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Teaching Statistics with Sports Examples
Paul H. Kvam

Joel Sokol
School of Industrial and Systems Engineering

Georgia Institue of Technology
pkvam@isye.gatech.edu
jsokol@isye.gatech.edu

Abstract

Class material for introductory and advanced statistics can be colorfully illustrated by using appropriate data
and examples from sports. Specific methods, including statistical graphics (e.g., boxplots), ball-and-urn proba-
bilities, and statistical regression are demonstrated. Examples are drawn from popular American sports such
as baseball, basketball, soccer and American football. Classroom feedback indicates that that most students
enjoy sports examples as a way to learn abstract concepts using familiar, recreational settings.

Editor's note: This is a pdf copy of an html document which resides at http://archive.ite.journal.in-
forms.org/Vol5No1/KvamSokol/

1. Introduction
Modern statistics education has emphasized the appli-
cation of tangible and interesting examples to motivate
students learning about statistical concepts. Introduc-
tory texts aimed at special audiences (e.g., business
students, epidemiology students, or engineering stu-
dents) feature problems and illustrations relevant to
those audiences, complementing course material from
related classes. The current textbook (Hayter, 2002)
used for the Georgia Institute of Technology's intro-
ductory statistics course in the School of Industrial
and Systems Engineering includes a strong emphasis
on science and engineering; more than half of the ex-
ercises in the text are simple and illustrative examples
that are related to topics studied by engineering under-
graduates.

So why should one consider teaching statistics using
sports examples? Clearly, an introductory course that
is dominated by such examples is inappropriate for
students who will apply statistical methods in busi-
ness, science, or engineering. Most sports examples
found in the statistics literature are based on sports
that are mainly popular in North America or Europe,
the most commonly cited topic being baseball. While
American and European instructors might be familiar
with such sports examples, an increasing proportion
of students in western universities are not from west-
ern countries, and have less experience with these
sports.

In our experience, however, when it comes to choosing
projects for various data analyses (regression, contin-
gency tables, analysis of variance), the most popular
themes, year after year, are sports related. We're sur-
prised to find students from China or India eager to
analyze attendance data for Atlanta Braves home
games or apply goodness-of-fit tests to National Colle-
giate Athletic Association (NCAA, 2003a) college bas-
ketball outcomes. While engineering examples have
a clear purpose in teaching students in our College of
Engineering, sports examples seem to bring an added
level of excitement to the classroom experience.

Introductory statistical techniques lend themselves to
endless applications in sports, especially baseball,
where statistics are collected on almost all aspects of
player performance. Albert (2002), a professor at
Bowling Green State University, outlines a basic
statistics course that can be taught entirely through
baseball examples. Simonoff (1998) focused on the
home run race between Sammy Sosa and Mark McG-
wire during the 1998 baseball season, and utilized both
introductory statistics (graphs, categorical data analy-
sis, analysis of variance) along with more advanced
methods (logistic regression and smoothing methods).

The statistics literature features several more sports
examples; in general, they are used to motivate or il-
lustrate new and advanced methods of statistical infer-
ence, e.g., Cochran (2002), Samaniego and Watnik
(1997), Harville and Smith (1994), Crowder, et al.
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(2002), Gill (2000). For its eight most published sports
topics, the Current Index to Statistics (CIS) lists 230
articles that appeared in statistics-related journals be-
tween 1960 and 2002. Figure 1 charts the frequency of
the eight sports in the database; although many of the
international journals in the CIS are published outside
the United States, baseball still dominates the list. This
is partly due to baseball's close affinity with statistics
and statistical analysis, and because so much statistical
information about baseball is readily available on the
Internet. Another reason U.S. sports dominate the lit-
erature is because mostly U.S. authors are submitting
sports-related research papers to refereed journals
(case in point: peruse the author list of this special is-
sue!). The modest goal of this article is to show differ-
ent ways sports examples can be used to illustrate
simple statistical methods or to motivate project work
in an introductory class. Examples are limited to the
sports seen in Figure 1 as most frequently published
on, notably baseball, (American) football, basketball,
and soccer.

Figure 1: No. Articles in CIS.

2. NBA Draft Lottery: A Tiring Exercise
in Probability

For teaching elementary probability, a colorful substi-
tute to the standard ball-and-urn examples can be
found in the National Basketball Association (NBA)
draft-order determination held in spring before the
summer draft. Prior to 1985, the last-place finishers in
each of the two conferences would flip a coin to deter-
mine which team picked first and which picked sec-
ond. A lottery system started in 1985 prevented the
teams with the worst records from automatically re-
ceiving the first two picks, so that teams would not

intentionally lose games to ensure that top draft pick.
Each of the seven teams that failed to make the playoffs
had an equal chance of drafting first. The first year
proved to be memorable as the New York Knicks re-
ceived the first pick (with a one in seven chance) and
selected Patrick Ewing weeks later on draft day.

After a few seasons, critics pointed out that the first
selection in the draft generally had not gone to the
worst or even second worst team in the league. In re-
sponse, the draft lottery changed in 1990 to a weighted
probability system. Since then, the NBA draft lottery
has provided probability and statistics instructors with
non-trivial alternatives to the bland ball-in-urn
homework problems seen in most introductory text-
books.

In the 1990 draft, the eleven worst teams participated
in the lottery and the ith "best" team (of the 11) would
receive a weight of wi = i. Although this change made
the worst team eleven times more likely to receive the
number one pick than the 11th worst team, luck came
to the Orlando Magic in 1993 (the 11th worst team)
when they received the first pick with the highly un-
likely chance of 1/(1+2+...+11)= 0.0152.

Critics again demanded a change in the system, per-
haps not fully understanding the rarity of occurrence
for the 1993 draft outcome, and this "catastrophic error"
rate changed from 0.015 to 0.005. The prerequisite for
understanding the draft lottery probabilities evolved
even more in subsequent years. Fourteen numbered
balls were placed in a drum, and four were chosen
without replacement (14-choose-4 = 1001 ways). One
thousand combinations were assigned to the 11 lottery
teams, with 250 of the combinations belonging to the
worst team and 5 to the best (one combination was
left over; drawing it would lead to a re-drawing).

In 1995, the lottery brought in two more teams and
reassigned some of the 1000 combinations, keeping
250 for the worst team and reducing the chances for
the 2nd to 6th worst teams. Each augmentation pro-
vides different probability distributions for the lottery
teams, and each one offers interesting insights to
probability students computing and comparing the
probabilities associated with lottery ranking. The NBA
has posted several web pages associated with the draft
lottery and the history of lottery picks and probabilities
(see National Basketball Association, 2003a-c).
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3. Statistical Graphics

Graphs in statistics, including bar charts (e.g., Figure
1), pie charts and histograms, represent a broad inter-
face between statistics and the general public. Statisti-
cal graphics are mandatory in the print media, and it
is now commonplace to see a political candidate use
statistical charts to support their point of view, espe-
cially in debates. Ross Perot used charts in his presi-
dential bid in 1992. Dennis J. Kucinich, during his 2004
campaign for the Democratic presidential nomination,
actually came to a National Public Radio debate pre-
pared with a pie chart to argue his point about the
Pentagon budget (to show the other candidates, he
claimed).

Television, magazines, and newspapers all rely on
charts to communicate data. The USA Today relies on
charts to communicate anything from national trends
to entertaining trivia. Occasionally, bar charts are used
in the sports pages. While sports examples can easily
be used to motivate bar charts, there are less common
sports examples that show more powerfully how sta-
tistical graphics can communicate information. In fact,
sports provide numerous examples for illustrating
statistics with pie charts, scatter plots, Pareto charts,
bubble charts, surface plots and box plots.

3.1. Uses and Misuses of Statistical Graphics

Statistical lies are most frequently committed in
graphical form, where the eyes can be more easily
deceived by spurious trends suggested in a picture. A
common abuse is manipulating scales on charts and
graphs by truncating, censoring or transforming the
axis values. Figure 2 shows two different charts
showing an increase in average attendance at NCAA
Women's Soccer(1) games between 1998 and 2003. The
(blue) chart on the right is the default Microsoft Excel
chart; many statistical software packages, in fact, will
restrict both axes to a small set of values that contains
the data, which helps the reader focus on chart differ-
ences more clearly. However, it also removes the scale
of difference from the picture, which has potential to
mislead readers who pay little attention to the axis la-
bels.

Figure 2: Two different charts showing average atten-
dance at NCAA Women's Soccer (season) matches.

The reader's sense of proportion can be manipulated
further with image-based charts, which are standard
in publications such as USA Today. As an example,
Figure 3 below graphs the season wins for the New
England Patriots using clip-art in place of vertical bars.
While the height of the football icons corresponds to
the information the graph is meant to communicate,
the size of the footballs does not; the Patriots improved
56% in wins between 2002 and 2003, but the increase
in area of the football icons is over 140%.

Figure 3: Regular season wins for the New England Pa-
triots, 2002-2003.

(1) http://archive.ite.journal.informs.org/Vol5No1/KvamSokol/soccerAttendance.xls
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3.2. Boxplots

Below is an example of how a box plot(2) can summa-
rize salary differences in Major League Baseball (MLB)

for the 2003 season. In this case, outlying data points
(Alex Rodriguez - Texas, Carlos Delgado - Toronto)
draw attention away from the bars, and a plot without
plotted outliers (an option in most statistical packages)
can show more with respect to team salary quartiles.

Figure 4: Box plot for player salaries of MLB teams in 2003.

3.3. Graphical Summary for Basketball Games

Innovative plots have been developed for special sets
of data. Westfall (1990) presented a simple, yet reveal-
ing graphical summary of a basketball game by plot-
ting the point difference between the two teams' scores
across time. In basketball, perhaps more than any
other of the mainstream American sports, the game is
difficult to summarize in a simple box score. Figure 5
below shows the summary of the February 1, 2004

NBA game between the Minnesota Timberwolves and
the Philadelphia 76ers. Minnesota won the game 106-
101. The box score, shown in Table 1, fails to summa-
rize what happened in the game: Minnesota overcame
an 18-point deficit and pulled ahead for the first time
late in the game. Students can learn about the power
of statistical graphics through such novel uses of
charts. We note that this type of chart can also be used
in a stochastics course to illustrate the idea of one-di-
mensional random walks with varying step sizes.

Table 1: Box score for NBA game between Minnesota and Philadelphia, 2/1/2004

(2) http://archive.ite.journal.informs.org/Vol5No1/KvamSokol/MLBSalaries.xls
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Figure 5: Point difference in NBA game between Minnesota Timberwolves and Philadelphia 76ers, 2/1/2004.

4. Teaching Simpson's Paradox with
Sports Statistics

Simpson's paradox occurs with categorical data that
has three variables when an association between two
of the variables is consistent across all of the levels of
the third variable, but is completely different if one
aggregates over the third.

The paradox is best described using a pair of two-by-
two contingency tables, and baseball presents many
examples of Simpson's paradox. The three variables,
each at two levels, are player (two batters), batting
outcome (hit or out), and batting situation (runners in
scoring position or not). Table 2 below shows one of
56 pairings in which this paradox took place in the
2003 MLB season. It shows how Dustan Mohr (Min-

nesota Twins and San Francisco Giants) had a higher
batting average (hits per at-bat) than Darin Erstad
(Anaheim Angels) in both batting situations when
examined separately, but overall Erstad had a higher
batting average than Mohr. The key to the paradox,
of course, is that the proportions being compared are
based on different sample sizes. In this case, Erstad
appeared with runners in scoring position a smaller
proportion of the time (20%) than did Mohr (28%).
(The reason for the disparity in at-bats with runners
in scoring position is that Mohr generally batted after
more players who were likely to get on base; see Sokol
(2003) for more discussion of the effect of batting order
placement.) Other pairings that illustrate Simpson's
paradox include Carl Everett vs. Hideki Matsui, Jose
Reyes vs. Carlos Beltran, and Frank Thomas vs. Josh
Phelps.

Table 2: Simpson's Paradox in MLB batting averages
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5. Regression Analysis

Student projects involving large sets of real data are a
vital part of effective statistics classes. Projects are
ideal for teaching linear regression because students
have a high degree of freedom to select their own
models to characterize the relationship between the
response and the regressors.

One of the richest examples we have found for use in
a statistics class is the problem of modeling a baseball
player's value based on their individual statistics. For
each player, batter or pitcher, there are dozens of po-
tential regressor variables to consider in the model.
The Microsoft Excel file MLB.xls(3) contains the 2003
MLB batting statistics for 336 major league batters and
lists 23 basic statistics (more refined databases have
many more statistics to consider). We used a "fantasy
league value" as the response of interest. This fantasy
league value, from The Sporting News 2003 Fantasy
Players Guide, is related to player performance via
statistics such as hits, RBI, runs, home runs, stolen
bases, but the functional link cannot easily be charac-
terized in a linear or nonlinear regression because
many other variables influence the response. Other
variables that influence fantasy value are age, team,
position, injury history, and consensus findings from
scouting reports. Up-to-date data sets can be obtained
from many on-line sources such as ESPN.com(4). His-
torical data (every player, every season) can be
downloaded from the The Baseball Archive(5).

Students usually work in pairs, and with so many
possible regression models, it is possible that no two
groups arrive at the same model. As instructors, we
could not help but notice that students who knew the
most about baseball did not derive the best fitting
model. Often, a pair of students knowing little about
the nuances of the game would garner the best model
(with a small number of regressors) relying entirely
on empirical results of the data to guide their model
selection. Some baseball fans, on the other hand,
tended to interject regressors they subjectively pre-
ferred but were not optimal variables to add into the
regression model. More advanced students can consid-
er categorical (or nominal) inputs (e.g., player's team)

to form general linear models, regression diagnostics,
and variable transformations to improve model fit.

6. Logistic Regression Analysis

Examples from sports can also be used to teach more
advanced regression techniques such as logistic regres-
sion. Examples of logistic regressions are usually lim-
ited to biostatistics and other life sciences, but the fol-
lowing example, which examines the effects of home
court advantage in college basketball, shows how
statistics can be used to provide students with new
insights into a familiar problem.

Many NCAA basketball conferences play full or partial
home-and-home round-robin schedules, so that the
conference teams play each other twice during the
season, once at each school. Using data collected from
the 1999-2000 season through the 2002-2003 season,
we seek to answer the question "Given that team A
beat team B at home (or on the road) by X points, how
likely are they to win the return match on the road (or
at home)?"

College students, especially those at a school like
Georgia Tech with a major basketball program, often
give a question like this much more passionate thought
than it might deserve (especially when asked close to
NCAA tournament selection time), so it might make
capturing their attention an easier task. However, an-
swering the question might not be as easy as they
would expect, because the model is more complex
than they first imagine - in addition to modeling bino-
mial data by linking the success probability to the ob-
served point difference, students observe grossly un-
equal sample sizes; that is, there are very few observa-
tions of extreme cases because few teams ever win or
lose a game by more than 40 points. Figure 6 shows
the observed probability of winning a road game given
the previously observed point spread in the home
game (blue bars) along with the estimated probability
based on the logistic regression model (white bars)
with

(3) http://archive.ite.journal.informs.org/Vol5No1/KvamSokol/MLB_Regressiondata2003.xls
(4) http://sports.espn.go.com/mlb/stats/batting?league=mlb
(5) http://www.baseball1.com/statistics/

© INFORMS ISSN: 1532-054580INFORMS Transactions on Education 5:1(75-87)

KVAM&SOKOL
Teaching Statistics with Sports Examples



where (a,b) are estimated as (-0.6228, 0.0292) with
standard errors (0.0231, 0.0017). Figure 7 charts the
number of observations collected at the respective
point spreads. This data was collected from the daily
college basketball scoreboard pages at Yahoo.com.

Unfortunately, there is no easy way to download and
parse all of the scores; we wrote our own C and Unix
C-shell code, specialized for our system, to compile
the data.

Figure 6: Observed win probabilities (blue) and logistic regression estimates (white) for home games at a given point
spread.

Figure 7: Number of games at various point spreads.
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A benefit of using this example to teach statistics is
that, in addition to learning more about statistics, stu-
dents also see how properly applied statistical methods
can give sports fans a new understanding of an old
problem. In this case, they can see for themselves that
home-court advantage, usually valued at 3-5 points
(see, for example, Sagarin (2004)), is probably really
worth about 10-12 points. The model indicates that a
team needs to win a home game by 20-24 points, or
twice the home-court advantage, in order to have an
approximately 50% chance of beating that same oppo-
nent in a road game. (Mathematically, suppose h is
the value of home-court advantage. If Team A is p
points more skillful than Team B, then we would ex-
pect Team A to win at home by p+h points and have
a p-h point-differential on the road. Therefore, when
we observe (see Figure 6) that p-h is approximately
zero (a 50% chance of winning the road game) when
p+h is in the 20-24 range, it is easy to deduce that h
must be between 10 and 12.)

The moral of the story? In addition to having learned
(and gained an appreciation for) statistical methods,

students now know it's worthwhile walking across
campus to the basketball arena when that "unbeatable"
opponent comes to play; with a 12-point advantage,
who knows what might happen!

7. Regression Vs. Linear Programming

Statistical regression methods are also often used to
obtain relative ratings of sports teams. In statistics
classes (and in optimization classes), power-rating (a
widely-used measure for predicting a game's point
differential; see, for example, Sagarin (2003)) examples
from sports can help teach students this use of regres-
sion as well. For example, in college football many
conferences are too large for full round-robin play.
The conference winner is still determined by won-lost
record within the conference, but some teams play
more difficult schedules than others. In the 1999 Big
Ten example below, for example, students might
wonder whether Wisconsin's easier schedule led to
their finishing with a better record than Michigan
and/or Michigan State.

Table 3: Results of play in the Big Ten Conference, 1999 (winner's score is listed first).

This is an interesting example that makes students
think about the relative benefits of different statistical
models. If the power ratings are defined using a linear
programming approach (where the error in a predic-
tion is defined as its absolute difference from the ob-

servation), then Michigan and Michigan State are much
closer to Wisconsin. On the other hand, if the power
ratings are defined using a linear regression with the
error defined as the squared difference, then Wisconsin
has a much larger advantage.

© INFORMS ISSN: 1532-054582INFORMS Transactions on Education 5:1(75-87)

KVAM&SOKOL
Teaching Statistics with Sports Examples



Table 4: Power ratings calculated using two simple regression models.

We describe both of these models in more detail in the
appendix.

8. Classroom Experience

In this section, we describe our experiences with using
these examples in the classroom. Because our experi-
ence covers multiple courses, we first describe the
courses in which we have used this material, and
where those courses fit into the curriculum.

All of the courses in which we have used this material
are in the School of Industrial and Systems Engineering
(ISyE) at Georgia Tech. The undergraduate courses
are both required for and restricted to ISyE majors, so
we have a relatively homogeneous set of students. The
graduate-level course is required for ISyE students
who are pursuing a Master's degree in Operations
Research (MSOR), and is taken by most ISyE students
who are pursuing a Master's degree in Industrial En-
gineering (MSIE). The course also attracts first-year
ISyE PhD students who may not have seen mathemat-
ical programming in their undergraduate curricula,
as well as Master's and PhD students from other disci-
plines whose research relates to optimization.

We have used this material in the following set of
courses:

ISyE 2027, Probability with Applications: A sopho-
more-level course covering conditional probability,
probability distributions and Poisson processes. Basic
calculus is required.

ISyE 2028, Basic Statistical Methods: A sophomore-
level course covering parameter estimation, statistical
decision-making, and analysis and modeling of rela-
tionships between variables. Students taking this

course have already seen basic calculus and probabil-
ity, but may not have taken any other ISyE courses.

ISyE 3039, Methods of Quality Improvement: A ju-
nior-level course covering design of experiments,
measurement, statistical process analysis and control,
and acceptance sampling. Students in this course must
have already taken statistics (see ISyE 2028 above) and
stochastics.

ISyE 4231, Engineering Optimization: A senior-level
course covering optimization modeling and solution
techniques, mathematical programming, and network
and graph models. Students in this course are usually
near the end of their ISyE curriculum, all have taken
ISyE 2028, and most have taken ISyE 3039.

ISyE 6669, Deterministic Optimization: A Master's-
level course covering linear, discrete, and nonlinear
optimization models, algorithms, and computations.
The students in this course have a nominal require-
ment of ISyE 4231 (or an equivalent course from their
undergraduate institution), but many or most actually
take the course without having taken the prerequisite.
This course also attracts Master's and PhD students
from other disciplines, giving us a very diverse set of
student backgrounds.

ISyE 6739, Basic Statistical Methods: A Master's-level
(service) course intended for graduate students who
want an overview of basic tools for probability and
statistics, and covers most of the material in courses
ISyE 2027-2028.

In all of the undergraduate courses, most of our stu-
dents are American and have at least a basic under-
standing of the sports involved. Even so, there are al-
ways some who are unfamiliar with even the basic
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rules of the games, either from lack of exposure (in the
case of many foreign exchange students) or lack of
interest. Interestingly, as we noted in Section 5, those
students who are most familiar with the sports in
question are not necessarily the ones who do the best
analysis. Often, they bring their own learned biases to
the analysis, whereas students who are unfamiliar
with the application can approach the problem with
a fresh perspective. (We note that we have observed
the same phenomenon with other, non-sports applica-
tions as well; for example, students who have co-op
or internship experience in logistics sometimes get
bogged down in minor details, e.g., where the truck
driver will stop for lunch, and miss the overall analyt-
ical benefit of using a mathematical model.) Moreover,
even in the graduate course where the majority of
students may not be from the US, students have no
difficulty understanding the concept of the underlying
model of sports or games, just as they can quickly pick
up models of factories despite generally having little
to no experience inside of one.

Before enrolling in the probability and statistics
courses, students have taken a year of basic calculus.
Fundamental probability is covered in ISyE 2027 (and
ISyE 6739), where the lottery example is used to illus-
trate basic counting problems. Statistical graphics are
a core subject for ISyE 2028, and also introduced in
more abbreviated form in ISyE 6739. Both of these
courses finish the term with a regression project, and
every usage of the MLB data set has proved successful.
More than textbook data sets, the MLB example intro-
duces students to the gray issues of over-fitting versus
parsimony. In final course evaluations, the baseball
project receives more praise than any other specific
project or homework assignments.

In the optimization courses, we teach students who
are further along in their curriculum; almost all of the
students in ISyE 4231 are seniors, and students in ISyE
6669 are all Master's or PhD-level. Therefore, the more
advanced examples described in this paper are useful
for two reasons. First, the students are more advanced
and can understand more complex models. Second,
students in both courses will have previously seen
statistical concepts such as regression: undergraduates
will have already taken ISyE 2028, and graduate stu-
dents should have seen regression as undergraduates.
Therefore, the football power-rating example of Section
7 has the benefit of showing linkage between optimiza-
tion and statistics. From this exercise, students learn

that standard least-squares regression can be formulat-
ed as a convex quadratic program or a linear program
(see Appendix), and also that statistical parameter es-
timation in general is a type of optimization problem.
We find that the students enjoy this type of example
quite a bit, because it makes the curriculum seem more
unified rather than a set of unrelated methodologies.

9. Conclusion

In this paper, we have described several ways in which
introductory and advanced statistical concepts can be
illustrated using examples from sports. Based on stu-
dent feedback, we find that most students enjoy sports
examples. The fact that the abstract concepts they learn
can be applied in recreational ways often gets them
thinking about other real-life situations, not just tradi-
tional industrial engineering applications, where
statistics can be useful. In fact, when local television
and radio stations reported on the success of a predic-
tive model (Kvam and Sokol, 2004) we created based
partially on the logistic regression example of Section
6, we even had several students approach us asking
if we would supervise them in independent research
on these topics.

Overall, we have had a lot of success using these and
other sports examples in the classroom. We find that
students are very receptive to the application of
statistics to sports, even if they are not sports fans
themselves, and that they enjoy seeing how the mate-
rial they learn can be applied in settings other than
those of traditional industrial engineering. Education-
ally, we have observed that the students' enjoyment
leads to increased interest in the material and therefore,
we hope, increased learning.
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Appendix

1. Power Rating Models

In Section 7, we refer to two different statistical models that can be used to determine power ratings. In this
appendix, we describe each model mathematically. For both models, we define the following notation:

G     set of games played, where each game g ∈ G is an unordered set of teams {i,j}.
pig    points scored by team i in game g

ri      power rating assigned to team i

Both models use the standard technique of minimizing a function of the total error in their predictions. We
define the error eg for a single game g = { i, j } to be the difference in predicted point spread and actual point
spread, or eg = (ri - rj) - (pig - pjg).

The only difference between the two models is that one finds ratings that minimize the total absolute error
∑ g∈G|eg| while the other finds ratings that minimize the total squared error ∑ g∈Ge2

g.

1.1. Linear Programming Using Absolute Error

We can formulate the problem of finding ratings to minimize the total absolute error as a linear program:

(1)Minimize     ∑ g∈Gag

(2)Subject to      eg = (ri - rj) - (pig - pjg)      ∀ g = {i,j} ∈ G,

 

(3)                       ag ≥ eg                             ∀ g = {i,j} ∈ G,

 

(4)                       ag ≥ -eg                            ∀ g = {i,j} ∈ G.

In this model, the variables ag denote the absolute error for game g. Constraints (3) and (4) ensure that ag ≥ |eg|
for each game g, while the minimization objective ensures that one constraints (3) and (4) will be binding at
optimality for each game g, and thus ag = |eg|.

1.2. Mathematical Programming Using Squared Error

We can formulate the standard regression problem of minimizing the squared error as a the following mathe-
matical program:

(5)Minimize     ∑ g∈Ge2
g
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(6)Subject to      eg = (ri - rj) - (pig - pjg)      ∀ g = {i,j} ∈ G,

This mathematical program is similar to the linear program in Section 9.1. In fact, it is well-known that we can
solve this problem by substituting (6) into the objective for eg, setting partial derivatives taken with respect to
each ri equal to zero, and solving the resulting system of linear equations; therefore, this model too can be op-
timized using linear programming software.
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