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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 101, Number 3, November 1987 

MAPS WHICH PRESERVE GRAPHS 

VAN C. NALL 

(Communicated by Doug W. Curtis) 

ABSTRACT. In 1976 Eberhart, Fugate, and Gordh proved that the weakly 
confluent image of a graph is a graph. A much weaker condition on the map is 
introduced called partial confluence, and it is shown that the image of a graph 
is a graph if and only if the map is partially confluent. 

In addition, it is shown that certain properties of one-dimensional continua 
are preserved by partially confluent maps, generalizing theorems of Cook and 
Lelek, Tymchatyn and Lelek, and Grace and Vought. Also, some continua 
in addition to graphs are shown to be the images of partially confluent maps 
only. 

A compactum is a compact metric space, and a continuum is a connected cam- 
pactum. A map is a continuous function. A map f from a compactum X onto a 
compactum Y is called (1) confluent if for each continuum K in Y, each component 
of f-1 (K) maps onto K, (2) weakly confluent if for each continuum K in Y, some 
component of f 1 (K) maps onto K, (3) pseudoconfluent if for each irreducible con- 
tinuum K in Y, some component of f -1 (K) maps onto K, (4) partially confluent 
if each continuum K in Y is the union of a finite number of continua which are the 
images of components of f -1 (K), and (5) n-partially confluent for some positive 
integer n if each continuum K in Y is the union of n continua which are the images 
of components of f (K). The following implications hold. 

pseudoconfluence 

confluence => weak confluence ' a 
; partial confluence 

I. Examples. Since many of the results in this paper for partially confluent 
maps are similar to those obtained in [2 and 6] for pseudoconfluent maps, it is 
important to illustrate the difference between these two generalizations of weak 
confluence. 

1.1. EXAMPLE. A partially confluent and pseudoconfluent map onto a triod. 
Figure 1 illustrates a map from an arc onto a triod. Simply project the arc as 

indicated onto the triod to produce a map which is partially confluent (in fact, 
2-partially confluent) and pseudoconfluent but not weakly confluent. 
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FIGURE 1 

FIGURE 2 

1.2. EXAMPLE. A partially confluent map which is not pseudoconfluent. 

1.3. EXAMPLE. A pseudoconfluent map which is not partially confluent. For 
each positive integer i let 

Li= {(r,0)I r E [0,1] and 0 = 7r/2i} 

and 
L = {(r, O)j r E [0, 1] and 0 = 0}. 

Let F be the closure of the union of the Li's. The fan F will be the range space. 

FIGURE 3 

To form the domain, for each i let Xi be the closure of the union of the set of 
straight lines joining the following sequence of points: 

ti-l (8 {i-+ 1 1 ti-1 2 11 3--1 
2i ' J 23 23+1' J 23= 223+2' J' 2i 2t+3 J 

Each X, is homeomorphic to the graph of sin(1/x) together with the limit bar. Let 
X represent the union of the Xi's. 

FIGURE 4 
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For each i map X, into F as follows: project each component of 

{(X, y) EXtl y > O} 

onto the y-axis and then rotate it onto L. The components of 

{(x,Iy) EXji y <0 } 

are taken in sequence from left to right and mapped in a similar fashion onto 
Li+i, L%+2, Li+3,... respectively. Extend this map continuously to include the 
limit line at x = 1 and the result is a pseudoconfluent map from X onto F. The 
subcontinuum 

{(r, 0)I r E [0, 1/2] and 0 = 0 or 0 = 1/n for some n = 1, 2, 3,...} 

of F is not the finite union of images of continua from X. 

II. Partially confluent images of one-dimensional continua. A com- 
pactum X is suslinean if every pairwise disjoint collection of nondegenerate sub- 
continua of X is finite or countable. A compactum X is finitely suslinean if every 
pairwise disjoint collection of subcontinua of X having diameter greater than a 
positive number is finite. A compactum X is regular if at each point of X there is 
a local basis consisting of open sets with finite boundaries. 

11. 1. THEOREM. If f is a partially confluent map from a suslinean compactum 
X onto a compactum Y, then Y is suslinean. 

PROOF. Let {KA}IEA be a pairwise disjoint collection of subcontinua of Y. For 
each A in A the partial confluence of f guarantees the existence of a nondegenerate 
continuum CA in X which maps into KA. Since the CA's form a pairwise disjoint 
collection in X, A must be countable. 

The following characterization of regular continua is due to Lelek. 
A continuum X is regular if and only if for each number E > 0 there exists a 

positive number m such that each collection of mutually disjoint subcontinua of X 
having diameters greater than E consists of at most m elements [5, p. 132]. 

11.2. THEOREM. If there is a positive integer n such that f is an n-partially 
confluent map from a regular continuum X onto a continuum Y, then Y is regular. 

PROOF. Suppose Y is not regular. Then there is a number E > 0 such that for 
each integer m > 0 there is a collection of m mutually disjoint continua in Y each 
with diameter greater than E. 

By the continuity of f, there is a number 6 > 0 such that if C is a continuum 
in X and diam(C) < 6 then diam(f (C)) < &/n. By the n-partial confluence of f, 
for each continuum K in Y whose diameter is greater than E there is a continuum 
K' in X such that diam(f(K')) > &/n. But, then diam(K') > 6. So, for each 
integer m there is a collection of mutually disjoint continua in X whose diameters 
are greater than 6. This contradicts the fact that X is regular. 

11.3. THEOREM. If there is a positive integer n such that f is an n-partially 
confluent map from a finitely suslinean compactum X onto a compactum Y, then 
Y is finitely suslinean. 

PROOF. The proof is almost identical to the proof of Theorem 11.2. 
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11.4. THEOREM. If f is a partially confluent map from a hereditarily locally 
connected continuum X onto a continuum Y, then Y is hereditarily locally con- 
nected. 

PROOF. Since continuous maps preserve local connectivity, each subcontinuum 
of U is the finite union of locally connected continua and therefore is locally con- 
nected. 

11.5. THEOREM. If f is a partially confluent map from a hereditarily arcwise 
connected continuum X onto a continuum Y, then Y is hereditarily arcwise con- 
nected. 

PROOF. The proof is similar to the proof of 11.4. 
The proof of the following theorem is almost the same as the proof of Theorem 

5.5 of [6]. A continuum X is acyclic if each map from X onto a circle is homotopic 
to a constant map. 

11.6. THEOREM. If f is a partially confluent map from a one-dimensional 
acyclic continuum X onto a continuum Y, then Y is at most one-dimensional. 

PROOF. Suppose the dimension of Y is greater than one. Then there is a 
weakly confluent map g from Y onto a 2-cell 12 [6, Theorem I, p. 328]. Clearly, 
g . f: X 12 is partially confluent. Let D be a homeomorphic copy of 

{(r, 0)1 r = 1, r = 2, or r = (2 + e0)/(l + e0)} 

in 12. If C is a subcontinuum of Y such that g f (C) is in D, the restriction of 
g . f to C is homotopic to a constant map, so g f (C) is contained in one of the 
three arc components of D [3, p. 542]. Since one of these arc components is not 
compact, D is not the union of images under g* f of finitely many continua from 
X. This contradicts the partial confluence of g f. 

Theorem 11.7 is a generalization of Theorem 3 of [9] for weakly confluent maps. 
Again, the proof is almost the same. 

11.7. THEOREM. If f is a partially confluent map from a continuum X onto 
a continuum Y such that the dimension of Y is greater than one, then X contains 
uncountably many nonhomeomorphic subcontinua. 

PROOF. There is a collection of continua in 12 = [0,1] x [0,1] called the Warask- 
iewicz spirals with the property that if 1 is a countable collection of continua there 
is a Waraskiewicz spiral S such that no member of 1' maps onto S [9, Theorem 21. 
Each of these spirals is a ray limiting onto a circle. 

As in the previous proof, let g be a weakly confluent map from Y onto 12. If 
a finite collection of continua in X has images under the partially confluent map 
g- f whose union is a particular Waraskiewicz spiral, then one of these continua 
must map onto the circle and part of the ray which spirals onto the circle, and thus 
one of these continua could be mapped onto all of the spirals. It follows that X 
contains an uncountable collection of nonhomeomorphic continua. 

An infinite-odd X is a continuum which has a subcontinuum Q, called the core 
of X, such that X\Q has infinitely many components. A simple infinite-odd X is 
an infinite-odd whose core is a point p and such that each component of X\p is 
homeomorphic to the interval (0,1]. 
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11.8. LEMMA. IfX is a suslinean continuum which does not contain an infinite- 
odd and f is a partially confluent map from X onto a continuum Y, then Y does 
not contain a simple infinite-odd. 

PROOF. This proof is similar to the proof of Theorem 5 of [4]. 
Suppose Y contains the simple infinite-odd F = A1 U A2 U A3 U..., where each 

Ai is an arc and p = A1 nrA2nA3n .... Since F is the union of the images of a 
finite number of continua which are images of continua in Y, one of these continua 
must map onto a simple infinite-odd contained in F. Therefore, with no loss of 
generality, it can be assumed that Y = F. Let ai refer to a homeomorphism from 
[0,1] onto Ai which sends 0 to p. 

For each Ol in the interval (4, 1) there is an infinite collection I, of positive 
integers and a continuum F, such that f(F,) = UicI! ai([0, c]). This follows 
from the partial confluence of f. For each e E (E , 1) and j E Ia, there is a sub- 
continuum K' of F, which maps onto a. ([4, ci]). This is because every contin- 
uum in 1Je1 a ([0, ca]) which contains a (ce) and a point not in aj ([ , ce]) contains 
aj 1, ce]), so a.([c,a]) is a W-set in U,EIa ai([O, c]) by [8, Lemma 2, p. 165]. 

For each E in (-, 1) it is not the case that for each j E I, there is an ce E (E, 1) 
such that j E Ia, and F,, n K'j : 0 or else FE is the core of an infinite-odd in X. 
So for each E in (4, 1) there is a j(&) in I, such that if 6 is in (&, 1], and j(&) is in 
I6, then F,' n K(E) is empty. But then there is an uncountable set E in (4, 1) such 
that if E and 6 are in E then j(&) = j(6). 

If E and -j are in E then K'^ C F,c F,iand F,.-(,) n K,) = 0. But j(E) = j(e ) 
so K 0, = 0. Therefore, {K4j(,F) E is in E} is an uncountable collection 
of pairwise disjoint nondegenerate continua in X; this contradicts the fact that X 
is suslinean. 

Note that Example 1.2 demonstrates that partial confluence cannot be replaced 
by pseudoconfluence in the hypothesis of the preceding theorem. 

In [2, Theorem 2.4, p. 41] Cook and Lelek prove that if a continuum X contains 
a triod then there is a weakly confluent map from X onto a simple triod. The same 
argument, with slight variation, will show that if F is the simple n-odd 

F = {(r,0)I 0 = 1/n and 0 < r < 0 for some n = 1,2,3,... }, 

and X is a continuum which contains an infinite-odd, then there is a weakly con- 
fluent map from X onto F. 

11.9. THEOREM. If X is a suslinean continuum which does not contain an 
infinite-odd and f is a partially confluent map from X onto a continuum Y, then 
Y does not contain an infinite-odd. 

PROOF. If Y contains an infinite-odd then there is a weakly confluent map g 
from Y onto the simple infinite-odd F above. The map g f is partially confluent, 
contradicting Lemma 11.8. 

11. 10. THEOREM. A continuum Y is suslinean and does not contain an infinite- 
odd if and only if there does not exist a partially confluent map of Y onto F. 

PROOF. Theorem 11.9 states the necessity of the condition. On the other hand, 
if Y is not suslinean there is a weakly confluent map from Y onto F [2, Theorem 
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2.3, p. 41]. If Y contains an infinite-odd, it was noted above that there is a weakly 
confluent map from Y onto F. 

III. Partially confluent maps and graphs. In this section it is shown that 
not only is the partially confluent image of a graph a graph, but that partially 
confluent maps are the most general class of maps which map graphs onto graphs. 
In fact, it is shown that each map from a continuum onto a graph is partially 
confluent. 

A graph is a continuum which is a finite union of arcs called edges which intersect 
only at their endpoints. The following is a well-known characterization of graphs 
[10, p. 182]: 

A continuum X is a graph if and only if all but a finite number of the points of 
X have order two. 

111.1. THEOREM. A continuum is a graph if and only if it is hereditarily locally 
connected and does not contain an infinite-odd. 

PROOF. One direction is obvious. 
Assume X is a hereditarily locally connected continuum which does not contain 

an infinite-odd. In order to get a contradiction, assume X is not a graph. Two 
cases arise. 

In the first case, X has a finite number of branch points, and, in this case X 
must have an infinite number of endpoints. If e is an endpoint, then there is an 
arc A in X from e to a branch point. Since the arc A contains at most a finite 
number of branch points, there is an arc A' from e to a branch point in X such that 
A' contains no other branch points. Note that the choice of such an arc for each 
endpoint is unique. Now, since there are infinitely many endpoints and only a finite 
number of branch points, one of the branch points is the core of an infinite-odd. 
This is a contradiction. 

In the second case, X has an infinite number of branch points. Let Fo be a set 
consisting of a single branch point x0. There is an arc A from xO to another branch 
point. Such an arc can contain at most a finite number of branch points or else 
the arc would be the core of an infinite-odd. So there is a branch point y in A not 
equal to x0 and an arc from x0 to y such that no point on that arc other than its 
endpoints is a branch point. Let F1 be the set of all branch points y not in Fo such 
that there is an arc from x0 to y such that no point of the arc is a branch point 
except its endpoints. The set F1 must be finite or else x0 would be the core of an 
infinite-odd. Let F2 be the set of all branch points y not in Fo U F1 such that there 
is an arc from a point in F1 to y such that no point of the arc is a branch point 
except its endpoints. Again, F2 must be finite or some point in F1 is the core of an 
infinite-odd. 

Since there are infinitely many branch points, this process does not end, and 
there is an infinite sequence xO, x1, x2, . ... of points such that each x, is in F, and 
such that for each i there is an arc A, from x-1 to x, such that no point of the 
arc is a branch point except its endpoints. Let K be the closure of the union of the 
At's. Since K is locally connected, it is either an arc, a simple closed curve, or the 
union of a simple closed curve and an arc which intersects the simple closed curve 
only at one endpoint. In any case, K is the core of an infinite-odd since K contains 
infinitely many branch points, and this is a contradiction. 



MAPS WHICH PRESERVE GRAPHS 569 

111.2. THEOREM. If f is a partially confluent map from a graph X onto a 
continuum Y, then Y is a graph. 

PROOF. By Theorem 11.4, Y is hereditarily locally connected, and by Theorem 
11.8, Y does not contain an infinite-odd. So, by Theorem 111.1, Y is a graph. 

111.3. THEOREM. If f is a map from a continuum onto a graph Y, then f is 
partially confluent. 

PROOF. Let A1, A2,... , A,, be the edges of Y. For each i, there are components 
of f- (Ai) whose images are maximal with respect to containing one or the other 
of the two endpoints of Ai, and Ai is the union of two or fewer of the images under 
f of such components of f-1 (Ai). If C is a subcontinuum of Ai for some i, then C 
is the union of two or fewer of the images under f of the components of f 1 (C). If 
K is a subcontinuum of Y, then K is the union of a finite number of its subcontinua 
K1, K2, .. , Km, each contained in an Ai for some i. Since each Ki is the union of 
two or fewer of the images under f of the components of f1`(Ki), K is the union 
of a finite number of images under f of components of f 1(K). 

The previous two theorems combine for the following. 

111.4. THEOREM. If f is a map from a graph X onto a continuum Y, then Y 
is a graph if and only if f is partially confluent. 

IV. Continua which are the images of partially confluent maps only. 
The class of continua which are the images of weakly confluent maps only, class[W], 
has been studied and shown to contain all chainable continua, among other types of 
continua. But, class[W] certainly does not contain a simple triod. In the previous 
section it was shown that graphs are the images of partially confluent maps only. In 
this section it is shown that the inverse limit on a fixed acyclic graph is the image 
of partially confluent maps only. 

A map f from a continuum X onto a continuum Y is said to be weakly confluent 
with respect to a subcontinuum K of Y if some component of f-1 (K) maps onto 
K. A subcontinuum K of a continuum Y is called a W-set in Y if each map from 
a continuum onto Y is weakly confluent with respect to K. 

IV. 1. THEOREM. Suppose G is an acyclic graph with exactly n edges, and X 
is an inverse limit of G. Then each subcontinuum of X is the union of n or fewer 
w-sets. 

PROOF. Let K be a subcontinuum of M. Since each subcontinuum of an edge 
of G is a w-set in G [8, Lemma 3, p. 165], the projection ir,jM -* G is weakly 
confluent with respect to wri (K) n Ei for each of the edges El, E2, E3,. . ., En of G. 
For each positive integer i and integer j from 1 to n let K., be a subcontinuum of 
K which projects onto iri (K) nEj. There is a subsequence u of the positive integers 
such that {Kj1(i) } converges to a subcontinuum K, of K for each j. The union of 
the K.'s is K, since if x is in K, then for each i there is a j and a point x3, E K3u(%) 
such that 7ru(i) (xj,) = Wru(i) (x), and therefore, the sequence {x.,} converges to x, 
so x E Ui=l...nK. 

The Kj's which are not empty are w-sets in M. To see this, let f be a map from a 
continuum X onto Y. For each positive integer i and integer j from 1 to n, iru(,) of 
is weakly confluent with respect to iru() (K) n Ej. Let C3, be a subcontinuum of N 
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such that f(Cji) = ru(i) (K) n Ei. There is a subsequence v of u such that {C1i} 
converges to a continuum Cj in Y for each j. Let x be an element of Kj, and let 
{x,,} be a sequence of points converging to x such that x1 E Kjv(,). For each 
i there is a point cji in Cjv(i) such that r,(,) (f (cji)) = lFv(i) (xi,). The sequence 
{ f(c?,) } converges to x, so some subsequence of {cg } converges to a point c in Cj 
and f(c) = x. Therefore, Kj C f(Cj). On the other hand, if f(c) is in f(C ) then 
there is a sequence {cji} converging to c such that cji e Cjv(ij) But, then there 
is a sequence {x3-} of points such that x, E Kji and 7rv(,)(xji) = 7rv(i)(f(cj)). 
Some subsequence of {xji } converges to a point x in K., and the sequence {f(cji)} 
converges to x. Since f(c) = x, f(c) is in Kj. Therefore, f(C3) C K,. 

So, each map from a continuum onto X is weakly confluent with respect to K. 
whenever K., is nonempty and, consequently, K is the union of n or fewer W-sets. 

IV.2. COROLLARY. Suppose G is an acyclic graph with exactly n edges, X 
is an inverse limit of G, and f is a map from a continuum onto X; then f is 
n-partially confluent. 

V. Remarks. It follows from Corollary IV.2 that an acyclic graph G is the 
image of n-partially confluent maps only where n is the number of edges of G. A 
closer look at the proof of Theorem 111.3 reveals that any graph G is the image of 
n-partially confluent maps only where n is definitely smaller than four times the 
number of edges of G. 

VI. Question. Is every map from a continuum onto the inverse limit of a graph 
partially confluent? 

The author would like to thank Jim Davis for the suggestion that Theorem 111.4 
might be true. 
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