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ABSTRACT 

Scheduling dependent tasks is one of the most challenging 

problems in parallel and distributed systems. It is known 

to be computationally intractable in its general form as 

well as several restricted cases. An interesting application 

of scheduling is in the area of energy awareness for 

mobile battery operated devices where minimizing the 

energy utilized is the most important scheduling policy 

consideration. A number of heuristics have been 

developed for this consideration. In this paper, we study 

the scheduling problem for a particular battery model. In 

the proposed work, we show how to enhance a well know 

approach of accounting for the slack generated at runtime 

due to the difference between WCET (Worst Case 

Execution Time) and AET (Actual Execution Time). Our 

solution exploits the knowledge gained about the AET of 

the tasks after the first period, to come up with EET 

(Expected Execution Time). We then use the EET as an 

input for the next period to use as much slack as possible 

and to eliminate wastage of slack generated. This happens 

because WCET is used to determine if a task should be 

executed at runtime. Dynamically adjusting the run-queue 

to use EET as a feedback, which is based on the previous 

period’s AET eliminates wastage of the slack generated. 

Based on the outcome of the conducted experiments, the 

proposed algorithm outperformed or matched the 

performance of the 2-Phase dynamic task scheduling 

algorithm and the run-queue peek algorithm all the time. 

KEY WORDS 

Scheduling, Energy Awareness, Heuristics, Parallel 

Processing, Optimal algorithms.  

 

1.  Introduction 
Mobile computing has become a reality. Through the 

Wireless Verification Program, Intel® and leading 

wireless LAN service providers have verified more than 

40,000 hotspots around the world, with more cropping up 

each day [1]. Mobile technology is continually advancing 

to keep up with the needs of the mobile user. But as we 

work to make the ideal mobile experience, we find 

ourselves up against an inherent struggle between 

extending battery life and improving mobile performance. 

Power consumption has been a critical design constraint 

in the design of digital systems due to widely used 

portable systems such as cellular phones and PDAs, 

which require low power consumption with high speed 

and complex functionality. The design of such systems 

often involves reprogrammable processors such as 

microprocessors, microcontrollers, and DSPs in the form 

of off-the-shelf components or cores. Furthermore, an 

increasing amount of system functionality tends to be 

realized through software, which is leveraged by the high 

performance of modern processors. As a consequence, 

reduction of the power consumption of processors is 

important for the power-efficient design of such systems. 

Battery operated portable devices are widely used in 

mobile computing and wireless communication 

applications. Maximizing battery lifetime is the most 

important design consideration for such systems. Since 

the amount of energy delivered by the battery depends on 

the discharge current profile, the battery life can be 

extended by controlling the discharge current level and 

shape [2, 3]. 

Broadly, there are two kinds of methods to 

reduce power consumption of processors. The first is to 

bring a processor into a power-down mode, where only 

certain parts of the processor such as the clock generation 

and timer circuits are kept running when the processor is 

in an idle state. Most power-down modes have a tradeoff 

between the amount of power saving and the latency 

incurred during mode change. Therefore, for an 

application where latency cannot be tolerated, such as for 

a real-time system, the applicability of power-down may 

be restricted. Another method is to dynamically change 

the processor speed by varying the clock frequency along 

with the supply voltage when the required performance on 

the processor is lower than the maximum performance. A 

significant power reduction can be obtained by this 

method because the dynamic power of a CMOS circuit is 

quadratically dependent on the supply voltage [3]. 

In recent years there has been a significant amount of 

work done on studying battery characteristics and using 

these characteristics to shape the discharge profile. Most 

of the earlier work for battery-aware task scheduling has 

been for static tasks where complete information about 

the tasks is known apriori [2]. In this paper we propose an 

enhanced algorithm for the dynamic energy aware task 

scheduling problem. 
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2.  Energy Aware Scheduling 

Scheduling is a classical field with several interesting 

problems and results. Due to its wide range of 

applications, the scheduling problem has been attracting 

many researchers from a number of fields. A scheduling 

problem emerges whenever there is a choice. The choice 

could be the order in which a number of tasks can be 

performed, and/or in the assignment of tasks for 

processing.  

The problem is to determine some sequences of 

these operations that are preferred according to certain 

(e.g. economic) criteria. The problem of discovering these 

preferred sequences is referred to as the sequencing 

problem. Over the years, several methods have been used 

to deal with the sequencing problem such as complete 

enumeration, heuristic rules, integer programming, and 

sampling methods. It is clear that complete enumeration is 

impractical because the problem is exponential, which 

means that it requires too much time, sometimes years of 

computation time would be required even for a small 

number of tasks. Hence optimal solutions cannot be 

obtained in real time [4, 5]. However, many heuristic 

methods have been used to deal with most general case of 

the problem. Such methods include traditional priority-

based algorithms [6], task merging techniques [7], critical 

path heuristics [6, 8]. In addition, distributed algorithms 

have been designed to address different versions of the 

scheduling problem [9]. 

In general, the scheduling problem assumes a set 

of resources and a set of consumers serviced by these 

resources according to a certain policy. Based on the 

nature of and the constraints on the consumers and the 

resources, the problem is to find an efficient policy 

(schedule) for managing the access to and the use of the 

resources by various consumers to optimize some desired 

performance measure such as the total service time 

(schedule length).  

Energy Aware Scheduling is a special case of the 

general scheduling problem in which our scheduling 

policy is the optimization of the energy or power of the 

battery. Minimizing the battery power utilization becomes 

the most important consideration in a system that is 

energy aware, at the same time one must realize that 

along with this there are certain parameters that must be 

met such as tasks meeting their deadlines. 

 

Consumers Scheduler Resources

Energy 

Aware Policy
 

Figure 1: Energy Aware Scheduling System 

 

Simply put an Energy Aware Scheduling System is a 

scheduling problem which assumes a set of resources and 

a set of consumers serviced by these resources according 

to a Energy Aware policy. Based on the nature of and the 

constraints on the consumers and the resources, the 

problem is to find an efficient policy (schedule) for 

managing the access to and the use of the resources by 

various consumers to optimize the desired performance 

measure which in this case is minimum amount of battery 

energy. Accordingly, an Energy Aware scheduling system 

can be considered as consisting of a set of consumers, a 

set of resources, and an Energy Aware scheduling policy 

as shown in the Figure 1 above. Clearly, there is a 

fundamental similarity to scheduling problems regardless 

of the difference in the nature of the tasks and the 

environment. 

 

3.  Scheduling Model 
There are several models for which different 

algorithms have been proposed. We take look at one such 

model, discuss the scheduling algorithm proposed for this 

model, its variations and finally present our improvement 

for scheduling on this model. 

Let us understand the basic characteristics of this Model. 

1. The model assumes fixed priority scheduling. 

2. The model is for a real time system, in which task 

deadlines must be met. 

 

The system configuration for the battery-operated 

processor under consideration is described in Figure 2. 

The system consists of one DVS processor driven by a 

single battery. The battery is used to power the processor 

through a DC-DC converter. The DC-DC converter has 

an efficiency η = Iproc*Vproc/Ibatt*Vbatt, where Vbatt and Ibatt 

are the battery voltage and current and Vproc and Iproc are 

the processor voltage and current. 

 

Battery
DC-DC 

Converter

DVS 

Processor

Vbatt Vproc

Ibatt Iproc

 
Figure 2: System Level Configuration 

 

Non-linear properties of the battery: 

There are several important properties of the battery with 

respect to voltage scaling that have been derived from the 

analytical model. We present two of the properties used 

for developing the real-time scheduling heuristics [10, 2]: 

Property 1: For a fixed voltage assignment (only task 

start times can be changed), sequencing tasks in the non-

increasing order of their currents is optimal when the task 

loads are constant during the execution of the task. 

Property 2: Given a pair of two identical tasks in the 

profile and a delay slack to be utilized by voltage down-

scaling, it is always better to use the slack on the later 

task than on an earlier task. 

 



  

Task description: A given task k is associated with the 

following parameters: the current Ik , the worst case 

execution time WECTk, the arrival time ak, the start time 

tk, the actual execution time AETk, the deadline dk and the 

period Pk. The slack associated with a task is due to two 

factors: (1) the inherent slack due to the difference 

between the deadline and the WCET and (2) the slack 

generated due to the actual execution time being less than 

the worst case execution time (Figure 3). 
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Figure 3: Task Description 

 

Power-Down Modes: 

In most embedded systems, a processor often waits for 

some events from its environment, wasting its power. To 

reduce the waste, modern processors are often equipped 

with various levels of power modes. In the case of the 

PowerPC 603 processor [11], there are four power modes, 

which can be selected by setting the appropriate control 

bits in a register. Each mode is associated with a level of 

power saving and delay overhead. For example, in sleep 

mode, where only the PLL and clock are kept running, 

power consumption drops to 5% of full power mode with 

about 10 clock cycles delay to return to full power mode.  

In the conventional approach employed in most portable 

computers, a processor enters power-down mode after it 

stays in an idle state for a predefined time interval. Since 

the processor still wastes its energy while in the idle state, 

this approach fails to obtain a large reduction in energy 

when the idle interval occurs intermittently and its length 

is short. In [12, 13], the length of the next idle period is 

predicted based on a history of processor usage. The 

predicted value becomes the metric to determine whether 

it is beneficial to enter power-down modes or not. This 

method focuses on event driven applications such as user-

interfaces because latency, which arises when the 

predicted value does not match the actual value, can be 

tolerated. However, we need an exact value instead of a 

predicted value for the next idle period when we are to 

apply the power-down modes in a hard real-time system, 

which is possible in the LPFPS. 

 

4.  Overview of Previous Work 
C. Chakrabarti and J. Ahmed [2] enhanced the algorithm 

proposed by Y.Shin and K. Choi [3] by extending the 

algorithm to account for the slack generated at runtime 

due to the difference between WECT and AET (Actual 

Execution Time). They proposed an algorithm which had 

2 Phases. The basic idea of the algorithms in this model is 

to exploit the slacks generated to reduce the voltage levels 

of the tasks, so that the battery charge consumed or the 

drop in voltage is minimized. The algorithm operates in 

two phases. 

1. Phase I: Off-line task scheduling algorithm using 

WCET. 

2. Phase II: On-line algorithm using AET. 

 

In Phase I the tasks are assumed to be executed at their 

WCETs. A schedule is determined for one hyper-period 

(defined as the least common multiple of the periods of all 

the tasks in the task set).  

In Phase II (on-line), the slack generated due to the AET 

being less than the WCET, is used to further scale the 

voltage levels of the tasks. 

 

Phase I: The off-line scheduling algorithm is based on a 

paper presented by the same co-authors [10], it 

determines the task ordering and the voltage level of each 

instance of a task in a hyper-period. Applying WCETs in 

this phase guarantees that the tasks meet their deadline. 

This is done in two steps. 

Step 1: Obtain a feasible schedule by using the earliest 

deadline first algorithm. 

Step 2: Utilize the available slack by voltage down 

scaling as much as possible starting from the end of the 

profile. 

 

Phase II: During operation of the system, the AET of a 

task could be a lot smaller than its WCET. It is suggested 

that it is best to use the slack as late as possible, which is 

achieved by a process called as slack forwarding. Slack 

forwarding is based on the observation that slack 

generated by early completion of a task can be made 

available to a later task if the later task is released prior to 

the time at which the slack originated. 
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time
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T1

time
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Figure 4: (a) WCET Schedule. (b) WCET Schedule 

with full slack forwarding. (c) WCET Schedule with 

partial slack forwarding. (d) WCET Schedule with no 

partial slack forwarding. 

 

Consider two tasks T1 and T2 and let us assume WCET 

for the tasks. Task T1 starts at t1 and finishes at t4 and T2 

starts at t4 and finishes at t7, as shown in Figure 4(a). 

Suppose T1 actually finishes earlier at time t2, generating 



  

a slack of (t4-t2). All of this slack is available to T2 if its 

arrival time is at t2 or before, as depicted in Figure 4(b). If 

the task T2 was released at t3, only a part of the generated 

slack is available to T2, as shown in Figure 4(c). If the 

task T2 was released at t4 none of the generated slack is 

available to T2 as shown in the Figure 4(d). Thus the 

decision of slack forwarding can be made by inspecting 

the arrival time of the subsequent task to be executed. 

The purpose of this algorithm is to readjust the voltage 

level of the task based on additional slack. The basic steps 

are as follows. After the completion of a task, the 

scheduler gets the next task from the run queue. The 

finish time of the task is estimated based on the voltage 

level determined in Phase I. If the finish time is before the 

release time of the next task in the queue, the voltage 

level of the task is readjusted.  

 

Example:  

Consider the three tasks given in Table 1 which is 

reproduced below. Rate monotonic priority assignment is 

a natural choice because periods (Pi) are equal to 

deadlines (Di). Priorities are assigned in row order as 

shown in the fifth column of the Table 1. Note that this is 

the same example from the original algorithm 1 by Y.Shin 

and K. Choi [3], which is being adapted to show the 

incremental improvement done by Chakrabarti and J. 

Ahmed [2]. 

Table 1: Example Task Set 

 Pi Di Ci Priority 

T1 50 50 10 1 

T2 80 80 20 2 

T3 100 100 40 3 

 

Let us consider the task set in [3] represented by the Table 

above. There are three tasks with periods 50, 80 and 100 

minutes. The hyper-period is 400 minutes (L.C.M of 50, 

80 and 100).The set of operating voltages considered 

during voltage scaling is Sv = {3.3, 3.0, 2.7, 2.5, 2.0} 

volts. Figure 5(c) shows the final task profile with the 

improved algorithm after each phase as well as that 

generated with the low power fixed priority algorithm in 

[3].  

100 30020050 250 350 400

100 30020050 250 350 400

150

150

100 30020050 250 350 400150

(a)

(b)
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Figure 5: Task scheduling using LPFPS algorithm in 

[3] versus enhancements in [2] 

 

S. Pawaskar and H. Ali [14] enhanced the 

algorithm proposed by C. Chakrabarti and J. Ahmed [2] 

by exploiting the fact that even though some tasks 

become available based on the actual periodicity of a task 

they are not executed because the run queue is determined 

by the schedule generated in the offline phase I of the 

algorithm using the conservative EDF (Earliest Deadline 

First) algorithm. S. Pawaskar and H. Ali [14] peek at the 

task run-queue to find such tasks and schedule them for 

execution if possible based on the knowledge of the 

available slack and the arrival on the next task. This helps 

in minimizing the wastage of the generated slack. 

Considering the same set of tasks as described in 

[2, 3] and shown here in Table 1., this waste of slack can 

be observed at time t=80 even though T2 becomes 

available as per the periodicity of the task it is not 

executed because the run queue determined by the Offline 

phase has T1 as the next task. We also notice that T2 can 

be easily completed before T1 whose next earliest start 

time is t=100, because T2 has WCET execution time of 20 

and since it starts at time t=80 we have a timeframe of 

(100 – 80) = 20 available for execution. 

A similar yet slightly different situation occurs at 

time t=240, where even though T2 becomes available as 

per the periodicity of the task it is not executed in [2] 

because the run queue determined by the Offline phase 

has T1 as the next task at t=250. We also notice that T2 

cannot be easily completed before T1 whose next earliest 

start time is t=250, because T2 has WCET execution time 

of 20 and since it starts at time t=240 we have a 

timeframe of (250 – 240) = 10 available for execution. 

But a simple task look –ahead shows that to execute both 

T1 and T2 we have a total time of (240-300) = 60 and the 

WCET for each is 10 and 20 respectively, a total duration 

WCET of 30, which tells us that scheduling T2 now will 

not cause us to miss the deadline for T1 and that both 

tasks can be executed within the available time of 60. 

 To avoid this waste, the algorithm is enhanced 

such that the original start time for each periodic task is 

fed to the algorithm as input. Figure 6 shows the final task 

profile with the run-queue peek algorithm [14] as well as 

those generated by [2] and with the low power fixed 

priority algorithm [3]. Since the algorithm further scale 

down of the voltage and make more use of online slack 

the run-queue peek algorithm [14] performs better 

compared to [2] and [3].  
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Figure 6: Task scheduling using LPFPS [3], 2-Phase 

algorithm [2] and Run-Queue peek [14] 



  

 

5.  Proposed Solution: Expected Execution 

Time Feedback 
We realized that some online slack could be potentially 

wasted in the algorithm proposed by C. Chakrabarti and J. 

Ahmed [2] and S. Pawaskar and H. Ali [14] due to the 

fact that WCET is used to determine the scheduling for 

every periodicity even though after the first and 

subsequent execution of the tasks we are aware of the 

AET and can rationally compute expected execution time 

which allows us to better utilize the slack generated and 

hence the improve on the overall utilization of energy. 

The calculation of expected execution time can be done in 

one of two ways, either conservatively or in a risky 

manner. 

 

Motivation: Our solution exploits the fact that even 

though we have knowledge of the AET of the tasks after 

the first period, it is not used in the determination of the 

task scheduling for the subsequent periods. Dynamically 

adjusting the run-queue based on the previous periods 

AET is obviously going to be much more efficient than 

using a static run queue that is determined by the schedule 

generated in the offline phase I of the algorithm using the 

conservative EDF (Earliest Deadline First) algorithm. We 

dynamically adjust the task run-queue by calculating EET 

based on the knowledge of WCET and the AET of the 

previous period. Tasks are then scheduled for execution if 

possible based on the knowledge of the available slack 

and the arrival on the next task. This helps in minimizing 

the wastage of the generated slack. 

 

Most of the Energy Aware Scheduling Algorithms 

designed so far use WCET to compute the workloads in 

the offline phase. In general most tasks complete between 

BCET and WCET. In fact, it is a well known that most 

tasks complete well before WCET. We propose to exploit 

this knowledge to our advantage and propose that instead 

of computing workload at WCET, we use information 

regarding expected execution time (EET). 

 Expected Execution Time (EET) may be 

computed in several ways, one way to compute this would 

be based on Actual Execution Time (AET) in the previous 

hyper-period, another approach could be average of all 

previous AET for that task, so on and so forth. An 

important aspect of this approach is that at runtime 

depending on AET we may have some tasks completing 

in time greater than EET and some less than EET. This 

could potentially lead to deadline violations, which we 

need to resolve. 

 

Approaches to compute Expected Execution Time 

1. Conservative Approach: Expected Execution Time 

is computed conservatively so that it is closer to 

WCET. This approach has a lower propensity for 

deadline violations, which need to be resolved. 

Accordingly, we form the following equations [Eq1]. 

 

 

 
 

 

2. Risky Approach: Expected Execution Time is 

computed quite generously so that it is closer to 

BCET. This approach has a higher propensity for 

deadline violations, which need to be resolved. 

Accordingly, we form the following equations [Eq2]. 

 

 

 

Since we first utilize all the regular slack, is 1. 

 
 

 

The pseudo-code for our EET feedback algorithm is 

shown in the Figure 7 below. The algorithm is similar in 

nature to [2, 14] but has key distinctions, we first initialize 

the EET of each task to the WCET since we can only 

compute EET after the execution of the tasks in the first 

hyper-period. We also get the initial scaling level of the 

tasks from the Phase I schedule for the first period. After 

the task is executed we then perform some key steps, first 

we check to see if the AET > EET, this means that we 

could potentially run into deadline violations and need to 

adjust slack disbursement accordingly, otherwise AET < 

EET and we need to update the scaling level to absorb the 

additional slack. Finally we calculate the EET of the task 

for the next hyper-period based on the current AET of that 

task.  

 
Input: Phase I schedule and original task periodicity

Initialize EET for all Tasks to WCET (This is to account for the first period)

Initialize the Scaling level of the tasks from the Phase I schedule for first period.

Repeat for Every Task

Get the scaling level of the next task Ti 

If the task is not available (Current time < Task Ti start time)

{

if ( (original task periodicity shows a task To is available earlier) and 

     (start time of Ti  – To  >= EET of To ) or (Ti+2 - To >= EET Ti + EET To) )

Schedule task To and remove it from Phase I schedule

else

Wait

}

Else

{

If (finish time of task Ti < release time of task Ti+1)

Update the scaling level to absorb the slack

}

Execute the task

If (AET > EET) // we need to check for possible deadline violations.

{

CheckandAdjustforDeadlineViolation();

}

Update Scaling Level to absorb the additional slack if any

Compute EET ( Ti , AET, Alpha, Beta )

 
Figure 7: Pseudo-code of proposed EET feedback 

algorithm 



  

6.  Implementation and Results 

To show the effectiveness of our algorithm we ran 

experiments on the proposed algorithm and the algorithm 

in [2] and [14]. Multiple task sets were used, which we 

shall call each task set as a test case. The tasks were 

randomly generated in a set of 3-tuple. Each task has a 

periodicity between 1 and 10 units. The deadlines of the 

tasks were made equal to that of their periods. The WCET 

for a task was randomly chosen between 0 and the period 

of the task. All the test cases where the task set was not 

schedulable were dropped. We assume that the AET of 

the tasks is drawn from a random Gaussian distribution 

with mean, denoted by μ, and standard deviation denoted 

by σ, given by the following equation [Eq3] and where 

BCET is assumed to be 0.1 time the WCET.  

 

  And   Eq3 

 

We assumed a continuous operating voltage for the 

system. The set of operating voltages considered during 

voltage scaling is Sv = {3.3, 3.0, 2.7, 2.5, 2.0} volts. We 

then ran the experiment taking a conservative approach 

(using Eq1), Figure 8 below show performance 

improvements of our proposed approach as α was varied 

from 0 to 1. It is clear from the plot that as we moved the 

EET closer to AET we consistently gained in a better 

battery performance for most cases, in no case does it 

perform worse. Note that we use a similar technique as in 

[2, 3] to generate our tasks, to have a high degree of 

confidence in our conclusions. 

 
Figure 8: Performance of conservative approach 

 

We also ran our experiment against the algorithm 

proposed in [2] and [14] and the Figure 9 below show that 

the enhanced EET feedback algorithm consistently 

performed better. It is clear from the plot that as we 

moved the EET closer to AET we consistently gained in a 

better battery performance for most cases, in no case does 

it perform worse. Note that we use a similar technique as 

in [2, 3, 14] to generate our tasks, to have a high degree of 

confidence in our conclusions. 

 
Figure 9:Avg. Peformance of conservative approach 

 

We then decided to run the experiments using the risky 

approach (using Eq2), Figure 10 below show performance 

improvement of our proposed approach as β was varied 

from 0 to 1. Note that for all the cases the performance 

was slightly better just beyond AET for some low values 

of β {0.1, 0.2, and 0.3} and then progressive got worse as 

depicted by the upward curve depending on the Task set. 

However beyond a certain value of β typically 0.4 or 

higher we ran into deadline violations that could not be 

resolved. This suggests that we can squeeze some amount 

of performance beyond the AET (using EET < AET).  

 

 
Figure 10: Performance with risky approach 

 

This was also reflected in the plot for average 

performance improvement over all test cases as shown in 

Figure 11 below. 

 

 
Figure 11: Avg. Performance with risky approach 
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We also calculated the average energy utilized for all the 

test cycles and the plot below (Figure 12) clearly suggests 

that the enhanced EET feedback algorithm performs 

better than the algorithms in [2] and [14]. We get an 

average reduction of approximately 7.4% as compared 

with the algorithm in [14] and 15.7% as compared with 

the algorithm in [2]. Note that we use a similar technique 

as in [2, 3, 14] to generate our tasks, to have a high degree 

of confidence in our conclusions. 

 
Figure 12: Average Energy Utilized 

 

7.  Conclusions 
In this paper we proposed an enhanced dynamic task 

scheduling algorithm using expected execution time 

feedback for battery operated DVS systems that further 

maximize the residual charge and the battery voltage. 

This algorithm has a better battery performance compared 

to the other algorithms. Our proposed enhancement 

provides on average an improvement of approximately 

15% over the original approach [2]. The performance 

gains vary from 6% to 20% over the all the test cases. An 

important consideration in real time systems is time 

complexity of the additional steps to get these 

performance gains. Our proposed solution steps have an 

overall time complexity which is constant [O (1)] and 

hence adds only negligible processing time.  

 

Our future research will focus on using various techniques 

of calculating expected execution time (EET). In the 

proposed solution above we calculate EET after every 

period. We need to investigate if that helps in reducing 

energy utilization compared with using the EET after the 

first hyper-period. We intend to further explore both the 

suggested approaches of computing EET namely 

conservative and risky and study their performance 

relative to each other and understand when it would be 

reasonable to use one approach over the other. Another 

investigative thread is can we update the Phase I schedule 

to use EET instead of WCET to calculate schedule after 

the first hyper-period. Our future research will explore the 

application of these approaches and others in a real world 

application such as a high performance grid computing 

environment where management of overheating nodes is 

an important consideration and in wireless sensor 

networks where devices have energy utilization as a 

critical operating parameter. 
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