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Abstract— High Performance Computing (HPC) resources are 
housed in large datacenters, which consume exorbitant amounts 
of energy and are quickly demanding attention from businesses 
as they result in high operating costs. On the other hand HPC 
environments have been very useful to researchers in many 
emerging areas in life sciences such as Bioinformatics and 
Medical Informatics. In an earlier work, we introduced a 
dynamic model for energy aware scheduling (EAS) in a HPC 
environment; the model is domain agnostic and incorporates 
both the deadline parameter as well as energy parameters for 
computationally intensive applications. Our proposed EAS model 
incorporates 2-phases. In the Offline Phase, we use a run profile 
based approach to generate the initial schedule. In the Online 
Phase a feedback mechanism is incorporated between the EAS 
Engine and the master scheduling process. As scheduled tasks are 
completed, actual execution times are used to adjust the 
resources required for scheduling remaining tasks using the least 
number of nodes while meeting a given deadline. In this paper we 
study the impact of the quality of initial schedule using different 
run profiles which is the starting point for the EAS algorithm on 
the number of adjustments which is critical to the overall energy 
optimization as every adjustment made has an overhead. The 
conducted experiments show that the proposed approach 
succeeded in meeting preset deadlines while minimizing the 
number of nodes; thus reducing overall energy utilized and that 
choosing the right profile in the Offline phase has an impact on 
the energy optimization achieved by the EAS algorithm.  

Keywords; Energy Awareness, Scheduling, High Performance 
Computing, Bioinformatics, Algorithms, Parallel Computing, Run 
Profile 

I.  INTRODUCTION 
Cloud Computing is an exciting new trend which many of 

us in the IT field are, simply put, a “little cloudy about”. It is a 
general term used to describe a new class of network based 
computing that takes place over the Internet. Cloud computing 
is Commoditized (basically a step on from Utility Computing) 
and can be considered to be a collection/group of integrated 
and networked hardware, software and Internet infrastructure 
(called a platform), which uses the Internet for communication 
and transport provides hardware, software and networking 
services to clients. The cloud allows for Abstraction, it hides 

the complexity and details of the underlying infrastructure from 
users and applications by providing very simple graphical 
interface or API. The cloud is Ubiquitous, on demand services 
that are always on, anywhere, anytime, any-place and finally 
the cloud is Elastic, as it supports Pay for use and as needed, 
which allows for scale up and down in capacity and 
functionalities as needed [1, 19]. 

A. Cloud Computing Models 

There are 3 main types of cloud computing models, the 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) 
and Software as a Service (SaaS) models which are described 
in the Figure 1 below. 

 
Figure 1: Cloud Computing Models [1, 19] 

B. Cloud Service Layers 

Another classification for these clouds is based on the type of 
services layer they provide such as hosting, storage, platform, 
development, application and services layer Figure 2 [1]. 

 
Figure 2: Cloud Computing Service Layers 



C. HPC, Bioinformatics and the Cloud 

More and more companies are starting to realize the 
importance of making the high performance computing 
resources available via the cloud. High-performance computing 
describes a set of hardware and software techniques developed 
for building computer systems capable of quickly performing 
large amounts of computation. Experience has shown a great 
deal of software support is necessary to support the 
development and tuning of applications on parallel 
architectures. The marriage between the bioinformatics domain 
and high performance computing is a natural one, the problems 
in this domain tends to be highly parallelizable and deal with 
large datasets, hence using HPC is a natural fit.  

Bioinformatics can be broadly defined as set of computing 
techniques used to manage and extract useful information from 
the DNA/RNA/protein sequence data. Most methods used for 
analyzing DNA/Protein sequences are known to be 
computationally intensive, providing motivation for the use of 
powerful computational systems with high throughput 
characteristics. The software package BLAST (Basic Local 
Alignment Search Tool) has been the method of choice for 
many biomedical researchers to measure the degree of 
similarity among biological sequences. More recently, a 
modified version, called BLAT (the BLAST-Like Alignment 
Tool) is quickly becoming a very popular tool for similarity 
measures using the concept of sequence alignment. BLAT 
works by keeping an index of an entire genome in memory. 
Thus, the target database of BLAT is not a set of GenBank 
sequences, but instead an index derived from the assembly of 
the entire genome. The index which uses less than a gigabyte of 
RAM consists of all non-overlapping 11-mers except for those 
heavily involved in repeats [2 – 3]. HPC has been successfully 
applied to help reduce the computational burden of large 
datasets. But, naively parallelizing the applications developed 
for BLAT could achieve an unnecessary high degree of 
parallelism at the expense of significant energy consumption.  
Energy aware scheduling (EAS) which has an understanding of 
the application domain in a HPC environment can be a game 
changer in terms of controlling energy costs at datacenters 
which house these HPC systems. Power-efficient design and 
operation of such systems critically depends on reduction of the 
power consumption of processors. There are two kinds of 
methods to reduce power consumption of processors. 
1) First is power-down mode, by putting the processor into 

this mode, only certain parts of the processor such as the 
clock generation and timer circuits are kept running (idle 
state). The tradeoff here is between the amount of power 
saving and the latency incurred during mode change. 

2) The second is Dynamic Voltage Scaling (DVS), where 
processor speed is changed by varying the clock frequency 
along with the supply voltage when the required 
performance on the processor is lower than the maximum 
performance [4]. 

D. What is a Run Profile? 

This work focuses on the concept of Run Profiles and assesses 
its value in the context of Dynamic Energy-Aware Scheduling 
(EAS). A “Run Profile” for a program provides us with 
important information about how many nodes/resources were 
used and how long (time) it took to complete the task, based on 
certain parameters/characteristics of the data set. In most 
scientific domains, such as Bioinformatics, the need for High 
Performance Computing usually follows the 90/10 pattern. 
Typically, 90% of the tasks involve about 10% of the known 
software application. These applications can benefit from a 
better understanding of their Run Profile and the dynamic 
adjustment to these Profiles. In this paper, we examine multiple 
initial Run Profiles and the impact of these on the subsequent 
adjustment made by our EAS Engine. Each profile results in 
the EAS Engine having to make different number of 
adjustments to still meet the deadline, which in turn has an 
impact of the energy utilized. Examining different Run Profiles 
is critical as application programs in specific domains can be 
run using different parameters and in turn would influence how 
long the program takes to run on a specific dataset. The profiles 
incorporate certain domain-specific parameters such as 
sequence length and number of sequences which also 
determine how long the application program (such as BLAT) 
will run. The Profile would then get adjusted or fine-tuned 
every time it runs on a given configuration resulting in a more 
refined Run Profile to be used in future runs. It is important to 
note that we can parallelize the BLAT program without losing 
any biologically significant information relevant to the output 
of the program. This means that parallelizing BLAT does not 
impact the conclusions that bioinformatics researchers may 
draw from the output of BLAT. 

II. KEY FACTOR – ENERGY 

Energy requirements for datacenters has grown massively 
over the last several years, suggesting that rising energy costs 
and stricter regulations are not helping to limit datacenter 
power use and cut carbon emissions. Between 2011 and 2012, 
power requirements grew by 63% globally to 38GW 
(gigawatts), up from 24GW in 2011. Energy use in datacenters 
was at 12GW in 2007 and has been on the rise since. In the 
four years to 2011, it doubled to 24GW, but in the last year 
alone it increased to 38GW amid data explosion and business 
expansion. The census estimated a further rise of 17% to 
43GW in 2013 [5]. Major companies are being forced to 
relocate due to high energy costs, e.g. Google has opened a 
new datacenter in the Midwest in Council Bluffs [6] and 
despite economic slump; Yahoo plans a new datacenter in La 
Vista, Nebraska [7].  



Most data centers, by design, consume vast amounts of energy 
in an incongruously wasteful manner, interviews and 
documents show. Online companies typically run their 
facilities at maximum capacity around the clock, whatever the 
demand. As a result, data centers can waste 90 percent or more 
of the electricity they pull off the grid, The Times found [8]. 
Clearly “Energy” is becoming a key business driver. Given 
these facts it has become imperative for us to consider the 
efficient usage of energy is all aspects of data center 
management. 

We believe that there is a place and need for an Energy 
Aware scheduling layer between Applications and the actual 
HPC Grid Management layer to control the assignment of 
number of nodes for an application and manage this 
dynamically at runtime to manage energy utilization within a 
datacenter. In this paper we will focus on the impact of the 
quality of initial schedule using different run profiles which is 
the starting point for the EAS algorithm on the number of 
node adjustments which is critical to the overall energy 
optimization as every adjustment made has an overhead. 

 

III. OVERVIEW OF PREVIOUS WORK 

Bioinformatics includes techniques & methods for 
processing large volumes of information to help speedup 
research. Some of the common algorithms run on this data are 
genome sequence comparison, protein structure prediction, 
sequence alignment, phylogeny tree construction, pathway 
research, etc. [9]. 

Most of the previous work done focuses on performance 
curves that are inherent when one transforms a serial 
application running on a single desktop to a parallel 
application running in a HPC environment. Work using 
BLAST search can be characterized by the data approach used 
in the search which is of the following 2 main types. 
1) Query segmentation method – partitions the sequence 

query set. This allows the BLAST search to proceed 
independently on different processors. However, as 
databases keep growing, this approach will incur higher 
I/O costs and has limited scalability [10, 11]. 

2) Database segmentation – databases are partitioned across 
processors which better utilizes the aggregate memory 
space and can easily keep up with the growing database 
sizes [12, 13]. 

Our approach and experiments uses a combination of the 
query & database segmentation approach with the experiment 
of all query files against all chromosome files. We build on 
our previous work [13 – 14] to propose a more generic model 
to tackle the energy awareness problem. Unlike BLAST, the 
BLAT program which is an alignment tool like BLAST, is 
organized uniquely, is relatively new and hence does not have 
a lot of studies related to its performance in a HPC 
environment. This is clearly warranted as BLAT is starting to 
be more widely used [2 – 3]. The main goal of our study is the 
minimization of energy in a HPC environment and its 

relationship with performance. Our main goal is to come up 
with an energy aware scheduling (EAS) model/algorithm that 
balances the both energy utilized and performance for such 
tasks. In [13 – 14, 20] the importance of data design was 
studied which improved the degree of parallelism, by 
modifying the way data is structured to maximize the usage of 
parallelism. The following experiments were designed and 
compared to study varying degrees of parallelism. 
1) All query sequences/chromosome (DB segmentation) 
2) Merged query sequences/chromosome (Query Merge),  
3) All query files against all chromosome files (Hybrid). 

 

IV. RUN-PROFILE SCHEDULING 

Our main goal is to study and examine the behavior of the 
EAS Model proposed when the online phase of the algorithm 
is seeded with differing run profiles. The run profiles are 
based on the 3 experimental approaches namely (1) Database 
segmentation, (2) Query merge and (3) Hybrid. Obviously 
each of these run profiles will result in varying schedules 
during the initial runs, but can the EAS Model adjust 
appropriately over time and how long (number of runs) does it 
take for the EAS Model to return comparable results. It now 
has to adopt a scheduling policy which is both traditional 
performance focused and energy aware. The goal is to find the 
right harmony between these two, slightly divergent goals. 

Offline Phase – Build Run Profile, we perform some runs to 
understand the degree of parallelization (also called run 
profile) of a program. Based on this we seed our energy aware 
scheduling (EAS) algorithm in the EAS Engine with the run 
profile (meaning understanding of the number of nodes 
required, sequence size and time it takes for the program 
(BLAT) to run. Using this we can then first allocate a set of 
nodes for any input sequences based on the number of 
sequences and given deadline. 
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Figure 3: Process Diagram for EAS using Run Profiles 

Online Phase – Dynamic Resource Adjustment Here we 
dynamically adjust the number of nodes either up or down 
based upon actual execution time (AET). This then becomes a 
feedback loop to the EAS Engine, which looks at the tasks 
expected execution time (EET), its actual execution time and 
then takes steps to adjust the schedule by adjusting the overall 



nodes assigned or in future the Dynamic Voltage Scaling 
(DVS) of each node to meet the overall deadline. This allows 
us to meet the two divergent goals of minimizing energy 
utilization and performance. 

 

Figure 3 which is an enhanced version of the EAS Model 
first described in [13 – 14] shows the program flow for our 
Run-Profiles based EAS implementation. The EAS Engine 
assimilates information about the EET based on run-profile 
and AET of the task from the worker process, and then makes 
node level and/or DVS adjustments as needed and sends 
appropriate feedback information back to the Master process. 

This research also highlights the need to carefully develop a 
parallel model with energy awareness in mind, based on our 
understanding of the application and then appropriately 
designing a parallel model that works well for the specific 
application and potentially similar applications within that 
domain. Figure 3 describes the general program flow for our 
implementation of the Energy Aware Scheduling (EAS) 
Engine on the HPC cluster (firefly). The EAS program is 
written in C++ and uses MPI (Message Passing Interface) to 
handle communication between multiple nodes in the cluster 
[16 – 18]. In general the program consists of a Master and 
Several worker processes. The program first initializes the 
MPI environment and then the process with rank=0 is 
designated as the master process and the rest are designated as 
worker processes. The Master process builds the work queue 
and handles all scheduling of work tasks to the respective 
worker processes. It goes through the work queue and makes 
scheduling decisions based on performance and energy 
criteria. Once all the work has been distributed, it then waits 
and gathers information back from the worker processes. After 
each worker process replies back the master process it calls the 
Energy Aware Scheduling (EAS) Engine and sends a 
terminate message to each worker process/node. The Worker 
processes simply wait for work from the master process, 
execute the work given and wait for more work or notification 
from master to terminate. The EAS Engine takes information 
about the EET and AET of the task, makes decisions if any 
node level adjustments need to be made (and/or DVS 
adjustments) and sends an appropriate feedback message back 
to the Master process. 

A. Implementation of Step 1 – Offline Phase 

Our goal is to make energy awareness and scheduling 
decisions so as to run the BLAT program against given query 
sequences for a given genome/chromosome file. In most cases 
researchers today are running this on local desktops and each 
sequence search is run sequentially and the entire result set 
may take several hours to days depending on the number of 
search sequences. Our intention is to first bring some amount 
of parallelism to this process and then a degree of energy 
awareness to the scheduling aspects to such tasks. With that in 
mind we parallelized the process using the “All query 

sequences per chromosome” approach used in [13, 19] to 
understand the degree of parallelism in the BLAT program.  
The human chromosome files used for these experiments were 
downloaded from the UCSC Genome bio-informatics website 
[1]. We used build 36.1 finished human genome assembly 
(hg18, Mar. 2006). The chromosomal sequences were 
assembled by the International Human Genome Project 
sequencing centers. We used the ChromFa.zip file which is the 
latest dataset as of Dec 2008 [1 – 2]. We used MPI (GNU) to 
parallelize the runs on multiple nodes, which was a 
configurable parameter. Our experiments used sequences 
gathered from researchers at UNMC (University of Nebraska 
Medical Center) and parallelize the runs to study the 
performance characteristics under different conditions. For our 
tests we used 24 query sequences from a researcher at UNMC 

TABLE I.  QUERY SEQUENCES USED FOR ANALYSIS 

QUERY FILES .fa size 
(kb) 

.2bit size 
(kb) 

# of 
lines 

# of 
seqs 

MCL_chr1.txt 3311705 1089176 14186 7093 

MCL_chr2.txt 2378142 785204 10254 5127 

MCL_chr3.txt 1772666 584699 7640 3820 

MCL_chr4.txt 1432124 466415 5970 2985 

MCL_chr5.txt 1722396 546919 36481 3541 

MCL_chr6.txt 1771709 582893 7520 3760 

MCL_chr7.txt 1863885 614151 8108 4054 

MCL_chr8.txt 1492613 493893 6458 3229 

MCL_chr9.txt 1700540 564950 7404 3702 

MCL_chr10.txt 1486654 492908 6438 3219 

MCL_chr11.txt 2299625 759437 9970 4985 

MCL_chr12.txt 1849123 609289 7854 3927 

MCL_chr13.txt 703781 231659 2962 1481 

MCL_chr14.txt 1302834 430629 5598 2799 

MCL_chr15.txt 1024197 338618 4448 2224 

MCL_chr16.txt 2320925 763311 10058 5029 

MCL_chr17.txt 2863504 943539 12372 6186 

MCL_chr18.txt 530863 176476 2376 1188 

MCL_chr19.txt 3584718 1193013 15994 7997 

MCL_chr20.txt 1297151 430415 5752 2876 

MCL_chr21.txt 736972 243709 3202 1601 

MCL_chr22.txt 1236062 410443 5464 2732 

MCL_chrX.txt 1293959 423823 5438 2719 

MCL_chrY.txt 53658 17006 200 100 

Total 40029806 13192575 202147 86374 

 
We parallelized the runs to study the performance 
characteristics under three different conditions. The table 
(Table 1) shows some characteristics of these query sequences 
[13 – 14]. We ran the merged query experiment to study the 
benefits of merging the query files as BLAT is memory 
optimized to run large number of sequences. Each query file 
was a FASTA format text file of sequences with varying 



number of sequences in each file. Note that the number of 
nodes 25 comes from the fact that in the human genome we 
have Chromosome 1 to Chromosome 22 and we have 
Chromosome X, Chromosome Y and Mitochondrial DNA 
material.  
 
A key question we tried to answer then was “How 
parallelizable is the program?” In-order to answer this 
question we charted the performance curve for each 
experiment type and super impose these by the standard 
speedup curves based on Amdahl’s Law. The figure 4 below 
shows that the QBigbyChr and QbyChr have a speedup of 
around 25 times (97% parallelizable) and the AllAll approach 
has close to 100 times the speedup (99% parallelizable). 

 

 
Figure 4: Number of Nodes v/s Speedup based on Amdahl’s Law 

Firefly Cluster: We used the firefly cluster at the Holland 
Computing Center to conduct our experiments. It is a 1,151-
node cluster of Dell SC1435 servers. Each node consists of 2 
sockets, and each socket holds a 64-bit quad-core AMD 
Opteron 2.2 GHz processors with 8 GB of memory. An 800 
MB/sec Infiniband interconnect forms the computational 
network [15]. 

 
1) Build Run Profile Implementation 

We seeded our energy aware scheduling (EAS) algorithm in 
the EAS Engine with the run profile (meaning understanding 
of the number of nodes required, sequence size and time it 
takes for the program (BLAT) to run. This knowledge was 
used to generate the initial schedule used to first allocate a set 
of nodes for any input sequences based on the number of 
sequences and given deadline.  
We used the 3 different approaches discussed above namely 
(1) All query sequences per chromosome, (2) Merged query 
sequences per chromosomes, and (3) All query files against all 
chromosome files. If no run profile is used the initial schedule 
defaults to WCET (worst case execution time) schedule This 
will allow us to see if using different run profiles has an 
impact on the performance of the EAS Engine 

 
Figure 5: Different Run Profiles on Firefly Cluster 

B. . Implementation of Step 2 – Online Phase 
In Step 2 of the process, which is the Online Phase of the 
algorithm we dynamical adjust resource levels. The EAS 
Engine adjusts the number of nodes either up or down based 
upon the difference between EET and AET to meet the overall 
deadline. We maintain a continuous feedback loop between 
the EAS Engine and the Master process. The energy aware 
scheduling algorithm within the EAS Engine uses our 
understanding of the run profile from Step 1 and then adjusts 
to realities during the actual execution of tasks using 
information such as the number of sequences that were 
processed, the number of nodes that were used for processing, 
the EET and the AET for that task. Information gathered from 
these new runs is then transformed into knowledge to update 
the existing run profile allowing the EAS Engine to build a 
knowledge map used for future allocation of HPC resources. 
When new BLAT queries are submitted along with their 
desired deadline, the algorithm uses this information to 
allocate the least number of nodes needed to meet that 
deadline, thus managing performance as well as energy to 
finish the tasks.  

TABLE II.  QUERY GROUPS  USED FOR ANALYSIS 

Groups Query Files Total # of Sequences 

G1 5 22566 
G2 10 40530 
G3 15 55946 
G4 20 79222 

 
We used the same 4 groups of query files as in [13, 19], each 
group had 5 files with varying number of sequences as shown 
in the table (Table 2). Each query sequence file group was run 
against deadlines of 15, 30, 45, 60, and 75 minutes. Each job 
was assigned an initial number of nodes based on the run 
profile used in the offline phase. During the online phase, as 
the tasks were completed, variances between EET and AET 
resulted in the EAS engine adjusting the number of nodes up 
(+N) or down (–N), if there were equal number of (+N) and (–
N) adjustments it resulted in a net (0) adjustment and the 
scenario of no adjustments being made (–). 



V. EXPERIMENTAL RESULTS 

We used the 3 different approaches discussed above namely 
(1) All query sequences per chromosome, (2) Merged query 
sequences per chromosomes, (3) All query files against all 
chromosome files, and (4) No Initial Profile Adjustment  

 

 
Figure 6: AllAll Run-Profile Adjustments 

When the AllAll run profile was used (Figure 6) in all 
instances we found that the (AET) met the given deadline 
based on the minimum number of nodes assigned for each task 
group, thus optimizing both performance and energy 
considerations.  

 

 
Figure 7: QByChr Run-Profile Adjustments 

 
The above “QbyChr” run profile graph suggests that for lower 
deadlines more node adjustments had to be made to meet 
deadline than what was allocated in the offline phase. 

 

 
Figure 8: QBig Run-Profile Adjustments 

 
The above “QBigbyChr” run profile graph suggests that for 
lower deadlines more node adjustments had to be made to 
meet deadline than what was allocated in the offline phase. 

 

 
Figure 9: No Profile Adjustments 

 
When no run profile is seeded to the offline phase, the EAS 
engine defaults to using the WCET schedule. This graph is 
presented above. The graph shows that using WCET schedule 
we have significantly more node adjustments compared to 
using a run profile. 

TABLE III.  ADJUSTMENTS BASED ON RUN-PROFILE USED 

Groups 
AllAll 

Adjustments 
QBigbyChr 
Adjustments 

QbyCht 
Adjustments 

WCET  
(no 

profile) 

G1 

(+2) (+2) (+2) (-8) 
(+1) (+1) (+1) (-7) 
(0) (0) (0) (-6) 
(-1) - (-1) (-5) 

- - - (-5) 

G2 

(+2) (+1) (+1) (-11) 
(-1) (-1) (-1) (-9) 
(0) (0) - (-10) 
- - - (-8) 

(0) - - (-6) 
G3 (+3) (+3) (+4) (-10) 



(0) - (+2) (-10) 
(-1) (-1) (+1) (-8) 
(0) (0) - (-8) 
- - - (-7) 

G4 

(+3) (+5) (+7) (-9) 
(+1) (+1) (+4) (-10) 
(+1) (+1) (+2) (-8) 
(-1) - (+1) (-7) 

- - - (-6) 
 

The table above shows the node adjustments made by the EAS 
Engine to meet the deadline depending upon which run profile 
was chosen in offline phase, meaning the run profile used in 
the initial scheduling of the tasks. It suggests that for large 
number of sequences and lower deadline thresholds it is better 
to use the AllAll run profile as the other two run profiles were 
both unable to meet the lower deadlines (15 min.). For higher 
deadline and smaller number of sequences, the AllAll and 
QBigbyChr run profile approaches are mostly comparable. 
The experiments also show that “QbyChr” run profile 
approach results in the most node adjustments. 
 

VI. CONCLUSIONS 
In this paper we built upon our previous work and enhanced 
our energy aware scheduling model which is a 2-phase 
approach using run profiles. The Off-line Phase uses the 
knowledge of the run-profile of the program based on previous 
runs and the On-line Phase used a dynamic feedback loop to 
adjust the resources (# of nodes) to minimize energy utilized 
while still meeting the deadline. The run-profile and 
experiments were done for the BLAT program in the bio-
informatics domain. We conclude that the BLAT program is 
highly parallelizable and has a speedup of 99%. We also 
conclude that the EAS Engine was able to dynamically react to 
the difference between EET and AET and adjust the number 
of nodes up or down to balance the minimization of energy 
and performance criteria for all our experimental datasets.  
 
We theorized that using different data modeling mechanisms 
will result in different run profile curves and the choice of 
initial schedule has an impact on the number of resource 
adjustments needed to meet the deadline & overall energy 
efficiency goals. The conducted experiments clearly show that 
the proposed dynamic run profile EAS approach succeeded in 
meeting preset deadlines while minimizing the number of 
nodes; thus reducing overall energy utilized. While using the 
AllAll (Hybrid approach) run profile provided the least overall 
adjustments necessary, followed by the QBigbyChr (Merge 
approach), and then the QbyChr (Database segmentation 
approach). A close look shows that the higher the degree of 
parallelism of the approach the better the EAS Engine 
performs in terms of node adjustments and overall efficiency. 
It is also important to note that not having a run profile for the 
initial schedule and simply using the WCET results in the 
most node adjustments and hence least energy savings. Clearly 

using a known run profile for a given application with the 
EAS Engine will produce better results.  
 
The focus of our future research will be on automating the 
enhanced Run-Profile based EAS Engine to accommodate 
other programs in the same domain or similar domains. We 
believe that eventually hardware and software OS capabilities 
will evolve, allowing existing hardware DVS capabilities to be 
controlled at a program level, thus allowing application 
programs to have more control and flexibility in handling 
energy considerations. This will allow software written with 
intimate knowledge about a specific domain. Understanding of 
deadline needs of the user will allow us to scale the 
application in such a way that resources can be added on-
demand, and processor speed controlled to either speedup or 
slowdown the application to manage the divergent goals of 
performance and energy. We will also examine the usefulness 
of using simulations using the concept of run profiles for cloud 
computing to predict deadline completions for jobs, etc. 
without actually having to use cloud computing resources to 
run these jobs. 
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