
University of Nebraska at Omaha
DigitalCommons@UNO

Computer Science Faculty Proceedings &
Presentations Department of Computer Science

2-2008

Dynamic Energy Aware Task Scheduling for
Periodic Tasks using Expected Execution Time
Feedback
Sachin Pawaskar
University of Nebraska at Omaha, spawaskar@unomaha.edu

Hesham Ali
University of Nebraska at Omaha, hali@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc

Part of the Bioinformatics Commons, and the Computer Sciences Commons

This Conference Proceeding is brought to you for free and open access by
the Department of Computer Science at DigitalCommons@UNO. It has
been accepted for inclusion in Computer Science Faculty Proceedings &
Presentations by an authorized administrator of DigitalCommons@UNO.
For more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Pawaskar, Sachin and Ali, Hesham, "Dynamic Energy Aware Task Scheduling for Periodic Tasks using Expected Execution Time
Feedback" (2008). Computer Science Faculty Proceedings & Presentations. 51.
https://digitalcommons.unomaha.edu/compsicfacproc/51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Nebraska, Omaha

https://core.ac.uk/display/232759676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsci?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/compsicfacproc/51?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages

Dynamic Energy Aware Task Scheduling for Periodic Tasks using

Expected Execution Time Feedback

Sachin Pawaskar and Hesham H. Ali

Department of Computer Science

University of Nebraska at Omaha

Omaha, NE 68182, USA

sachinpawaskar@msn.com | hesham@unomaha.edu

ABSTRACT

Scheduling dependent tasks is one of the most challenging

problems in parallel and distributed systems. It is known

to be computationally intractable in its general form as

well as several restricted cases. An interesting application

of scheduling is in the area of energy awareness for

mobile battery operated devices where minimizing the

energy utilized is the most important scheduling policy

consideration. A number of heuristics have been

developed for this consideration. In this paper, we study

the scheduling problem for a particular battery model. In

the proposed work, we show how to enhance a well know

approach of accounting for the slack generated at runtime

due to the difference between WCET (Worst Case

Execution Time) and AET (Actual Execution Time). Our

solution exploits the knowledge gained about the AET of

the tasks after the first period, to come up with EET

(Expected Execution Time). We then use the EET as an

input for the next period to use as much slack as possible

and to eliminate wastage of slack generated. This happens

because WCET is used to determine if a task should be

executed at runtime. Dynamically adjusting the run-queue

to use EET as a feedback, which is based on the previous

period’s AET eliminates wastage of the slack generated.

Based on the outcome of the conducted experiments, the

proposed algorithm outperformed or matched the

performance of the 2-Phase dynamic task scheduling

algorithm and the run-queue peek algorithm all the time.

KEY WORDS

Scheduling, Energy Awareness, Heuristics, Parallel

Processing, Optimal algorithms.

1. Introduction
Mobile computing has become a reality. Through the

Wireless Verification Program, Intel® and leading

wireless LAN service providers have verified more than

40,000 hotspots around the world, with more cropping up

each day [1]. Mobile technology is continually advancing

to keep up with the needs of the mobile user. But as we

work to make the ideal mobile experience, we find

ourselves up against an inherent struggle between

extending battery life and improving mobile performance.

Power consumption has been a critical design constraint

in the design of digital systems due to widely used

portable systems such as cellular phones and PDAs,

which require low power consumption with high speed

and complex functionality. The design of such systems

often involves reprogrammable processors such as

microprocessors, microcontrollers, and DSPs in the form

of off-the-shelf components or cores. Furthermore, an

increasing amount of system functionality tends to be

realized through software, which is leveraged by the high

performance of modern processors. As a consequence,

reduction of the power consumption of processors is

important for the power-efficient design of such systems.

Battery operated portable devices are widely used in

mobile computing and wireless communication

applications. Maximizing battery lifetime is the most

important design consideration for such systems. Since

the amount of energy delivered by the battery depends on

the discharge current profile, the battery life can be

extended by controlling the discharge current level and

shape [2, 3].

Broadly, there are two kinds of methods to

reduce power consumption of processors. The first is to

bring a processor into a power-down mode, where only

certain parts of the processor such as the clock generation

and timer circuits are kept running when the processor is

in an idle state. Most power-down modes have a tradeoff

between the amount of power saving and the latency

incurred during mode change. Therefore, for an

application where latency cannot be tolerated, such as for

a real-time system, the applicability of power-down may

be restricted. Another method is to dynamically change

the processor speed by varying the clock frequency along

with the supply voltage when the required performance on

the processor is lower than the maximum performance. A

significant power reduction can be obtained by this

method because the dynamic power of a CMOS circuit is

quadratically dependent on the supply voltage [3].

In recent years there has been a significant amount of

work done on studying battery characteristics and using

these characteristics to shape the discharge profile. Most

of the earlier work for battery-aware task scheduling has

been for static tasks where complete information about

the tasks is known apriori [2]. In this paper we propose an

enhanced algorithm for the dynamic energy aware task

scheduling problem.

mailto:sachinpawaskar@msn.com
mailto:hesham@unomaha.edu

2. Energy Aware Scheduling

Scheduling is a classical field with several interesting

problems and results. Due to its wide range of

applications, the scheduling problem has been attracting

many researchers from a number of fields. A scheduling

problem emerges whenever there is a choice. The choice

could be the order in which a number of tasks can be

performed, and/or in the assignment of tasks for

processing.

The problem is to determine some sequences of

these operations that are preferred according to certain

(e.g. economic) criteria. The problem of discovering these

preferred sequences is referred to as the sequencing

problem. Over the years, several methods have been used

to deal with the sequencing problem such as complete

enumeration, heuristic rules, integer programming, and

sampling methods. It is clear that complete enumeration is

impractical because the problem is exponential, which

means that it requires too much time, sometimes years of

computation time would be required even for a small

number of tasks. Hence optimal solutions cannot be

obtained in real time [4, 5]. However, many heuristic

methods have been used to deal with most general case of

the problem. Such methods include traditional priority-

based algorithms [6], task merging techniques [7], critical

path heuristics [6, 8]. In addition, distributed algorithms

have been designed to address different versions of the

scheduling problem [9].

In general, the scheduling problem assumes a set

of resources and a set of consumers serviced by these

resources according to a certain policy. Based on the

nature of and the constraints on the consumers and the

resources, the problem is to find an efficient policy

(schedule) for managing the access to and the use of the

resources by various consumers to optimize some desired

performance measure such as the total service time

(schedule length).

Energy Aware Scheduling is a special case of the

general scheduling problem in which our scheduling

policy is the optimization of the energy or power of the

battery. Minimizing the battery power utilization becomes

the most important consideration in a system that is

energy aware, at the same time one must realize that

along with this there are certain parameters that must be

met such as tasks meeting their deadlines.

Consumers Scheduler Resources

Energy

Aware Policy

Figure 1: Energy Aware Scheduling System

Simply put an Energy Aware Scheduling System is a

scheduling problem which assumes a set of resources and

a set of consumers serviced by these resources according

to a Energy Aware policy. Based on the nature of and the

constraints on the consumers and the resources, the

problem is to find an efficient policy (schedule) for

managing the access to and the use of the resources by

various consumers to optimize the desired performance

measure which in this case is minimum amount of battery

energy. Accordingly, an Energy Aware scheduling system

can be considered as consisting of a set of consumers, a

set of resources, and an Energy Aware scheduling policy

as shown in the Figure 1 above. Clearly, there is a

fundamental similarity to scheduling problems regardless

of the difference in the nature of the tasks and the

environment.

3. Scheduling Model
There are several models for which different

algorithms have been proposed. We take look at one such

model, discuss the scheduling algorithm proposed for this

model, its variations and finally present our improvement

for scheduling on this model.

Let us understand the basic characteristics of this Model.

1. The model assumes fixed priority scheduling.

2. The model is for a real time system, in which task

deadlines must be met.

The system configuration for the battery-operated

processor under consideration is described in Figure 2.

The system consists of one DVS processor driven by a

single battery. The battery is used to power the processor

through a DC-DC converter. The DC-DC converter has

an efficiency η = Iproc*Vproc/Ibatt*Vbatt, where Vbatt and Ibatt

are the battery voltage and current and Vproc and Iproc are

the processor voltage and current.

Battery
DC-DC

Converter

DVS

Processor

Vbatt Vproc

Ibatt Iproc

Figure 2: System Level Configuration

Non-linear properties of the battery:

There are several important properties of the battery with

respect to voltage scaling that have been derived from the

analytical model. We present two of the properties used

for developing the real-time scheduling heuristics [10, 2]:

Property 1: For a fixed voltage assignment (only task

start times can be changed), sequencing tasks in the non-

increasing order of their currents is optimal when the task

loads are constant during the execution of the task.

Property 2: Given a pair of two identical tasks in the

profile and a delay slack to be utilized by voltage down-

scaling, it is always better to use the slack on the later

task than on an earlier task.

Task description: A given task k is associated with the

following parameters: the current Ik , the worst case

execution time WECTk, the arrival time ak, the start time

tk, the actual execution time AETk, the deadline dk and the

period Pk. The slack associated with a task is due to two

factors: (1) the inherent slack due to the difference

between the deadline and the WCET and (2) the slack

generated due to the actual execution time being less than

the worst case execution time (Figure 3).

c
u

rr
e

n
t

time

AET

 AETk

WCET

Inherent

Slack

Generated Slack

(AET < WCET)

Ik

ak tk dk

 WCETk

Figure 3: Task Description

Power-Down Modes:

In most embedded systems, a processor often waits for

some events from its environment, wasting its power. To

reduce the waste, modern processors are often equipped

with various levels of power modes. In the case of the

PowerPC 603 processor [11], there are four power modes,

which can be selected by setting the appropriate control

bits in a register. Each mode is associated with a level of

power saving and delay overhead. For example, in sleep

mode, where only the PLL and clock are kept running,

power consumption drops to 5% of full power mode with

about 10 clock cycles delay to return to full power mode.

In the conventional approach employed in most portable

computers, a processor enters power-down mode after it

stays in an idle state for a predefined time interval. Since

the processor still wastes its energy while in the idle state,

this approach fails to obtain a large reduction in energy

when the idle interval occurs intermittently and its length

is short. In [12, 13], the length of the next idle period is

predicted based on a history of processor usage. The

predicted value becomes the metric to determine whether

it is beneficial to enter power-down modes or not. This

method focuses on event driven applications such as user-

interfaces because latency, which arises when the

predicted value does not match the actual value, can be

tolerated. However, we need an exact value instead of a

predicted value for the next idle period when we are to

apply the power-down modes in a hard real-time system,

which is possible in the LPFPS.

4. Overview of Previous Work
C. Chakrabarti and J. Ahmed [2] enhanced the algorithm

proposed by Y.Shin and K. Choi [3] by extending the

algorithm to account for the slack generated at runtime

due to the difference between WECT and AET (Actual

Execution Time). They proposed an algorithm which had

2 Phases. The basic idea of the algorithms in this model is

to exploit the slacks generated to reduce the voltage levels

of the tasks, so that the battery charge consumed or the

drop in voltage is minimized. The algorithm operates in

two phases.

1. Phase I: Off-line task scheduling algorithm using

WCET.

2. Phase II: On-line algorithm using AET.

In Phase I the tasks are assumed to be executed at their

WCETs. A schedule is determined for one hyper-period

(defined as the least common multiple of the periods of all

the tasks in the task set).

In Phase II (on-line), the slack generated due to the AET

being less than the WCET, is used to further scale the

voltage levels of the tasks.

Phase I: The off-line scheduling algorithm is based on a

paper presented by the same co-authors [10], it

determines the task ordering and the voltage level of each

instance of a task in a hyper-period. Applying WCETs in

this phase guarantees that the tasks meet their deadline.

This is done in two steps.

Step 1: Obtain a feasible schedule by using the earliest

deadline first algorithm.

Step 2: Utilize the available slack by voltage down

scaling as much as possible starting from the end of the

profile.

Phase II: During operation of the system, the AET of a

task could be a lot smaller than its WCET. It is suggested

that it is best to use the slack as late as possible, which is

achieved by a process called as slack forwarding. Slack

forwarding is based on the observation that slack

generated by early completion of a task can be made

available to a later task if the later task is released prior to

the time at which the slack originated.

T1 T2

time
t1 t2 t3 t4 t5 t6 t7

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

Arrival of T2

Arrival of T2 Arrival of T2

(a) (b)

(c) (d)

Figure 4: (a) WCET Schedule. (b) WCET Schedule

with full slack forwarding. (c) WCET Schedule with

partial slack forwarding. (d) WCET Schedule with no

partial slack forwarding.

Consider two tasks T1 and T2 and let us assume WCET

for the tasks. Task T1 starts at t1 and finishes at t4 and T2

starts at t4 and finishes at t7, as shown in Figure 4(a).

Suppose T1 actually finishes earlier at time t2, generating

a slack of (t4-t2). All of this slack is available to T2 if its

arrival time is at t2 or before, as depicted in Figure 4(b). If

the task T2 was released at t3, only a part of the generated

slack is available to T2, as shown in Figure 4(c). If the

task T2 was released at t4 none of the generated slack is

available to T2 as shown in the Figure 4(d). Thus the

decision of slack forwarding can be made by inspecting

the arrival time of the subsequent task to be executed.

The purpose of this algorithm is to readjust the voltage

level of the task based on additional slack. The basic steps

are as follows. After the completion of a task, the

scheduler gets the next task from the run queue. The

finish time of the task is estimated based on the voltage

level determined in Phase I. If the finish time is before the

release time of the next task in the queue, the voltage

level of the task is readjusted.

Example:

Consider the three tasks given in Table 1 which is

reproduced below. Rate monotonic priority assignment is

a natural choice because periods (Pi) are equal to

deadlines (Di). Priorities are assigned in row order as

shown in the fifth column of the Table 1. Note that this is

the same example from the original algorithm 1 by Y.Shin

and K. Choi [3], which is being adapted to show the

incremental improvement done by Chakrabarti and J.

Ahmed [2].

Table 1: Example Task Set

 Pi Di Ci Priority

T1 50 50 10 1

T2 80 80 20 2

T3 100 100 40 3

Let us consider the task set in [3] represented by the Table

above. There are three tasks with periods 50, 80 and 100

minutes. The hyper-period is 400 minutes (L.C.M of 50,

80 and 100).The set of operating voltages considered

during voltage scaling is Sv = {3.3, 3.0, 2.7, 2.5, 2.0}

volts. Figure 5(c) shows the final task profile with the

improved algorithm after each phase as well as that

generated with the low power fixed priority algorithm in

[3].

100 30020050 250 350 400

100 30020050 250 350 400

150

150

100 30020050 250 350 400150

(a)

(b)

(c)

Figure 5: Task scheduling using LPFPS algorithm in

[3] versus enhancements in [2]

S. Pawaskar and H. Ali [14] enhanced the

algorithm proposed by C. Chakrabarti and J. Ahmed [2]

by exploiting the fact that even though some tasks

become available based on the actual periodicity of a task

they are not executed because the run queue is determined

by the schedule generated in the offline phase I of the

algorithm using the conservative EDF (Earliest Deadline

First) algorithm. S. Pawaskar and H. Ali [14] peek at the

task run-queue to find such tasks and schedule them for

execution if possible based on the knowledge of the

available slack and the arrival on the next task. This helps

in minimizing the wastage of the generated slack.

Considering the same set of tasks as described in

[2, 3] and shown here in Table 1., this waste of slack can

be observed at time t=80 even though T2 becomes

available as per the periodicity of the task it is not

executed because the run queue determined by the Offline

phase has T1 as the next task. We also notice that T2 can

be easily completed before T1 whose next earliest start

time is t=100, because T2 has WCET execution time of 20

and since it starts at time t=80 we have a timeframe of

(100 – 80) = 20 available for execution.

A similar yet slightly different situation occurs at

time t=240, where even though T2 becomes available as

per the periodicity of the task it is not executed in [2]

because the run queue determined by the Offline phase

has T1 as the next task at t=250. We also notice that T2

cannot be easily completed before T1 whose next earliest

start time is t=250, because T2 has WCET execution time

of 20 and since it starts at time t=240 we have a

timeframe of (250 – 240) = 10 available for execution.

But a simple task look –ahead shows that to execute both

T1 and T2 we have a total time of (240-300) = 60 and the

WCET for each is 10 and 20 respectively, a total duration

WCET of 30, which tells us that scheduling T2 now will

not cause us to miss the deadline for T1 and that both

tasks can be executed within the available time of 60.

 To avoid this waste, the algorithm is enhanced

such that the original start time for each periodic task is

fed to the algorithm as input. Figure 6 shows the final task

profile with the run-queue peek algorithm [14] as well as

those generated by [2] and with the low power fixed

priority algorithm [3]. Since the algorithm further scale

down of the voltage and make more use of online slack

the run-queue peek algorithm [14] performs better

compared to [2] and [3].

100 30020050 250 350 400

100 30020050 250 350 400

150

150

100 30020050 250 350 400150

(a)

(b)

(c)

100 30020050 250 350 400150

(d)

Figure 6: Task scheduling using LPFPS [3], 2-Phase

algorithm [2] and Run-Queue peek [14]

5. Proposed Solution: Expected Execution

Time Feedback
We realized that some online slack could be potentially

wasted in the algorithm proposed by C. Chakrabarti and J.

Ahmed [2] and S. Pawaskar and H. Ali [14] due to the

fact that WCET is used to determine the scheduling for

every periodicity even though after the first and

subsequent execution of the tasks we are aware of the

AET and can rationally compute expected execution time

which allows us to better utilize the slack generated and

hence the improve on the overall utilization of energy.

The calculation of expected execution time can be done in

one of two ways, either conservatively or in a risky

manner.

Motivation: Our solution exploits the fact that even

though we have knowledge of the AET of the tasks after

the first period, it is not used in the determination of the

task scheduling for the subsequent periods. Dynamically

adjusting the run-queue based on the previous periods

AET is obviously going to be much more efficient than

using a static run queue that is determined by the schedule

generated in the offline phase I of the algorithm using the

conservative EDF (Earliest Deadline First) algorithm. We

dynamically adjust the task run-queue by calculating EET

based on the knowledge of WCET and the AET of the

previous period. Tasks are then scheduled for execution if

possible based on the knowledge of the available slack

and the arrival on the next task. This helps in minimizing

the wastage of the generated slack.

Most of the Energy Aware Scheduling Algorithms

designed so far use WCET to compute the workloads in

the offline phase. In general most tasks complete between

BCET and WCET. In fact, it is a well known that most

tasks complete well before WCET. We propose to exploit

this knowledge to our advantage and propose that instead

of computing workload at WCET, we use information

regarding expected execution time (EET).

 Expected Execution Time (EET) may be

computed in several ways, one way to compute this would

be based on Actual Execution Time (AET) in the previous

hyper-period, another approach could be average of all

previous AET for that task, so on and so forth. An

important aspect of this approach is that at runtime

depending on AET we may have some tasks completing

in time greater than EET and some less than EET. This

could potentially lead to deadline violations, which we

need to resolve.

Approaches to compute Expected Execution Time

1. Conservative Approach: Expected Execution Time

is computed conservatively so that it is closer to

WCET. This approach has a lower propensity for

deadline violations, which need to be resolved.

Accordingly, we form the following equations [Eq1].

2. Risky Approach: Expected Execution Time is

computed quite generously so that it is closer to

BCET. This approach has a higher propensity for

deadline violations, which need to be resolved.

Accordingly, we form the following equations [Eq2].

Since we first utilize all the regular slack, is 1.

The pseudo-code for our EET feedback algorithm is

shown in the Figure 7 below. The algorithm is similar in

nature to [2, 14] but has key distinctions, we first initialize

the EET of each task to the WCET since we can only

compute EET after the execution of the tasks in the first

hyper-period. We also get the initial scaling level of the

tasks from the Phase I schedule for the first period. After

the task is executed we then perform some key steps, first

we check to see if the AET > EET, this means that we

could potentially run into deadline violations and need to

adjust slack disbursement accordingly, otherwise AET <

EET and we need to update the scaling level to absorb the

additional slack. Finally we calculate the EET of the task

for the next hyper-period based on the current AET of that

task.

Input: Phase I schedule and original task periodicity

Initialize EET for all Tasks to WCET (This is to account for the first period)

Initialize the Scaling level of the tasks from the Phase I schedule for first period.

Repeat for Every Task

Get the scaling level of the next task Ti

If the task is not available (Current time < Task Ti start time)

{

if ((original task periodicity shows a task To is available earlier) and

 (start time of Ti – To >= EET of To) or (Ti+2 - To >= EET Ti + EET To))

Schedule task To and remove it from Phase I schedule

else

Wait

}

Else

{

If (finish time of task Ti < release time of task Ti+1)

Update the scaling level to absorb the slack

}

Execute the task

If (AET > EET) // we need to check for possible deadline violations.

{

CheckandAdjustforDeadlineViolation();

}

Update Scaling Level to absorb the additional slack if any

Compute EET (Ti , AET, Alpha, Beta)

Figure 7: Pseudo-code of proposed EET feedback

algorithm

6. Implementation and Results

To show the effectiveness of our algorithm we ran

experiments on the proposed algorithm and the algorithm

in [2] and [14]. Multiple task sets were used, which we

shall call each task set as a test case. The tasks were

randomly generated in a set of 3-tuple. Each task has a

periodicity between 1 and 10 units. The deadlines of the

tasks were made equal to that of their periods. The WCET

for a task was randomly chosen between 0 and the period

of the task. All the test cases where the task set was not

schedulable were dropped. We assume that the AET of

the tasks is drawn from a random Gaussian distribution

with mean, denoted by μ, and standard deviation denoted

by σ, given by the following equation [Eq3] and where

BCET is assumed to be 0.1 time the WCET.

 And  Eq3

We assumed a continuous operating voltage for the

system. The set of operating voltages considered during

voltage scaling is Sv = {3.3, 3.0, 2.7, 2.5, 2.0} volts. We

then ran the experiment taking a conservative approach

(using Eq1), Figure 8 below show performance

improvements of our proposed approach as α was varied

from 0 to 1. It is clear from the plot that as we moved the

EET closer to AET we consistently gained in a better

battery performance for most cases, in no case does it

perform worse. Note that we use a similar technique as in

[2, 3] to generate our tasks, to have a high degree of

confidence in our conclusions.

Figure 8: Performance of conservative approach

We also ran our experiment against the algorithm

proposed in [2] and [14] and the Figure 9 below show that

the enhanced EET feedback algorithm consistently

performed better. It is clear from the plot that as we

moved the EET closer to AET we consistently gained in a

better battery performance for most cases, in no case does

it perform worse. Note that we use a similar technique as

in [2, 3, 14] to generate our tasks, to have a high degree of

confidence in our conclusions.

Figure 9:Avg. Peformance of conservative approach

We then decided to run the experiments using the risky

approach (using Eq2), Figure 10 below show performance

improvement of our proposed approach as β was varied

from 0 to 1. Note that for all the cases the performance

was slightly better just beyond AET for some low values

of β {0.1, 0.2, and 0.3} and then progressive got worse as

depicted by the upward curve depending on the Task set.

However beyond a certain value of β typically 0.4 or

higher we ran into deadline violations that could not be

resolved. This suggests that we can squeeze some amount

of performance beyond the AET (using EET < AET).

Figure 10: Performance with risky approach

This was also reflected in the plot for average

performance improvement over all test cases as shown in

Figure 11 below.

Figure 11: Avg. Performance with risky approach

15

20

25

30

35

40

45

En
e

rg
y

Performance Improvement

25

27

29

31

33

35

A
1

A
2

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

En
e

rg
y

Average Performance Improvement

15

20

25

30

35

40

45

0% 20% 40% 60% 80% 100% 120% 140%

En
e

rg
y

Performance Improvement

25

27

29

31

33

35

A
1

A
2

0
%

1
0

%
2

0
%

3
0

%
4

0
%

5
0

%
6

0
%

7
0

%
8

0
%

9
0

%
1

0
0

%
1

1
0

%
1

2
0

%
1

3
0

%
1

4
0

%
1

5
0

%

En
e

rg
y

Average Performance Improvement

We also calculated the average energy utilized for all the

test cycles and the plot below (Figure 12) clearly suggests

that the enhanced EET feedback algorithm performs

better than the algorithms in [2] and [14]. We get an

average reduction of approximately 7.4% as compared

with the algorithm in [14] and 15.7% as compared with

the algorithm in [2]. Note that we use a similar technique

as in [2, 3, 14] to generate our tasks, to have a high degree

of confidence in our conclusions.

Figure 12: Average Energy Utilized

7. Conclusions
In this paper we proposed an enhanced dynamic task

scheduling algorithm using expected execution time

feedback for battery operated DVS systems that further

maximize the residual charge and the battery voltage.

This algorithm has a better battery performance compared

to the other algorithms. Our proposed enhancement

provides on average an improvement of approximately

15% over the original approach [2]. The performance

gains vary from 6% to 20% over the all the test cases. An

important consideration in real time systems is time

complexity of the additional steps to get these

performance gains. Our proposed solution steps have an

overall time complexity which is constant [O (1)] and

hence adds only negligible processing time.

Our future research will focus on using various techniques

of calculating expected execution time (EET). In the

proposed solution above we calculate EET after every

period. We need to investigate if that helps in reducing

energy utilization compared with using the EET after the

first hyper-period. We intend to further explore both the

suggested approaches of computing EET namely

conservative and risky and study their performance

relative to each other and understand when it would be

reasonable to use one approach over the other. Another

investigative thread is can we update the Phase I schedule

to use EET instead of WCET to calculate schedule after

the first hyper-period. Our future research will explore the

application of these approaches and others in a real world

application such as a high performance grid computing

environment where management of overheating nodes is

an important consideration and in wireless sensor

networks where devices have energy utilization as a

critical operating parameter.

References
[1] Intel. (2005). “The battery life challenge – balancing

performance and power”, Retrieved Dec 4th 2005 from

http://www.intel.com/products/centrino/enablingbatterylIf

e.pdf

[2] Jameel Ahmed and Chaitali Chakrabarti, “A Dynamic

Task Scheduling Algorithm for Battery Powered DVS

Systems” Proc. ISCAS, 813-816, 2004.

[3] Youngsoo Shin and Kiyoung Choi, “Power Conscious

Fixed Priority Scheduling for Hard Real-Time Systems,

2005

[4] J. Ullman, NP-complete scheduling problems, Journal

of Computer and System Sciences, 10, 384-393, 1975.

[5] E. G. Coffman, R. L. Graham, J. L. Bruno, W. H.

Kohler, R. Sethi, K. Steiglitz, and J. D. Ullman: Computer

and Job-Shop Scheduling Theory, John Wiley & Sons, A

Wiley-Inter-Science publication, 1976.

[6] Hesham El-Rewini, Theodore G. Lewis, Hesham H.

Ali: Task Scheduling in Parallel and Distributed Systems,

PTR Prentice Hall, Inc. Englewood Cliffs, New Jersey

07632. 1994.

[7] Peter Aronsson and Peter Fritzson: Task Merging and

Replication using Graph Rewriting, Tenth International

Workshop on Compilers for Parallel Computers,

Amsterdam, the Netherlands, Jan 8-10, 2003

[8] A. A. Khan, C. L. McCreary and M. S. Jones, A

Comparison of Multiprocessor Scheduling Heuristics,

International Conference on Parallel Processing, 1994.

[9] Rong Xie, Daniela Rus and Cliff Stein: Scheduling

Multi-Task Agents. In Proceedings of the Fifth IEEE

International Conference on Mobile Agents, pages 260-

276, Atlanta, Georgia, December, 2001.

[10] P. Chowdhury and C. Chakrabarti, “Battery-aware

task scheduling for a system-on-a-chip using

voltage/clock scaling,” Proc.SiPS, 2002.

[11] S. Gary, “PowerPC: A microprocessor for portable

computers,” IEEE Design & Test of Computers, pp. 14–

23, Dec. 1994.

[12] M. B. Srivastava, A. P. Chandrakasan, and R. W.

Brodersen, “Predictive system shutdown and other

architectural techniques for energy efficient

programmable computation,” IEEE Trans. on VLSI

Systems, vol. 4, pp. 42–55, Mar. 1996.

[13] C. Hwang and A. Wu, “A predictive system

shutdown method for energy saving of event-driven

computation,” in Proc. Int’l Conf. on Computer Aided

Design, pp. 28–32, Nov. 1997.

[14] S. Pawaskar and H. Ali, “Dynamic Energy Aware

Task scheduling using run-queue peek” in Proc. Int’l

Conf. on Parallel and Distributed Computing and

Networks”, Feb. 2007.

33.8

31.36

29.20

Algorithms

Average Energy Utilized

Std 2-Phase Run-queue peek EET feedback

http://www.intel.com/products/centrino/enablingbatterylIfe.pdf
http://www.intel.com/products/centrino/enablingbatterylIfe.pdf

	University of Nebraska at Omaha
	DigitalCommons@UNO
	2-2008

	Dynamic Energy Aware Task Scheduling for Periodic Tasks using Expected Execution Time Feedback
	Sachin Pawaskar
	Hesham Ali
	Recommended Citation

	Dynamic Energy Aware Task Scheduling for Periodic Tasks using Expected Execution Time Feedback

