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THE  BACKWARD  SHIFT  ON  THE  SPACE 

OF  CAUCHY  TRANSFORMS 

 
JOSEPH A. CIMA, ALEC MATHESON, AND WILLIAM T. ROSS 

 

(Communicated by Joseph A. Ball) 

 

Abstract.  This note examines the subspaces of the space of Cauchy trans- 

forms of measures on the unit circle that are invariant under the backward 
shift operator f → z−1(f − f (0)). We examine this question when the space 

of Cauchy transforms is endowed with both the norm and weak∗ topologies. 
 

 

 

1. Introduction and preliminaries 

In this note, we will examine the invariant subspaces of the backward shift op- 
erator 

(Bf )(z) = 
f (z) − f (0) 

z 
on the space of Cauchy transforms K consisting of analytic functions on the open 
unit disk D = {z ∈ C : |z| < 1} that take the form 

r 
dµ(ζ) 

(1.1) (Kµ)(z) := . 

T 1 − ζz 

Here µ ∈ M , the space of finite Borel measures on the unit circle T = {z ∈ C : 
|z| = 1}. 

By an “invariant subspace” of K we will mean a closed linear manifold M ⊆ K 
for which BM ⊆ M. In using the word “closed”, there are two topologies on K to 
consider here. The first is the norm topology. For f ∈ K, let 

Mf := {ν ∈ M : f = Kν} 

be the set of “representing measures” for f . Define the norm of an element f ∈ K  
by 

1f 1 := inf{1ν1 : ν ∈ Mf }, 

where 1ν1 denotes the total variation norm of the measure ν. The notation (K, 1·1) 

will denote the space K endowed with the above norm topology. It is well known 

that (K, 1 · 1) is isometrically isomorphic to the quotient space M/H1  and is a 

non-separable Banach space. Here      is the usual Hardy space of the disk [9] and 

0  are the functions in H1 that vanish at the origin. H1 is regarded as a subspace 
of M in the natural way as {f dm : f ∈ H1} where dm = |dζ|/2π is normalized 
Lebesgue measure on the circle. The second topology on K is the weak∗ topology 
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that arises by identifying the dual space of the disk algebra A (analytic functions 
on D that have continuous extensions to D−) with K via the pairing 

r     

(f, Kµ) = f dµ, f ∈ A, µ ∈ M. 
T 

By the F. and M. Riesz theorem [9, p. 41], if µ1, µ2 ∈ MKµ, then dµ1 − dµ2  = hdm, 
where h ∈ H1. Thus the above pairing is independent of the representing measure 

µ. We will use the notation (K, ∗) to denote the space K endowed with the weak∗ 

topology. One can show that (K, ∗) is separable. Furthermore, every weak∗ closed 
subspace of K is norm closed. See [4], [5], and [6] for a review of these basic facts 
about K. In this paper, we examine the B-invariant subspaces of (K, ∗) and (K, 1·1). 

To put our results in perspective, we mention some known results about the B- 
invariant subspaces for other spaces of analytic functions. For example, by Beurl- 
ing’s theorem [9, p. 114], the B-invariant subspaces of the classical Hardy space H2

 

all take the form (ϑH2)⊥, where ϑ is an inner function. Moreover [8] (see also [6]), 

f belongs to (ϑH2)⊥ if and only if there is a function Gf ∈ N +(De) that vanishes 
at infinity such that 

 
(1.2) lim 

f 
(rζ) = lim Gf (ζ/r) 

r→1− ϑ r→1− 

for m-almost every ζ ∈ T. Here De := C�\D− and Gf ∈ N +(De) means Gf (1/z) ∈ 

N + (the Smirnov class of D [9, p. 25]). The function Gf is called a “pseudocon- 
tinuation”1 of f . If 

σ(ϑ) := {z ∈ D− : lim |ϑ(λ)| = 0}, 
λ→z 

then, by basic properties of inner functions [11, pp. 68 and 69], ϑ has an analytic 

continuation to C� \ σ(ϑ)∗ , where σ(ϑ)∗ := {z ∈ C� : 1/z ∈ σ(ϑ)}. In fact, every 
f ∈ (ϑH2)⊥ has an analytic continuation to C� \ σ(ϑ)∗ [8]. 

For the Bergman space L2 (analytic functions f on D such that f ∈ L2(dx dy)) 
a theorem of Richter and Sundberg [14] says that every B-invariant subspace takes 

the form Mg  := {f ∈ L2 : f ⊥ zng ∀ n ∈ N ∪ {0}} for some g in the Dirichlet 
L2 

space (i.e., gl ∈ L2 ).  Here we equate the dual of 
the “Cauchy” dual pairing 

a with the Dirichlet space via 

 
lim 

r→1− 

r    

f (rζ)g(rζ) dm(ζ). 

Furthermore, (i) gMg ⊆ Hp for all 0 < p < 1, (ii) for every f ∈ Mg , the meromor- 
phic function f/ϑg (where ϑg is the inner factor of g) has a pseudocontinuation as 
in (1.2), (iii) every f ∈ Mg has an analytic continuation to C� \ σ(g)∗. Moreover 
[2], if g is “sufficiently smooth”, then gMg ⊆ H1 and f ∈ L2 belongs to Mg if and 

only if (a) fg ∈ H1 and (b) f/ϑg has pseudocontinuation as in (1.2). For certain Lp
 

Bergman spaces, the function g can always be chosen to be “sufficiently smooth”; 
so in this case we have a complete characterization of the B-invariant subspaces. 
Our purpose here is to get similar-looking results for the space (K, ∗) (which can be 

gleaned from results of Korenblum [13]) and to examine the more difficult problem 
of characterizing the B-invariant subspaces of (K, 1 · 1). 

 
 

1If h is meromorphic on D and H is meromorphic on De and the nontangential boundary values 
of h and H exist and are equal m-almost everywhere, then h and H are “pseudocontinuations” of 
each other. See [15] for more details. 
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2. The main results 

For a B-invariant subspace M of (K, ∗) let 

M⊥ = {f ∈ A : (f, Kµ) = 0 for all Kµ ∈ M} 

be the pre-annihilator of M. M⊥ is a norm closed subspace of the disk algebra A. 

A straightforward calculation shows that 
r r  ∞     

(2.1) (f, Kµ) = f dµ =  lim f (ζ)(Kµ)(rζ) dm(ζ) = lim 
' 

f�(n)� n)r 

T r→1−      
T r→1− 

n=0
 

and (f, BKµ) = 
(
f, K(ζdµ)    = (zf, Kµ).   Thus zM⊥ ⊆ M⊥ since BM ⊆ M. 

Since A is a Banach algebra and polynomials are dense in A [11, p. 17], M⊥ is an 

ideal of A. A theorem of Rudin [16] (see also [11, p. 85]) says the following. 
 

Theorem 2.2 (Rudin). Let I be a norm closed ideal of the disk algebra A. Then 
there is a closed set E ⊆ T of Lebesgue measure zero and an inner function ϑ with 
σ(ϑ) ∩ T ⊆ E such that 

I = I(ϑ, E) := {f ∈ A : f/ϑ ∈ H∞,f|E = 0}. 

Furthermore, given a set E ⊆ T of Lebesgue measure zero and an inner ϑ with 

σ(ϑ) ∩ T ⊆ E, there is an outer function F ∈ A whose zero set is equal to E and 
such that g := ϑF generates I(ϑ, E) in the sense that the smallest norm closed ideal 
of A containing g is equal to I(ϑ, E). 

To describe M, we need (via the Hahn-Banach theorem) to describe the set 

(M⊥)⊥ = I(ϑ, E)⊥ := {f  ∈ K : (h, f) = 0 for all h ∈ I(ϑ, E)}, 

or equivalently, the set {f ∈ K : (zng, f) = 0 ∀ n ∈ N ∪{0}}. Korenblum [13] proved 

the following. 

Theorem 2.3 (Korenblum). If Kµ ⊥ I(ϑ, E), then Kµ has an analytic continua- 

tion to the set C� \ (σ(ϑ)∗ ∪ E). 

In the process of proving our main theorem (Theorem 2.5), we will give an 
alternate proof of Korenblum’s theorem. Any measure µ ∈ M can be decomposed 

uniquely as 

(2.4) dµ = φdm + dµs, 

where φ ∈ L1(m) and µs ⊥ m. Our main theorem describes I(ϑ, E)⊥. 

Theorem 2.5. For µ ∈ M, Kµ ⊥ I(ϑ, E) if and only if 

(1) the support of µs is contained in E; 

(2) Kµ/ϑ has an analytic continuation across T \ E to a function F ∈ N +(De) 

with F (∞) = 0. 

By the F. and M. Riesz theorem, every measure ν ∈ Mf  (f ∈ K) has the same 

singular part. Thus in condition (1), there is only one singular part to consider. 
In H2, the B-invariant subspace (ϑH2)⊥ is singly generated by the vector f = 

Bϑ. This next corollary is the analogue of this for (K, ∗). 

Corollary 2.6. I(ϑ, E)⊥ = 
V

 Bnf : n ∈ N ∪ {0}}, where f = B(Kµ) for dµ = 

ϑdm + dµs  and µs ⊥ m with support equal to E. 

n 
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Here 
V 

is the closed linear span in (K, ∗).  This next corollary mimics what 

happens in the Bergman space setting. By a classical result of Smirnov [9, p. 39], 
K ⊆ Hp for all 0 <  p  < 1, and so if our B-invariant subspace M ⊆ K has the 
property that M⊥ is generated by f , i.e., M⊥ is the closed linear span (in A) of 
znf (n ∈ N ∪ {0}), then certainly f M ⊆ Hp for all 0 < p < 1. If f is sufficiently 
smooth, we get the stronger condition f M ⊆ H1 and even a bit more. 

Theorem 2.7. Suppose f ∈ A with f l ∈ H∞. Let E = f−1({0}) ∩ T, and let ϑf 

be the inner factor of f. Then Kµ ⊥ znf for all n ∈ N ∪ {0} if and only if 

(1) fKµ ∈ H1; 

(2) Kµ/ϑf has an analytic continuation across T\E to a function F ∈ N +(De) 

with F (∞) = 0. 

If f ∈ A with f l ∈ H∞, then the boundary zero set E of f satisfies the so-called 

Carleson condition: If (In) is the sequence of arcs contiguous to E on the circle, 
then 

},
n |In| log |In| > −∞. Thus, by Theorem 2.2, not every B-invariant subspace 

of (K, ∗) is singly generated by such an f . 

Comments about the B-invariant subspaces of (K, 1· 1) appear at the end of this 
note. 

 
3. The proofs 

 
Proposition 3.1. Suppose ϑF is a generator for I(ϑ, E) and dµ = φdm + dµs  as 
in (2.4). Then Kµ ⊥ znϑF for all n ∈ N ∪ {0} if and only if φ ∈ ϑH1  and µs  is 

supported in E. 

Proof. Suppose Kµ ⊥ znϑF for all n ∈ N ∪ {0}. Then, by (2.1), 
r     

(3.2) ζnϑF (φdm + dµs) = 0  for all n ∈ N ∪ {0}. 
T 

 
 

From the F. and M. Riesz theorem, ϑF dµs is the zero measure (and so µs is 
supported in E) and ϑF φ = h ∈ H1. However, φϑ = h/F ∈ N + and has L1(m) 

boundary values, and so φϑ ∈ H1 [9, p. 28]. The converse is obvious. 

Proof of Theorem 2.5. We start by proving a somewhat weaker result: Kµ ⊥ 

I(E, ϑ) if and only if µs is supported in E and Kµ/ϑ has a pseudocontinua- 

tion across T belonging to N +(De) and vanishing at infinity.  Indeed, suppose 

Kµ ⊥ I(ϑ, E). By Proposition 3.1 we can assume µ takes the form 

dµ = φdm + dµs,   φϑ = k ∈ H1,  supp(µs) ⊆ E. 

Since k ∈ H1, then k(1/z) belongs to H1(De) and vanishes at infinity.  The inner 

by ϑ(z) = 1/ϑ(1/z). The function 
r 

dµ(ζ) 
µ(z) :=    ,  z ∈ De � 

1 − ζz 

belongs to Hp(De) for all 0 < p < 1 [9, p. 39] and so the function 

   µ(z) 
(3.3) Tµ,ϑ(z) := k(1/z) + 

�
 
ϑ(z) 

,  z ∈ De 

function ϑ is defined on De 

http://www.ams.org/journal-terms-of-use


License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use  

� 

µ/ 

0 

0 

0 

µs 

{ 

 
THE BACKWARD SHIFT ON THE SPACE OF CAUCHY TRANSFORMS 749 

belongs to N +(De) and vanishes at infinity. By Fatou’s jump theorem2, the bound- 
ary function for Tµ,ϑ is 

φ 
(ζ) + 

(Kµ)(ζ ) − φ(ζ ) 
= 

Kµ
(ζ)

 

ϑ ϑ(ζ) ϑ 

for m-almost every ζ ∈ T.  Thus Tµ,ϑ  is the pseudocontinuation of Kµ/ϑ of the 

desired type. 
Conversely, suppose dµ = φdm + dµs, where φ ∈ L1(m) and µs  is supported in 

E, and Kµ/ϑ has a pseudocontinuation G ∈ N +(De) with G(∞)  = 0.  Then, by 
Fatou’s jump theorem, 

 
G(ζ) =  lim Kµ 

(rζ) = 
φ(ζ) + µ(ζ) 

.
 

r→1−    ϑ ϑ(ζ) 

Assuming for the moment that ϑ(0) /= 0, we conclude that G − � ϑ ∈ N +(De) and 

vanishes at infinity. Then φ/ϑ is the boundary function of a function from N +(De) 
that vanishes at infinity.  But since φ/ϑ ∈ L1(m), then φ/ϑ ∈ H1.  If ϑ(0) = 0, then 

use the same argument with ϑ replaced by ϑ/zn and G replaced by G/zn for some 
positive integer n. Now apply Proposition 3.1. 

Now we need to show that Kµ has an analytic continuation to C� \ (σ(ϑ)∗ ∪ E). 
As mentioned earlier, this was originally shown by Korenblum in [13]. Indeed, if 
W ⊆ C� \ (σ(ϑ)∗ ∪ E) is an open set containing an arc of the circle, then Tµ,ϑ (as 
defined in (3.3)) is analytic on W ∩ De and by standard estimates, 

1 
|Tµ,ϑ(λ)|   C1µ1 

|λ| − 1 
,  λ ∈ W ∩ De. 

Since Kµ ⊥ I(ϑ, E), we can apply Proposition 3.1 to conclude that µ takes the 

form 

dµ = φdm + dµs, 

where φ = ϑh (h ∈ H1) and µs is supported in E. 

Next, let (hn) be a sequence of polynomials in H1 that approximates h 

 

 
 

in norm 
and set  

dµn := ϑhndm + dµs. 

Notice that 1µn1 is uniformly bounded in n. By Proposition 3.1, Kµn ⊥ I(ϑ, E) 

and the corresponding pseudocontinuation of Kµn/ϑ is 

      1   
r 

ϑ(ζ )hn (ζ )    1    
r   

dµs (ζ ) 
Tµn,ϑ(z) = hn(1/z) + 

ϑ(z)
 dm(ζ) + . 

1 ζz  — ϑ(z) 1 − ζz 
1 

Since the functions ϑhn are bounded on T, then Kµn/ϑ and Tµn,ϑ are H functions 

on W ∩ D and W ∩ De  (respectively) [9, p.  41].  (Note that ϑ has an analytic 
continuation across W ∩ T as does --- since this W ∩ T avoids the support of 
µs.) Moreover, by what was said earlier, they have equal boundary values almost 
everywhere on W ∩ T. By a standard Morera’s theorem argument [10, p. 95], these 
two functions are analytic continuations of each other across W ∩ T. 

 
 2Fatou’s jump theorem: limr 1− (�(rζ) − �(ζ/r)) = lim —    Prζ dµ = dµ/dm(ζ) m-almost µ µ 

→ 

everywhere [9, p. 4]. 
r→1 

http://www.ams.org/journal-terms-of-use
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Finally,  

Kµn 

 

     1   

 

    C   

| (λ)|    C1µn1 
— |λ| 
1 

1 − |λ| 
C 

,  λ ∈ W ∩ D, 

|Tµn,ϑ(λ)|   C1µn1 
|λ| − 1 |λ| − 1 

,  λ ∈ W ∩ De. 

By a theorem of Beurling [7] (see also [15, p. 95]), these functions form a normal 
family on W and so a subsequence (for which we will use the same index) converges 
to an analytic function on W . But since Kµn/ϑ converges pointwise to Kµ/ϑ, then 
Kµ/ϑ, and hence Kµ, will have an analytic continuation to W . 

Proof of Corollary 2.6. If ϑF is a generator of the ideal I(ϑ, E), then by our “Cauchy 

pairing” in (2.1), it is routine to show that 
r     

 

 
Thus 

(zmϑF , Bnf) = 

/ 

ϑF ζn+m+1(ϑdm + dµs) = 0  ∀m, n ∈ N ∪ {0}. 
T 

{Bnf : n = 0, 1, 2 , . .  .} ⊆ I(ϑ, E)⊥. 

If g ∈ A satisfies (g, Bnf) = 0 for all n, one can use the F. and M. Riesz theorem 
to show that g/ϑ ∈ H1  and g is zero on the support of µs (which equals E). Thus 
g ∈ I(ϑ, E). An application of the Hahn-Banach theorem completes the proof. 

The proof of Theorem 2.7 requires a few preliminaries. Notice that Kµ ∈ L1(dA), 

where dA is the area measure on D. This follows from Fubini’s theorem and the 
fact that the integral r

 1 
dA(z) 

is uniformly bounded in θ. 
D |eiθ − z| 

For a Cauchy transform Kµ, consider the function 
r 

(Kµ)(z) 

D   z − λ 
dA(z),  λ ∈ D. 

Since Kµ ∈ L1(dA) and is analytic on D, it is not difficult to show, using the fact 
that (z − λ)−1 ∈ L1(dA) for each fixed λ ∈ D, that the above integral exists for 
every λ ∈ D. Moreover, the dominated convergence theorem says that the above 

function is continuous on D. 

Proposition 3.4. For µ ∈ M, 
r 2π r I 

(Kµ)(z) 
I
 

sup 
0<r<1   0 

Proof. For fixed 0 < r < 1, 

I 

D 
I 

z − reiθ 

I 
dA(z) dθ < . 

I 

r 2π r I (Kµ)(z) I I 

0 D 
I 

z − reiθ 

I 
dA(z) dθ 

I 

r 2π r 1 r 2π r 1 1 
d|µ|(eix) dt ds dθ. 

0 0 0 T |seit − reiθ | |1 − seite−ix| 
Use the standard inequality 

r 2π dθ 1 
  C log( ),  |a| < 1 

0 |eiθ − a| 1 − |a| 
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to get 

and 

r 2π 

0 

dθ 

|seit − reiθ | 

 

 1 

 
r 

log( 
1
 

  C 1 

 
r 

log( 
1
 

 
 

1 
)   for s < r, 

— s/r 
1 )   for s > r, 

— r/s 

r 2π 

 
0 

dt 

|1 − seite−ix| 
  C log( 

1 
). 

1 − s 

Combine the above two estimates along with Fubini’s theorem to show the desired 
integral is bounded above by 

C   
r r 

 
log(    1   

 
) log(   1   

 
) ds + 

r 1 

log(    1   
 
) log(   1   ) ds 

l 
. 

r 0 1 − s 1 − s/r r 1 − s 1 − r/s 

Standard estimates now show that this quantity is bounded uniformly for r close 

to 1. 

Proof of Theorem 2.7. Suppose f ∈ A with f l ∈ H∞ and Kµ ⊥ znf for all n ∈ 

N ∪ {0}. Theorem 2.5 yields condition (2). Using a power series argument, one can 
show that 

(f, Kµ) =  lim 

∞     
' 

f�(n)� n)r 
 
=  lim 

r    

(Kµ)(rz)(zf )l(rz) dm2(z), 

r→1− 

n=0
 r→1−     

D 

where dm2  = dA/π.  Since (zf )l is a bounded function, we can use the fact that 

Kµ ∈ L1(dA), to rewrite3 this as 
r    

(Kµ)(z)(zf )l(z) dm2(z). 
D 

For fixed λ ∈ D, the function 
 

Kµ − (Kµ)(λ) 

z − λ 

can be written as Kµλ, where dµλ  = ζ(1 − ζλ)−1dµ.  By Proposition 3.1, Kµλ  also 
annihilates the ideal generated by f = ϑF . Thus, by what was said above, 

 

(3.5) 

r 
(Kµ)(z) − (Kµ)(λ) 

D z − λ 
(zf )l(z) dm2(z) = 0,   λ ∈ D. 

Another power series computation yields 
 
 
 

and so from (3.5), 

r 
(zf )l(z) 

D   z − λ 

r 

dm2(z) = −λf (λ) 

 

(Kµ)(z) 
−λf (λ)(Kµ)(λ) =  

D 

(zf )l(z) dm2(z). 

z − λ 

Now use Proposition 3.4 along with the assumption that (zf )l is bounded to show 
that the integrals 

r 2π 

 
0 

|f (reiθ )(Kµ)(reiθ )| dθ 

are uniformly bounded in 0 < r < 1, that is to say, fKµ ∈ H1. 
 

 

3See, for example, the argument used to prove Lemma 2.5 in [3]. 

n 
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Conversely, suppose conditions (1) and (2) are satisfied. Since ϑf Kµ and Ff 

(where Ff is the outer factor of f ) are the boundary values of functions from 

N +(De), then fKµ is also the boundary function of a N +(De) function that van- 

ishes at infinity. But since fKµ ∈ L1(m), then fKµ ∈ H1. Thus 
r    

(Kµ)(ζ)ζnf (ζ) dm(ζ) = 0  for all  n ∈ N ∪ {0}. 
T 

Finally, using the notation gr (z) := g(rz), 
 

 fr 

 

 
  

fr f 
l 

(Kµ)rfr − Kµ f =
r 
(Kµ)r fr − Kµ f 

l
 

r 

+ Kµ f 
fr 

− 
f 

which goes to zero in the L1(m) norm as r → 1−. Thus for any n ∈ N ∪ {0}, 
r    

(znf, Kµ) = lim 
r→1− 

(Kµ)(rζ)(rζ)n f (rζ) dm(ζ) 
T 

r    

= (Kµ)(ζ)ζn f (ζ) dm(ζ) 
T 

=   0. 
 

4. The norm topology 

Recall that (K, 1 · 1) is a nonseparable space, and so a characterization of the 

B-invariant subspaces is out of reach. In this final section, we will make a few 
remarks about the subspace [Kµ], which we define to be the smallest B-invariant 

subspace of (K, 1 · 1) containing Kµ. 
By the Lebesgue decomposition theorem, the space of measures can be decom- 

posed as M = Ma⊕Ms, where Ma = {φdm : φ ∈ L1(m)} (the absolutely continuous 
measures with respect to Lebesgue measure m) and Ms = {µ ∈ M : µ ⊥ m} (the 
singular ones). Moreover, if µ = µa + µs (µa ∈ Ma, µs ∈ Ms), then 

(4.1) 1µ1 = 1µa1 + 1µs1. 

As a consequence of this, the space (K, 1 · 1) can be decomposed as K = Ka ⊕ Ks, 

where Ka  = {K(φdm): φ ∈ L1(m)} and Ks  = {Kµ : µ ⊥ m}.  One can show that 
K r-vM/H1 (where H1 is equated with a subspace of Ma in the obvious way) and 

0 0 

Ka r-v L1/H1. This makes the space (Ka, 1 · 1) separable. See [4], [5], and [6] for 
details. 

Although the B-invariant subspaces of (K, 1·  1) are very much unknown (due to 
the nonseparability of Ks), the B-invariant subspaces of (Ka, 1 · 1) are known [1] 

(see also [6, p. 99]). 

Theorem 4.2 (Aleksandrov). If M is a B-invariant subspace of (Ka, 1 · 1), then 

there is an inner function ϑ such that f ∈ M if and only if f/ϑ has a pseudocon- 

tinuation across T to a function belonging to N +(De) and vanishing at infinity. 

We now examine [Kµ] (the smallest B-invariant subspace of (K, 1· 1) containing 

Kµ), where µ ∈ M and whose support is not all of T. First notice the following. 

Proposition 4.3. If µ ∈ M \ {0} with µ « m and supp(µ) /= T, then [Kµ] = Ka. 

f 
, 
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Proof. Indeed, if the support of µ omits the arc J ⊆ T, then Kµ has an analytic 

continuation across J given by 
r 

dµ(ζ) 
µ(z) =    ,  z ∈ De. � 

T 1 − ζz 

Moreover, if [Kµ] /= Ka, then by Aleksandrov’s theorem, Kµ/ϑ will have a pseu- 
docontinuation for some inner function ϑ.  But since any inner function ϑ has a 
pseudocontinuation given by 

1 
ϑ�(z) = ,  z ∈ De, 

ϑ(1/z) 

then Kµ will have a pseudocontinuation F . That is to say, F is meromorphic on De 

and has nontangential boundary values equal to those of Kµ m-almost everywhere 

on T.   So there are two meromorphic functions on De, namely F  and µ, that 
have nontangential boundary values equal to Kµ m-almost everywhere on 

� 

e arc 
J .   By Privalov’s uniqueness theorem [12, pp.   62 - 63]4, F  = µ.   Thus µ is a 

pseudocontinuation of Kµ across T. So 

� � 
 

µ(ζ/r)] = 0 
lim [(Kµ)(rζ) − 
→1− 

for m-almost every ζ. By Fatou’s jump theorem and the absolute continuity of µ, 
µ must be the zero measure, a contradiction. 

If p is an analytic polynomial, then p(B)Kµ = K(p(ζ)dµ). Assuming supp(µ) /= 

T, we can apply Mergelyan’s theorem [17, p.  423] along with the density of the 
continuous functions in L1(µ) as well as the inequality 1Kµ1   1µ1, to conclude 

that 

(4.4) [Kµ] = clos  {K(f dµ) : f ∈ L1(µ)}. 

Recall from the definition of the norm and (4.1) that for µ ∈ Ms, 1Kµ1 = 1µ1. It 
follows now from (4.4) that for µ ⊥ m and supp(µ) /= T, 

(4.5) [Kµ] = {K(f dµ) : f ∈ L1(µ)}. 

If µ1  « µ2  with supp(µ2) /= T, then dµ1  = gdµ2, where g ∈ L1(µ2).   
Thus if f ∈ L1(µ1), then K(f dµ1)  = K(fgdµ2) and so by (4.4), we have  
shown the 
following. 

Proposition 4.6. If µ1 « µ2  and supp(µ2) /= T, then [Kµ1] ⊆ [Kµ2]. 

If µ ∈ M  and is positive with supp(µ) /= T, and µ = µa + µs  (µa  ∈ Ma  and 

µs ∈ Ms), we note that µa « µ and µs « µ. We can now apply Proposition 4.6 
along with (4.5) and Proposition 4.3 to obtain the following result. 

Theorem 4.7. If µ ∈ M \ {0} is positive with supp(µ) /= T and µ = µa + µs, then 

 
[Kµ] =  

(
Ka ⊕ {K(f dµs) : f ∈ L (µs)} if µa /≡ 

0, 

{K(f dµs) : f ∈ L1(µs)} if µa ≡ 0. 

 
 

4Privalov’s uniqueness theorem:  If f is meromorphic on D and has nontangential limits that 

exist and are equal to zero on a set of positive measure in T, then f is the zero function. 
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