
University of Nebraska at Omaha
DigitalCommons@UNO

Computer Science Faculty Proceedings &
Presentations Department of Computer Science

7-2016

A Dynamic Run-Profile Energy-Aware Approach
for Scheduling Computationally Intensive
Bioinformatics Applications
Sachin Pawaskar
University of Nebraska at Omaha, spawaskar@unomaha.edu

Hesham Ali
University of Nebraska at Omaha, hali@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc

Part of the Bioinformatics Commons, and the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by
the Department of Computer Science at DigitalCommons@UNO. It has
been accepted for inclusion in Computer Science Faculty Proceedings &
Presentations by an authorized administrator of DigitalCommons@UNO.
For more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Pawaskar, Sachin and Ali, Hesham, "A Dynamic Run-Profile Energy-Aware Approach for Scheduling Computationally Intensive
Bioinformatics Applications" (2016). Computer Science Faculty Proceedings & Presentations. 53.
https://digitalcommons.unomaha.edu/compsicfacproc/53

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232759682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsci?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc/53?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages

A Dynamic Run-Profile Energy-Aware Approach for
Scheduling Computationally Intensive Bioinformatics

Applications
Sachin Pawaskar and Hesham H. Ali

Department of Computer Science
College of Information Science and Technology

University of Nebraska at Omaha
Omaha, NE 68182, USA

spawaskar@unomaha.edu | hali@unomaha.edu

Abstract— High Performance Computing (HPC) resources are
housed in large datacenters, which consume exorbitant amounts
of energy and are quickly demanding attention from businesses
as they result in high operating costs. On the other hand HPC
environments have been very useful to researchers in many
emerging areas in life sciences such as Bioinformatics and
Medical Informatics. In an earlier work, we introduced a
dynamic model for energy aware scheduling (EAS) in a HPC
environment; the model is domain agnostic and incorporates
both the deadline parameter as well as energy parameters for
computationally intensive applications. Our proposed EAS model
incorporates 2-phases. In the Offline Phase, we use a run profile
based approach to generate the initial schedule. In the Online
Phase a feedback mechanism is incorporated between the EAS
Engine and the master scheduling process. As scheduled tasks are
completed, actual execution times are used to adjust the
resources required for scheduling remaining tasks using the least
number of nodes while meeting a given deadline. In this paper we
study the impact of the quality of initial schedule using different
run profiles which is the starting point for the EAS algorithm on
the number of adjustments which is critical to the overall energy
optimization as every adjustment made has an overhead. The
conducted experiments show that the proposed approach
succeeded in meeting preset deadlines while minimizing the
number of nodes; thus reducing overall energy utilized and that
choosing the right profile in the Offline phase has an impact on
the energy optimization achieved by the EAS algorithm.

Keywords; Energy Awareness, Scheduling, High Performance
Computing, Bioinformatics, Algorithms, Parallel Computing, Run
Profile

I. INTRODUCTION
Cloud Computing is an exciting new trend which many of

us in the IT field are, simply put, a “little cloudy about”. It is a
general term used to describe a new class of network based
computing that takes place over the Internet. Cloud computing
is Commoditized (basically a step on from Utility Computing)
and can be considered to be a collection/group of integrated
and networked hardware, software and Internet infrastructure
(called a platform), which uses the Internet for communication
and transport provides hardware, software and networking
services to clients. The cloud allows for Abstraction, it hides

the complexity and details of the underlying infrastructure from
users and applications by providing very simple graphical
interface or API. The cloud is Ubiquitous, on demand services
that are always on, anywhere, anytime, any-place and finally
the cloud is Elastic, as it supports Pay for use and as needed,
which allows for scale up and down in capacity and
functionalities as needed [1, 19].

A. Cloud Computing Models

There are 3 main types of cloud computing models, the
Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS) models which are described
in the Figure 1 below.

Figure 1: Cloud Computing Models [1, 19]

B. Cloud Service Layers

Another classification for these clouds is based on the type of
services layer they provide such as hosting, storage, platform,
development, application and services layer Figure 2 [1].

Figure 2: Cloud Computing Service Layers

C. HPC, Bioinformatics and the Cloud

More and more companies are starting to realize the
importance of making the high performance computing
resources available via the cloud. High-performance computing
describes a set of hardware and software techniques developed
for building computer systems capable of quickly performing
large amounts of computation. Experience has shown a great
deal of software support is necessary to support the
development and tuning of applications on parallel
architectures. The marriage between the bioinformatics domain
and high performance computing is a natural one, the problems
in this domain tends to be highly parallelizable and deal with
large datasets, hence using HPC is a natural fit.

Bioinformatics can be broadly defined as set of computing
techniques used to manage and extract useful information from
the DNA/RNA/protein sequence data. Most methods used for
analyzing DNA/Protein sequences are known to be
computationally intensive, providing motivation for the use of
powerful computational systems with high throughput
characteristics. The software package BLAST (Basic Local
Alignment Search Tool) has been the method of choice for
many biomedical researchers to measure the degree of
similarity among biological sequences. More recently, a
modified version, called BLAT (the BLAST-Like Alignment
Tool) is quickly becoming a very popular tool for similarity
measures using the concept of sequence alignment. BLAT
works by keeping an index of an entire genome in memory.
Thus, the target database of BLAT is not a set of GenBank
sequences, but instead an index derived from the assembly of
the entire genome. The index which uses less than a gigabyte of
RAM consists of all non-overlapping 11-mers except for those
heavily involved in repeats [2 – 3]. HPC has been successfully
applied to help reduce the computational burden of large
datasets. But, naively parallelizing the applications developed
for BLAT could achieve an unnecessary high degree of
parallelism at the expense of significant energy consumption.
Energy aware scheduling (EAS) which has an understanding of
the application domain in a HPC environment can be a game
changer in terms of controlling energy costs at datacenters
which house these HPC systems. Power-efficient design and
operation of such systems critically depends on reduction of the
power consumption of processors. There are two kinds of
methods to reduce power consumption of processors.
1) First is power-down mode, by putting the processor into

this mode, only certain parts of the processor such as the
clock generation and timer circuits are kept running (idle
state). The tradeoff here is between the amount of power
saving and the latency incurred during mode change.

2) The second is Dynamic Voltage Scaling (DVS), where
processor speed is changed by varying the clock frequency
along with the supply voltage when the required
performance on the processor is lower than the maximum
performance [4].

D. What is a Run Profile?

This work focuses on the concept of Run Profiles and assesses
its value in the context of Dynamic Energy-Aware Scheduling
(EAS). A “Run Profile” for a program provides us with
important information about how many nodes/resources were
used and how long (time) it took to complete the task, based on
certain parameters/characteristics of the data set. In most
scientific domains, such as Bioinformatics, the need for High
Performance Computing usually follows the 90/10 pattern.
Typically, 90% of the tasks involve about 10% of the known
software application. These applications can benefit from a
better understanding of their Run Profile and the dynamic
adjustment to these Profiles. In this paper, we examine multiple
initial Run Profiles and the impact of these on the subsequent
adjustment made by our EAS Engine. Each profile results in
the EAS Engine having to make different number of
adjustments to still meet the deadline, which in turn has an
impact of the energy utilized. Examining different Run Profiles
is critical as application programs in specific domains can be
run using different parameters and in turn would influence how
long the program takes to run on a specific dataset. The profiles
incorporate certain domain-specific parameters such as
sequence length and number of sequences which also
determine how long the application program (such as BLAT)
will run. The Profile would then get adjusted or fine-tuned
every time it runs on a given configuration resulting in a more
refined Run Profile to be used in future runs. It is important to
note that we can parallelize the BLAT program without losing
any biologically significant information relevant to the output
of the program. This means that parallelizing BLAT does not
impact the conclusions that bioinformatics researchers may
draw from the output of BLAT.

II. KEY FACTOR – ENERGY

Energy requirements for datacenters has grown massively
over the last several years, suggesting that rising energy costs
and stricter regulations are not helping to limit datacenter
power use and cut carbon emissions. Between 2011 and 2012,
power requirements grew by 63% globally to 38GW
(gigawatts), up from 24GW in 2011. Energy use in datacenters
was at 12GW in 2007 and has been on the rise since. In the
four years to 2011, it doubled to 24GW, but in the last year
alone it increased to 38GW amid data explosion and business
expansion. The census estimated a further rise of 17% to
43GW in 2013 [5]. Major companies are being forced to
relocate due to high energy costs, e.g. Google has opened a
new datacenter in the Midwest in Council Bluffs [6] and
despite economic slump; Yahoo plans a new datacenter in La
Vista, Nebraska [7].

Most data centers, by design, consume vast amounts of energy
in an incongruously wasteful manner, interviews and
documents show. Online companies typically run their
facilities at maximum capacity around the clock, whatever the
demand. As a result, data centers can waste 90 percent or more
of the electricity they pull off the grid, The Times found [8].
Clearly “Energy” is becoming a key business driver. Given
these facts it has become imperative for us to consider the
efficient usage of energy is all aspects of data center
management.

We believe that there is a place and need for an Energy
Aware scheduling layer between Applications and the actual
HPC Grid Management layer to control the assignment of
number of nodes for an application and manage this
dynamically at runtime to manage energy utilization within a
datacenter. In this paper we will focus on the impact of the
quality of initial schedule using different run profiles which is
the starting point for the EAS algorithm on the number of
node adjustments which is critical to the overall energy
optimization as every adjustment made has an overhead.

III. OVERVIEW OF PREVIOUS WORK

Bioinformatics includes techniques & methods for
processing large volumes of information to help speedup
research. Some of the common algorithms run on this data are
genome sequence comparison, protein structure prediction,
sequence alignment, phylogeny tree construction, pathway
research, etc. [9].

Most of the previous work done focuses on performance
curves that are inherent when one transforms a serial
application running on a single desktop to a parallel
application running in a HPC environment. Work using
BLAST search can be characterized by the data approach used
in the search which is of the following 2 main types.
1) Query segmentation method – partitions the sequence

query set. This allows the BLAST search to proceed
independently on different processors. However, as
databases keep growing, this approach will incur higher
I/O costs and has limited scalability [10, 11].

2) Database segmentation – databases are partitioned across
processors which better utilizes the aggregate memory
space and can easily keep up with the growing database
sizes [12, 13].

Our approach and experiments uses a combination of the
query & database segmentation approach with the experiment
of all query files against all chromosome files. We build on
our previous work [13 – 14] to propose a more generic model
to tackle the energy awareness problem. Unlike BLAST, the
BLAT program which is an alignment tool like BLAST, is
organized uniquely, is relatively new and hence does not have
a lot of studies related to its performance in a HPC
environment. This is clearly warranted as BLAT is starting to
be more widely used [2 – 3]. The main goal of our study is the
minimization of energy in a HPC environment and its

relationship with performance. Our main goal is to come up
with an energy aware scheduling (EAS) model/algorithm that
balances the both energy utilized and performance for such
tasks. In [13 – 14, 20] the importance of data design was
studied which improved the degree of parallelism, by
modifying the way data is structured to maximize the usage of
parallelism. The following experiments were designed and
compared to study varying degrees of parallelism.
1) All query sequences/chromosome (DB segmentation)
2) Merged query sequences/chromosome (Query Merge),
3) All query files against all chromosome files (Hybrid).

IV. RUN-PROFILE SCHEDULING

Our main goal is to study and examine the behavior of the
EAS Model proposed when the online phase of the algorithm
is seeded with differing run profiles. The run profiles are
based on the 3 experimental approaches namely (1) Database
segmentation, (2) Query merge and (3) Hybrid. Obviously
each of these run profiles will result in varying schedules
during the initial runs, but can the EAS Model adjust
appropriately over time and how long (number of runs) does it
take for the EAS Model to return comparable results. It now
has to adopt a scheduling policy which is both traditional
performance focused and energy aware. The goal is to find the
right harmony between these two, slightly divergent goals.

Offline Phase – Build Run Profile, we perform some runs to
understand the degree of parallelization (also called run
profile) of a program. Based on this we seed our energy aware
scheduling (EAS) algorithm in the EAS Engine with the run
profile (meaning understanding of the number of nodes
required, sequence size and time it takes for the program
(BLAT) to run. Using this we can then first allocate a set of
nodes for any input sequences based on the number of
sequences and given deadline.

Submit Bio-
informatics Job to

EAS

SendWork to
Worker node

SendWork
Completion to

Master

Head Node(s)

S1 S2 S3 S4

S5 S6 S7 Sn

Compute Nodes

EAS Worker
process (Runs

Tasks)

EAS Master
process (Builds
EAS for Tasks)

Energy Aware
Scheduling Engine

Feedback of Actual
Completion Time

of Node or DVS
Adjustments

Run Profile - QBigByChr

Run Profile - QByChr

Run Profile - AllAll

Figure 3: Process Diagram for EAS using Run Profiles

Online Phase – Dynamic Resource Adjustment Here we
dynamically adjust the number of nodes either up or down
based upon actual execution time (AET). This then becomes a
feedback loop to the EAS Engine, which looks at the tasks
expected execution time (EET), its actual execution time and
then takes steps to adjust the schedule by adjusting the overall

nodes assigned or in future the Dynamic Voltage Scaling
(DVS) of each node to meet the overall deadline. This allows
us to meet the two divergent goals of minimizing energy
utilization and performance.

Figure 3 which is an enhanced version of the EAS Model
first described in [13 – 14] shows the program flow for our
Run-Profiles based EAS implementation. The EAS Engine
assimilates information about the EET based on run-profile
and AET of the task from the worker process, and then makes
node level and/or DVS adjustments as needed and sends
appropriate feedback information back to the Master process.

This research also highlights the need to carefully develop a
parallel model with energy awareness in mind, based on our
understanding of the application and then appropriately
designing a parallel model that works well for the specific
application and potentially similar applications within that
domain. Figure 3 describes the general program flow for our
implementation of the Energy Aware Scheduling (EAS)
Engine on the HPC cluster (firefly). The EAS program is
written in C++ and uses MPI (Message Passing Interface) to
handle communication between multiple nodes in the cluster
[16 – 18]. In general the program consists of a Master and
Several worker processes. The program first initializes the
MPI environment and then the process with rank=0 is
designated as the master process and the rest are designated as
worker processes. The Master process builds the work queue
and handles all scheduling of work tasks to the respective
worker processes. It goes through the work queue and makes
scheduling decisions based on performance and energy
criteria. Once all the work has been distributed, it then waits
and gathers information back from the worker processes. After
each worker process replies back the master process it calls the
Energy Aware Scheduling (EAS) Engine and sends a
terminate message to each worker process/node. The Worker
processes simply wait for work from the master process,
execute the work given and wait for more work or notification
from master to terminate. The EAS Engine takes information
about the EET and AET of the task, makes decisions if any
node level adjustments need to be made (and/or DVS
adjustments) and sends an appropriate feedback message back
to the Master process.

A. Implementation of Step 1 – Offline Phase

Our goal is to make energy awareness and scheduling
decisions so as to run the BLAT program against given query
sequences for a given genome/chromosome file. In most cases
researchers today are running this on local desktops and each
sequence search is run sequentially and the entire result set
may take several hours to days depending on the number of
search sequences. Our intention is to first bring some amount
of parallelism to this process and then a degree of energy
awareness to the scheduling aspects to such tasks. With that in
mind we parallelized the process using the “All query

sequences per chromosome” approach used in [13, 19] to
understand the degree of parallelism in the BLAT program.
The human chromosome files used for these experiments were
downloaded from the UCSC Genome bio-informatics website
[1]. We used build 36.1 finished human genome assembly
(hg18, Mar. 2006). The chromosomal sequences were
assembled by the International Human Genome Project
sequencing centers. We used the ChromFa.zip file which is the
latest dataset as of Dec 2008 [1 – 2]. We used MPI (GNU) to
parallelize the runs on multiple nodes, which was a
configurable parameter. Our experiments used sequences
gathered from researchers at UNMC (University of Nebraska
Medical Center) and parallelize the runs to study the
performance characteristics under different conditions. For our
tests we used 24 query sequences from a researcher at UNMC

TABLE I. QUERY SEQUENCES USED FOR ANALYSIS

QUERY FILES .fa size
(kb)

.2bit size
(kb)

of
lines

of
seqs

MCL_chr1.txt 3311705 1089176 14186 7093

MCL_chr2.txt 2378142 785204 10254 5127

MCL_chr3.txt 1772666 584699 7640 3820

MCL_chr4.txt 1432124 466415 5970 2985

MCL_chr5.txt 1722396 546919 36481 3541

MCL_chr6.txt 1771709 582893 7520 3760

MCL_chr7.txt 1863885 614151 8108 4054

MCL_chr8.txt 1492613 493893 6458 3229

MCL_chr9.txt 1700540 564950 7404 3702

MCL_chr10.txt 1486654 492908 6438 3219

MCL_chr11.txt 2299625 759437 9970 4985

MCL_chr12.txt 1849123 609289 7854 3927

MCL_chr13.txt 703781 231659 2962 1481

MCL_chr14.txt 1302834 430629 5598 2799

MCL_chr15.txt 1024197 338618 4448 2224

MCL_chr16.txt 2320925 763311 10058 5029

MCL_chr17.txt 2863504 943539 12372 6186

MCL_chr18.txt 530863 176476 2376 1188

MCL_chr19.txt 3584718 1193013 15994 7997

MCL_chr20.txt 1297151 430415 5752 2876

MCL_chr21.txt 736972 243709 3202 1601

MCL_chr22.txt 1236062 410443 5464 2732

MCL_chrX.txt 1293959 423823 5438 2719

MCL_chrY.txt 53658 17006 200 100

Total 40029806 13192575 202147 86374

We parallelized the runs to study the performance
characteristics under three different conditions. The table
(Table 1) shows some characteristics of these query sequences
[13 – 14]. We ran the merged query experiment to study the
benefits of merging the query files as BLAT is memory
optimized to run large number of sequences. Each query file
was a FASTA format text file of sequences with varying

number of sequences in each file. Note that the number of
nodes 25 comes from the fact that in the human genome we
have Chromosome 1 to Chromosome 22 and we have
Chromosome X, Chromosome Y and Mitochondrial DNA
material.

A key question we tried to answer then was “How
parallelizable is the program?” In-order to answer this
question we charted the performance curve for each
experiment type and super impose these by the standard
speedup curves based on Amdahl’s Law. The figure 4 below
shows that the QBigbyChr and QbyChr have a speedup of
around 25 times (97% parallelizable) and the AllAll approach
has close to 100 times the speedup (99% parallelizable).

Figure 4: Number of Nodes v/s Speedup based on Amdahl’s Law

Firefly Cluster: We used the firefly cluster at the Holland
Computing Center to conduct our experiments. It is a 1,151-
node cluster of Dell SC1435 servers. Each node consists of 2
sockets, and each socket holds a 64-bit quad-core AMD
Opteron 2.2 GHz processors with 8 GB of memory. An 800
MB/sec Infiniband interconnect forms the computational
network [15].

1) Build Run Profile Implementation

We seeded our energy aware scheduling (EAS) algorithm in
the EAS Engine with the run profile (meaning understanding
of the number of nodes required, sequence size and time it
takes for the program (BLAT) to run. This knowledge was
used to generate the initial schedule used to first allocate a set
of nodes for any input sequences based on the number of
sequences and given deadline.
We used the 3 different approaches discussed above namely
(1) All query sequences per chromosome, (2) Merged query
sequences per chromosomes, and (3) All query files against all
chromosome files. If no run profile is used the initial schedule
defaults to WCET (worst case execution time) schedule This
will allow us to see if using different run profiles has an
impact on the performance of the EAS Engine

Figure 5: Different Run Profiles on Firefly Cluster

B. . Implementation of Step 2 – Online Phase
In Step 2 of the process, which is the Online Phase of the
algorithm we dynamical adjust resource levels. The EAS
Engine adjusts the number of nodes either up or down based
upon the difference between EET and AET to meet the overall
deadline. We maintain a continuous feedback loop between
the EAS Engine and the Master process. The energy aware
scheduling algorithm within the EAS Engine uses our
understanding of the run profile from Step 1 and then adjusts
to realities during the actual execution of tasks using
information such as the number of sequences that were
processed, the number of nodes that were used for processing,
the EET and the AET for that task. Information gathered from
these new runs is then transformed into knowledge to update
the existing run profile allowing the EAS Engine to build a
knowledge map used for future allocation of HPC resources.
When new BLAT queries are submitted along with their
desired deadline, the algorithm uses this information to
allocate the least number of nodes needed to meet that
deadline, thus managing performance as well as energy to
finish the tasks.

TABLE II. QUERY GROUPS USED FOR ANALYSIS

Groups Query Files Total # of Sequences

G1 5 22566
G2 10 40530
G3 15 55946
G4 20 79222

We used the same 4 groups of query files as in [13, 19], each
group had 5 files with varying number of sequences as shown
in the table (Table 2). Each query sequence file group was run
against deadlines of 15, 30, 45, 60, and 75 minutes. Each job
was assigned an initial number of nodes based on the run
profile used in the offline phase. During the online phase, as
the tasks were completed, variances between EET and AET
resulted in the EAS engine adjusting the number of nodes up
(+N) or down (–N), if there were equal number of (+N) and (–
N) adjustments it resulted in a net (0) adjustment and the
scenario of no adjustments being made (–).

V. EXPERIMENTAL RESULTS

We used the 3 different approaches discussed above namely
(1) All query sequences per chromosome, (2) Merged query
sequences per chromosomes, (3) All query files against all
chromosome files, and (4) No Initial Profile Adjustment

Figure 6: AllAll Run-Profile Adjustments

When the AllAll run profile was used (Figure 6) in all
instances we found that the (AET) met the given deadline
based on the minimum number of nodes assigned for each task
group, thus optimizing both performance and energy
considerations.

Figure 7: QByChr Run-Profile Adjustments

The above “QbyChr” run profile graph suggests that for lower
deadlines more node adjustments had to be made to meet
deadline than what was allocated in the offline phase.

Figure 8: QBig Run-Profile Adjustments

The above “QBigbyChr” run profile graph suggests that for
lower deadlines more node adjustments had to be made to
meet deadline than what was allocated in the offline phase.

Figure 9: No Profile Adjustments

When no run profile is seeded to the offline phase, the EAS
engine defaults to using the WCET schedule. This graph is
presented above. The graph shows that using WCET schedule
we have significantly more node adjustments compared to
using a run profile.

TABLE III. ADJUSTMENTS BASED ON RUN-PROFILE USED

Groups
AllAll

Adjustments
QBigbyChr
Adjustments

QbyCht
Adjustments

WCET
(no

profile)

G1

(+2) (+2) (+2) (-8)
(+1) (+1) (+1) (-7)
(0) (0) (0) (-6)
(-1) - (-1) (-5)

- - - (-5)

G2

(+2) (+1) (+1) (-11)
(-1) (-1) (-1) (-9)
(0) (0) - (-10)
- - - (-8)

(0) - - (-6)
G3 (+3) (+3) (+4) (-10)

(0) - (+2) (-10)
(-1) (-1) (+1) (-8)
(0) (0) - (-8)
- - - (-7)

G4

(+3) (+5) (+7) (-9)
(+1) (+1) (+4) (-10)
(+1) (+1) (+2) (-8)
(-1) - (+1) (-7)

- - - (-6)

The table above shows the node adjustments made by the EAS
Engine to meet the deadline depending upon which run profile
was chosen in offline phase, meaning the run profile used in
the initial scheduling of the tasks. It suggests that for large
number of sequences and lower deadline thresholds it is better
to use the AllAll run profile as the other two run profiles were
both unable to meet the lower deadlines (15 min.). For higher
deadline and smaller number of sequences, the AllAll and
QBigbyChr run profile approaches are mostly comparable.
The experiments also show that “QbyChr” run profile
approach results in the most node adjustments.

VI. CONCLUSIONS
In this paper we built upon our previous work and enhanced
our energy aware scheduling model which is a 2-phase
approach using run profiles. The Off-line Phase uses the
knowledge of the run-profile of the program based on previous
runs and the On-line Phase used a dynamic feedback loop to
adjust the resources (# of nodes) to minimize energy utilized
while still meeting the deadline. The run-profile and
experiments were done for the BLAT program in the bio-
informatics domain. We conclude that the BLAT program is
highly parallelizable and has a speedup of 99%. We also
conclude that the EAS Engine was able to dynamically react to
the difference between EET and AET and adjust the number
of nodes up or down to balance the minimization of energy
and performance criteria for all our experimental datasets.

We theorized that using different data modeling mechanisms
will result in different run profile curves and the choice of
initial schedule has an impact on the number of resource
adjustments needed to meet the deadline & overall energy
efficiency goals. The conducted experiments clearly show that
the proposed dynamic run profile EAS approach succeeded in
meeting preset deadlines while minimizing the number of
nodes; thus reducing overall energy utilized. While using the
AllAll (Hybrid approach) run profile provided the least overall
adjustments necessary, followed by the QBigbyChr (Merge
approach), and then the QbyChr (Database segmentation
approach). A close look shows that the higher the degree of
parallelism of the approach the better the EAS Engine
performs in terms of node adjustments and overall efficiency.
It is also important to note that not having a run profile for the
initial schedule and simply using the WCET results in the
most node adjustments and hence least energy savings. Clearly

using a known run profile for a given application with the
EAS Engine will produce better results.

The focus of our future research will be on automating the
enhanced Run-Profile based EAS Engine to accommodate
other programs in the same domain or similar domains. We
believe that eventually hardware and software OS capabilities
will evolve, allowing existing hardware DVS capabilities to be
controlled at a program level, thus allowing application
programs to have more control and flexibility in handling
energy considerations. This will allow software written with
intimate knowledge about a specific domain. Understanding of
deadline needs of the user will allow us to scale the
application in such a way that resources can be added on-
demand, and processor speed controlled to either speedup or
slowdown the application to manage the divergent goals of
performance and energy. We will also examine the usefulness
of using simulations using the concept of run profiles for cloud
computing to predict deadline completions for jobs, etc.
without actually having to use cloud computing resources to
run these jobs.

REFERENCES
[1] Amazon Elastic Compute Cloud (Amazon EC2). (2013). Retrieved from

Amazon: http://aws.amazon.com/ec2/
[2] “UCSC Genome Bioinformatics" UCSC [website], Dec 2008, at:

http://hgdownload.cse.ucsc.edu/downloads.html
[3] J. Kent, “Kent Informatics – Genome BLAT” [website], Oct 2008,

Available: http://www.kentinformatics.com
[4] Y. Shin and K. Choi, “Power Conscious Fixed Priority Scheduling for

Hard Real-Time Systems”, 2005
[5] A. Ventakraman, "Global census shows datacenter power demand grew

63% in 2012”, Datacenter Efficiency, Computer Weekly [web], Oct
2013, http://www.computerweekly.com/

[6] J. Foley, “Google's Iowa Data Center Emerges”, Information Week
[website], Nov 2008, Available: http://www.informationweek.com

[7] “Despite slump, Yahoo plans new operations in Nebraska” USAToday
[website], Nov 2008, Available: http://www.usatoday.com

[8] J. Glanz, "Power, Pollution and the Internet”, The Cloud Factories,
NYTimes [website], Oct 2013,
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-
vast-amounts-of-energy-belying-industry-image.html

[9] M. Dayde, E. Pacitti, J. Lopes, “High Performance Computing for
Computational Science”, VECPAR, Berlin Heidelberg, Germany 2007.

[10] R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett, & C. Roberts.
“Parallelization of local BLAST service on workstation clusters”. Future
Generation Computer Systems, 17(6), 2001.

[11] E. Chi, E. Shoop, J. Carlis, E. Retzel, and J. Riedl. “Efficiency of
shared-memory multiprocessors for a genetic sequence similarity search
algorithm”, 1997.

[12] R. Bjornson, A. Sherman, S. Weston, N. Willard, and J. Wing.
“TurboBLAST(r): A parallel implementation of BLAST built on the
TurboHub”, International Parallel and Distributed Processing
Symposium, 2002.

[13] S. Pawaskar and H. Ali, “On the Tradeoff between Speedup and Energy
Consumption in High Performance Computing” in Proc. Int’l Conf. on
Parallel and Distributed Computing and Networks”, Feb. 2010.

[14] S. Pawaskar and H. Ali, “A Dynamic Energy-Aware Model for
Scheduling Computationally Intensive Bioinformatics Applications” in
Proc. Int’l Conf. on High Performance Computing and Simulation, Jun.
2010.

[15] “Holland Computing Center”, [website], Nov 2008, Available:
http://www.hollandhpc.com/index.shtml

[16] “MPICH – A Portable Implementation of MPI”, MPICH [website],
2009, Available: http://www-unix.mcs.anl.gov/mpi

[17] W. Gropp, E. Lusk and A. Skjellum, “USING MPI: PORTABLE
PARALLEL PROGRAMMING WITH THE MESSAGE PASSING
INTERFACE”, MIT Press, Cambridge, MA, 1994.

[18] W. Gropp, E. Lusk and R. Thakur, “USING MPI-2: ADVANCED
FEATURES OF THE MESSAGE PASSING INTERFACE”, MIT Press,
Cambridge, MA, 1999.

[19] The NIST Definition of Cloud Computing (SP 800-145) published at
.NIST Tech Beat: Published October 25, 2011,
http://csrc.nist.gov/publications/PubsSPs.html#800-145

[20] J. Warnke, S. Pawaskar and H. Ali, “An Energy-Aware Bioinformatics
Application for Assembling short reads in High Performance Computing
Systems” in “Int’l Conf. on High Performance Computing &
Simulation” HPCS Madrid, Spain, July 2 – 6, 2012.
http://hpcs2012.cisedu.info/

	University of Nebraska at Omaha
	DigitalCommons@UNO
	7-2016

	A Dynamic Run-Profile Energy-Aware Approach for Scheduling Computationally Intensive Bioinformatics Applications
	Sachin Pawaskar
	Hesham Ali
	Recommended Citation

	Microsoft Word - DynamicRunProfile_BILIS2016-Final v2.doc

