(o) =0, |g| €1 0on ¢~Y(E), and |[¢~L(E)| = a)A (E) @cyo/|J]|. This means that g
is a “test function” for the logarithmic capacity of ¢~ l(E) [1, Theorem 2], and so

lg'1?dA @c cap(¢~(E)) @

COS
20(F) = [y(F)] 0wr (w(F)) =

u log(|J I/yo)
Here we are using the well-known fact that if W C oU with a= |W |, then
cap\W)@
log(1/a)
Finally, note that r r

lgt|?dA = |f|2dA.
U S
D

We are now ready to prove our main theorem. To make the construction easier,
we work in the upper half plane and replace the sequence (rn)ngo with a sequence
(yn)neo C (0, 1) with yn = 0 and such that

oo

1
oo log(1lyn)
We will construct a sequence (Xn + iyn)ngo in the upper half plane whose closure
intersects the real axis only at x = 0 and such that the only holomorphic function

f in the upper half plane with finite Dirichlet integral for which f(x, + iyn) = 0
for all nis the zero function.

Assuming that y, € 0, we can find
1@n<m<n<m<---
such that, whenever n €n,

1
< e_Zk2

1 i
0
ynlog Yn K2

and

mk
ke2k2 < 1 < keZk2 +1.

n=ni log(1/yn)
For each k, lay out intervals

Jnk, Jnk+1, e .Jmk
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on the real axis end-to-end starting at x = 0 and such that
1
|Jn | = _2_2122—
ke log(1/yn), Nk €@n @mg.

Then
J
logﬂ = log . !
Yn k262k ynlog(llyn)
= log(1/yn) — logk? — 2k? — log log(1/yn)
< log(1/yn).

Let xn be the center of J,, and set An := xn + iyn and
Sh:={x+iy:x € Jn,0<y< ||}
Suppose that f is holomorphic on the upper half plane with finite Dirichlet integral
and such that f(in) = o for all nx @n @my. Set
Ac:={n:nc @nmg and |f| @e™® 2 onasetEnC Jn with |Ep| Ollz.]nl},
Bk := {n: nx @n @mg,n/e A}
Apply Lemma 3 to see that if n € A, then

2
|ft|2dA ch—Zk_Q—l_OC e—2k

Sh 10g( |Jn |/yn) 10g(1/yn) 7
and if n € By, then

r 1 1
log ' dx@ _|dn|ki= __ €%
aw fl 2 2 log(1/yn)
We conclude that
1 mk
|£8]2dA + log L dx €ce™ togtifyn)y @ck.
neAk Sn neBk In |f| Nn=nk

Thus by the log-integrability of f on the boundary [4, p. 17], f must be the zero
function.

It follows that the set -

(ln)nkonom K
k=1
cannot be the zeros of a holomorphic function with finite Dirichlet integral. Choose
the remaining points (from the unused yn’s) on the imaginary axis to obtain a
sequence (4n)ngo that is not the zero set of a function with finite Dirichlet integral.
Finally, since

Mk Mk
ke2k2 4 1
1 1 <

N |9n] = k202 n=n, 108(1/yn) ez O k= oo,

it follows that the closure of the sequence (/n)ngo intersects the real axis only at
X = 0.
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