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Abstract. In this paper, we comment on the complexity of the invariant 

subspaces (under the bilateral Dirichlet shift f → ζf ) of the harmonic Dirichlet 

space D.   Using the sampling theory of Seip and some work on invariant 
subspaces  of Bergman spaces,  we will give examples  of invariant subspaces 
F ⊂ D with dim(F /ζF ) = n, n ∈ N ∪ {∞}. We will also generalize this to the 
Dirichlet classes Dα, 0 < α < ∞, as well as the Besov classes Bα

 

0 < α < 1. 
 

 

 

1. Introduction 

For a space X of functions on the unit circle T = {z ∈ C : |z| = 1} for which the 

shift   operator 

T : X → X,  (Tf )(ζ) = ζf (ζ) 

is continuous and invertible (e.g.  Lp(T, |dζ|), Cn(T), C∞(T), W p(T) the Sobolev 
classes, Bα(T) the Besov classes, Dα the Dirichlet classes, BLl

 (T) the Triebel- 
p p,θ 

Lizorkin classes), the problem of characterizing the subspaces (closed linear mani- 
folds) F ⊂ X for which T F ⊂ F , the so called invariant subspaces, is a very difficult 

and open problem. There are two types of invariant subspaces to consider: simply 

invariant (or 1-invariant) T F  

=/ 

F , and 2-invariant T F = F .  The 2-invariant 

subspaces are often described by their zero sets in T [1], [10], [11], [12], while the 
1-invariant subspaces are known to be much more complicated and for most of the 

classes mentioned above, a complete characterization seems a long way off [3], [6], 
[8], [9]. 

In this paper, we focus our attention on the harmonic Dirichlet space D of 
functions f ∈ L2(T, |dζ|) with finite norm 

∞ 

1f 12 = 
'\" 

(1 + |n|)|f̂ (n)| , 
n=−∞ 

where {f̂ (n)} are the Fourier coefficients of f . The 2-invariant subspaces of D can 

be characterized by their zero sets on T [12], while the simply invariant subspaces 
of D are much more complicated. In this paper, we remark on the complexity of 

the invariant subspaces F with DA ⊂ F ⊂ D, where DA is the analytic Dirichlet 
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space {f ∈ D : f̂ (n) = 0 ∀n < 0}, by examining their index. Here for an invariant 
subspace F ⊂ D, we define the index (or sometimes called the co-dimension) to be 

ind F = dim(F /ζF ). 

For the analytic Dirichlet space DA, every non-zero invariant subspace has index 
1 [13].  In stark contrast to this, it was observed in [1] that there are examples 
of invariant subspaces DA  ⊂ F ⊂ D with ind  F = n for any n ∈ N ∪ {∞}. 
We will give a new and more direct proof of this fact as well as specific examples 
of these types of subspaces. To do this, we will employ the natural one-to-one 
correspondence between the invariant subspaces DA ⊂ F ⊂ D and the invariant 
subspaces (under f → zf ) of the Bergman space L2 (D).  We will then use some 

recent results of Seip, Hedenmalm, and Richter [4], [5] ,[14] which yield specific 
examples of invariant subspaces of the Bergman space with large index. We then 

transfer this information back to the Dirichlet space to obtain the following theorem. 

Theorem 1.1. Given n ∈ N ∪ {∞}, there are sequences Aj, 0 ≤ j < n, of points 

in D such that 

F =  
(')

 

0≤j<n 

span{BaH
2 ∩ D : a ∈ Aj} 

is a simply invariant subspace of D with ind F = n. 

Note that H2 = {f ∈ L2 : f̂ (n) = 0  ∀n < 0} is the usual Hardy space on the 

circle and 

(1.1) B (ζ) = 
a  a − ζ  

|a| 1 − aζ 
,  ζ ∈ T. 

We also use span X to denote the closed linear span of X, and z to denote the 
complex conjugate of a complex number z. 

We will remark at the end that a similar result also holds for the Dirichlet spaces 

Dα and the Besov classes Bα(T). 

2. Bergman spaces 

The sequences Aj in Theorem 1.1 will be zero sequences of the Bergman space, 
and thus we begin our discussion with some basic Bergman space  facts.  The 

Bergman space L2 (D) is the space of analytic functions f on D such that 
r 

2 
∞ 2 

f (z)  dA(z) = 
'\" |an|

 
n + 1  

n=0 

< ∞. 

Here dA is area measure on D normalized so it has mass 1, and {an} are the 

power series coefficients of f . It is well known that L2 (D) is a closed subspace of 
L2(D, dA) and the operator f → zf is continuous. The subspaces M ⊂ L2 (D) 

(also called invariant subspaces) are tremendously complicated and 
poorly understood. As before, we define the index (or co-dimension) of an invariant 
subspace M ⊂ L2 (D) to be ind  M = dim(M/zM).  It is known [2] that given 

n ∈ N ∪ {∞} there exists an invariant subspace M ⊂ L2 (D) with ind M = n. 
Moreover, using sampling theory, Hedenmalm, Richter, and Seip [4], [5] have been 
able to generate specific examples of these types of invariant subspaces by using 
zero-based invariant subspaces. 

Given a sequence A ⊂ D, we let 

I(A) = {f ∈ L2 (D) : f|A = 0}. 

D 
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In the case where I(A) /= 0 one can show that I(A) is a closed invariant 
subspace of L2 (D) with ind I(A) = 1. We now state the Seip, Hedenmalm,  
Richter result 
[4], [5]. 

Theorem 2.1 (Hedenmalm, Richter, Seip).  Given  n ∈ N ∪ {∞} there are 

sequences Aj, 0 ≤ j < n, of points in D such that 

M = span{I(Aj ) : 0 ≤ j < n} 

is an invariant subspace of L2 (D) with ind M = n. 

3. The correspondence 

As mentioned in the introduction, there will be a natural correspondence between 
the invariant subspaces DA ⊂ F ⊂ D and the invariant subspaces of the Bergman 

space.  This type of correspondence was observed by Makarov [9] in the C∞(T) 
case where he observed a natural correspondence between the invariant subspaces 

A (T) ⊂ F ⊂ C ∞(T) and the invariant subspaces (under f → zf ) of A−∞ , the 

analytic distributions. Here C∞(T) = {f ∈ C∞ : f̂ (n) = 0 ∀n < 0}, and A−∞ are 
the distributions g with ĝ(n) = 0 for all n < 0. We make a similar observation for 
the Dirichlet space and also prove an interesting index formula. 

The dual space of D, which we will denote by DI, is the space of distributions g 

with 
∞ 
'\" 

n=−∞ 

 |ĝ(n) 2   

|n| + 1  

The pairing between D and DI is given by 
∞    

(f, g) = 
'\" 

n=−∞ 
f̂ (n)ĝ(n),   f ∈ D, g ∈ DI. 

Let DI be the analytic distributions of DI 

A = {g ∈ DI
 : ĝ(n) = (ζ n, g) = 0 ∀n < 0}. 

Making {ĝ(n)} the power series coefficients of an analytic function g(z) on the 
disk, we see that DI can be naturally identified with the Bergman space L2 (D) 
and moreover 

(3.1) 

r    

(f, g) =  lim I
 

r→1−      
T 2π 

Theorem 3.1. (1) If DA ⊂ F ⊂ D is invariant, then M = (ζF )⊥ is an invariant 

subspace of L2 (D). 

(2) If M ⊂ L2 (D) is invariant, then F = ζ(M)⊥ is invariant and DA ⊂ F ⊂ D. 

= ind F. 

Proof. (1) Letting g ∈ M, we see that (ζf, g) = 0 for all f ∈ F . But since ζn ∈ F  
n+1 

for all n ≥ 0, then (ζ 
Also, by (3.1), 

, g) = ĝ(−n − 1) = 0 for all n ≥ 0, i.e. g ∈ DI = L2 (D). 

(ζf, zg) = (ζ(ζf ), g) = 0 ∀f  ∈ F  

since F is invariant. Thus zg ∈M, which makes M an invariant subspace of L2 (D). 

(M)⊥ and so 

(ζ(ζf ), g) = (ζf, zg) = 0 ∀g ∈ M  
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since M is invariant. Thus ζf ∈ ζ(M)⊥ = F . Also, M ⊂ L2 (D) = DI 

 

and so 
a A 

0 = (ζn+1, g) = (ζζn, g) ∀n ≥ 0, g ∈ M, 

which implies ζn ∈ ζ(M)⊥ = F . Thus DA ⊂ F ⊂ D and F is invariant. 
(3) To prove the index formula, first we notice from the Hahn-Banach theorem 

and basic linear algebra that 

dim(F /ζF ) =  dim((ζF )⊥/F⊥) 
⊥ 

= dim(M/(ζ(M ))⊥) 

= dim(M/(ζ(M⊥))⊥). 

The proof will be finished once we show that 
 

(3.2) (ζ(M⊥))⊥ = zM. 
 

To this end, we let g ∈ M; then zg ∈ M and for all f ∈ M⊥, 

(ζf, zg) = (ζζf, g) = (f, g) = 0. 

Thus zg ∈ (ζ(M⊥))⊥. 

For the other direction we observe that 

DA ⊂ F = ζ(M)⊥ 

and so ζDA ⊂ M⊥. Thus if g ∈ (ζ(M⊥))⊥, then 

0 = (g, ζζ) = (g, 1) = ĝ(0). 

Next we observe (using the invariance of M) that if h ∈ M⊥, 

0 = (h, k) = (h, zk) = (ζh, k)  ∀k ∈ M. 

Thus ζh ∈ M⊥. Hence 0 = (g, ζζh) = (g, h) for all h ∈ M⊥. Thus g ∈ (M⊥)⊥ = 
M. Now using the fact that g ∈ L2 (D) and g(0) = 0, we get that 1 g ∈ L2 (D) and 

so, by (3.1), 
a z a 

I 
1 

\ I 
1 

\ 

0 = (g, ζh) = z  g, ζh = 
z 

g, h 
z 

∀h ∈ M⊥. 

Thus 1 g ∈ M and hence g ∈ zM.  So (3.2) has been established and the proof is 

complete. 
 

Recall from (1.1) that for w ∈ D, Bw (ζ) is the single Blaschke factor with zero 
at w. Using the fact that I({w}) = span{znBw (z) : n ≥ 0}, and the F. and M. 

Riesz theorem, one can prove the following. 

Lemma 3.2. If M = I({w}), then F = ζ(M)⊥ = Bw H2 ∩ D. 

We are now ready to prove our main theorem. 
 

Proof of Theorem 1.1.  By Theorem 2.1, the invariant subspace 

M = span{I(Aj ) : 0 ≤ j < n} 
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has index n. Thus by Theorem 3.1, F = ζ(M)⊥ also has index n. We now identify 

F : 

F =  ζ(M)⊥ 

=  ζ 
( 

span{I(Aj ) : 0 ≤ j < n} 
)⊥

 

=  ζ 
(  (')

 

0≤j<n 

I(Aj )
⊥ )

 

= 
(') 

0≤j<n 
ζ 

(  (') 

a∈Aj 

I({a}) 
)⊥ 

since mult. by ζ is invertible 

= 
(') 

0≤j<n 

= 
(') 

0≤j<n 

= 
(') 

0≤j<n 

ζ  span{I({a})   : a ∈ Aj} 

span{ζ(I({a})
⊥

) : a ∈ Aj}  since mult.  by ζ is cont.  and invertible 

span{BaH2 ∩ D : a ∈ Aj }  by Lemma 3.2. 

 
4. Generalizations 

 
In this last section, we remark that the analog of Theorem 1.1 is also true for 

the Dirichlet classes Dα, 0 < α < ∞, of f ∈ L2(T, |dζ|) with 
 

∞ 
'\" 

n=−∞ 

(1 + |n|)α|f̂ (n)| < ∞, 

and the Besov classes Bα, 1 < p < ∞, 0 < α < 1, of f with 
r π r 2π |f (ei(θ+h)) − f (eiθ )| 

dθdh < ∞. 
0 0 h 

Here the appropriate Bergman spaces to consider are the weighted Bergman 
spaces Aα, 0 < α < ∞, 1 < p < ∞, of analytic functions on D with 

r 
p αp−1 

|f (z)| (1 − |z|) 
D 

dA(z) < ∞. 

The analog of Theorem 2.1 is true for Aα where, of course, I(A) = {f ∈ Aα : f|A = 
p p 

0} [4], [5].  For Dα, the analytic distributions (in the dual) can be identified with 
the weighted Bergman space A

α/2 
via (3.1) [7]. For Bα, the analytic distributions 

2 p 

(in the dual) can be identified with Aα, where q = p(p − 1)−1 via (3.1). For both 
these spaces, the analog of Theorem 3.1 remains true. Thus we have the following. 

Theorem 4.1. Let X = Dα, 0 < α < ∞, or Bα, 1 < p < ∞, 0 < α < 1, and 

. Then there are sequences Aj , 0 ≤ 

F =  
(')

 

0≤j<n 

spanX {BaH2 ∩ X : a ∈ Aj} 

is a simply invariant subspace of X with ind F = n. 

N j < n, of points in D so that 
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